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A Computer-Aided Detection of EEG Seizures
in Infants: A Singular-Spectrum Approach and

Performance Comparison
Patrick Celka*, Member, IEEE, and Paul Colditz

Abstract—This paper presents a scalp electroencephalogram
(EEG) seizure detection scheme based on singular spectrum
analysis (SSA) and Rissanen minimum description length (MDL)
model-order selection (SSA-MDL). Preprocessing of the signals
allows for the drastic reduction of the number of false alarms. Sta-
tistical performance comparison with seizure detection schemes
of Gotman et al. and Liu et al. is performed on both synthetic
data and real EEG seizures. Monte Carlo simulations based
on synthetic infant EEG seizure data reveals some detection
drawbacks on a large variety of seizure waveforms. Detection
using both Monte Carlo and four real infant scalp EEG signals
shows the superiority of the SSA-MDL method with an average
good detection rate of 93% and false detection rate 4%.

Index Terms—Detection, EEG seizure, infant, MDL, newborn,
singular spectrum analysis.

I. INTRODUCTION

A
BNORMALITIES in the electroencephalogram (EEG)

have a good predictive value for a poor neurodevelop-

mental outcome in the newborn and infant [1]. Because the

duration of the potential therapeutic window, for the use of

neural rescue agents, is about 2–6 hours [2], automatic detection

of predefined patterns have started to be investigated. Seizure

EEG patterns have been studied using computerized methods.

This subclass of the so-called paroxysmal-type EEG patterns

has been shown to provide reliable predictive indicators for

encephalopathy. In most cases, infants showing seizure have

poor health outcomes and a great probability of death [3].

To the best of our knowledge, two efficient methods have

been developed and thoroughly assessed for computer-aided de-

tection of seizures in newborn and infant scalp EEG signals. The

first method is based on the computation of a running autocor-

relation function and was proposed by Liu et al. [4] (LIU). The

second method, proposed by Gotman et al. [5] (GOTMAN), is

based on the analysis of running periodograms. We would like

to point out that detection of EEG events in newborn and in-

fants cannot be performed without a close inspection of many
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signals such as EEG electrocardiogram, respiratory excursions,

electro-occulogram, and video. This is because daily care of ba-

bies can produce EEG waveforms that mimics typical EEG pat-

terns, and artifacts/interferences can mask the relevent informa-

tion. For these reasons, we believe that detection of EEG pat-

terns in infants cannot be fully automated and we prefer using

the terminology computer-aided detection.

A new seizure detection method based on singular spectrum

analysis (SSA) and information theoretic-based selection of

the signal subspace is designed in this paper [SSA-Rissanen

minimum description length (MDL) model-order selection

(SSA-MDL)]. This approach is shown to outperform the

above mentioned detection schemes (LIU and GOTMAN).

The motivations for using the SSA are: 1) SSA performs very

well on quasi-periodic signals, which is the case for EEG

seizures and 2) the use of singular-value decomposition (SVD)

of the so-called trajectory matrix is highly robust to noise.

The detection scheme proceeds with a preprocessing of the

data, SSA and the use of Rissanen’s MDL criterion [6], [7].

The preprocessing is based on a nonlinear whitening filter

that spreads the spectrum of the background while keeping

rhytmical features of the seizure events. The nonlinear function

transform the non-Gaussian shape of the probability density

function (pdf) of the EEG into a Gaussian one. This allows for

the optimal use of MDL and reduces the effects of the artifacts.

Using such a criterion also reduces the drawback of using

subjective and data-dependent predefined threshold, typical of

classical test-statistic detectors.

EEGs from newborns and infants varie from day to day and

displays: 1) nonstationarity during a single recording [8]–[11];

2) a non-Gaussian pdf [12]; 3) various artifacts; and 4) a

rhythmical background EEG for which the frequency spectrum

largely overlap with the seizure one. These signal character-

istics may impinge on the performances of computer-based

detection, and motivates the assessment of published methods.

The easiest and most reliable way to do this assessment is to

generate synthetic EEG signals with prescribed background

and seizure. We used synthetic data of EEG seizures presented

in [13].

This paper is organized as follows. Section II describes the

data acquisition method. Section III presents the nonlinear non-

stationary model-based EEG seizure scheme. Section IV intro-

duces the SSA-MDL detection method, along with LIU and

GOTMAN. Section V presents the results of the statistical per-

formance analysis of LIU, GOTMAN, and SSA-MDL on syn-

thetic data. Section VI compare the performances of the three

0018-9294/02$17.00 © 2002 IEEE
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Fig. 1. Nonlinear nonstationary model of EEG seizure.

detection schemes on ten babies suffering from EEG seizures.

Section VII discusses the results. Conclusions are presented in

Section VIII

II. EXPERIMENTAL SETUP

The data acquisition was performed at the Royal Women’s

Hospital and Royal Children’s Hospital, Brisbane, Australia.

Between five and 20 EEG channels were recorded depending

on the available recording system and the head size. Four babies

from conceptual age (between five and seven weeks) to max-

imum six months after birth were used.

Ag–AgCl electrodes flushed with conductive gel and adhered

by tape attached to the skin of the infant were used [14]. The four

babies were showing signs of clinical and electrical seizures.

These four recordings were visually segmented (extraction of

the seizure epochs) by a neurologist from the Neurosciences

Department at the Royal Children’s Hospital.

The electrode placement agrees with the American EEG So-

ciety standards, while the electrode positions F1 and F2 are not

true 10–20 positions, but are commonly used for babies [14].

Slow baseline fluctuations due to baby movement have been

removed by using a second-order high-pass Butterworth filter

with a cutoff frequency of 0.1 Hz. These signals were ampli-

fied and digitized using either the Amlab (AmLab Technologies,

Lewisham, NSW, Australia) or Medelec (Oxford Instruments,

U.K.) software/hardware environment. The sampling frequency

was set to 256 Hz. EEG signals were then subsampled at

40 Hz to agree with GOTMAN [5] and LIU [4] detection

standard.

Surface electrocardiogram (three leads), a symmetric

electro-occulogram, and respiratory excursions signals were

also recorded for control purposes.

III. SYNTHETIC EEG SEIZURE

In order to compare the performance of the SSA-MDL al-

gorithm with LIU and GOTMAN, we used the EEG model pro-

posed in [13] to generate synthetic background and seizure EEG

activities. The model structure, shown in Fig. 1 and detailed in

[13], is derived from a previously proposed seizure model by

Roessgen et al. [15] who extended the model initiated by Lopes

da Silva et al. [16] in introducing a seizure input sawtooth signal

. An identification procedure has been examined in [13]. It

is assumed throughout the text that the signals are sampled such

that the continuous-time variable is discretized as ,

and we use or depending on the context. The pure back-

ground activity is modeled by an autoregressive moving average

(ARMA) filter excited by a zero mean GWN , fol-

lowed by a nonlinear function . is assumed to model deep

brain activities in structures such as thalamus and brain stem. In

parallel to this branch, an other ARMA filter is excited

by a deterministic signal followed by a nonlinear function

. The signal is a piecewise linear frequency modulated

sawtooth signal [13]. The later branch is expected to represents

the pure seizure activity. The sum of these two branches gives

the output signal , which is also the measured EEG signal,

and expressed by

(1)

where and . A measure-

ment noise , assumed to be Gaussian and white (GWN) of

variance and zero mean, is added. The input signals are the

GWN and the deterministic signal expressed as

where (2)

is the instantaneous frequency of with a

sawtooth signal of period . In the full model proposed in

[13], is a three-element piecewise linear function. But, for

our performance comparison, a simple linear frequency modu-

lated law is sufficient. The parameter represents the slope of

linear frequency modulation. The output signal mean is set

to zero and its variance normalized to unity. The two last terms

on the right-hand side of (1) can be interpreted as the stochastic

parts of the model and grouped as such

that . In most of the situations, the con-

tribution to the total EEG activity is less important than

the pure seizure activity resulting in a relatively high

seizure-to-background ratio (SBR)

(3)

Using SSA and model selection [17], we have estimated that

10 dB SBR 30 dB on 56 EEG seizure segments. Assuming

the independence of and , the signal-to-noise ratio

(SNR) is given by

(4)

Fig. 2 shows recorded and synthetic background activities,

and Fig. 3 shows recorded and synthetic seizure activities. We

have used SNR 20 dB, SBR 20 dB. The model was identi-

fied from a baby displaying EEG seizures as in [13]. Note that

the seizure signal in Fig. 3 is nonstationary and nonsymmetrical

in amplitude, and the synthetic data do reproduce those behav-

iors.

We have selected four parameters that are mostly susceptible

to influence the detection performances of LIU, GOTMAN, and

SSA-MDL: the frequency (especially for GOTMAN), the

slope which specifies the degree of nonstationarity, the SNR,

and the SBR.
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Fig. 2. Examples of real and synthetic background EEG activities.

IV. DETECTION TECHNIQUES

A. SSA-MDL Method

1) Singular Spectrum Analysis: Neurons and neuronal

networks composing the central nervous system can discharge

in both asynchronous or synchronous manners. Asynchronous

discharges lead to a continuous background activity while syn-

chronous activity leads to rhythmical patterns such as seizures

[8], [18] (peaked power spectral density). It is well known

that SSA is particularly suited for extracting information from

quasi-periodic signals embedded in noise [19]. SSA has been

used in nonlinear time series analysis with more or less success

[20]–[24], but has also been shown to provide interesting

results in biomedical applications [25]–[28].

The measured EEG signal is zero-meaned

and normalized to have unit variance. Let

be a state vector in . The

trajectory matrix is defined as1

(5)

where . The size of the trajectory matrix

is . The trajectory matrix may be viewed as a cloud

of points in to which an -dimensional ellipsoid can be

fitted. The principal axes of this ellipsoid are given by the

eigenvectors of the covariance matrix

corresponding to the largest eigenvalues from

. The maximum number of eigenvalues is a

priori given by . The signal can eventually

be separated in two parts: signal (the deterministic part) and

noise (the stochastic part) which are related to the first and

last eigenvalues. The choice of is crutial and it has

been shown in [19] that, for quasi-periodic signals, an upper

bound is given by where

is the bandwidth of the information bearing signal, for instance

the seizure.

Instead of computing the sample covariance matrix , we

performed the SVD on . The reason for that choice is the

1We used a unit delay J = 1 while other delays may also be used.

Fig. 3. Examples of real and synthetic seizure EEG activities.

robustness of the SVD against noise and its efficiency in esti-

mating the eigenvalues of for short time series. The singular

values of satisfies for .

2) Minimum Description Length: The crucial question

which now arises is how to determine . The state space is

of dimension and is supposed to contain the minimal size

embedding space of dimension . The goal now is to

perform a dynamical information bearing subspace extraction;

or, in other words, an optimal dimension estimation. From

previous works [26]–[28], it apppears that the Rissanen’s MDL

criterion is well adapted to the case of subspace selection in

noisy environments. The formula of the MDL criterion is given

by [25]

(6)

where 32 corresponds to a floating point representation,

and the number of freely adjustable parameters is given

by . In the case of the norm,

, while if we use the norm we should use .

The optimal model order minimizes MDL and is given by

(7)

The following two situations can be encountered depending

on the value of :

1) if 1, then the signal can be considered as a pure

white noise;

2) if , the signal contains a nonstochastic component.

The meaning of is very important in order to understand

the principle of our detection technique. First, note that the min-
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imum number of eigenvectors needed for representing a pure

sine wave, which is in some sense the minimal rhythm, is two.

Thus, ( is the smallest integer below ) is the number

of components (or harmonics) in the signal. This component

counting property of has been explained in [19], [27], and

[28]. Second, the usefulness of using SSA is to separate the

noise part of the signal from the more deterministic part which

is supposed to contain most of the information. measure the

complexity of the deterministic part of the signal. If the signal

is composed of a pure white noise, there is no deterministic part

and 1, otherwise .

We expect that signals for which 3 are rather complex

and most probably originates from a high-dimensional system,

which seems unlikely for seizure activity [27], [29]–[32].

The situation where 3 signifies that the deterministic

part of the signal is quasi-periodic, or originates from a low-

dimension system and may be used for detection of rhythmic

activity.

3) Preprocessing: We want to separate the background from

seizure activities as much as possible. We thus preprocess the

data in order to meet the condition 1 in background EEG.

The preprocessing makes use of the model presented in Sec-

tion III. The function and the filter are estimated (see

[13] for details) on some background EEG of the signal to be

processed. The estimated inverse nonlinear function is first

applied to the measured EEG in order to Gaussianize the

data, then the estimated inverse filter is applied to and

used for whitening the background EEG. The resulting signal

is

(8)

(9)

where 0 for background EEG and is a Gaussian

noise with a broadband continuous spectrum.2 The pre-

processed signal thus contains a deterministic part

, and a stochastic part

. Eventually, the MDL criterion will discriminates

between a whitened background activity for which we expect

to have 1 and a seizure activity with .

The SSA-MDL detection scheme proceeds in four steps

which are summarized in Fig. 4 and described hereafter. First,

the signal is preprocessed, then segmented using a sliding

window of 10 s from which is constructed. The window

proceed by a 1.25-s step, The SVD of is performed, and

is computed using (6) and (7) with the norm. We set a flag

1 if , and 0, otherwise. We finally stack the

flags into a vector and apply a median filter of order three in

order to remove isolated flags 1.

B. Gotman’s Method

Gotman et al. [33]–[35] presented three separate methods

that are intended to be used simultaneously to detect seizure.

This allows each method to be developed for specific wave-

forms with a lower degree of variability. However, since using

the three methods together causes an increase in the false detec-

2It is not perfectly white due to ^G .

Fig. 4. Structure of the SSA-MDL detection algorithm.

tion rate (FDR) , only the first method developed by Gotman will

be discussed here. This method was developed specifically for

seizure detection in neonates. The other two methods are modi-

fied versions of previously developed algorithms for automatic

seizure detection in adults [34], [35]. The method described by

Gotman [33] is based on spectral analysis and is used to detect

periodic discharges. A background epoch is defined as a 20-s

segment of EEG finishing 60 s before the start of the current

10-s epoch being investigated. The main advantage of a moving

background epoch is that results are not dependent on the spe-

cific features of a fixed epoch. The frequency spectrum of each

10-s epoch is calculated and the following features are extracted:

• the frequency of the dominant spectral peak;

• the width of the dominant spectral peak;

• the ratio of the power in the dominant spectral peak to that

of the background spectrum in the same frequency band.

The three features are used for seizure detection in each

epoch. If an epoch is classified as containing seizure, a further

three criteria are used to limit the number of false detections

(FDs). Seizure detection is discounted if the epoch is largely

nonstationary, if there is a large amount of noise power present

or if it appears that an EEG lead has been disconnected.

The aim of this method is to determine if a dominant peak

exists in the power spectal density estimate. This is equivalent

to detecting if an EEG waveform has a dominant periodic shape

in the time domain. The feature space used to classify an epoch

as seizure ensures that the dominant peak of the spectrum is

significant compared with the background spectrum.
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C. Liu’s Method

As with the above approaches, the technique of Liu et al. [4]

assumes that the essential characteristic in newborn seizure EEG

is periodicity. The amount of periodicity in the autocorrelation

of short epochs of EEG data is scored and used in a rule-based

algorithm to perform classification [4]. In this technique, an

epoch consisting of 30 s of data is divided into five windows. De-

pending on the autocorrelation function of a window, up to four

primary periods are calculated for each window in

an epoch. These times correspond to the times of the moment

centers of the first, second, third, and fourth peaks in the au-

tocorrelation function. The windows are then scored, whereby

more evenly spaced primary periods are allocated larger scores.

After each window in an epoch is scored, a rule-based detection

scheme is applied to classify each epoch as positive or negative

. If two or more channels of EEG data in the same epoch are

positive, the epoch is then classified as containing seizure. For

the sake of comparision with the other two techniques, we im-

plemented Liu’s method using only one channel.

V. PERFORMANCE COMPARISON ON SYNTHETIC DATA

We generated 8 min of background and seizure patterns

randomly placed within . The duration of the seizure was

also set randomly between 5 and 30 s. Only the number

of seizure patterns for which 10 s is computed. Indeed we

consider rhythmical events of duration less then 5 s not classi-

fied as seizure (see [11] and references therein). Twenty Monte

Carlo runs were performed for each of the parameters SBR, ,

( 0 in that case), and SNR, within a prescribed range.

The detection signal, composed of ones and zeros, shows

the occurence of rhythmical activity. The time locations of the

ones depend on the detection scheme in use. A one is said to

be an alarm. A good detection (GD) occurs when one alarm

falls within one seizure interval. Multiple occurences of alarms

during one seizure interval are considered as only one. An FD

occurs when the alarm is not within any seizure interval. The

total number of GDs and FDs are then counted. We define the

GD rate (GDR) and FDR as

(10)

(11)

Actually, GDR is the percentage of true positive detection,

and FDR is the percentage of false positive detections. Due

to the use of a sliding window in each (LIU, GOTMAN, and

SSA-MDL) method, ambiguity about the existence of rhyth-

mical acivity occurs at the border of seizure patterns. For this

reason, we have allowed a window margin of 5 s for the LIU

and SSA-MDL methods and 10 s for the GOTMAN method

to account for method-dependent border effects. The window

margin is greater for GOTMAN because this method uses a

wider sliding window (see Section IV-B).

Fig. 5. Monte Carlo simulations for 1 � SBR � 24 dB.

Fig. 6. Monte Carlo simulations for �0:09 � � � �0:018 s .

For the SSA-MDL method, we still have to select . Sup-

posing that the bandwidth of seizure signals varies from 1

Hz to 5 Hz, we have . In our experiments, we used

20 for all the parameters .

Figs. 5, 6, and Fig. 8 display the results with mean and

standard deviations. Next, we will discuss each figure indepen-

dently.

A. Mean Computation Time

The mean computation times3 required to run detection

methods are 1.15 s for LIU, 9.06 s for GOTMAN, and 7.9 s

for SSA-MDL. The LIU algorithm clearely outperforms the

other methods. This is due to the fact that the Liu’s method

does not allow any overlap between sliding windows and to the

reduced complexity of the detection algorithm. GOTMAN and

SSA-MDL have comparable performances.

3We have used a Pentium III 700-MHz machine with 256-MB RAM, and
implementted the detection methods in Matlab.
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B. Signal-to-Background Ratio (SBR)

For this simulation, we fixed 1.42 Hz, 0.015 s ,

SNR 11 dB, and varied SBR (1 SBR 24 dB). Results are

shown in Fig. 5. We can observe that LIU has a lower mean

GDR than GOTMAN and SSA-MDL for all SBR. Both LIU

and SSA-MDL shows a drop in GDR for SBR 7 dB while

GOTMAN shows a re-markedly constant GDR. The SSA-MDL

has a minimum GDR 95%, but greater than GOTMAN for

SBR 7 dB which is a far more smaller lower bound from our

estimation of SBR on real data in Section III. LIU has the larger

FDR, while GOTMAN has a greater FDR than SSA-MDL. With

a maximum FDR 2.6 %, SSA-MDL outperforms both LIU

and GOTMAN. Standard deviations of GDR and FDR are al-

most the same for LIU and GOTMAN, while much greater than

for SSA-MDL.

C. Linear FM Slope

Fig. 6 was obtained by fixing 1.42 Hz, SBR 20 dB,

and SNR 11 dB and varying ( 0.09 0.018 s} ).

GOTMAN method provides an almost constant GDR, while

LIU shows a strong linear decrease in GDR when becomes

more negative. The GDR behavior for LIU can be explained by

the fact that the autocorrelation function of a linear FM signal

does not exhibit the expected regular intervals. As

decreases, the third and fourth peaks in the autocorrelation

function tend to disappear. GOTMAN shows a greater or equal

and almost constant GDR than LIU and much smaller FDR

than LIU. The FDR for LIU increases significantly when

becomes more negative. SSA-MDL shows a better performance

than both LIU and GOTMAN with a minimum GDR 97%,

while showing an increasing FDR for highly nonstationary

seizure with a maximum FDR 2.5%.

D. Frequency of the Seizure , for the Stationary Case

In this simulation, we fixed 0 s , SBR 20 dB, SNR

11 dB and varied (0.5 1.7 Hz) to obtain results shown

in Fig. 7. Both LIU and GOTMAN methods show a decrease in

GDR when is decreased. This effect can be explained by the

increased bias and variance of the autocorrelation function (and

thus of the power spectrum density) estimates for low frequen-

cies (the processing window is constant for all frequencies).

LIU shows a lower or equal GDR than GOTMAN in any cases.

For LIU, the FDR shows a significant decrease when is de-

creased, while GOTMAN shows an almost constant one. The

FDR of LIU is larger than GOTMAN in any cases. SSA-MDL

outperforms both LIU and GOTMAN with a constant GDR with

a minimum of GDR 94%and a maximum FDR 2.6%.

E. Signal-to-Noise Ratio

In this experiment, we fixed 0.015 s , SBR 20 dB,

and 1.42 Hz and varied SNR (5 SNR 17 dB). The

noise is Gaussian and white. All the methods show an al-

most constant GDR and FDR. The GDR of LIU and GOTMAN

are very similar (see Fig. 8). The FDR of LIU is much greater

than the one of GOTMAN. SSA-MDL outperforms both LIU

and GOTMAN with a constant GDR 100% and a maximum

FDR 1.6 %.

Fig. 7. Monte Carlo simulations for 0:5 � f � 1:7 Hz.

Fig. 8. Monte Carlo simulations for 5 � SNR � 17 dB.

VI. PERFORMANCE COMPARISON ON EXPERIMENTAL DATA

Seizure detection should be performed on all the recorded

channel because the spatial location of the seizure is a priori

unknown. Nevertheless, we have selected by hand one channel

where electrical seizures occurs, and run the different detection

schemes on this channel. Multichannel detection should be used

in practice by serial or parallel processing.

Table I shows the result of the three detection schemes on

real newborns and infants EEG seizure signals. All the EEG

signals where normalized to have zero-mean and unit variance

for further processing. For a sake of comparison with the Monte

Carlo, all the EEGs where also normalized to have a duration

of 8 min. Additional background activity from the same

recording was added at the begining of the EEG channels to

meet this requirement and not introduces artificial artifacts.

The LIU method shows an average GDR 59% and an av-

erage FDR 47%. The GOTMAN method shows an average

GDR 73% and an average FDR 29%.
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TABLE I
PERFORMANCE RESULTS ON REAL EEG DATA (a) LIU AND GOTMAN.

(b) SSA-MDL AND (SSA-MDL)

(a)

(b)

The SSA-MDL column refer to the use of SSA-MDL with

preprocessing, while SSA-MDL is without the use of the pre-

processing. Results show that the FDR decrease drastically with

the preprocessing especially for the baby number 4 for which

large bursts of short EEG rhythmical activities were observed,

thus increasing the non-Gaussianity of the signals, and affecting

the FDR of all the methods. The SSA-MDL method shows an

average GDR 93% and an average FDR 4 %.

While the GDR of all methods are smaller than using the

Monte Carlo, they are still in the same relationship. The FDR of

all the methods showed higher values on real data than using the

Monte Carlo, especially on highly non-Gaussian signals. This

result demonstate the necessity of a preprocessing techniques

prior to applying any detection methods.

VII. DISCUSSION

We proposed a new EEG seizure detection scheme based on

SSA and a model order selection criterion originally developed

by Rissanen. The use of the Rissanen’s model selection criterion

enabled us to design a data- and analysts-independent detector.

Preprocessing the EEG using a recently proposed seizure model

enable to use the MDL criterion in an optimal way, and to re-

duce the number of false alarms. Monte Carlo simulations on

the three detection schemes have been performed. The results

show the following.

1) The LIU method is computationally efficient.

2) The LIU method gives lower GDR and higher FDR than

both SSA-MDL and GOTMAN.

3) The GOTMAN method is robust against SBR, while LIU

and SSA-MDL are not for SBR 6 dB. It is to be noted

that SBR 6 dB is quite unusual and have not been re-

ported in our work.

4) LIU is very sensitive to the frequency , while

SSA-MDL and GOTMAN are more robust.

5) LIU is very sensitive to the nonstationarity parameter ,

while GOTMAN and SSA-MDL are more robust.

6) All methods are robust against Gaussian white noise.

The most critical factor affecting the performances of the dif-

ferent schemes is the nonstationarity represented by . This is

not surprizing because all three methods are dedicated to sta-

tionary time series analysis even if they are processed by sliding

windows. The proposed SSA-MDL detector has better perfor-

mances in terms of GDR and FDR than the two other methods.

The poorest performance of the SSA-MDL scheme has been

achieved for the lowest SBR. One possible drawback of this

method is the need to perform SVD decomposition on a trajec-

tory matrix, hence limiting its application to off-line processing.

To overcome this limitation, we have also proposed a real-time

implementation of this method using adaptive algorithms [27],

[28].

Results on real data show that SSA-MDL is a performant

method compared with GOTMAN and LIU. The average GDR

and FDR are lower than in the Monte Carlo, but still very good.

The GDR of GOTMAN and SSA-MDL are quite comparable,

but the very low FDR of SSA-MDL is a landmark of potential

clinical assessment.

VIII. CONCLUSION

A new infant EEG seizure detection scheme based on SSA

and model selection was presented. Using synthetic data, we

were able to compare the performance of our method with

that of two previously published techniques. Performance

comparison was also conducted on a set of four infants showing

signs of clinical and electrical seizures. The SSA-MDL method

was shown to outperform the other two, especially in terms of

FDR. Adaptive SSA-MDL is currently under investigation and

should further improve the performance of the new detection

scheme concerning both highly nonstationary environment and

its real-time aspects.

Again, we would like to emphasize that the computer-based

detection is a support for the clinician and does not provide the

ultimate answer to the seizure detection problem, particularly

for newborn and infant EEGs.
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[23] M. Palŭs and I. Dvorak, “Singular-value decomposition in attractor re-
construction: Pitfalls and precautions,” Physica D, vol. 55, pp. 221–234,
1992.

[24] A. Mineva and D. Popivanov, “Method for single-trial readiness poten-
tial identification, based on singular spectrum analysis,” J. Neurosci.

Meth., vol. 68, pp. 91–99, 1996.
[25] R. Vetter, J.-M. Vesin, N. Virag, P. Celka, and U. Scherrer, “Observer of

autonomic cardiac outflow based on blind source separation of ECG pa-
rameters,” IEEE Trans. Biomed. Eng., vol. 47, pp. 578–582, May 2000.

[26] R. Vetter, “Extraction of efficient and characteristic features of mul-
tidimensional time series: Application to the human cardiovascular
system,” Ph.D. dissertation, Swiss Fed. Inst. Technol., Lusanne,
Switzerland, 1999.

[27] P. Celka and P. Colditz, “Time-varying statistical dimension analysis
with application to newborn scalp EEG seizure signals,” Med. Eng.

Physics, vol. 24, no. 1, pp. 1–8, 2002.
[28] , “Time-varying statistical complexity measures with application to

EEG analysis and segmentation,” presented at the EMBS2001, Istanbul,
Turkey, 2001.

[29] R. Hornero, P. Espino, A. Alonso, and M. Lopez, “Estimating com-
plexity from EEG background activity of epileptic patients,” IEEE EMB

Mag., vol. 18, pp. 73–79, 1998.
[30] K. Lehnertz and C. E. Elger, “Spatio-temporal dynamics of the primary

epileptogenic area in temporal lobe epilepsy characterized bu neuronal
complexity loss,” Electro. Clin. Neurol., vol. 95, pp. 108–117, 1995.

[31] J. Theiler and P. E. Rapp, “Re-examination of the evidence for low-
dimensional nonlinear structure in the human electroencephalogram,”
Electro. Clin. Neurol., vol. 98, pp. 213–222, 1996.

[32] G. K. Bergey and P. J. Franaszczuk, “Epileptic seizures are character-
ized by changing signal complexity,” Electroencephalogr. Clin. Neuro-

physiol., vol. 112, pp. 241–249, 2001.
[33] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure

detection in the newborn: Methods and initial evaluation,” Electroen-

cephalogr. Clin. Neurophysiol., vol. 103, pp. 356–362, 1997.
[34] J. Gotman, J. R. Ives, and P. Gloor, “Automatic recognition of interictal

epileptic activity in prolonged EEG recordings,” Electroencephalogr.

Clin. Neurophysiol., vol. 46, pp. 510–520, 1979.
[35] J. Gotman, “Automatic seizure detection: Improvements and evalua-

tion,” Electroencephalogr. Clin. Neurophysiol., vol. 76, pp. 317–324,
1990.

Patrick Celka (M’96) received the M.Sc. degree
in physical sciences from the Catholic University of
Louvain-la-Neuve, Louvain-la-Neuve, Belgium, in
1987. He received the M.S. in information and signal
processing and the Ph.D. (Circuits and Systems
Chair with Prof. M. Hasler) degrees from the Swiss
Federal Institute of Technology (EPFL), Lusanne,
Switzerland, in 1993 and 1995, respectively.

He worked as a Senior Research Assistant at
the Signal Processing Laboratory of Prof. M. Kunt
at EPFL from 1995 to 1999. He was involved in

neuro-cardiovascular system and signal modeling and analysis. From 1999
to 2001, he was leading a biomedical project dealing with the automatic
detection/classification of EEG seizures in the newborn with the Signal
Processing Research Centre, Queensland University of Technology, Brisbane,
Australia. He is currently with the Systems Engineering Division of the Swiss
Center for Electronics and Microtechnology, Neuchâtel, Switzerland. His fields
of research include nonlinear dynamical systems theory, nonlinear signal and
system modeling and identification, chaos theory and its application, nonlinear
adaptive algorithms, and biomedical engineering.

Paul Colditz received the M.S. and Ph.D. degrees
from Oxford University, Oxford, U.K.

He is Professor of Perinatal Medicine, University
of Queensland and director of the Perinatal Research
Centre at the Royal Women’s Hospital, Brisbane,
Australia. He is a Specialist Paediatrician and
Neonatologist. His interest in caring for babies and
their families has led to undertaking and fostering
multidisciplinary research of the events before,
during, and shortly after birth which affect the health
of individuals for the remainder of their lives. He

directs a research program aimed at advancing the health of mothers and babies
with the central focus being the development of the brain and, in particular,
the prevention of death and brain damage in unborn and newborn babies. His
research projects encompass fetal monitoring, cerebral palsy, birth asphyxia,
mental retardation, intraventricular haemorrhage, periventricular leucomalacia,
and sudden infant death syndrome. A related research interest is the develop-
ment, evaluation, and clinical testing of new biomedical technologies.


