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Abstract The betweenness centrality (BWC) of a vertex is

a measure of the fraction of shortest paths between any two

vertices going through the vertex and is one of the widely

used shortest path-based centrality metrics for the complex

network analysis. However, it takes O(|V |2 + |V ||E |) time

(where V and E are, respectively, the sets of nodes and edges

of a network graph) to compute the BWC of just a sin-

gle node. Our hypothesis is that nodes with a high degree,

but low local clustering coefficient, are more likely to be

on the shortest paths of several node pairs and are likely to

incur a larger BWC value. Accordingly, we define the local

clustering coefficient-based degree centrality (LCCDC) for

a node as the product of the degree centrality of the node and

one minus the local clustering coefficient of the node. The

LCCDC of a node can be computed based on just the knowl-

edge of the two-hop neighborhood of a node and would take

significantly lower time. We conduct an exhaustive correla-

tion analysis and observe the LCCDC to incur the largest

correlation coefficient values with BWC (compared to other

centrality metrics under three different correlation measures)

and to hold very strong levels of positive correlation with

BWC for at least 14 of the 18 real-world networks analyzed.

Hence, we claim the LCCDC to be an apt metric to rank the

nodes or compare any two nodes of a real-world network

graph in lieu of BWC.
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1 Introduction

Network science (a.k.a. complex network analysis) is an

emerging area of interest in the data science discipline and

corresponds to analyzing complex real-world networks from

a graph theory point of view. Among the various metrics used

for complex network analysis, node centrality is a promi-

nently used metric of immense theoretical interest and prac-

tical value. The centrality of a node is a link statistics-based

quantitative measure of the topological importance of the

node with respect to the other nodes in the network [1]. Appli-

cations for node centrality metrics could be, for example, to

identify the most influential persons in a social network, the

key infrastructure nodes in an internet, the super-spreaders

of a disease, etc. The existing centrality metrics could be

broadly classified into two categories [1]: neighbor-based and

shortest path-based. Degree centrality (DegC) and eigenvec-

tor centrality (EVC) [2] are well-known metrics for neighbor-

based centrality, while Betweenness centrality (BWC) [3]

and closeness centrality (ClC) [4] are well-known metrics

for shortest path-based centrality. Throughout the paper, the

terms ‘node’ and ‘vertex’, ‘link’ and ‘edge’, and ‘network’

and ‘graph’ are used interchangeably. They mean the same.

The degree centrality of a vertex is the number of neigh-

bors connected to the vertex and can be determined just based

on the one-hop neighborhood knowledge. The eigenvector

centrality of a vertex is a measure of the degree of the vertex

as well as the degree of its neighbors. The betweenness cen-

trality of a vertex is a measure of the fraction of the shortest

paths between any two vertices that go through the vertex;

whereas the closeness centrality of a vertex is a measure of the

shortest path distances to every other vertex in the network.

Other than degree centrality, all the above three centrality

metrics require the global knowledge of the network for their

computation.
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With respect to the running time of the algorithms to com-

pute the centrality metrics, for an arbitrary network graph of

|V | vertices and |E | edges: the EVC of all the vertices en

masse can be computed in O(|V |3) time, whereas it would

take O(|V |+|E |) and O(|V |2 +|V ||E |) time, respectively, to

compute the closeness centrality and betweenness centrality

of an individual vertex. The BWC, thus, incurs the longest

running time to be computed for just a single node. As the

BWC for a node u is defined as the sum of the fraction of

shortest paths between any two nodes i and j (i �= j �= u)

that go through node u, one would have to run the shortest

path algorithm on every node in the graph to compute the

BWC of even a single node. Even though the BWC of all the

vertices could be determined once the shortest path algorithm

is run on every node in a network graph, it is still too much

of a computation overhead on network graphs with a larger

number of nodes and/or edges (especially, if one is inter-

ested in just knowing the relative importance of a selected

few vertices with regards to their location on the shortest

paths among any two vertices in the network graph). Thus,

the motivation of this research is to explore the possibility

of using a computationally lightweight localized centrality

metric that is highly correlated to the BWC and could be

used to rank the vertices or compare selected vertices in a

network graph in lieu of the BWC.

Our high-level contribution in this paper is the pro-

posal of a local clustering coefficient-based degree centrality

(LCCDC) metric as a computationally lightweight central-

ity alternative for the betweenness centrality (BWC). The

local clustering coefficient of a node in a graph is the frac-

tion of the pairs of its neighbors that are directly connected

to each other. The underlying theoretical basis for the pro-

posed LCCDC metric is that if none of the neighbors of a

vertex go through the vertex for shortest path communica-

tion, and then none of the other vertices in the graph go

through the vertex for shortest path communication. Accord-

ingly, we define the LCCDC of a vertex as the product

of the degree of the vertex and one minus the local clus-

tering coefficient of the vertex. The LCCDC metric, thus,

quantifies the extent, to which the degree centrality of a

vertex facilitates shortest path communication through the

vertex and could be at most the degree centrality of the

vertex. If a vertex has a high degree, but a low local cluster-

ing coefficient, it implies that though the vertex has several

neighbors—a very few of these neighbors are directly con-

nected to each other. Hence, a high-degree vertex with a

low local clustering coefficient is likely to be on the short-

est path for several pairs of vertices in the network (at least

for the neighbors of the node). On the other hand, a vertex

with a higher clustering coefficient (even if it has a higher

degree) is not likely to be on the shortest paths connecting

its neighbors and thereby not likely to be on the shortest

paths between any two vertices in the graph. All of the

above arguments form the basis of our hypothesis that a high-

degree vertex with a low local clustering coefficient is more

likely to exhibit a larger value for the betweenness central-

ity.

We explore the level of correlation between LCCDC and

BWC through extensive experimental studies involving a

suite of 18 real-world networks, whose degree distribution

ranges from Poisson to Power-law [5] under three differ-

ent correlation measures [5]. We observe the LCCDC to

exhibit highest values for the correlation coefficient with

BWC (compared to DegC, EVC, and ClC under all the

three correlation measures). In addition to the quantitative

values, we also qualitatively classify the level of correla-

tion for BWC with the other centrality metrics studied in

this paper, and observe the newly proposed LCCDC metric

to exhibit strong-very strong levels of positive correlation

with BWC for at least 16 of the 18 real-world networks

analyzed. High levels of positive correlation between time-

efficient LCCDC and time-consuming BWC are an indicator

that if two vertices are to be compared based on their BWC

values, it would be more likely sufficient to just compare

their LCCDC values. Similarly, the ranking of the vertices

in a real-world network graph based on their BWC values

is more likely to be the same as the ranking of the ver-

tices based on the LCCDC metric. Thus, we claim that the

LCCDC could be used to compare vertices in lieu of their

BWC.

The rest of the paper is organized as follows: Sect. 2

reviews the classical centrality metrics (DegC, EVC, BWC,

and ClC) and the calculation of the BWC metric with an

example. Section 3 introduces the local clustering coefficient-

based degree centrality (LCCDC) metric and justifies its

proposal as an alternate for BWC with a motivating example.

Section 4 introduces the three measures of correlation used

in the experimental studies on real-world networks. Section 5

presents the 18 real-world network graphs and discusses the

results of correlation coefficient analysis for BWC with each

of LCCDC, DegC, EVC, and ClC as well as ranks the five

centrality metrics on the basis of the execution time incurred

to compute them on these graphs. Section 6 reviews related

work on correlation studies involving the centrality metrics.

Section 7 concludes the paper and explores directions for

future research.

2 Node centrality metrics

We now review the centrality metrics that are used for the

correlation coefficient analysis studies in this paper. These

are the neighbor-based degree centrality (DegC) and eigen-

vector centrality (EVC) metrics and the shortest path-based

betweenness centrality (BWC) and closeness centrality (ClC)

metrics.
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The degree centrality (DegC) of a vertex is the number

of neighbors for the vertex in the graph and can be easily

computed by counting the number of edges incident on the

vertex. If A is the n × n adjacency matrix for a graph, such

that A[i , j] = 1 if there is an edge connecting vi to v j (for

undirected graphs) and A[i , j] = 0 if there is no edge con-

necting vi and v j . The degree centrality of a vertex vi is

quantitatively defined as follows: DegC(vi ) =
∑n

j=1 A[i, j].

It would take O(|V |) time to determine the degree cen-

trality of a vertex, as there would be n = |V | entries

in the row corresponding to each vertex in the adjacency

matrix.

The eigenvector centrality (EVC) of a vertex is a quan-

titative measure of the degree of the vertex as well as the

degree of its neighbors. A vertex that has a high degree for

itself as well as located in the neighborhood of high-degree

vertices is likely to have a larger EVC. The EVC values of the

vertices in a graph correspond to the entries for the vertices

in the principal eigenvector of the adjacency matrix of the

graph. An n × n adjacency matrix has n eigenvalues and the

corresponding eigenvectors. The principal eigenvector is the

eigenvector corresponding to the largest eigenvalue (princi-

pal eigenvalue) of the adjacency matrix, A. Moreover, if all

the entries in a square matrix are positive (i.e., greater than or

equal to zero), the principal eigenvalue as well as the entries in

the principal eigenvector are also positive [6]. We determine

the EVC of the vertices using the power-iteration method [6]

of complexity O(|V |3) in a graph of |V | vertices, as there

are O(|V |2) multiplications in each iteration of the power-

iteration method, and there could be at most |V | iterations

before the normalized value of the eigenvector converges to

the principal eigenvalue (typically, the number of iterations

needed for the convergence to happen would be far less than

the number of vertices in the graph).

The betweenness centrality (BWC) of a vertex is the sum

of the fraction of shortest paths going through the vertex

between any two vertices, considered over all pairs of ver-

tices. In this paper, we determine the BWC of the vertices

using the breadth first search (BFS)-variant of the well-

known Brandes algorithm [7]. We run the BFS algorithm

[8] on each vertex in the graph and determine the level of

each vertex (the number of hops/edges from the root) in each

of these BFS trees. The root of a BFS tree is said to be at

level 0 and the number of shortest paths from the root to

itself is 1. On a BFS tree rooted at vertex r , the number of

shortest paths for a vertex i at level l (l > 0) from the root

r is the sum of the number of shortest paths from the root r

to each the neighbors of vertex i(in the original graph) that

are at level l−1 in the BFS tree. Since we are working on

undirected graphs, the total number of shortest paths from

vertex i to vertex j (denoted spi j ) is simply the number of

shortest paths from vertex i to vertex j in the shortest path

tree rooted at vertex i or vice-versa. The number of short-

est paths from a vertex i to a vertex j that go through a

vertex k (denoted spi j (k)) is the maximum of the number

of shortest paths from vertex i to vertex k in the shortest

path tree rooted at i and the number of shortest paths from

vertex j to vertex k in the shortest path tree rooted at ver-

tex j . Thus, BWC(k) =
∑

k �= i

k �= j

spi j (k)

spi j
. With regard to

the run-time complexity of the Brandes algorithm, it would

take O(|V | + |E |) time to run the BFS shortest path algo-

rithm on a particular vertex and a total of O(|V |*(|V |+|E |))

time on the |V | vertices of a network graph. In addition,

for each vertex: one has to trace through the |V | shortest

path trees to determine the number of shortest paths from

the root vertices of these shortest path trees to the par-

ticular vertex for which we want to find the BWC. This

could take another |V ||E | time for all the vertices in the

graph. Thus, the computation time incurred to determine

the BWC values of all the vertices in a graph would be:

O(|V |2 + |V ||E | + |V ||E |), which for all theoretical pur-

poses is written simply as: O(|V |2 + |V ||E |).

Figure 1 illustrates an example to calculate the BWC of the

vertices on a sample graph that is used as a running example

in Figs. 1, 2, 3, 4, 5, and 6. We can observe the betweenness

values for vertices 0, 6, and 7 are zero each, because no

shortest path between any two vertices go through them. We

observe that even though vertices 4 and 5 have the same

larger degree, the average degree of the neighbors of vertex

5 is slightly lower than the average degree of the neighbors

of vertex. As a result, vertex 5 is more likely to occupy a

relatively larger fraction of the shortest path between any two

vertices and incur a relatively larger BWC value compared

to vertex 4 (even though vertex 4 has a larger EVC value).

In addition, even though vertex 3 has a larger degree than

vertex 1, the BWC of vertex 1 is significantly larger than that

of vertex 3. This could be attributed to vertex 1 lying on the

shortest path from vertices 0 and 2 to vertices 4, 5, 6, and

7; on the other hand, vertex 3 lies only on the shortest path

between 2 and 5.

The closeness centrality (ClC) of a vertex is the inverse

of the sum of the number of shortest paths from the vertex

to every other vertex in the graph. We determine the ClC of

the vertices by running the BFS algorithm on each vertex

and summing the number of shortest paths from the root

vertex to every other vertex in these BFS trees. It would

take O(|V | + |E |) time to run the BFS algorithm once and

determine the shortest path tree rooted at a particular vertex.

To determine the closeness centrality of all the vertices in

a graph, one would have to run the BFS algorithm on each

of the vertices: thus, incurring an overall time complexity

of O(|V |*(|V | + |E |)) = O(|V |2 + |V ||E |). However, unlike

the BWC metric, there is no additional computation overhead

incurred to determine the ClC values of the vertices.
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Fig. 1 Example to illustrate the

calculation of betweenness

centrality

Fig. 2 Example to illustrate the calculation of local clustering coefficient

3 Local clustering coefficient-based degree

centrality

The local clustering coefficient (LCC) of a vertex is the

ratio of the actual number of links between the neighbors

of the vertex to that of the maximum possible number of

links between the neighbors of the vertex [1]. For a vertex

vi with degree ki (i.e., ki neighbors), the maximum possi-

ble number of links between the neighbors of the node is

ki (ki−1)/2. Figure 2 illustrates the computation of the LCC

values of the vertices on the example graph used in Fig. 1.

We see that a vertex having high degree need not necessarily

have a higher LCC, as it would be difficult to expect direct

links between any two neighbors of the vertex. In Fig. 2, we

observe that both vertices 4 and 5 that have a degree of 5 each

incur LCC values that are lower than the LCC of vertices 6

and 7 that have a degree of 3 each. In addition, vertices with

the same degree need not have the same LCC, as the connec-

tivity among the neighbors of each vertex could be different

from that of the others. We notice that though vertices 3, 6,

and 7 have a degree of 3 each, the LCC of vertex 3 is only

0.33, whereas vertices 6 and 7 have an LCC of 1.0 each.

Our hypothesis behind the proposed local clustering

coefficient-based degree centrality (LCCDC) metric is as fol-

lows: a high-degree vertex with a lower clustering coefficient

is essential to at least connect the neighbors (that are not
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Fig. 3 Example to illustrate the calculation of local clustering coefficient-based degree centrality

Fig. 4 Example to illustrate the computation of Pearson’s correlation coefficient (betweenness centrality: B and local clustering coefficient-based

degree centrality: C)

Fig. 5 Example to illustrate the computation of Spearman’s correlation coefficient (betweenness centrality: B and local clustering coefficient-based

degree centrality: C)

directly connected to each other) of the vertex on a shortest

path. In addition, such a high-degree vertex with a lower LCC

might be on the shortest path of several other pairs of vertices

(especially, for those vertices that are in the 2-hop and 3-hop

neighborhood), eventually contributing to a higher BWC for

the vertex. On the other hand, a vertex in a connected graph

incurs a BWC of zero if none of the neighbors of the vertex

go through it for their shortest path(s) to any other vertex in

the graph. In other words, a vertex sustains a BWC value of

zero if it is either a stub vertex (has a degree of 1: that is con-

nected to only one other vertex) or there exists a link between

any two neighbors of the vertex. In both the cases, the LCC

of the vertex is 1 and the BWC value for the vertex will be

zero. Considering all of the above, we propose to calculate

the LCCDC metric for a vertex as the product of the degree

centrality of the vertex and one minus the local clustering

coefficient of the vertex. That is, LCCDC(vi ) = ki * (1 −

LCC(vi )). The proposed formulation also sets up meaningful

upper bound and lower bound for the LCCDC metric. With

the above formulation, the maximum possible value for the

local clustering coefficient-based degree centrality of a ver-

tex is the degree centrality of the vertex itself (if the LCC

of the vertex is 0) and the minimum possible value for the

LCCDC of a vertex is 0 (if the LCC of the vertex is 1). Thus,

the proposed formulation for LCCDC of a vertex captures

the extent to which the degree centrality of a vertex is useful
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Fig. 6 Example to illustrate the

computation of Kendall’s

correlation coefficient

(betweenness centrality: B and

local clustering

coefficient-based degree

centrality: C)

in facilitating shortest path communication through the ver-

tex, and we claim it to be lightweight alternative to the BWC

metric (as verified in Sect. 4).

Figure 3 illustrates the computation of the LCCDC values

of the vertices of the example graph used in Figs. 1 and 2. We

observe that larger the LCCDC value for a vertex, the larger

the BWC value for the vertex and vice-versa. We observe

that vertices 0, 6, and 7 that do not lie on the shortest path for

any two vertices in the graph have a BWC of zero each and

also have LCCDC value of zero each. Notice that for each of

these 3 vertices 0, 6, and 7: the neighbors of the vertex have

direct links to each other and are not required to go through

the vertex (this is one of the two scenarios for which the BWC

value of a vertex will be zero, as explained above). We also

notice that though both vertices 4 and 5 have a degree of 5

each, vertex 5 has relatively larger values for both the LCCDC

and BWC metrics owing to relatively fewer fraction of direct

links among its neighbors. Likewise, though both vertices 1

and 3 have a degree of 3 each, vertex 1 has relatively larger

BWC and LCCDC values due to a relatively fewer fraction

of direct links among its neighbors.

The local clustering coefficient of a vertex can be com-

puted by checking whether the neighbors of the vertex are

directly connected to each other. For a vertex i with ki neigh-

bors, there is a possibility of ki (ki−1)/2 edges among the

neighbors of vertex i . This could be efficiently done in O(1)

time for each pair of neighbors by checking their corre-

sponding entry in the adjacency matrix, leading to a time

complexity of O(k2
i ) for a vertex i of degree ki . Thus, the time

complexity incurred to compute the local clustering coeffi-

cient of the vertices in a graph narrows down to the problem

of determining an upper bound for the sum of the squares of

the degrees of the vertices in a graph. This has been derived

to be O(|E | ∗ (
2∗|E |
|V |−1

+ |V | − 2)) for a graph of |V | vertices

and |E | edges [36]. It would take O(|V |2) time to compute

the degree centrality of the vertices in a graph. Hence, the

time complexity incurred to compute the LCCDC of the ver-

tices in a network graph of |V | vertices and |E | edges can be

written as: O(|V |2 + |E | ∗ (
2∗|E |
|V |−1

+ |V | − 2)).

4 Correlation coefficient measures

We now discuss the three well-known correlation coeffi-

cient measures that are used to evaluate the correlation

between BWC and LCCDC as well as the correlations
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between BWC and each of the other three centrality met-

rics (DegC, EVC and ClC) presented in Sect. 2. These

are the product moment-based Pearson’s correlation coef-

ficient, Rank-based Spearman’s correlation coefficient, and

Concordance-based Kendall’s correlation coefficient. The

Spearman’s and Kendall’s correlation measures are rank-

based and the Pearson’s correlation measure is a measure of

the linear relationship between two variables (in our case,

the LCCDC and BWC metrics) [6]. The Pearson’s mea-

sure captures the correlation between the two metrics as

follows: If we were to list the vertices in the monotonically

increasing order of their BWC values, are the LCCDC val-

ues of these vertices are also in the monotonically increasing

order or decreasing order or neither. The Spearman’s mea-

sure captures the correlation as follows: How close is the

ranking of the vertices based on the increasing order of their

BWC values and in the increasing order of their LCCDC

values? Kendall’s measure captures the correlation between

the two metrics as follows: Consider any two vertices vi

and v j . If BWC(vi ) > BWC(v j ), is the LCCDC(vi ) >

LCCDC(v j )or LCCDC(vi ) <LCCDC(v j )or LCCDC(vi )

= LCCDC(v j )? All the three correlation measures are inde-

pendent of each other. We use three different and independent

correlation measures to more rigorously validate our hypoth-

esis that the time-efficient LCCDC metric can be used

to rank the nodes or compare any two nodes in a real-

world network graph in lieu of the time-consuming BWC

metric.

The correlation coefficient values obtained for all the three

measures range from −1 to 1. Correlation coefficient values

closer to 1 indicate a stronger positive correlation between the

two metrics considered (i.e., a vertex having a larger value

for one of the two metrics is more likely to have a larger

value for the other metric too), while values closer to −1

indicate a stronger negative correlation (i.e., a vertex having

a larger value for one of the two metrics is more likely to

have a smaller value for the other metric). Correlation coeffi-

cient values closer to 0 indicate no correlation (i.e., the values

incurred by a vertex for the two metrics are independent of

each other). We will adopt the ranges (rounded to two dec-

imals) proposed by Evans [9] to indicate the various levels

of correlation, shown in Table 1. The color code to be used

for the various levels of correlation are also shown in this

table.

For simplicity, we refer to the two data sets as B and

C , respectively, corresponding to the betweenness centrality

and each of the other four centrality metrics (including the

LCCDC). We will use the results from Fig. 3 to illustrate

examples for the computation of the correlation coefficient

under each of the three correlation measures.

4.1 Pearson’s product moment-based correlation

coefficient

The Pearson’s product moment-based correlation coefficient

for two data sets is defined as the covariance of the two data

sets divided by the product of their standard deviation [5]. Let

Bavg and Cavg denote the average values for the BWC and

the LCCDC centrality metric for a graph of n vertices and

let Bi and Ci denote, respectively, the values for the BWC

and LCCDC incurred for vertex vi . The Pearson’s correla-

tion coefficient (indicated PCC) is quantitatively defined as

shown in Eq. (1). The term product moment is associated

with the product of the mean (first moment) adjusted values

for the two metrics in the numerator of the formulation. Fig-

ure 4 presents the calculation of the PCC for the betweenness

centrality (B) and local clustering coefficient-based degree

centrality (C) values obtained for the example graph used

in Figs. 1, 2, 3. We obtain a correlation coefficient value of

0.97 (see Fig. 4) indicating a very strong positive correlation

between the two metrics for the example graph.

PCC(B, C) =

∑n
i=1 (Bi − Bavg)(Ci − Cavg)

√

∑n
i=1 (Bi − Bavg)

2
∑n

i=1 (Ci − Cavg)
2
...

(1)

4.2 Spearman’s rank-based correlation coefficient

Spearman’s rank correlation coefficient (SCC) is a measure

of how well the relationship between two data sets (variables)

can be assessed using a monotonic function [5]. To compute

the SCC of two data sets Band C , we convert the raw scores

Bi and Ci for a vertex i to ranks bi and ci and use formula (2)

Table 1 Range of correlation coefficient values and the corresponding levels of correlation

Range of Correlation 

Coefficient Values
Level of Correlation

Range of Correlation 

Coefficient Values
Level of Correlation

0.80 to 1.00  Very Strong Positive -1.00 to -0.80 Very Strong Negative

0.60 to 0.79 Strong Positive -0.79 to -0.60 Strong Negative

0.40 to 0.59 Moderate Positive -0.59 to -0.40 Moderate Negative

0.20 to 0.39 Weak Positive -0.39 to -0.20 Weak Negative

0.00 to 0.19 Very Weak Positive -0.19 to -0.01 Very Weak Negative
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shown below, where di = bi −ci is the difference between the

ranks of vertex i in the two data sets. We follow the convention

of assigning the rank values from 1 to n for a graph of n

vertices, even though the vertex IDs range from 0 to n−1.

To obtain the rank for a vertex based on the list of values

for a centrality metric, we first sort the values (in ascending

order). If there is any tie, we break the tie in favor of the

vertex with a lower ID; we will thus be able to arrive at a

tentative, but unique, rank value for each vertex with respect

to the centrality metric. We determine a final ranking of the

vertices as follows: For vertices with unique value of the

centrality metric, the final ranking is the same as the tentative

ranking. For vertices with an identical value for the centrality

metric, the final ranking is assigned to be the average of their

tentative rankings. Figure 5 illustrates the computation of

the tentative and final ranking of the vertices based on their

betweenness centrality and local clustering coefficient-based

degree centrality values in the example graph used in Figs. 1,

2, 3, 4 as well as illustrates the computation of the Spearman’s

rank-based correlation coefficient.

SCC(B, C) = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
.... (2)

In Fig. 5, we observe ties among vertices with respect to

both BWC and LCCDC. The tentative ranking is obtained by

breaking the ties in favor of vertices with lower IDs. In the

case of BWC (B), we observe the 3 vertices 0, 6, and 7 to have

an identical BWC value of 0 each and their tentative rankings

are, respectively, 1, 2, and 3 (ties for tentative rankings are

broken in favor of vertices with lower IDs); the final ranking

(2) of each of these 3 vertices is thus the average of 1, 2, and

3. A similar scenario could be observed for LCCDC: vertices

0, 6, and 7 have an identical LCCDC value of 0 each and the

final ranking of each of these three vertices is 2, based on

their tentative rankings of 1, 2, and 3. The Spearman’s rank-

based correlation coefficient (SCC) computed for maximal

clique size and degree centrality for the example graph used

from Figs. 1, 2, 3, 4 is 0.98. We observe the SCC value to be

slightly larger than the PCC value obtained in Fig. 4 for the

same graph and the level of correlation for both the measures

falls in the range of very strong positive correlation.

4.3 Kendall’s concordance-based correlation coefficient

The Kendall’s concordance-based correlation coefficient

(KCC) for any two centrality metrics (say, B and C) is a mea-

sure of the similarity (a.k.a. concordance) in the ordering of

the values for the metrics incurred by the vertices in the graph

[5]. We define a pair of distinct vertices vi and v j as concor-

dant if {Bi > B j and Ci > C j } or {Bi < B j and Ci < C j }.

In other words, a pair of vertices vi and v j are concordant if

either one of these two vertices strictly have a larger value

for the two metrics B and C compared to the other vertex.

We define a pair of distinct vertices vi and v j as discordant

if {Bi > B j and Ci < C j } or {Bi < B j and Ci > C j }. In

other words, a pair of vertices vi and v j are discordant if a

vertex has a larger value for only one of the two centrality

metrics. A pair of distinct vertices vi and v j are neither con-

cordant nor discordant if either {Bi = B j } or {Ci = C j } or

{Bi = B j and Ci = C j }. The Kendall’s concordance-based

correlation coefficient is simply the difference between the

number of concordant pairs (denoted #conc.pairs) and the

number of discordant pairs (#disc.pairs) divided by the total

number of pairs considered. For a graph of nvertices, KCC

is calculated as shown in formulation (3).

KCC(B, C) =
#conc.pairs − #disc.pairs

1
2

n(n − 1)
.... (3)

Figure 6 illustrates the calculation of the Kendall’s corre-

lation coefficient between BWC and LCCDC for the example

graph used in Figs. 1, 2, 3, 4, 5. For a graph of 8 vertices,

the total number of distinct pairs that could be considered is

8(8−1)/2 = 28, and out of these, 25 pairs are classified to be

concordant and just 1 pair as discordant (this itself is a direct

indication of the very strong positive correlation between

BWC and LCCDC). The remaining 2 pairs are neither con-

cordant nor discordant (denoted as N/A) in the figure. We get

a correlation coefficient of 0.86: still falling in the range of

very strong positive correlation, though the absolute value of

the correlation coefficient is lower than the correlation coef-

ficient values obtained with the Pearson’s and Spearman’s

measures. The KCC is also observed to return the lowest

correlation coefficient values for all our experiments with

the real-world networks (Sect. 5). Thus, the KCC could be

construed to provide a lower bound for the correlation coef-

ficient values and the level of correlation between BWC and

the centrality metrics considered.

5 Real-world network graphs

We consider a suite of 18 real-world network graphs for our

correlation analysis. We list below and identify these graphs

in the increasing order of their variation in node degree, cap-

tured in the form of a metric called the spectral radius ratio

for node degree (denoted λsp) [10]. The spectral radius ratio

for node degree for a graph is the ratio of the principal eigen-

value of the adjacency matrix of the graph to that of the

average node degree. The λsp values are always greater than

or equal to 1.0. The larger the value, the larger the variation

in node degree. The λsp values of the real-world networks

considered in this paper range from 1.01 to 3.48 (i.e., from

random networks to scale-free networks). Random networks

exhibit a Poisson-style degree distribution and have a lower
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Table 2 Fundamental properties of the real-world network graphs used in the correlation studies

# Net. λsp #nodes #edges kavg Gc D PLavg Ga Gm CCavg #comps

1 FON 1.01 115 613 10.7 1.46 4 2.51 0.191 0.604 0.403 1

2 EAN 1.12 77 1549 40.2 10.6 2 1.47 −0.040 0.211 0.770 1

3 FTC 1.21 48 170 7.1 0.68 5 2.40 −0.014 0.455 0.438 1

4 RFN 1.27 217 1839 16.9 1.71 4 2.40 0.097 0.431 0.363 1

5 SJF 1.29 75 155 4.1 0.29 7 3.49 0.030 0.595 0.322 1

6 UKF 1.35 81 577 14.2 1.33 4 2.10 0.039 0.449 0.574 1

7 PBN 1.42 105 441 8.4 0.32 7 3.08 −0.023 0.521 0.488 1

8 BJN 1.45 198 2742 27.7 0.57 6 2.24 0.031 0.444 0.633 1

9 TFF 1.49 50 122 3.3 0.10 8 2.65 0.363 0.741 0.599 4

10 HCN 1.66 74 302 7.9 0.67 4 2.14 0.030 0.546 0.854 4

11 KFP 1.70 39 85 4.3 0.10 10 3.23 0.241 0.448 0.361 5

12 LMN 1.82 77 254 6.6 0.21 5 2.64 −0.077 0.553 0.736 1

13 CFN 1.83 87 407 9.1 0.98 3 1.95 −0.166 0.372 0.777 2

14 MTB 1.95 70 295 9.2 0.33 2 1.85 0.029 0.380 0.794 1

15 FBN 2.29 187 939 10.0 0.10 7 3.07 0.349 0.687 0.631 21

16 AKN 2.48 138 494 7.1 0.33 5 2.45 −0.081 0.371 0.798 2

17 ERN 3.00 472 1314 6.1 0.05 11 4.02 0.182 0.534 0.347 3

18 SJC 3.48 475 625 2.6 0.03 17 6.49 0.350 0.945 0.818 104

variation in node degree; their λsp values are typically closer

to 1.0. Scale-free networks have a larger variation in node

degree (especially those like the airline networks that have

a few hubs—high degree nodes, and the rest of the nodes

are of relatively much lower degree)—incurring a larger λsp

value.

The real-world network graphs are briefly introduced

below, in the increasing order of their λsp value. We also

identify these networks with their ID (ranging from 1 to 18 as

listed below) as well as with a three-character abbreviation—

listed along with the λsp value. Table 2 lists the values for

the following fundamental properties for each of these net-

works: average degree (kavg), algebraic connectivity (Gc)

[11], diameter (D), average path length (PLavg), assortativity

(Ga) [12], modularity (Gm) [13], average clustering coeffi-

cient (CCavg) [1], and number of components (#comps). The

values for each of the above properties for the real-world

network graphs were obtained using our own implementa-

tion of the algorithms to determine these properties and their

validity is verified using the Gephi [14] tool. We restrict our-

selves to networks of moderate size due to the excessive

computation time involved in computing the betweenness

centrality for larger networks. In addition, we restrict our-

selves to undirected network graphs (i.e., those that have a

symmetric adjacency matrix) for the analysis conducted in

this paper. Note that betweenness centrality is a symmetric

centrality metric (i.e., unlike in-degree and out-degree, there

do not exist in and out versions of BWC).

1. US Football Network (FON; λsp = 1.01) [15]: this is

a network of 115 football teams (nodes) of US uni-

versities that played in the Fall 2000 season; there is

an edge between two nodes if the corresponding teams

have played against each other in the league games.

2. Employee Awareness Network (EAN; λsp = 1.12)

[16]: this is a network of 77 employees (nodes) from a

research team in a manufacturing company; there exists

an edge between two nodes if the two employees are

aware of each other’s knowledge and skills.

3. Flying Teams Cadet Network (FTC; λsp = 1.21) [17]:

this is a network of 48 cadet pilots (vertices) at an US

Army Air Forces flying school in 1943, and the cadets

were trained in a two-seated aircraft; there exists an

edge between two vertices if at least one of the two cor-

responding cadet pilots have identified the other pilot

among his/her preferred partners with whom she/he

likes to fly during the training schedules.

4. Residence Hall Friendship Network (RFN; λsp = 1.27)

[18]: this is a network of 217 residents (vertices) living

at a residence hall located on the Australian National

University campus. There exists an edge between two

vertices if the corresponding residents are friends of

each other.

5. San Juan Sur Family Network (SJF; λsp = 1.29) [19]:

this is a network of 75 families (vertices) in San Juan

Sur, Costa Rica, 1948. There exists an edge between

two vertices if at least one of the two corresponding
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families have visited the other family’s household at

least once.

6. UK Faculty Friendship Network (UKF; λsp = 1.35)

[20]: this is a network of 81 faculty (vertices) at a UK

university. There exists an edge between two vertices

if the corresponding faculty are friends of each other.

7. US Politics Books Network (PBN; λsp = 1.42) [21]:

this is a network of books (vertices) about US poli-

tics sold by Amazon.com around the time of the 2004

US presidential election. There exists an edge between

two vertices if the corresponding two books were co-

purchased by the same buyer (at least one buyer).

8. Jazz Band Network (JBN; λsp = 1.45) [22]: this is

a network of 198 Jazz bands (vertices) that recorded

between the years 1912 and 1940; there exists an edge

between two bands if they shared at least one musician

in any of their recordings during this period.

9. Teenage Female Friendship Network (TFF; λsp =

1.49) [23]: this is a network of 50 female teenage stu-

dents (vertices) who studied as a cohort in a school in

the West of Scotland from 1995 to 1997. There exists

an edge between two vertices if the corresponding stu-

dents reported (in a survey) that they were best friends

of each other.

10. Huckleberry Coappearance Network (HCN; λsp =

1.66) [24]: this is a network of 74 characters (vertices)

that appeared in the novel Huckleberry Finn by Mark

Twain; there is an edge between two vertices if the cor-

responding characters had a common appearance in at

least one scene.

11. Korea Family Planning Network (KFP; λsp = 1.69)

[25]: this is a network of 39 women (vertices) at a

Mothers’ Club in Korea; there existed an edge between

two vertices if the corresponding women were seen dis-

cussing family planning methods during an observation

period.

12. Les Miserables Network (LMN; λsp = 1.81) [24]: this

is a network of 77 characters (nodes) in the novel Les

Miserables; there exists an edge between two nodes if

the corresponding characters appeared together in at

least one of the chapters in the novel.

13. Copperfield Network (CFN; λsp = 1.83) [26]: this is

a network of 87 characters in the novel David Copper-

field by Charles Dickens; there exists an edge between

two vertices if the corresponding characters appeared

together in at least one scene in the novel.

14. Madrid Train Bombing Network (MTB; λsp = 1.95)

[27]: this is a network of suspected individuals and their

relatives (vertices) reconstructed by Rodriguez using

press accounts in the two major Spanish daily newspa-

pers (El Pais and El Mundo), regarding the bombing of

commuter trains in Madrid on March 11, 2004. There

existed an edge between two vertices if the correspond-

ing individuals were observed to have a link in the

form of friendship, ties to any terrorist organization,

co-participation in training camps and/or wars, or co-

participation in any previous terrorist attacks.

15. Facebook Network (FBN; λsp = 2.29): this is a net-

work of the 187 friends (vertices) of the author in the

well-known social media network, Facebook [28]. There

exists an edge between two nodes if the corresponding

people are also friends of each other.

16. Anna Karnenina Network (AKN; λsp = 2.47) [24]: this

a network of 138 characters (vertices) in the novel Anna

Karnenina; there exists an edge between two vertices if

the corresponding characters have appeared together in

at least one scene in the novel.

17. Erdos Collaboration Network (ECN; λsp = 3.00) [29]:

this is a network of 472 authors (nodes) who have either

directly published an article with Paul Erdos or through

a chain of collaborators leading to Paul Erdos. There is

an edge between two nodes if the corresponding authors

have co-authored at least one publication.

18. Social Journal Network (SJN; λsp = 3.48) [30]: this is

a network of 475 authors (vertices) involved in the pro-

duction of 295 articles for the Social Networks Journal,

since its inception until 2008; there is an edge between

two vertices if the corresponding authors co-authored at

least one paper published in the journal.

We measured the execution time incurred (measured in

milliseconds) to compute each of the 5 centrality metrics:

LCCDC, DegC, BWC, EVC, and ClC for the above 18

real-world networks. The executions were conducted on a

computer with Intel Core i7-2620M CPU @ 2.70 GHz and

an installed main memory (RAM) of 8 GB. We ran the pro-

cedures for each of these 5 centrality metrics on each of

the real-world networks for 20 iterations and averaged the

results. Table 3 lists the raw values for the average execution

time (in milliseconds) for each of the 5 centrality metrics

on the 18 real-world networks. Figure 7 plots the natural

logarithm of the average execution time (for the values to

be plotted on a comparable scale) incurred for the centrality

metrics on each of the real-world networks. While the net-

works are listed in Table 3 and Fig. 7 in the increasing order

of their spectral radius ratio for node degree (the same order

as in Table 2); for each network, the centrality metrics are

shown in the decreasing order of the execution times. Over-

all, we observe that networks with a larger number of nodes

incur a larger execution time; for networks with comparable

number of nodes, the execution time for the centrality met-

rics increases with increase in the edge-node ratio (ratio of

the number of nodes to the number of edges), especially to

compute the time-consuming centrality metrics, such as the
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Table 3 Average execution time to compute the centrality metrics for the real-world network graphs

# Net. # nodes Edge-node ratio Average execution time to compute the centrality metrics (ms)

BWC EVC ClC LCCDC DegC

1 FON 115 5.33 166149.5 6229.7 1403.8 136.5 26.2

2 EAN 77 20.12 61915.4 3203.2 582.8 459.2 17.5

3 FTC 48 3.54 9694.8 921.4 136.8 25.8 10.6

4 RFN 217 8.47 2,198,077.4 54,264.1 8925.4 472.1 50.6

5 SJF 75 2.07 33,514.1 1924.1 407.1 36.9 17.1

6 UKF 81 7.12 56,355.1 2321.3 507.5 133.0 18.2

7 PBN 105 4.20 1,16,321.7 4802.3 992.1 94.3 24.3

8 BJN 198 13.85 1,970,503.6 74,771.2 17,774.7 12,137.8 56.3

9 TFF 50 2.44 4527.5 548.1 109.5 13.7 9.5

10 HCN 74 4.08 25,299.1 1520.1 347.8 62.3 17.1

11 KFP 39 2.18 3782.5 318.9 76.8 13.3 7.2

12 LMN 77 3.30 35,168.4 1361.2 470.2 42.2 17.1

13 CFN 87 4.68 56,355.1 2321.3 507.5 133.0 18.2

14 MTB 70 4.21 23,998.0 1170.4 308.7 52.8 16.7

15 FBN 187 5.02 8,17,865.3 24,435.9 5166.5 184.4 40.3

16 AKN 138 3.58 3,96,377.5 1,54,722.5 27,190.2 1270.7 33.8

17 ERN 472 2.78 23,106,718.9 5,38,524.0 81,444.4 1238.4 100.7

18 SJC 475 1.32 14,564,978.3 3,49,242.1 82,584.8 181.3 89.7

Fig. 7 Average execution time to compute the centrality metrics for the real-world network graphs (natural logarithm scale)

BWC and EVC. Table 3 and Fig. 7 display a clear ranking

of the centrality metrics with respect to the execution time:

BWC and DegC incur, respectively, the largest and small-

est values for the average execution time for each real-world

network analyzed. As the LCCDC values are computed by

making use of the DegC values, it is natural to expect the

execution time of the procedure to compute the LCCDC val-

ues to be larger than that of the DegC values. The execution

time of the degree centrality metric appears to be anywhere

from 0.4–69 % of the execution time of the LCCDC metric.

From Table 3 and Fig. 7, we could clearly observe the

LCCDC metric to consistently incur a lower execution time

compared to the BWC, EVC, and ClC metrics for each of the

real-world networks analyzed. We observe the execution time

incurred to compute the LCCDC metric to be significantly

smaller than that of the BWC metric. The ratio of the average

execution time for computing the BWC and LCCDC values

for the real-world networks ranges from 117 to 80,330. The

ClC metric incurs an execution time that is at least 25 % larger

than the execution time of the LCCDC metric and appears to

be even significantly larger for several real-world networks

evaluated. The EVC metric incurs an execution time that is 6

to 1926 times larger than the execution time of the LCCDC

metric. Considering all of the above, our claim that LCCDC

is a computationally lightweight metric is well justified.

Table 4 presents the raw values for the correlation coef-

ficient obtained for the Betweenness centrality metric and

each of the four centrality metrics: LCCDC, DegC, EVC,

and ClC based on the PCC, SCC, and KCC measures. We

color code the levels of correlation in Table 4 according to

the color codes listed in Table 1. Under all the three corre-

lation measures, we observe the proposed LCCDC metric to

demonstrate significantly larger correlation coefficient val-

ues with BWC vis-a-vis the correlation coefficient values

incurred by the other centrality metrics. Among the three

correlation measures, the Spearman’s rank-based correla-
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Table 4 Correlation coefficient values between betweenness centrality and the other centrality metrics for real-world network graphs

Pearson Correlation Coeff. Spearman Correlation Coeff. Kendall's Correlation Coeff.

# Net.
LCC

DC

Deg

C
ClC EVC

LCC

DC

Deg

C
ClC EVC

LCC

DC

Deg

C
ClC EVC

1 FON 0.67 0.28 0.82 0.15 0.61 0.40 0.84 0.17 0.44 0.20 0.65 0.12

2 EAN 0.94 0.89 0.95 0.74 1.00 0.83 0.83 0.68 0.95 0.69 0.69 0.57

3 FTC 0.92 0.78 0.79 0.54 0.92 0.73 0.80 0.41 0.77 0.55 0.61 0.30

4 RFN 0.90 0.84 0.76 0.65 0.93 0.84 0.86 0.62 0.79 0.66 0.67 0.45

5 SJF 0.86 0.81 0.79 0.53 0.85 0.73 0.77 0.41 0.66 0.52 0.57 0.29

6 UKF 0.91 0.78 0.71 0.63 0.95 0.79 0.75 0.60 0.82 0.61 0.57 0.45

7 PBN 0.78 0.71 0.78 0.44 0.86 0.68 0.81 0.37 0.69 0.49 0.61 0.26

8 BJN 0.76 0.61 0.48 0.40 0.86 0.74 0.73 0.57 0.71 0.57 0.56 0.42

9 TFF 0.68 0.22 0.36 0.14 0.88 0.46 0.47 -0.19 0.61 0.29 0.34 -0.11

10 HCN 0.94 0.83 0.06 0.67 0.92 0.70 0.69 0.65 0.55 0.41 0.41 0.37

11 KFP 0.70 0.47 0.28 0.28 0.80 0.51 0.61 0.40 0.62 0.35 0.46 0.26

12 LMN 0.93 0.75 0.63 0.42 0.88 0.77 0.68 0.72 0.60 0.48 0.43 0.43

13 CFN 0.90 0.81 0.82 0.58 0.95 0.83 0.77 0.77 0.73 0.60 0.55 0.53

14 MTB 0.87 0.73 0.15 0.55 0.91 0.76 0.68 0.56 0.64 0.53 0.46 0.35

15 FBN 0.54 0.26 0.18 -0.12 0.86 0.58 0.70 -0.22 0.67 0.40 0.52 -0.14

16 AKN 0.95 0.89 0.66 0.72 0.88 0.78 0.66 0.69 0.54 0.49 0.39 0.41

17 ERN 0.83 0.78 0.15 0.62 0.92 0.86 0.72 0.64 0.69 0.63 0.51 0.44

18 SJC 0.59 0.39 0.34 0.03 0.78 0.65 0.56 0.16 0.29 0.22 0.19 -0.08

tion measure yields the largest values for the correlation

coefficient between LCCDC and BWC, such that the level

of correlation is very strongly positive for 16 of the 18

networks analyzed and strongly positive for the remain-

ing two networks. Similarly, with respect to the Pearson’s

product moment-based correlation measure, we observe the

LCCDC metric to exhibit correlation levels of strongly

to very strongly positive for 16 of the 18 networks (11

networks exhibit very strongly positive correlation and 5 net-

works exhibit strongly positive correlation). The Kendall’s

concordance-based correlation measure yields the lowest

values for the correlation coefficient between BWC and

the other centrality metrics. Nevertheless, even under the

Kendall’s correlation measure: we observe the LCCDC met-

ric to exhibit strong to very strong positive correlation with

BWC for 14 of the 18 real-world networks analyzed. Overall,

considering all the three correlation measures, we could say

that the LCCDC metric exhibits strong to very strong levels

of positive correlation for at least 14 of the 18 real-world net-

works analyzed. Such a high level of correlation with BWC

is not observed for the other three centrality metrics analyzed

in this paper, as well as for any other network analysis metric

in the literature.

Figures 8, 9 and 10 compare the relative magnitude of

the values for the correlation coefficient (based on the prox-

imity of the data points to the diagonal line in these figures)

obtained for BWC-LCCDC with each of the other three com-

binations of centrality metrics: BWC-DegC, BWC-ClC, and

BWC-EVC under each of the three correlation measures.

Each data point in these figures corresponds to a particu-

lar real-world network. If a data point is below the diagonal

line, it implies the correlation coefficient incurred for BWC-

LCCDC is larger than the correlation coefficient incurred for

the BWC-centrality metric combination for the real-world

network that the data point represents. If a data point lies

above the diagonal line, it implies the BWC-LCCDC cor-

relation coefficient is lower than the BWC-centrality metric

combination for the corresponding real-world network. If a

data point lies on the diagonal line, it implies the correla-

tion coefficient values are almost equal. Among the other

three centrality metrics analyzed (see Figs. 8, 9, 10 for a

comparison), the degree centrality metric exhibits relatively

higher levels of correlation with BWC. Nevertheless, when

compared to the correlation coefficient values incurred for

BWC-LCCDC, the BWC-DegC correlation coefficient val-

ues are at least lower by 0.05 (in a scale of −1 to 1) for all

the 18 real-world networks and lower by at least 0.10 for at

least 10 of the 18 real-world networks under each of the three

correlation measures.

The only centrality metric which exhibits correlation coef-

ficient values (with BWC) matching or exceeding to that

incurred for LCCDC-BWC for at least one of the real-world

networks under at least one of the three correlation measures

is the closeness centrality (ClC) metric. The best case sce-

nario for ClC is that there exists just one real-world network

(among the 18 networks analyzed) for which the BWC-ClC

correlation coefficient is larger than the BWC-LCCDC cor-

relation coefficient under all the three correlation measures;
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BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 8 Distribution of the correlation coefficient values for real-world networks under the Pearson’s product moment-based correlation measure

(from the centrality metrics viewpoint)

BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 9 Distribution of the correlation coefficient values for real-world networks under the Spearman’s Rank-based correlation measure (from the

centrality metrics viewpoint)

BWC-LCCDC vs. BWC-DegC BWC-LCCDC vs. BWC-ClC BWC-LCCDC vs. BWC-EVC

Fig. 10 Distribution of the correlation coefficient values for real-world networks under the Kendall’s concordance-based correlation measure (from

the centrality metrics viewpoint)

in addition, under the Pearson’s and Spearman’s correlation

measures: the correlation coefficient values incurred for ClC

with BWC equal to those incurred for LCCDC with BWC for

two of the 18 real-world networks. Note that the closeness

centrality metric is relatively more computation-intensive (a

shortest path algorithm needs to be run at every vertex), as

is also vindicated by the results in Table 3 and Fig. 7. The

Eigenvector centrality (EVC) metric exhibits relatively lower

levels of correlation with BWC among all the centrality met-

rics analyzed and under all the three correlation measures.

This could be attributed to the relatively larger clustering

coefficient values incurred for vertices with higher EVC. A

node iwith a higher EVC is more likely surrounded by nodes

having higher degree: a majority of these nodes could be

directly connected to each other and there would be no need

to go through node i . As a result, vertices with higher EVC

are very less likely to lie on the shortest path for their neigh-

bor nodes.

Among the three correlation measures used to evaluate

the correlation of BWC with LCCDC and the other cen-

trality metrics, we observe the Spearman’s measure to yield

correlation coefficient values that are relatively more closer

to that of the Pearson’s measure. This could be deduced by

observing the relative proximity of the data points to the

diagonal line in Fig. 11: the data points corresponding to

the Spearman’s and Pearson’s correlation measures are rela-

tively more closer to the diagonal line when compared to the

data points corresponding to the Kendall’s and Pearson’s cor-

relation measures. Overall, for a majority of the real-world

networks analyzed, the Spearman’s and Kendall’s correlation

measures appear to, respectively, provide the upper bound

and lower bound for the values of the correlation coefficient

(and the correlation levels) incurred between BWC and each

of the other four centrality metrics.

With respect to the impact of the variation in node degree

on the correlation levels, overall: we observe the level of cor-
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Betweenness Centrality (BWC) and Local Clustering
Coefficient-based Degree Centrality (LCCDC) Degree Centrality (DegC) 

Betweenness Centrality (BWC) and Betweenness Centrality (BWC) and 

Betweenness Centrality (BWC) and

Closeness Centrality (ClC) Eigenvector Centrality (EVC)

Fig. 11 Distribution of the correlation coefficient values for real-world network graphs (from the correlation measures viewpoint)

relation between BWC and each of the four centrality metrics

to decrease with increase in the spectral radius ratio for node

degree (more predominantly observed with the Kendall cor-

relation measure and to a certain extent with the Pearson’s

and Spearman’s correlation measures). A high-level view

of the results in Table 4 indicates that the correlation level

tends to reduce from a higher positive level to a relatively

lower level as the spectral radius ratio for node degree of

the real-world network graphs increases. As the networks

become increasingly scale-free (i.e., the variation in node

degree in the network increases), the trend we could deduce

is a decrease in the correlation coefficient values between

BWC and each of the four centrality metrics (especially in

the case of Eigenvector centrality under all the three correla-

tion measures).

6 Related work

Several centrality metrics have been proposed for the com-

plex network analysis. UCINET 6 [31] employs the following

eight of these centrality metrics: degree, betweenness, close-

ness, eigenvector, power, information, flow, and reach. As

mentioned earlier, the most frequently used centrality met-

rics are: degree, closeness, betweenness, and eigenvector.

In one of the first studies on correlations among central-

ity metrics, Bolland [32] observed that degree centrality

and closeness centrality are highly correlated, while the

betweenness centrality is relatively uncorrelated with degree,

and closeness and eigenvector centralities. Rothenberg et

al. [33] observed the information centrality and distance

metrics (eccentricity, mean, and median of the path length

between any two vertices) to be not so strongly correlated

with the degree and betweenness centrality metrics. Rother-

berg et al. [33] observed the degree centrality to be the

most strongly correlated metric with betweenness centrality:

we also observe that next to LCCDC, the degree central-

ity could be claimed as the centrality metric that exhibits

stronger correlation with BWC. With respect to the impact

of symmetry in the adjacency matrix on the correlation lev-

els observed, Valente et al. [34] observed that the disparity

between symmetric centrality metrics (like betweenness) and

asymmetric centrality metrics (like degree) increases when

computed on the undirected instances of directed network

graphs.

For scale-free networks [35], the distribution of the

betweenness centrality of the vertices has been observed

to follow a power-law pattern (similar to that of the degree

centrality) [37]. It was also observed in [38] that for scale-

free networks that are either dissortative [12] or neutral with

respect to node degree, the average of the betweenness cen-

tralities of the neighbors of a vertex is proportional to the
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betweenness centrality of the vertex considered; whereas, for

assortative scale-free networks, the betweenness centralities

of the neighbors of a vertex is independent of the betweenness

centrality of the vertex considered.

Among the various localized centrality metrics proposed

in the literature, the “leverage” centrality metric proposed by

Joyce et al. [39] for brain networks has gained prominence.

Leverage centrality of a node is a measure of the extent of

connectivity of the node relative to the connectivity of its

neighbors. For a node i with degree ki and set of neighbors Ni ,

the leverage centrality of node i , LVC(i) = 1
ki

∑

j∈Ni

ki −k j

ki +k j

[39]. Leverage centrality is based on the notion that a node

with degree higher than the degree of its neighbors is likely

to be more influential on its neighbors and vice-versa. The

above formulation for LVC restricts its use only for ver-

tices with degree 1 or above and not applicable for isolated

vertices. On the other hand, our proposed LCCDC metric

(also a localized centrality metric) could be computed for

any vertex and the entire network graph need not be just

one single connected component. Moreover, the above for-

mulation for leverage centrality metric compares the degree

of a node with the degree of an individual neighbor node,

and fails to take into consideration the connectivity among

the neighbor nodes themselves (without involving the node

in consideration). Hence, the leverage centrality metric can-

not be a suitable alternate for the betweenness centrality

(BWC) metric, as is also evidenced in the correlation studies

of [39]: the correlation between leverage centrality and BWC

is lower than the correlation between degree centrality and

BWC. On the other hand, we observe that the correlation

between LCCDC and BWC is even stronger than the cor-

relation between degree centrality and BWC that has been

observed in the literature until now. Thus, our proposed

LCCDC metric is significantly different from that of the

leverage centrality, closeness centrality, and the other cen-

trality metrics.

Li et al. [40] conducted an extensive correlation study for

the centrality metrics on 34 real-world network graphs as well

as the theoretical graphs generated from the Erdos-Renyi

(ER; for random networks) [41] and Barabasi-Albert (BA;

for scale-free networks) [36] models. It has been observed in

[40] that the degree centrality metric exhibits the strongest

levels of correlation with the betweenness centrality met-

ric for both the ER and BA networks. Likewise, for about

two-thirds of the 34 real-world network graphs, the BWC-

DegC correlation coefficient values were observed to be the

largest incurred compared to the correlation coefficient val-

ues incurred for BWC-ClC, BWC-LVC, and BWC-EVC.

Unlike our paper, the correlation study in Li et al. [40] has

been conducted only with the Pearson’s product moment-

based correlation measure. We observe from the results of

this paper that the Kendall’s concordance-based correlation

measure gives a lower estimate for the levels of correla-

tion between any two centrality metrics. The LCCDC metric

withstands the test with respect to all the three correlation

measures and consistently incurs larger values for the cor-

relation coefficient with BWC compared to the correlation

coefficient values incurred for any other centrality metric

with BWC.

7 Conclusions

The high-level contribution of this paper is the proposal of

a localized, computationally lightweight alternate centrality

metric for the computation-intensive betweenness centrality

(BWC) metric that is widely used for the complex network

analysis. We effectively magnify the importance of a node to

connect its neighbors on the shortest path (evaluated through

the local clustering coefficient) with the node’s degree to

assess its importance to connect any two nodes in the network

on a shortest path. Our hypothesis is that nodes with higher

degree, but lower local clustering coefficient, are more likely

to be part of several shortest paths between any two node pairs

in the network. Accordingly, we propose the local clustering

coefficient-based degree centrality (LCCDC) for a vertex as

the product of the degree of the vertex and one minus the local

clustering coefficient. We observe the LCCDC to exhibit a

strong-very strong positive correlation with BWC (under all

the three correlation measures used) for a majority of the

real-world network graphs analyzed. Even with the Kendall’s

concordance-based correlation measure (that is observed to

return lower values for the correlation coefficient among

the three correlation measures considered), we observe the

LCCDC metric to exhibit strong-very strong levels of correla-

tion with BWC for 14 of the 18 real-world networks analyzed

(whereas the degree centrality and closeness centrality met-

rics could at most exhibit strong correlation with BWC for at

most 4–5 of the 18 real-world networks analyzed). Under the

Spearman’s rank-based correlation measure, we observe the

LCCDC to be very strongly correlated to BWC (correlation

coefficient values of 0.80 or above) for 16 of the 18 real-world

networks. Thus, we confidently claim that the LCCDC could

effectively serve as an alternate metric for ranking the vertices

of a graph in lieu of the BWC. To the best of our knowledge,

we have not come across such a computationally lightweight

centrality metric that is highly correlated with betweenness

centrality. As part of future work, we will explore extending

the application of the LCCDC metric (with appropriate mod-

ifications) for directed real-world network graphs as well as

conduct a correlation study between LCCDC and BWC for

network graphs generated from theoretical models (like the

ER and BA models).
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