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Abstract 
We use the formal language LOTOS to specify a registration protocol between 
a user and a Trusted Third Party, that requires mutual authentication. We 
explain how a model-based verification method can be used to verify its ro
bustness to attacks by an intruder. This method is also used to find a simpler 
protocol that remains secure. 
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1 INTRODUCTION 

With the development of the Internet and especially with the birth of elec
tronic commerce, the security of communications between computers becomes 
a crucial point. All these new applications require reliable protocols able to 
perform secure transactions. The environment of these operations is very hos
tile because no transmission channel can be considered safe. Formal descrip
tions and verifications can be used to obtain the assurance that a protocol 
cannot be threatened by an intruder. 

In this paper, we will show that it is possible to make a formal verifica
tion of a security protocol. We can certify that an intruder cannot break a 
protocol with different kinds of attacks. We will also show how the verifi
cation process is able to give useful information to correct the protocol if 
necessary. The verification technique we have developed is based on the LO
TOS (Bolognesi et al. 1987)(IS088071989) language and the CADP package 
(Fernandez et al. 1996) included in the Eucalyptus toolbox (Garavel 1996). 
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We use a model-based approach that, until recently, was not felt adequate to 
tackle the verification of security protocols (Leduc et al. 1996)(Lowe 1996). 

We will illustrate the method on a registration protocol. The Equicrypt 
protocol (Lacroix et al. 1996) is a conditional access protocol under design 
in the European ACTS OKAPI project (Guimaraes et al. 1996). It allows a 
user to subscribe to multimedia services such as video on demand. Equicrypt 
is an open protocol where the user must first register with a Trusted Third 
Party (TTP) using a challenge-response exchange. After a successful registra
tion, this third party issues a public-key certificate which allows the user to 
subscribe to a service with different service providers. The subscription part 
has been studied in (Leduc et al. 1996) and some possible attacks have been 
reported. In this paper, we will focus on the design and verification of the 
registration protocol which must provide the authentication of the user by 
the TTP and authentication of the TTP by the user. The protocol is also 
used to transmit the user's public key to the TTP. 

The paper is organized as follow. The section 2 describes the registration 
protocol that we want to verify and possibly correct. In section 3 we present 
the formal specification of the protocol written in LOTOS and the section 
4 is dedicated to the properties we want to verify. The verification itself is 
explained in section 5 and concludes this paper. 

2 THE REGISTRATION PROTOCOL 

2.1 Notation 

The protocol involves several cryptographic operations, for which we give an 
abstract view only. Each scheme uses peer encryption and decryption keys K E 

and Kv and functions E(_, _)and D(_, _)such that D(Kv, E(KE, m)) = m for 
any message m. In public key cryptography, the encryption key is the public 
key and the decryption key is the private key for ciphering operations. For 
signature operations, the encryption key is the private key and the decryption 
key is the public key. We also use the more compact notation { m} KE to denote 
the message m encrypted with the key KE. That is {m}KE = E(KE,m). 

K~ denotes the public key of the user A and Kl the private secret key of 
the user A. The expression {m}KE where KE is a public key represents the 
message m encrypted with the key KE. The same expression where KE is a 
private key represents both the message m in clear and a hash of the message 
m encrypted with the key K E. 

We widely use the concept of nonce (i.e. a number used only once). A 
nonce is a random number that must be used during only one instance of the 
protocol. This prevents an intruder from replaying outdated messages and is 
an abstract model of the pair "time stamps, random number". 

All the messages have the following structure : 

Number: Source~ Destination: Message Id <Message Fields> 
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2.2 Principles 

The following is a presentation of the Equicrypt system and its registration 
protocol. The aim of the Equicrypt system is to control the access to mul
timedia services proposed by service providers. To avoid requiring different 
access systems for every service provider, a unique decoder uses a public-key 
cryptography protocol to subscribe to and decode different services. An inde
pendent entity known as the Trusted Third Party (TTP) acts as a registering 
authority trusted by both users and providers. The registration protocol must 
achieve the mutual authentication of the user and the TTP. The TTP must 
be sure that the claimed identity of the user is the right one and the user 
must be sure that it registers with the right TTP. The TTP must also receive 
the good user's public-key to issue a public-key certificate similar to X.509 
certificates (ITU-T X.509 1993). This kind of certificate is the user's public 
key signed with the TTP's private key. 

The authentication of the user by the TTP uses the Guillou-Quisquater 
zero-knowledge identification scheme (Guillou et al. 1988) . When the user 
buys his decoder, he receives secret personal credentials derived from its real
life identity. These credentials will help the user to prove who he is. The goal of 
the Guillou-Quisquater (GQ) algorithm is to convince the TTP that the user 
has valid credentials without revealing them. The authentication of the TTP 
by the user uses a challenge based on a nonce similar to the 3-way authen
tication protocol (Schneier 1996). When the user receives his credentials, he 
also receives the TTP's public-key that will allow him to perform the required 
checks on the messages and to authenticate the TTP. 

The transmission of the user 's public key is the third purpose of the regis
tration protocol. The TTP must be sure that the received public key is really 
the user's one. He must make a link between the user's identity and his public 
key. An improved version of GQ algorithm proposed in Lacroix et al. (1996) 
can be used to check this . 

2.3 The Guillou-Quisquater identification scheme 

The cryptographic details of the GQ algorithm are beyond the scope of this 
paper but the principles will be exposed. Basically, the credentials the user 
receives are mathematically related to its identity. Let the user act as the 
prover P and the TTP act as the verifier V in the following protocol. 

1: P-+ V: Request < ID,K~,T(K~,r) > 
2: V-+ P: Challenge < d > 
3 : P -+ V : Respanse < t(r, d, B) > 
The prover generates a random number r and computes a function T of this 
number and of his public key. He sends the verifier his identity I D, his public 
key K J: and the result of the function T . As a response, the verifier sends back 
another random number d. Then the prover computes a function t with the two 
random numbers r and d and his credentials B and sends it to the verifier. 
When he receives the response, the verifier can check that the credentials 
used to compute t correspond to the identity claimed in the first message, 
thanks to the existing mathematical relationship between I D and B. The 
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user's credentials B must be kept secret so that the only one who could have 

computed a right function t is the real user. Thus the TTP has obviously 

received a fresh response from the right user and has authenticated him. 
In message 1, the user's public key has also been scrambled (by the function 

T) with the random number r. When the verifier received message 3, he gains 

the mathematical ability to check that the public key received in message 1 
is also the one used to computeT. Although the public key is transmitted in 

clear in message 1 and is thus known to an intruder, this intruder cannot forge 
a fake message 1 with another public key. This is because he does not know 
the random number r used again in message 3 and so he cannot generate a 

valid function T( K ~, r). 

2.4 Abstract model of the Guillou-Quisquater algorithm 

In fact, the GQ algorithm can be seen as a general encryption/decryption 

scheme. This will be very useful for our formal description. We can consider 
the user's identity together with its public key as a public decryption key 
and the credentials as a corresponding secret encryption key. Then, the GQ 

algorithm looks like an authentication scheme based on a nonce and works as 
follows. The prover sends his decryption key and receives back the random 
number d from the verifier. The random number d acts as the nonce. Then 
he encrypts it with his encryption key. The verifier can check that the nonce 

he sent has a good signature. 
This scheme resists to the "man-in-the-middle" attack because the decryp

tion key is mathematically linked to the prover's identity: the identity itself 
being a part of the decryption key. When this authentication scheme is used 

with the classical public key cryptography, not the GQ algorithm, the verifier 

must receive the prover's public key in another way by a secure channel. 

The real algorithm also involves the random number r. As said previously, 
its main purpose is to scramble the user's public key in the function T. If the 

intruder generates such a fake function in the first message, the credentials 
computation performed by the verifier when he receives the third message 

will fail. We will obtain the same result if the intruder changes the user's 
public key. This behaviour is exactly transposed in our model because both 
the user's identity and its public key are used to check the credentials. The 
second purpose of r is to prevent the TTP from guessing B. Our specification 

does not take these cryptographic attacks into account. Thus we do not need 

to consider the random number r and we can ignore it in our model. To avoid 
confusion, we use the special notation F(B, d) to express the encryption of 
the nonce d with the credentials B. This will help the reader to keep the 
modelling in mind. 

2.5 Protocol description 

The complete registration protocol is as follows. The protocol comprises the 

authentification of the user by the TTP with the GQ algorithm. We have 
added the authentication of the TTP by the user with a challenge based on a 
nonce. Finally, we have added a fourth message to carry the registration result 
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and we use the abstraction of the GQ identification scheme depicted above. 

This first version of the protocol has a flaw. We will see in section 5 that the 

formal verification has revealed it and has given information to correct the 

protocol and to produce new versions. 

(a) Initial knowledge of the user 

• An identity : User I D. 
• A pair of public/private keys: K{; and K~. 
• Credentials : B. 
• The public parameters of the GQ algorithm. 

• The public key of the TTP: K.f?rp· 

(b) Initial knowledge of the TTP 

• A pair of public/private keys: Kfrp and K!jrp· 
• The public parameters of the GQ algorithm. 

(c) Message exchanges 

The user generates a random nonce n and sends the message 1. 

1: User -t TTP: Register Request < UseriD,K{;,{n}KfTP > 

When the TTP receives message 1, he decrypts the nonce n and signs it, 

generates a random number d and sends them to the user. The TTP can 

handle several registrations at a time. So he maintains an internal table with 

one entry for each user who has a registration in progress and he records the 

tuple< UseriD,K{;,n,d >. 

2: TTP -t User: Register Challenge < d,{n}K!jrp > 
When the user receives message 2, he checks the signature. If the signature is 

correct, he performs the GQ calculation and sends the result to the TTP. 

3: User -t TTP: Register Response < F(B,d) > 

When the TTP receives message 3, he checks the GQ authentication using this 

message and the data found in his internal table. Then, he sends a response 

according to the result. The response is signed and includes both the user's 

identity and the nonce n. The user's entry in the internal table is deleted. If 

the response is positive, the TTP registers the tuple < U ser!D, K{; >. 

4+: TTP -t User : Register Ack < {Yes,UseriD,n}K!jTP > 
4-: TTP -t User: Register Ack < {No,User!D,n}K!jrp > 

Now that we have presented the registration protocol, we will continue with 

its specification, its verification. 

3 FORMAL SPECIFICATION 

The formal specification has been written in LOTOS which is a standardized 

description language suitable for the description of distributed systems. 
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lAu; --SYSTEM_STATE .. 
... UsndTTP • • TTPrcv u • 

I"' - - -
User Intruder TTP 

... Ur cvTTP • • TTPsndU • - - -

Figure 1 Structure of the LOTOS specification 

3.1 Behaviour 

The LOTOS specification models both the authentication system and the 
environment. The authentication system is composed of the user, the TTP 
and the intruder. Figure 1 shows the general structure of the processes and 
their interaction points. 

The communication channel between the user and the TTP is replaced by 
the intruder. He intercepts all messages and transmits them or not, with or 
without modification. We give more details about the intruder in section 3.3. 
Gates UsndTTP and UrcvTTP are used by the user for its communication in both 
directions. The TTP uses the gates TTPsndU and TTPrcvU. 

The environment is responsible for the management of specific events. First
ly, he plays the role of the real user who asks his decoder to register with an 
interaction at the gate AUTH. Secondly, he receives messages that give infor
mation about the internal state of the user and about the internal state of the 
TTP. These messages will help us to perform the formal verification. In this 
paper, we call them the special events. We have defined six of them received 
through the gate SYSTEM_STATE: 

1 :User"""* Environment : US ERST ART -REG < U serf D > 
This message notifies the environment that the user whose identity is User I D 
has received the order to register. The user generates this message before send
ing a valid registration request to the TTP. In our specification, the user and 
the TTP always behave correctly. 

2 : TT P """* Environment : TT P _START -REG < User I D > 
With this message, the TTP informs the environment that he has received a 
valid registration request from the user who claims that his identity is User I D. 

3: TTP """*Environment: TTP -REG ..SUCCEEDED < UseriD , K > 
When the TTP sends this message, this means that he has successfully reg
istered the user User I D with the public key K. This message occurs when 
the TTP owns a valid response to his GQ verification. He will then send a 
message 4+. 

4 : TTP """*Environment: TTP-REG...FAILED < User!D,K > 
This message corresponds to the previous one but when the GQ verification 
has failed. The TTP will send a message 4-. 

5: User"""* Environment: USER . ..REG..SUCCEEDED < UseriD > 
The user informs the environment he has received a valid successful registra
tion acknowledgement from the TTP. 
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User TIP 

USER_REG_SUCCEEDED 

Figure 2 Behaviour of the user and the TTP 

6 : User --t Environment: USER...REG.YAILED < UseriD > 
The user informs the environment that he has received a valid refused reg
istration acknowledgement from the TTP. That is, the user has received a 
message 4- where the TTP's signature is valid but his response is negative. 

Finally, the third task of the environment is to receive error messages. The 
user and the TTP perform several checks when they receive a message. If one 
of these checks fails, a message indicating the reason of the error is generated. 
It is very important to understand the difference between the two kinds of 
interruptions a registration can encounter. The registration can fail because 
the TTP has decided that the user does not own good credentials. That is 
what we will call a failure . The other cases are errors. An error occurs when the 
registration protocol stops due to a badly formed message : wrong signature, 
wrong nonce, .. . We obviously focus on failures because we want to defeat 
the intruder when he generates good messages. An intruder can always create 
errors by sending garbage in the transmission channel. 

Figure 2 sketches the main behaviours of the user and the TTP. Each transi
tion is labelled with the transmission of a message, the reception of a message 
or the generation of a special event. Error cases and data manipulation are 
not shown for simplicity. 

3.2 Data types 

This specification has been written using data type language extensions, as 
offered by the APERO tools (Pecheur 1996) included in the Eucalyptus tool
box. The original text has to be processed by the APERO translator to get 
a valid LOTOS specification. This provides for a smaller and more readable 
specification. 

The abstract data types are composed of : 
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• Base values : identifiers, keys, credentials described as explicit enumera
tions. 

• Cryptographic functions : Encryption and decryption are modelled as ab
stract operations that are the reverse of each other. If a decryption is 
performed with a bad key, the result is not the encrypted message but a 
special junk value. 

type EncryptedMessage is Message, PublicKey, PrivateKey 
sorts EncryptedMessage 
opns 
E (•! constructor •> : PublicKey, Message -> EncryptedMessage 
D : PrivateKey, EncryptedMessage -> Message 

eqns 
forall msg : Message, 

pubkey : PublicKey 
prvkey : PrivateKey 

ofsort Message 
Match(pubkey,prvkey) => D(prvkey,E(pubkey,msg))=msg; 
not(Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg))=Message_Junk; 

end type 

• Set of values : They are specially used to model the knowledge of the in
truder. For example, to form a message, the intruder will pick a value in 
each of his sets non determinatically. 

• Tables : Needed for storing information about registrations. The TTP can 
manage several registrations simultaneously so he must store the values 
received in the messages to make the authentication. 

3.3 The Intruder 

The intruder replaces the channel between the user and the provider. We want 
him to mimic any attack a real-world intruder can realize. Thus our intruder 
must be able to : 

• Eavesdrop on and/or intercept any message exchanged among the entities. 
• Decrypt parts of messages that are encrypted with his own public key and 

store them. 
• Introduce fake messages in the system. A fake message is an old message 

replayed or a new one built up from components of old messages including 
components he was unable to decrypt. 

The LOTOS process that models the intruder is always ready to interact at 
the four gates UsndTTP, TTPsndU, UrcvTTP and TTPrcvU. When the user, respec
tively the TTP, sends a message to the gate UsndTTP, respectively TTPsndU, the 
intruder catches the message and tries to decrypt its encrypted parts. Then 
he stores each part of the message in separate sets of values. These sets con
stitute the intruder's knowledge base that increases each time a message is 
received. When the user, respectively the TTP, expects a message on the gate 
UrcvTTP, respectively TTPrcvU, the intruder builds a new message with values 
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stored in his sets. With this method, the intruder tries every message it can 
create. 

The intruder is parameterized with some initial knowledge which gives him 
a certain amount of power. This power includes the capabilities to act as a user 
with the real TTP and to act as a TTP with the real user. Thus the intruder 
owns a valid identity, valid credentials and a valid pair of public/private keys. 
To give the intruder the capability of generating nonces, his initial knowledge 
also contains nonces that are distinct from those used by the entities. The 
system we modelled only includes one real user and one real TTP. With his 
knowledge, the intruder can be seen as a second user and a second TTP. So, 
our specification incorporates the case where a second valid user tries to cheat 
and the case where a second valid TTP tries to catch the registration. 

The initial knowledge of the intruder is as follows : 

• An identity : Intruder I D. 
• The identity of the user : User I D. 
• A pair of public /private keys : K f et K f. 
• Valid credentials : B 1. 

• The public parameters of the GQ algorithm. 
• The public key of the user K{; and the public key of the TTP Kj:TP· 
• Nonces. 

We assume that our intruder cannot break the public key cryptosystem. 
That is, he cannot get a message in clear from an encrypted message and 
he cannot forge a signature without the private key. Note that LOTOS easily 
provides processes that transgress this rule. Care must be taken to avoid these 
kinds of unrealistic behaviours. A more detailed description of the intruder 
can be found in Germeau et al. (1997) 

3.4 Labelled Transition System 

To gain confidence into the specification, it has been simulated with the XSim
ulator tool from the Eucalyptus toolbox in step-by-step execution mode. This 
allows us to get a LOTOS specification which is likely to behave correctly 
without the intruder. Then we have used the CADP package to carry out the 
verification. The first step consists of using the Caesar tool to generate from 
the LOTOS specification a graph called Labelled Transition System (LTS). 
To be able to generate a finite-state LTS of reasonable size, some limitations 
were required. The exponential growth of states we meet forces us to limit 
the user to only one registration and the TTP to only two registrations. This 
has no effect on the generality of our result because the intruder is still able 
to perform a registration aside the user's one. 

The size of the resulting graph greatly depends on the version of the pro
tocol we study. The generated LTS of the protocol presented previously was 
composed of 487446 states and 2944856 transitions. But the corrected version 
that will be used in section 5.2 raises to 973684 states and 7578109 transitions. 
All the computations were performed on a Sun Ultra-2 workstation running 
Solaris 2.5.1 with 2 CPUs and 832 Mb of RAM. The CPU time required for 
the generation went up to six hours. 
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The second step in the process consists of using the Aldebaran tool to 

minimize the resulting graph. The minimization is always done modulo the 

strong bisimulation equivalence that preserves all the properties of the graph. 

This phase is generally carried out in less than fifteen minutes of CPU time. 
The reduction factor obtained is very important. The minimized LTS of the 

first protocol is made of 3968 states and 37161 transitions. This clearly shows 
that our biggest problem is the generation of the brute LTS with the Caesar 

tool. 
As we will see in the next section, all the properties we want to verify 

are safety properties. Thus the minimization could have been improved mod
ulo the safety equivalence which preserves all the properties expressible in 

Branching time Safety Logic (Bouajjani et al. 1991). This was not mandatory 
because the graphs were already small enough to make the verification. 

4 SAFETY PROPERTIES TO BE VERIFIED 

Our goal is to verify that the user always correctly authenticates the TTP, that 
the TTP always correctly authenticates the user and that the TTP receives 

the right user's public key. We are going to reach it with the combination of 
the following safety properties. 

• P1: When the TTP successfully registers the user, the user must have 

started a registration with the TTP before. 
• P2: When the TTP successfully registers the user, it must have started a 

registration with this user before. 
• P3: When the TTP refuses to register the user, it must have started a 

registration with this user before. This refusal is what we called a failure. 

• P4: The verdict given by the TTP (i.e. registered or failed) must always 
be correct and consistent with the acknowledgement received by the user. 
This property will be further explained below. 

• P5: The TTP always registers the user with its real public key. 

Each of these properties can be expressed with the special events man

aged by the environment . For instance, property P1 is translated to "All 
TTP _REG_SUCCEEDED with a particular user identifier must be preceded by a 
USER_START_REG with the same user identifier". This kind of condition can be 

easily written in the language of our verification tools as a reference graph 

composed of 3 states and 3 transitions. 

If we consider the user whose identity is USERID_A and whose public key is 
USERPKEY_A, the graph is as follows: 

des(0,3,3) 
(0, "SYSTEM_STATE !USER_START_REG !USERID_A",1) 
(1, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2) 
(2, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2) 

This is a small graph that requires a USER_START_REG event before any 
TTP _REG_SUCCEEDED event. Property P1 will be verified if the LTS of our system 

where events other than these two have been turned into internal events is 
related to this LTS by the safety preorder (Bouajjani et al. 1991). Informally, 



A computer aided design of a secure registration protocol 155 

m_~'-'"=/8\ __ ,.,u, 
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TTP_REG_FAILED ~ ~ ~TTP_REG_FAILED 
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USER_REG_FAILEDC 0 :JTTP_REG_FAILED 

Figure 3 Labelled transition system modelling property P4 

the LTS of a system is related to the LTS of a safety property by the safety 
preorder if and only if the behaviour of the system is allowed by the property. 
The comparison of two graphs modulo a particular relation is performed by 
the Aldebaran tool. 

Property P4 can be best expressed by the graph shown on figure 3. It 
shows the temporal orderings that we authorize among the TTP _REG_SUCCEEDED, 

TTP _REG_FAILED, USER_REG_SUCCEEDED and USER_REG_FAILED events. In particu
lar, a USER_REG_SUCCEEDED must always be preceded by one TTP_REG_SUCCEEDED 

because, when the user learns that he has successfully registered, the TTP 
must have successfully registered him. A USER_REG_FAILED must always be 
preceded by at least one TTP _REG_FAILED and no TTP _REG_SUCCEEDED because, 
when the user learns that his registration failed , the TTP must have refused 
to register him at least once and the TTP must not have registered that user 
successfully. A USER_REG_FAILED must never follow a TIP _REG_SUCCEEDED. 

Properties Pl and P4 achieve the mutual authentication of the user and the 
TTP. The authentication of the user by the TTP is considered successful only 
if the TTP registers the user when the user wants to be registered. Thus we 
need to be sure that the user has started a registration with the TTP when 
the TTP registers the user. This is provided by property Pl. We also need to 
be sure that the intruder is unable to perform a new registration of the user. 
Hence, property P4 allows only one successful registration. The authentication 
of the TTP by the user is considered successful if the user receives the right 
response from the TTP. This is guaranteed by property P4. 

Properties P2 and P3 ensure that the TTP has really started a registration 
with the user when he gives a verdict. We need this check because the TTP 
can manage several registrations simultaneously. Finally, property P5 ensures 
that the user is always registered with its own public key (and not e.g. the 
intruder's one) . To do so, the TTP_REG_SUCCEEDED event has two parameters: 
the user's identity and its public key. We must verify that these two fields 
always match for every TTP _REG_SUCCEEDED event in the LTS of our system. 
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5 VERIFICATION OF THE PROTOCOL 

This section is the core of our study. We will show how the registration pro
tocol can be certified using the Eucalyptus toolbox. 

5.1 A flaw 

When checking our properties, Aldebaran discovered that property P4 was not 
satisfied. We use the Exhibitor tool of the CADP package to produce a diag
nostic sequence of 19 steps that exhibits one scenario that leads to the unde
sirable state. This sequence of transitions comprises an event USER_REG_FAILED 

before an event TTP _REG_SUCCEEDED. Thus the TTP successfully registers the 
user after the user has learned that his registration failed. This clearly does 
not fulfil property P4. 

The diagnostic sequence is the following: 

<initial state> 
1 : 11 AUTH !USERID_A 11 

2: 11 SYSTEM_STATE !USER_START_REG !USERID_A 11 

3: 11USNDTTP !USERID_A !USERPKET_A !E (TTPPKEY. NONCE_A) II 

4 : 11 TTPRCVU !USERID_A !USERPKEY_A !E (TTPPKEY, NONCE_A) 11 

5 : 11 SYSTEM_STATE !TTP_START_REG !USERID_A 11 

6: 11 TTPSNDU !RANDOMl_TTP !S (TTPSKEY, NONCE_A) 11 

7: 11 TTPRCVU !USERID_A !S (CERT_I, RANDOM1_TTP) 11 

8: 11 SYSTEM_STATE !TTP_REG_FAILED !USERID_A !USERPKEY_A 11 

9: 11 TTPSNDU !S (TTPSKEY, NO, NONCE_A, USERID_A) 11 

10: 11 TTPRCVU ! USERID_A ! USERPKEY _A ! E (TTPPKEY, NONCE_A) 11 

11: 11 SYSTEM_STATE !TTP _START_REG !USERID_A 11 

12: 11 TTPSNDU ! RANDOM2_ TTP ! s (TTPSKEY. NONCE_A) II 

13: 11URCVTTP !RANDOM2_TTP ! s (TTPSKEY . NONCE_A) II 

14: 11USNDTTP !USERID_A !S (CERT_A, RANDOM2_TTP) 11 

15: 11URCVTTP !S (TTPSKEY, NO, NONCE_A, USERID_A) 11 

16: 11 SYSTEM_STATE !USER_REG_FAILED !USERID_A 11 

17: 11 TTPRCVU ! USERID _A ! s ( CERT _A, RANDOM2_ TTP) II 

18: 11 SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A 11 

<goal state> 
19 : 11 TTPSNDU !S (TTPSKEY, YES, NONCE_!, USERID_A) 11 

At line 1, the environment asks for a registration of user A. The user's 
decoder receives the order and begins the registration with a USER_START_REG 

event. It sends a register request message to the TTP at step 3 (see section 
2.5). 

User -t Intruder: Register Request <A, K.f, {NA}KtTP > 
The intruder intercepts the message and replays it without alteration to the 
TTP at line 4. 

Intruder -t TTP : Register Request < A,Kf,{NA}K:f.'rp > 
When the TTP receives this message, he starts the registration and sends 
back a message 2 with a random number R 1 at step 6. 

TTP -t Intruder : Register Challenge < R1, {NA}KfTP > 
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The intruder learns the random number required by the GQ verification when 

he receives this message. He immediately generates a fake response: that is 

line 7. 

Intruder-+ TTP: Register Response < F(B1 ,RI) > 

Obviously, the GQ verification fails because the intruder does not own the 

user's credentials. The TTP declares a failed authentication and sends a neg

ative response. 

TTP-+ Intruder: Register Ack < {No,A,NA}KfTP > 
At this point, the TTP knows that he has refused the user A's registration but 

this user is still waiting for a response to his registration request . The intruder 

goes on with the attack by replaying the register request at line 10. The TTP 

starts a second registration of the user A and sends back a new challenge 

with a random number R2 different from the previous one. The intruder still 

intercepts the message but this time he forwards it to the user (steps 12 and 

13) . 

Intruder-+ TTP : Register Request <A, Kf, {NA}Kfrp > 
TTP-+ Intruder: Register Challenge < R2, {NA}Kfrp > 
Intruder-+ User: Register Challenge < R2 , {NA}Kfrp > 

The user receives the so long awaited response and answers to it. 

User-+ Intruder: Register Response < F(BA,R2) > 
The intruder immediately replies by replaying the previous negative register 

acknowledgement message recorded at stage 9. 

Intruder-+ User: Register Ack < {No, A,NA}Kfrp > 
This acknowledgement is considered valid by the user though it does not be

long to the right registration. The user closes by declaring a failed registration 

with the event USER_REG_FAILED at step 16. Meanwhile, the intruder forwards 

the user's response to the TTP. 

User-+ Intruder: Register Response < F(BA , R2) > 

This response is valid, so the TTP successfully registers the user and sends a 

positive response. 

TTP-+ Intruder: Register Ack <{Yes, A, NA}Kfrp > 

Both the user and the TTP have finished their exchange but they have not 

the same view of the registration. 
For this attack to succeed, the intruder does not even need valid credentials. 

It only needs to create a fake response to the first registration to obtain 

a negative acknowledgement from the TTP. When he owns it, he replays 

the user's request and inserts the negative response in the exchange at the 

right place. Hopefully, this attack does not allow the intruder to authenticate 

himself as the user. So the TTP still authenticates correctly the user. But 

the authentication of the TTP by the user failed. The intruder can obtain a 

denial of service by performing this attack systematically. 

The strength of our technique is that the analysis of the sequence immedi

ately brings us the reason of the failure. The acknowledgement of the TTP is 

too general because it can be considered valid in two distinct registrations. 
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5.2 A corrected version 

A way to prevent the attack is to add to the acknowledgement a unique iden
tifier of the registration. The random number used in the GQ verification is 
the right candidate. This number is meant to be different at each registration. 
Its integration into the signature of the fourth message will allow the user to 
check its freshness . Here is the corrected version of our registration protocol : 

1: User--+ TTP: Register Request < UseriD,K{;, {n}KtTP > 
2 : TTP--+ User: Register Challenge < d, {n}KjTP > 
3 : User--+ TTP: Register Response < F(B,d) > 
4+: TTP--+ User: Register Ack < {Yes , UseriD,n,d}KfTP > 
4- : TTP--+ User: Register Ack < {No,UseriD,n,d}KfTP > 
Aldebaran states that all our properties are fulfilled with this version. Hence, 
the mutual authentication and the transmission of the public key succeed 
despite the attempts of the intruder. We conclude that this is a secure reg
istration protocol provided that the cryptographic computations cannot be 
broken. 

5.3 The simplest protocol 

Section 5.2 demonstrates that the signature of the registration acknowledge
ment message is very important. It can certainly not be removed as it performs 
the authentication of the whole registration. We have found that the addition 
of the random number d in the signature of the fourth message makes the 
nonce n useless. It was used at first for the user to authenticate the TTP 
but the TTP's signature of the acknowledgement is sufficient to perform this 
authentication. The authentication of d with a signature in the registration 
challenge message is not anymore mandatory. These two simplifications lead 
to a very simple protocol with only one signature : 

1: User--+ TTP : Register Request < UseriD,K{; > 
2: TTP--+ User : Register Challenge < d > 
3 : User--+ TTP : Register Response < F(B,d) > 
4+ : TTP--+ User: Register Ack < {Yes,UseriD,d}KjTP > 
4- : TTP--+ User: Register Ack < {No,UseriD,d}KjTP > 
All the five properties are satisfied. This version is as robust as the previous 
one from the point of view of the mutual authentication. Obviously, the in
truder can more easily disturb the registration. The only difference is that 
the intruder's actions will be discovered later in the protocol. Formally, there 
exists a safety preorder between the corrected version of the protocol and 
this simplified version regarding the six special events only. Hence the former 
satisfies all safety properties verified by the latter. 

6 CONCLUSION 

This paper presents a formal description of a security protocol. We have chosen 
a protocol that achieves the registration of a user to a trusted third party. We 
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have shown how complex cryptographic operations can be abstracted away 
from mathematical details and specified by abstract data types. Our model of 
the Guillou-Quisquater algorithm is particularly simple while still capturing 
the essence of it. 

We have shown how intrusions can be taken into account by adding an 
intruder process. Our model of this intruder is very simple and powerful. 
He can mimic very easily all reasonable real-world attacks, that is all non 
cryptographic and non repetitive attacks. 

We have shown how to model the security properties, and in particular 
authentication properties as simple safety properties that can be checked au
tomatically. The verification is based on the safety preorder which should hold 
between the system and the property. 

Finally, we have shown on a concrete protocol how helpful formal descrip
tion techniques and model-checkers can be to design security protocols. Many 
subtle attacks were indeed found (such as those provided in this paper) during 
the design that could probably not have been discovered, at least so early, by 
a human-being. 

The computer aided design aspect of this work has been pushed further in 
Germeau et al. (1997) where we have made an improvement of the protocol. 
We show how to give the entities the ability to know exactly why a registration 
does not complete. We want to make a distinction between registration failures 
due to intruder's actions or due to a genuine user with bad credentials. A new 
version of the protocol have been designed with the verification tools to meet 
this additional requirement. 

The results of the verification are obviously based on our set of safety prop
erties and on some assumptions on our model. In particular, we do not prove 
formally the correctness of our abstract finite model with respect a more re
alistic model composed of more users and more TTPs. To strengthen our 
verification, it would be interesting to add such a proof, as in Lowe (1996), 
but our case-study is more complex. Another possible approach, proposed 
recently in Bolignano (1997), is based on an abstraction function and auto
mates the computation of a correct abstract model. Finally, we do not prove 
any sort of completeness of our set of safety properties. Methods to automate 
the definition of security properties would be desirable. Some work in this 
direction is proposed in Abadi et al. (1997). 
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