
9

A Computer Aided Design of a
Secure Registration Protocol

F. Germeau, G. Leduc

Research Unit in Networking, Universite de Liege

{germeau,leduc} @montefiore. ulg. a c. be

Abstract
We use the formal language LOTOS to specify a registration protocol between
a user and a Trusted Third Party, that requires mutual authentication. We
explain how a model-based verification method can be used to verify its ro
bustness to attacks by an intruder. This method is also used to find a simpler
protocol that remains secure.

Keywords
Security, Authentication, Registration protocol, Guillou-Quisquater, Trusted
third party, Formal verification, LOTOS specification

1 INTRODUCTION

With the development of the Internet and especially with the birth of elec
tronic commerce, the security of communications between computers becomes
a crucial point. All these new applications require reliable protocols able to
perform secure transactions. The environment of these operations is very hos
tile because no transmission channel can be considered safe. Formal descrip
tions and verifications can be used to obtain the assurance that a protocol
cannot be threatened by an intruder.

In this paper, we will show that it is possible to make a formal verifica
tion of a security protocol. We can certify that an intruder cannot break a
protocol with different kinds of attacks. We will also show how the verifi
cation process is able to give useful information to correct the protocol if
necessary. The verification technique we have developed is based on the LO
TOS (Bolognesi et al. 1987)(IS088071989) language and the CADP package
(Fernandez et al. 1996) included in the Eucalyptus toolbox (Garavel 1996).

Formal Description Techniques and Protocol Specification, Testing and Verification

T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 1997 lAP. Published by Chapman & Hall

146 Part Three LOTOS and Extension

We use a model-based approach that, until recently, was not felt adequate to
tackle the verification of security protocols (Leduc et al. 1996)(Lowe 1996).

We will illustrate the method on a registration protocol. The Equicrypt
protocol (Lacroix et al. 1996) is a conditional access protocol under design
in the European ACTS OKAPI project (Guimaraes et al. 1996). It allows a
user to subscribe to multimedia services such as video on demand. Equicrypt
is an open protocol where the user must first register with a Trusted Third
Party (TTP) using a challenge-response exchange. After a successful registra
tion, this third party issues a public-key certificate which allows the user to
subscribe to a service with different service providers. The subscription part
has been studied in (Leduc et al. 1996) and some possible attacks have been
reported. In this paper, we will focus on the design and verification of the
registration protocol which must provide the authentication of the user by
the TTP and authentication of the TTP by the user. The protocol is also
used to transmit the user's public key to the TTP.

The paper is organized as follow. The section 2 describes the registration
protocol that we want to verify and possibly correct. In section 3 we present
the formal specification of the protocol written in LOTOS and the section
4 is dedicated to the properties we want to verify. The verification itself is
explained in section 5 and concludes this paper.

2 THE REGISTRATION PROTOCOL

2.1 Notation

The protocol involves several cryptographic operations, for which we give an
abstract view only. Each scheme uses peer encryption and decryption keys K E

and Kv and functions E(_, _)and D(_, _)such that D(Kv, E(KE, m)) = m for
any message m. In public key cryptography, the encryption key is the public
key and the decryption key is the private key for ciphering operations. For
signature operations, the encryption key is the private key and the decryption
key is the public key. We also use the more compact notation { m} KE to denote
the message m encrypted with the key KE. That is {m}KE = E(KE,m).

K~ denotes the public key of the user A and Kl the private secret key of
the user A. The expression {m}KE where KE is a public key represents the
message m encrypted with the key KE. The same expression where KE is a
private key represents both the message m in clear and a hash of the message
m encrypted with the key K E.

We widely use the concept of nonce (i.e. a number used only once). A
nonce is a random number that must be used during only one instance of the
protocol. This prevents an intruder from replaying outdated messages and is
an abstract model of the pair "time stamps, random number".

All the messages have the following structure :

Number: Source~ Destination: Message Id <Message Fields>

A computer aided design of a secure registration protocol 147

2.2 Principles

The following is a presentation of the Equicrypt system and its registration
protocol. The aim of the Equicrypt system is to control the access to mul
timedia services proposed by service providers. To avoid requiring different
access systems for every service provider, a unique decoder uses a public-key
cryptography protocol to subscribe to and decode different services. An inde
pendent entity known as the Trusted Third Party (TTP) acts as a registering
authority trusted by both users and providers. The registration protocol must
achieve the mutual authentication of the user and the TTP. The TTP must
be sure that the claimed identity of the user is the right one and the user
must be sure that it registers with the right TTP. The TTP must also receive
the good user's public-key to issue a public-key certificate similar to X.509
certificates (ITU-T X.509 1993). This kind of certificate is the user's public
key signed with the TTP's private key.

The authentication of the user by the TTP uses the Guillou-Quisquater
zero-knowledge identification scheme (Guillou et al. 1988) . When the user
buys his decoder, he receives secret personal credentials derived from its real
life identity. These credentials will help the user to prove who he is. The goal of
the Guillou-Quisquater (GQ) algorithm is to convince the TTP that the user
has valid credentials without revealing them. The authentication of the TTP
by the user uses a challenge based on a nonce similar to the 3-way authen
tication protocol (Schneier 1996). When the user receives his credentials, he
also receives the TTP's public-key that will allow him to perform the required
checks on the messages and to authenticate the TTP.

The transmission of the user 's public key is the third purpose of the regis
tration protocol. The TTP must be sure that the received public key is really
the user's one. He must make a link between the user's identity and his public
key. An improved version of GQ algorithm proposed in Lacroix et al. (1996)
can be used to check this .

2.3 The Guillou-Quisquater identification scheme

The cryptographic details of the GQ algorithm are beyond the scope of this
paper but the principles will be exposed. Basically, the credentials the user
receives are mathematically related to its identity. Let the user act as the
prover P and the TTP act as the verifier V in the following protocol.

1: P-+ V: Request < ID,K~,T(K~,r) >
2: V-+ P: Challenge < d >
3 : P -+ V : Respanse < t(r, d, B) >
The prover generates a random number r and computes a function T of this
number and of his public key. He sends the verifier his identity I D, his public
key K J: and the result of the function T . As a response, the verifier sends back
another random number d. Then the prover computes a function t with the two
random numbers r and d and his credentials B and sends it to the verifier.
When he receives the response, the verifier can check that the credentials
used to compute t correspond to the identity claimed in the first message,
thanks to the existing mathematical relationship between I D and B. The

148 Part Three LOTOS and Extension

user's credentials B must be kept secret so that the only one who could have

computed a right function t is the real user. Thus the TTP has obviously

received a fresh response from the right user and has authenticated him.
In message 1, the user's public key has also been scrambled (by the function

T) with the random number r. When the verifier received message 3, he gains

the mathematical ability to check that the public key received in message 1
is also the one used to computeT. Although the public key is transmitted in

clear in message 1 and is thus known to an intruder, this intruder cannot forge
a fake message 1 with another public key. This is because he does not know
the random number r used again in message 3 and so he cannot generate a

valid function T(K ~, r).

2.4 Abstract model of the Guillou-Quisquater algorithm

In fact, the GQ algorithm can be seen as a general encryption/decryption

scheme. This will be very useful for our formal description. We can consider
the user's identity together with its public key as a public decryption key
and the credentials as a corresponding secret encryption key. Then, the GQ

algorithm looks like an authentication scheme based on a nonce and works as
follows. The prover sends his decryption key and receives back the random
number d from the verifier. The random number d acts as the nonce. Then
he encrypts it with his encryption key. The verifier can check that the nonce

he sent has a good signature.
This scheme resists to the "man-in-the-middle" attack because the decryp

tion key is mathematically linked to the prover's identity: the identity itself
being a part of the decryption key. When this authentication scheme is used

with the classical public key cryptography, not the GQ algorithm, the verifier

must receive the prover's public key in another way by a secure channel.

The real algorithm also involves the random number r. As said previously,
its main purpose is to scramble the user's public key in the function T. If the

intruder generates such a fake function in the first message, the credentials
computation performed by the verifier when he receives the third message

will fail. We will obtain the same result if the intruder changes the user's
public key. This behaviour is exactly transposed in our model because both
the user's identity and its public key are used to check the credentials. The
second purpose of r is to prevent the TTP from guessing B. Our specification

does not take these cryptographic attacks into account. Thus we do not need

to consider the random number r and we can ignore it in our model. To avoid
confusion, we use the special notation F(B, d) to express the encryption of
the nonce d with the credentials B. This will help the reader to keep the
modelling in mind.

2.5 Protocol description

The complete registration protocol is as follows. The protocol comprises the

authentification of the user by the TTP with the GQ algorithm. We have
added the authentication of the TTP by the user with a challenge based on a
nonce. Finally, we have added a fourth message to carry the registration result

A computer aided design of a secure registration protocol 149

and we use the abstraction of the GQ identification scheme depicted above.

This first version of the protocol has a flaw. We will see in section 5 that the

formal verification has revealed it and has given information to correct the

protocol and to produce new versions.

(a) Initial knowledge of the user

• An identity : User I D.
• A pair of public/private keys: K{; and K~.
• Credentials : B.
• The public parameters of the GQ algorithm.

• The public key of the TTP: K.f?rp·

(b) Initial knowledge of the TTP

• A pair of public/private keys: Kfrp and K!jrp·
• The public parameters of the GQ algorithm.

(c) Message exchanges

The user generates a random nonce n and sends the message 1.

1: User -t TTP: Register Request < UseriD,K{;,{n}KfTP >

When the TTP receives message 1, he decrypts the nonce n and signs it,

generates a random number d and sends them to the user. The TTP can

handle several registrations at a time. So he maintains an internal table with

one entry for each user who has a registration in progress and he records the

tuple< UseriD,K{;,n,d >.

2: TTP -t User: Register Challenge < d,{n}K!jrp >
When the user receives message 2, he checks the signature. If the signature is

correct, he performs the GQ calculation and sends the result to the TTP.

3: User -t TTP: Register Response < F(B,d) >

When the TTP receives message 3, he checks the GQ authentication using this

message and the data found in his internal table. Then, he sends a response

according to the result. The response is signed and includes both the user's

identity and the nonce n. The user's entry in the internal table is deleted. If

the response is positive, the TTP registers the tuple < U ser!D, K{; >.

4+: TTP -t User : Register Ack < {Yes,UseriD,n}K!jTP >
4-: TTP -t User: Register Ack < {No,User!D,n}K!jrp >

Now that we have presented the registration protocol, we will continue with

its specification, its verification.

3 FORMAL SPECIFICATION

The formal specification has been written in LOTOS which is a standardized

description language suitable for the description of distributed systems.

150 Part Three LOTOS and Extension

lAu; --SYSTEM_STATE ..
... UsndTTP • • TTPrcv u •

I"' - - -
User Intruder TTP

... Ur cvTTP • • TTPsndU • - - -

Figure 1 Structure of the LOTOS specification

3.1 Behaviour

The LOTOS specification models both the authentication system and the
environment. The authentication system is composed of the user, the TTP
and the intruder. Figure 1 shows the general structure of the processes and
their interaction points.

The communication channel between the user and the TTP is replaced by
the intruder. He intercepts all messages and transmits them or not, with or
without modification. We give more details about the intruder in section 3.3.
Gates UsndTTP and UrcvTTP are used by the user for its communication in both
directions. The TTP uses the gates TTPsndU and TTPrcvU.

The environment is responsible for the management of specific events. First
ly, he plays the role of the real user who asks his decoder to register with an
interaction at the gate AUTH. Secondly, he receives messages that give infor
mation about the internal state of the user and about the internal state of the
TTP. These messages will help us to perform the formal verification. In this
paper, we call them the special events. We have defined six of them received
through the gate SYSTEM_STATE:

1 :User"""* Environment : US ERST ART -REG < U serf D >
This message notifies the environment that the user whose identity is User I D
has received the order to register. The user generates this message before send
ing a valid registration request to the TTP. In our specification, the user and
the TTP always behave correctly.

2 : TT P """* Environment : TT P _START -REG < User I D >
With this message, the TTP informs the environment that he has received a
valid registration request from the user who claims that his identity is User I D.

3: TTP """*Environment: TTP -REG ..SUCCEEDED < UseriD , K >
When the TTP sends this message, this means that he has successfully reg
istered the user User I D with the public key K. This message occurs when
the TTP owns a valid response to his GQ verification. He will then send a
message 4+.

4 : TTP """*Environment: TTP-REG...FAILED < User!D,K >
This message corresponds to the previous one but when the GQ verification
has failed. The TTP will send a message 4-.

5: User"""* Environment: USER . ..REG..SUCCEEDED < UseriD >
The user informs the environment he has received a valid successful registra
tion acknowledgement from the TTP.

A computer aided design of a secure registration protocol 151

User TIP

USER_REG_SUCCEEDED

Figure 2 Behaviour of the user and the TTP

6 : User --t Environment: USER...REG.YAILED < UseriD >
The user informs the environment that he has received a valid refused reg
istration acknowledgement from the TTP. That is, the user has received a
message 4- where the TTP's signature is valid but his response is negative.

Finally, the third task of the environment is to receive error messages. The
user and the TTP perform several checks when they receive a message. If one
of these checks fails, a message indicating the reason of the error is generated.
It is very important to understand the difference between the two kinds of
interruptions a registration can encounter. The registration can fail because
the TTP has decided that the user does not own good credentials. That is
what we will call a failure . The other cases are errors. An error occurs when the
registration protocol stops due to a badly formed message : wrong signature,
wrong nonce, .. . We obviously focus on failures because we want to defeat
the intruder when he generates good messages. An intruder can always create
errors by sending garbage in the transmission channel.

Figure 2 sketches the main behaviours of the user and the TTP. Each transi
tion is labelled with the transmission of a message, the reception of a message
or the generation of a special event. Error cases and data manipulation are
not shown for simplicity.

3.2 Data types

This specification has been written using data type language extensions, as
offered by the APERO tools (Pecheur 1996) included in the Eucalyptus tool
box. The original text has to be processed by the APERO translator to get
a valid LOTOS specification. This provides for a smaller and more readable
specification.

The abstract data types are composed of :

152 Part Three LOTOS and Extension

• Base values : identifiers, keys, credentials described as explicit enumera
tions.

• Cryptographic functions : Encryption and decryption are modelled as ab
stract operations that are the reverse of each other. If a decryption is
performed with a bad key, the result is not the encrypted message but a
special junk value.

type EncryptedMessage is Message, PublicKey, PrivateKey
sorts EncryptedMessage
opns
E (•! constructor •> : PublicKey, Message -> EncryptedMessage
D : PrivateKey, EncryptedMessage -> Message

eqns
forall msg : Message,

pubkey : PublicKey
prvkey : PrivateKey

ofsort Message
Match(pubkey,prvkey) => D(prvkey,E(pubkey,msg))=msg;
not(Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg))=Message_Junk;

end type

• Set of values : They are specially used to model the knowledge of the in
truder. For example, to form a message, the intruder will pick a value in
each of his sets non determinatically.

• Tables : Needed for storing information about registrations. The TTP can
manage several registrations simultaneously so he must store the values
received in the messages to make the authentication.

3.3 The Intruder

The intruder replaces the channel between the user and the provider. We want
him to mimic any attack a real-world intruder can realize. Thus our intruder
must be able to :

• Eavesdrop on and/or intercept any message exchanged among the entities.
• Decrypt parts of messages that are encrypted with his own public key and

store them.
• Introduce fake messages in the system. A fake message is an old message

replayed or a new one built up from components of old messages including
components he was unable to decrypt.

The LOTOS process that models the intruder is always ready to interact at
the four gates UsndTTP, TTPsndU, UrcvTTP and TTPrcvU. When the user, respec
tively the TTP, sends a message to the gate UsndTTP, respectively TTPsndU, the
intruder catches the message and tries to decrypt its encrypted parts. Then
he stores each part of the message in separate sets of values. These sets con
stitute the intruder's knowledge base that increases each time a message is
received. When the user, respectively the TTP, expects a message on the gate
UrcvTTP, respectively TTPrcvU, the intruder builds a new message with values

A computer aided design of a secure registration protocol 153

stored in his sets. With this method, the intruder tries every message it can
create.

The intruder is parameterized with some initial knowledge which gives him
a certain amount of power. This power includes the capabilities to act as a user
with the real TTP and to act as a TTP with the real user. Thus the intruder
owns a valid identity, valid credentials and a valid pair of public/private keys.
To give the intruder the capability of generating nonces, his initial knowledge
also contains nonces that are distinct from those used by the entities. The
system we modelled only includes one real user and one real TTP. With his
knowledge, the intruder can be seen as a second user and a second TTP. So,
our specification incorporates the case where a second valid user tries to cheat
and the case where a second valid TTP tries to catch the registration.

The initial knowledge of the intruder is as follows :

• An identity : Intruder I D.
• The identity of the user : User I D.
• A pair of public /private keys : K f et K f.
• Valid credentials : B 1.

• The public parameters of the GQ algorithm.
• The public key of the user K{; and the public key of the TTP Kj:TP·
• Nonces.

We assume that our intruder cannot break the public key cryptosystem.
That is, he cannot get a message in clear from an encrypted message and
he cannot forge a signature without the private key. Note that LOTOS easily
provides processes that transgress this rule. Care must be taken to avoid these
kinds of unrealistic behaviours. A more detailed description of the intruder
can be found in Germeau et al. (1997)

3.4 Labelled Transition System

To gain confidence into the specification, it has been simulated with the XSim
ulator tool from the Eucalyptus toolbox in step-by-step execution mode. This
allows us to get a LOTOS specification which is likely to behave correctly
without the intruder. Then we have used the CADP package to carry out the
verification. The first step consists of using the Caesar tool to generate from
the LOTOS specification a graph called Labelled Transition System (LTS).
To be able to generate a finite-state LTS of reasonable size, some limitations
were required. The exponential growth of states we meet forces us to limit
the user to only one registration and the TTP to only two registrations. This
has no effect on the generality of our result because the intruder is still able
to perform a registration aside the user's one.

The size of the resulting graph greatly depends on the version of the pro
tocol we study. The generated LTS of the protocol presented previously was
composed of 487446 states and 2944856 transitions. But the corrected version
that will be used in section 5.2 raises to 973684 states and 7578109 transitions.
All the computations were performed on a Sun Ultra-2 workstation running
Solaris 2.5.1 with 2 CPUs and 832 Mb of RAM. The CPU time required for
the generation went up to six hours.

!54 Part Three LOTOS and Extension

The second step in the process consists of using the Aldebaran tool to

minimize the resulting graph. The minimization is always done modulo the

strong bisimulation equivalence that preserves all the properties of the graph.

This phase is generally carried out in less than fifteen minutes of CPU time.
The reduction factor obtained is very important. The minimized LTS of the

first protocol is made of 3968 states and 37161 transitions. This clearly shows
that our biggest problem is the generation of the brute LTS with the Caesar

tool.
As we will see in the next section, all the properties we want to verify

are safety properties. Thus the minimization could have been improved mod
ulo the safety equivalence which preserves all the properties expressible in

Branching time Safety Logic (Bouajjani et al. 1991). This was not mandatory
because the graphs were already small enough to make the verification.

4 SAFETY PROPERTIES TO BE VERIFIED

Our goal is to verify that the user always correctly authenticates the TTP, that
the TTP always correctly authenticates the user and that the TTP receives

the right user's public key. We are going to reach it with the combination of
the following safety properties.

• P1: When the TTP successfully registers the user, the user must have

started a registration with the TTP before.
• P2: When the TTP successfully registers the user, it must have started a

registration with this user before.
• P3: When the TTP refuses to register the user, it must have started a

registration with this user before. This refusal is what we called a failure.

• P4: The verdict given by the TTP (i.e. registered or failed) must always
be correct and consistent with the acknowledgement received by the user.
This property will be further explained below.

• P5: The TTP always registers the user with its real public key.

Each of these properties can be expressed with the special events man

aged by the environment . For instance, property P1 is translated to "All
TTP _REG_SUCCEEDED with a particular user identifier must be preceded by a
USER_START_REG with the same user identifier". This kind of condition can be

easily written in the language of our verification tools as a reference graph

composed of 3 states and 3 transitions.

If we consider the user whose identity is USERID_A and whose public key is
USERPKEY_A, the graph is as follows:

des(0,3,3)
(0, "SYSTEM_STATE !USER_START_REG !USERID_A",1)
(1, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2)
(2, "SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A", 2)

This is a small graph that requires a USER_START_REG event before any
TTP _REG_SUCCEEDED event. Property P1 will be verified if the LTS of our system

where events other than these two have been turned into internal events is
related to this LTS by the safety preorder (Bouajjani et al. 1991). Informally,

A computer aided design of a secure registration protocol 155

m_~'-'"=/8\ __ ,.,u,
C

(;:;'\ TTP REG SUCCEEDED (:::\ ~
TTP_REG_FAILED ~ ~ ~TTP_REG_FAILED

~ IUSER_REG_FAILED

USER_REG_SUCCEEDED ~

USER_REG_FAILEDC 0 :JTTP_REG_FAILED

Figure 3 Labelled transition system modelling property P4

the LTS of a system is related to the LTS of a safety property by the safety
preorder if and only if the behaviour of the system is allowed by the property.
The comparison of two graphs modulo a particular relation is performed by
the Aldebaran tool.

Property P4 can be best expressed by the graph shown on figure 3. It
shows the temporal orderings that we authorize among the TTP _REG_SUCCEEDED,

TTP _REG_FAILED, USER_REG_SUCCEEDED and USER_REG_FAILED events. In particu
lar, a USER_REG_SUCCEEDED must always be preceded by one TTP_REG_SUCCEEDED

because, when the user learns that he has successfully registered, the TTP
must have successfully registered him. A USER_REG_FAILED must always be
preceded by at least one TTP _REG_FAILED and no TTP _REG_SUCCEEDED because,
when the user learns that his registration failed , the TTP must have refused
to register him at least once and the TTP must not have registered that user
successfully. A USER_REG_FAILED must never follow a TIP _REG_SUCCEEDED.

Properties Pl and P4 achieve the mutual authentication of the user and the
TTP. The authentication of the user by the TTP is considered successful only
if the TTP registers the user when the user wants to be registered. Thus we
need to be sure that the user has started a registration with the TTP when
the TTP registers the user. This is provided by property Pl. We also need to
be sure that the intruder is unable to perform a new registration of the user.
Hence, property P4 allows only one successful registration. The authentication
of the TTP by the user is considered successful if the user receives the right
response from the TTP. This is guaranteed by property P4.

Properties P2 and P3 ensure that the TTP has really started a registration
with the user when he gives a verdict. We need this check because the TTP
can manage several registrations simultaneously. Finally, property P5 ensures
that the user is always registered with its own public key (and not e.g. the
intruder's one) . To do so, the TTP_REG_SUCCEEDED event has two parameters:
the user's identity and its public key. We must verify that these two fields
always match for every TTP _REG_SUCCEEDED event in the LTS of our system.

156 Part Three LOTOS and Extension

5 VERIFICATION OF THE PROTOCOL

This section is the core of our study. We will show how the registration pro
tocol can be certified using the Eucalyptus toolbox.

5.1 A flaw

When checking our properties, Aldebaran discovered that property P4 was not
satisfied. We use the Exhibitor tool of the CADP package to produce a diag
nostic sequence of 19 steps that exhibits one scenario that leads to the unde
sirable state. This sequence of transitions comprises an event USER_REG_FAILED

before an event TTP _REG_SUCCEEDED. Thus the TTP successfully registers the
user after the user has learned that his registration failed. This clearly does
not fulfil property P4.

The diagnostic sequence is the following:

<initial state>
1 : 11 AUTH !USERID_A 11

2: 11 SYSTEM_STATE !USER_START_REG !USERID_A 11

3: 11USNDTTP !USERID_A !USERPKET_A !E (TTPPKEY. NONCE_A) II

4 : 11 TTPRCVU !USERID_A !USERPKEY_A !E (TTPPKEY, NONCE_A) 11

5 : 11 SYSTEM_STATE !TTP_START_REG !USERID_A 11

6: 11 TTPSNDU !RANDOMl_TTP !S (TTPSKEY, NONCE_A) 11

7: 11 TTPRCVU !USERID_A !S (CERT_I, RANDOM1_TTP) 11

8: 11 SYSTEM_STATE !TTP_REG_FAILED !USERID_A !USERPKEY_A 11

9: 11 TTPSNDU !S (TTPSKEY, NO, NONCE_A, USERID_A) 11

10: 11 TTPRCVU ! USERID_A ! USERPKEY _A ! E (TTPPKEY, NONCE_A) 11

11: 11 SYSTEM_STATE !TTP _START_REG !USERID_A 11

12: 11 TTPSNDU ! RANDOM2_ TTP ! s (TTPSKEY. NONCE_A) II

13: 11URCVTTP !RANDOM2_TTP ! s (TTPSKEY . NONCE_A) II

14: 11USNDTTP !USERID_A !S (CERT_A, RANDOM2_TTP) 11

15: 11URCVTTP !S (TTPSKEY, NO, NONCE_A, USERID_A) 11

16: 11 SYSTEM_STATE !USER_REG_FAILED !USERID_A 11

17: 11 TTPRCVU ! USERID _A ! s (CERT _A, RANDOM2_ TTP) II

18: 11 SYSTEM_STATE !TTP_REG_SUCCEEDED !USERID_A !USERPKEY_A 11

<goal state>
19 : 11 TTPSNDU !S (TTPSKEY, YES, NONCE_!, USERID_A) 11

At line 1, the environment asks for a registration of user A. The user's
decoder receives the order and begins the registration with a USER_START_REG

event. It sends a register request message to the TTP at step 3 (see section
2.5).

User -t Intruder: Register Request <A, K.f, {NA}KtTP >
The intruder intercepts the message and replays it without alteration to the
TTP at line 4.

Intruder -t TTP : Register Request < A,Kf,{NA}K:f.'rp >
When the TTP receives this message, he starts the registration and sends
back a message 2 with a random number R 1 at step 6.

TTP -t Intruder : Register Challenge < R1, {NA}KfTP >

A computer aided design of a secure registration protocol 157

The intruder learns the random number required by the GQ verification when

he receives this message. He immediately generates a fake response: that is

line 7.

Intruder-+ TTP: Register Response < F(B1 ,RI) >

Obviously, the GQ verification fails because the intruder does not own the

user's credentials. The TTP declares a failed authentication and sends a neg

ative response.

TTP-+ Intruder: Register Ack < {No,A,NA}KfTP >
At this point, the TTP knows that he has refused the user A's registration but

this user is still waiting for a response to his registration request . The intruder

goes on with the attack by replaying the register request at line 10. The TTP

starts a second registration of the user A and sends back a new challenge

with a random number R2 different from the previous one. The intruder still

intercepts the message but this time he forwards it to the user (steps 12 and

13) .

Intruder-+ TTP : Register Request <A, Kf, {NA}Kfrp >
TTP-+ Intruder: Register Challenge < R2, {NA}Kfrp >
Intruder-+ User: Register Challenge < R2 , {NA}Kfrp >

The user receives the so long awaited response and answers to it.

User-+ Intruder: Register Response < F(BA,R2) >
The intruder immediately replies by replaying the previous negative register

acknowledgement message recorded at stage 9.

Intruder-+ User: Register Ack < {No, A,NA}Kfrp >
This acknowledgement is considered valid by the user though it does not be

long to the right registration. The user closes by declaring a failed registration

with the event USER_REG_FAILED at step 16. Meanwhile, the intruder forwards

the user's response to the TTP.

User-+ Intruder: Register Response < F(BA , R2) >

This response is valid, so the TTP successfully registers the user and sends a

positive response.

TTP-+ Intruder: Register Ack <{Yes, A, NA}Kfrp >

Both the user and the TTP have finished their exchange but they have not

the same view of the registration.
For this attack to succeed, the intruder does not even need valid credentials.

It only needs to create a fake response to the first registration to obtain

a negative acknowledgement from the TTP. When he owns it, he replays

the user's request and inserts the negative response in the exchange at the

right place. Hopefully, this attack does not allow the intruder to authenticate

himself as the user. So the TTP still authenticates correctly the user. But

the authentication of the TTP by the user failed. The intruder can obtain a

denial of service by performing this attack systematically.

The strength of our technique is that the analysis of the sequence immedi

ately brings us the reason of the failure. The acknowledgement of the TTP is

too general because it can be considered valid in two distinct registrations.

158 Part Three LOTOS and Extension

5.2 A corrected version

A way to prevent the attack is to add to the acknowledgement a unique iden
tifier of the registration. The random number used in the GQ verification is
the right candidate. This number is meant to be different at each registration.
Its integration into the signature of the fourth message will allow the user to
check its freshness . Here is the corrected version of our registration protocol :

1: User--+ TTP: Register Request < UseriD,K{;, {n}KtTP >
2 : TTP--+ User: Register Challenge < d, {n}KjTP >
3 : User--+ TTP: Register Response < F(B,d) >
4+: TTP--+ User: Register Ack < {Yes , UseriD,n,d}KfTP >
4- : TTP--+ User: Register Ack < {No,UseriD,n,d}KfTP >
Aldebaran states that all our properties are fulfilled with this version. Hence,
the mutual authentication and the transmission of the public key succeed
despite the attempts of the intruder. We conclude that this is a secure reg
istration protocol provided that the cryptographic computations cannot be
broken.

5.3 The simplest protocol

Section 5.2 demonstrates that the signature of the registration acknowledge
ment message is very important. It can certainly not be removed as it performs
the authentication of the whole registration. We have found that the addition
of the random number d in the signature of the fourth message makes the
nonce n useless. It was used at first for the user to authenticate the TTP
but the TTP's signature of the acknowledgement is sufficient to perform this
authentication. The authentication of d with a signature in the registration
challenge message is not anymore mandatory. These two simplifications lead
to a very simple protocol with only one signature :

1: User--+ TTP : Register Request < UseriD,K{; >
2: TTP--+ User : Register Challenge < d >
3 : User--+ TTP : Register Response < F(B,d) >
4+ : TTP--+ User: Register Ack < {Yes,UseriD,d}KjTP >
4- : TTP--+ User: Register Ack < {No,UseriD,d}KjTP >
All the five properties are satisfied. This version is as robust as the previous
one from the point of view of the mutual authentication. Obviously, the in
truder can more easily disturb the registration. The only difference is that
the intruder's actions will be discovered later in the protocol. Formally, there
exists a safety preorder between the corrected version of the protocol and
this simplified version regarding the six special events only. Hence the former
satisfies all safety properties verified by the latter.

6 CONCLUSION

This paper presents a formal description of a security protocol. We have chosen
a protocol that achieves the registration of a user to a trusted third party. We

A computer aided design of a secure registration protocol 159

have shown how complex cryptographic operations can be abstracted away
from mathematical details and specified by abstract data types. Our model of
the Guillou-Quisquater algorithm is particularly simple while still capturing
the essence of it.

We have shown how intrusions can be taken into account by adding an
intruder process. Our model of this intruder is very simple and powerful.
He can mimic very easily all reasonable real-world attacks, that is all non
cryptographic and non repetitive attacks.

We have shown how to model the security properties, and in particular
authentication properties as simple safety properties that can be checked au
tomatically. The verification is based on the safety preorder which should hold
between the system and the property.

Finally, we have shown on a concrete protocol how helpful formal descrip
tion techniques and model-checkers can be to design security protocols. Many
subtle attacks were indeed found (such as those provided in this paper) during
the design that could probably not have been discovered, at least so early, by
a human-being.

The computer aided design aspect of this work has been pushed further in
Germeau et al. (1997) where we have made an improvement of the protocol.
We show how to give the entities the ability to know exactly why a registration
does not complete. We want to make a distinction between registration failures
due to intruder's actions or due to a genuine user with bad credentials. A new
version of the protocol have been designed with the verification tools to meet
this additional requirement.

The results of the verification are obviously based on our set of safety prop
erties and on some assumptions on our model. In particular, we do not prove
formally the correctness of our abstract finite model with respect a more re
alistic model composed of more users and more TTPs. To strengthen our
verification, it would be interesting to add such a proof, as in Lowe (1996),
but our case-study is more complex. Another possible approach, proposed
recently in Bolignano (1997), is based on an abstraction function and auto
mates the computation of a correct abstract model. Finally, we do not prove
any sort of completeness of our set of safety properties. Methods to automate
the definition of security properties would be desirable. Some work in this
direction is proposed in Abadi et al. (1997).

REFERENCES

Abadi, M. and Gordon, A.D. (1997) A Calculus for Cryptogmphic Protocols
The Spi Calculus, Proceedings of the 4th ACM Conference on Com
puter and Communications Security.

Bolignano, D. (1997) Towards a Mechanization of Cryptographic Protocol Ve
rification, Proceedings of CAV 97, LNCS 1254, Springer-Verlag.

Bolognesi, T. and Brinksma E. (1987) Introduction (o the ISO Specification
Language LOTOS, Computer Networks and ISDN Systems 14.

Bouajjani, A. Fernandez, J.C. Graf, S. Rodriguez, C. and Sifakis, J . (1991)
Safety for Branching Time Semantics, 18th ICALP, Springer-Verlag.

Fernandez, J .C. Garavel, H. Kerbat, A. Mateescu, R. Mounier, L. and Sighire-

160 Part Three LOTOS and Extension

anu, M. (1996) CAESAR/ ALDEBARAN Development Package: A
Protocol Validation and Verification Toolbox, Proceedings of the 8th
Conference on Computer-Aided Verification, Alur & Henzinger Eds.

Garabel, H. {1996) An overview of the Eucalyptus Toolbox, Proceedings of
COST247 workshop.

Germeau, F. and Leduc, G. {1997) Model-based Design and Verification of Se
curity Protocols using LOTOS, Proceedings of the DIMACS Workshop
on Design and Formal Verification of Security Protocols.

Guillou, L. and Quiquater, J.J. {1988) A Practical Zero-knowledge Protocol
Fitted to Security Microprocessor Minimizing both Transmission and
Memory, Proceedings of Eurocrypt 88, Springer-Verlag.

Guimaraes, J. Boucqueau, J.M. Macq, B. (1996) OKAPI: a Kernel for Ac
cess Control to Multimedia Services based on Trusted Third Parties,
Proceedings of ECMAST 96, pp. 783-798.

ISO (1989) LOTOS, a Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour, Information Processing Systems
-Open Systems Interconnection: IS 8807.

ITU-T {1993) The Directory: Authentication Framework, Information Tech
nology - Open Systems Interconnection: ITU-T Recommendation
X.509.

Lacroix, S. Boucqueau, J .M. Quisquater, J.J. and Macq, B. {1996) Providing
Equitable Conditional Access by Use of Trusted Third Parties, Pro
ceedings of ECMAST 96, pp. 763-782.

Leduc, G. Bonaventure, 0. Koerner, E. Leonard, L. Pecheur, C. and Zanetti,
D. {1996) Specification and Verification of a TTP Protocol for the
Conditional Access to Services., Proceedings of 12th J . Cartier Work
shop on Formal Methods and their Applications: Telecommunications,
VLSI and Real-Time Computerized Control System, Canada.

Lowe, G. (1996) Breaking and Fixing the Needham-Schroeder Public-Key Au
thentication Protocol using FDR, T. Margaria and B. Steffen Eds.,
Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 1055, Springer-Verlag.

Pecheur, C. (1996) Improving the Specification of Data Types in LOTOS,
Doctoral dissertation, University of Liege.

Schneier, B. {1996) Applied Cryptography, Second Edition, J. Wiley & Sons.

7 BIOGRAPHY

Fran~ois Germeau has joined the Research Unit in Networking in 1996 and
is studying the conception and verification of security protocols with formal
description techniques.

Guy Leduc is professor at the University of Liege, his main research field
is on formal languages and methods applicable to the software engineering of
computer networks and distributed systems.

This work has been partially supported by the Commission of the European Union
(DG XIII) under the ACTS AC051 project OKAPI: "Open Kernel for Access to
Protected Interoperable Interactive Services" .

