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Screening mammograms is a repetitive task that causes fatigue and eye strain since for every thousand cases analyzed by a radi-
ologist, only 3–4 are cancerous and thus an abnormality may be overlooked. Computer-aided detection (CAD) algorithms were
developed to assist radiologists in detecting mammographic lesions. In this paper, a computer-aided detection and diagnosis
(CADD) system for breast cancer is developed. The framework is based on combining principal component analysis (PCA), inde-
pendent component analysis (ICA), and a fuzzy classifier to identify and label suspicious regions. This is a novel approach since
it uses a fuzzy classifier integrated into the ICA model. Implemented and tested using MIAS database. This algorithm results in
the classification of a mammogram as either normal or abnormal. Furthermore, if abnormal, it differentiates it into a benign or
a malignant tissue. Results show that this system has 84.03% accuracy in detecting all kinds of abnormalities and 78% diagnosis
accuracy.

Copyright © 2008 I. Abdel-Qader and F. Abu-Amara. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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1. INTRODUCTION

Breast cancer is considered one of the most common and fa-
tal cancers among women in the USA [1]. According to Na-
tional Cancer Institute, 40 480 women died due to this dis-
ease and on average every three minutes one woman is diag-
nosed with this cancer. Right now there are over two and a
half million women in the US who have been treated from
it [1]. Radiologists visually examine mammograms to search
for signs of abnormal regions. They usually look for clusters
of microcalcifications, architectural distortions, or masses.

Early detection of breast cancer via mammography im-
proves treatment chances and survival rates [2]. Unfortu-
nately, mammography is not perfect. False positive (FP) rates
are 15–30% due to the overlap in the appearance of ma-
lignant and benign abnormalities while false negative (FN)
rates are 10–30%. A result of FP is defined to be when a radi-
ologist reports a suspicious change in the breast but no can-
cer is found after further examinations. Therefore, it leads to
unnecessary biopsies and anxiety. A result of FN means fail-
ure to detect or correctly characterize breast cancer in a case
of which later tests conclude that cancer is present. Nonethe-
less, mammography has an overall accuracy rate of 90% [3].

CAD algorithms have been developed to assist radiolo-
gists in detecting mammographic lesions. These systems are
regarded as a second reader, and the final decision is left to
the radiologist. CAD algorithms have improved total radiol-
ogist accuracy of detection of cancerous tissues [4]. CADD
algorithms are considered as an extremely challenging task
for various reasons. First, the imaging system may have se-
rious imperfections. Second, the image analysis task is com-
pounded by the large variability in the appearance of abnor-
mal regions. Finally, abnormal regions are often hidden in
dense breast tissue. The goal of the detection stage is to assist
radiologists in locating abnormal tissues.

Many methods have been proposed in the literature for
mammography detection and diagnosis utilizing a wide va-
riety of algorithms. Chang et al. [5] developed a 3D snake
algorithm that finds the tumor’s contour after reducing the
noise levels and followed by an edge enhancement process.
Finally, the tumor’s contour is estimated by using the gra-
dient vector flow snake. Kobatake et al. [6] proposed the
iris filter to detect lesions as suspicious regions with a low
contrast compared to their background. The proposed filter
has the features’ extraction ability of malignant tissues. Boc-
chi et al. [7] developed an algorithm for microcalcification
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detection and classification by which the existing tumors
are detected using a region growing method combined with
a neural network-based classifier. Then, microcalcification
clusters are detected and classified by using a second fractal
model. Also, Li et al. [8] developed a method for detecting
tumors using a segmentation process, adaptive thresholding,
and modified Markov random fields, followed by a classifi-
cation step based on a fuzzy binary decision tree. Bruce and
Adhami [9] used the modulus-maxima technique of discrete
wavelet transform as a feature extraction technique com-
bined with a Euclidean distance classifier. A radial distance
measure of mass boundaries is used to extract multiresolu-
tion shape features. Finally, the leave-one-out and apparent
methods are used to test their proposed technique. Peña-
Reyes and Sipper [10] applied a combined fuzzy-genetic ap-
proach with new methods as a computer-aided diagnosis
system. Zheng and Chan [11] combined artificial intelligent
methods with the discrete wavelet transform to build an al-
gorithm for mass detection. Hassanien and Ali [12] proposed
an enhanced rough set technique for feature reduction and
classification. Swiniarski and Lim [13] integrated ICA with
rough set model for breast-cancer detection. First, features
are reduced and extracted using ICA. Then, extracted fea-
tures are selected using a rough set model. Finally, a rough
set-based method is used for rule-based classifier design.

This work is based on integrating PCA, ICA, and fuzzy
classifier to identify and label suspicious regions from dig-
itized mammograms. The rest of this paper is organized as
follows: Section 2 presents PCA and ICA algorithms and cov-
ers fuzzy logic adaptation as a classifier. The proposed inte-
grated approach is presented in Section 3. Section 4 presents
the experimental results followed by the conclusions in
Section 5.

2. BACKGROUND

2.1. PCA

PCA is a decorrelation-based technique that finds the basis
vectors for a subspace in order to select the most impor-
tant information. PCA consists of two phases. The first phase
finds v uncorrelated and orthogonal vectors; and the second
phase projects the testing data into a subspace spanned by
these v vectors [14]. PCA algorithm can be presented as fol-
lows:

(i) construct Rtrain matrix with dimension N ×M, where
N is the total number of training subimages and M
is the size of each square subimage; then, generate its
normalized matrix PM×N ;

(ii) covariance matrix is constructed using

CN×N = PT
N×M PM×N ; (1)

(iii) let λi and Ei, i = 1, 2 · · ·M, be its eigenvalues and
eigenvectors that satisfy the equation C Ei = λi Ei,
where λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0; discard of all eigenval-
ues less than T (a predetermined threshold) and retain

the rest (the principal components) to produce the re-
duced matrix RR

M×v. T is calculated using

T =

∑v
k=1λk

∑M
q=1λq

. (2)

The given testing data Rtest is projected into the space
spanned by the reduced training matrix RR

M×v using

Wv×N =
(

RR
M×v

)T
RtestM×N . (3)

2.2. ICA

Higher-order statistics, such as ICA techniques, are used to
compensate for PCA shortcomings. ICA is based on the use
of moments and cumulants up to fourth-order to describe
any distribution of a random variable.

In general, ICA is a relatively new technique developed
to find a linear representation of nongaussian data so that
the data components are statistically as independent as possi-
ble. ICA has the ability to describe localized shape variations
and it does not require a Gaussian distribution of the data as
in PCA. However, the resulting vectors are not ordered; and,
therefore, ICA requires a method for ordering the resulting
vectors.

The statistical latent variables model is used to define
ICA. Assuming that we have n linear mixtures r1 · · · rn of
n independent components s1 · · · sn according to

r =
n
∑

i=1

aisi or R = AS. (4)

The digital mammographic image R is considered as a
mixture of linear combination of statistically independent
source regions S where A, the mixing matrix, and its coef-
ficients describe uniquely the mixed source regions and can
be used as extracted features. After estimating the matrix A
and its inverse W (the separating matrix), the independent
components can be estimated using

S =WR. (5)

2.3. Fuzzy classifier

Fuzzy logic can be interpreted as the emulation of human
reasoning on computers [15]. Fuzzy rules are more compre-
hensible than crisp rules since they can be expressed in terms
of linguistic concepts. The value of the linguistic variable is
not a number but a word. For example, the linguistic variable
“size” might have the values “small,” “medium,” and “large.”
Each one of these values is called a fuzzy set when imple-
mented using fuzzy logic and thus fuzzy sets can be used to
model linguistic variables.

Fuzzy classifier is ideally suited to the labeled observed
data to provide interpretable solutions. It handles imprecise
data and the resulting fuzzy rules are interpretable, that is,
fuzzy classifier structure can be analyzed through its seman-
tic structure. There are two different methods for develop-
ment of fuzzy classifiers; approximate and descriptive fuzzy
rule base.
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Figure 1: A triangular membership function of the fuzzy set
“Small.”
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Figure 2: Fuzzy space of the object of Figure 1 that consists of three
fuzzy sets: “Small,” “Medium,” and “Large.”

Each fuzzy rule is defined using membership function of
fuzzy sets in an approximate fuzzy rule base which is im-
plemented in this work. Values of the linguistic variable can
be described in terms of numerals using membership func-
tions. The object membership degree to a fuzzy set defines
a membership function. Its domain is the universe of dis-
course (all values an object may take) and its range of the
interval [0.0, 1.0]. A commonly used membership function
is the triangular function. Figure 1 shows a triangular mem-
bership function of a fuzzy set “Small.”

In Figure 1, an object x has a membership degree of 0.7
to the fuzzy set “Small.” A fuzzy space is defined to be the set
of fuzzy sets that define fuzzy classes for a particular object as
shown in Figure 2.

Fuzzy space allows the object to partially belong to dif-
ferent classes simultaneously. This idea is very useful in cases
where the difference between classes is not well defined. For
example, the object x has a membership degree of 0.7 to the
fuzzy set “Small” and 0.3 to the fuzzy set “Medium.” Simi-
larly, in mammographic images, the difference between be-
nign/malignant and normal/abnormal subimages is not well
defined. For example, an abnormal subimage may be classi-
fied as benign rather than malignant which can be described
in terms of numerals using membership functions as it has a
membership degree of 0.7 to the fuzzy set “benign” and 0.3
to the fuzzy set “malignant.” Fuzzy membership functions are
easy to implement and their fuzzy inference engines are fast.

In descriptive fuzzy rule base, linguistic variables are
commonly defined by fuzzy if-then rules where labels Ai j are
used to represent a discrete set of linguistic fuzzy sets. For
example, fuzzy classification rules that describe each class of

Original mammogram

Extracted subimages

Training phase

Testing phase

Abnormal Normal

Benign Malignant

Figure 3: Block diagram of the proposed CADD system.

subimages may be developed to represent each class. Fuzzy
rules have the form

IF antecedent THEN consequent [weight]. (6)

Fuzzy rules can also be expressed as

Ri : If x1 is Ai1 and . . . xt is Ait then Y = Classi [weight],
(7)

whereY represents the decision class (i.e., normal, abnormal,
benign, or malignant) and Ai j represents a fuzzy set for j:
1, . . . , tth selected feature.

3. PROPOSED CADD ALGORITHM

In this section, a computer-aided detection and diagnosis al-
gorithm of suspicious regions in mammograms is developed.
PCA algorithm is used as a dimensionality reduction mod-
ule followed by ICA as a feature extraction module. Finally,
a fuzzy classifier is used to classify testing subimages into
normal/abnormal and at a later stage to classify the abnor-
mal subimages into malignant/benign as a diagnosis system.
Figure 3 presents the general framework for this system.

3.1. Subimages generation

MIAS database has a total of 119 regions of suspicion (ROS)
divided into 51 malignant and 68 benign. Two different sets
of abnormal subimages, each set consists of 119 ROS, are
cropped and scaled into 35× 35 and 45× 45 pixels based on
the center of each abnormality.

Then, five different sets of normal subimages, each set
consists of 119 subimages, are cropped and scaled randomly
from normal MIAS mammograms where two sets of size
35× 35 and three sets of size 45× 45 pixels.
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Each set of abnormal subimages is mixed with one set
of normal subimages every time and then divided into two
groups; one for training phase and the other group for testing
phase as shown in Table 1.

Each training set is used to create the matrix Rtrain with
dimension N ×M where each row contains a subimage. The
training matrix dimensionality is reduced by using PCA al-
gorithm to generate RR. Then, the covariance matrix is esti-
mated by using

CN×v = RtrainN×M RR
M×v. (8)

3.2. Unsupervised learning

Estimation of the separating matrix, W , and the independent
source regions, S, is done in an unsupervised manner. The in-
dependent source regions are estimated by using (9), where

(RR)
T

is the transpose of the reduced matrix RR. The separat-
ing matrix, W , is initialized to the identity matrix yielding

S =W
(

RR
)T
. (9)

To reach the maximum statistical independence of S, the
nonlinear function Φ(S) is used to estimate the marginal
probability density function of S using its central moments
and cumulants. Minimum mutual information algorithm
[16] is used to estimate Φ(S) as shown in (10)–(14). Equa-
tions (10) and (11) are used to estimate the ith central mo-
ments and cumulants where E is the expected value and µ is
the mean of the current feature r. Equations (12)–(14) are
used to estimate Φ(S) (◦ indicates the Hadamard product of
two matrices)

mi = E(r − µ)i, (10)

k3 = m3, k4 = m4 − 3, (11)

Φ(S) = f1
(

k3, k4

)

◦ S2 + f2
(

k3, k4

)

◦ S3, (12)

f1
(

k3, k4

)

= 0.5 k3

(

4.5 k4 − 1
)

, (13)

f2
(

k3, k4

)

= 1.5
(

k3

)2
+

1

6
k4

(

4.5k4 − 1
)

. (14)

Natural gradient descent method [16] is used to estimate
the change of W according to dW/dt = η[I − Φ(S)ST]W ,
where η(t) is the learning rate and I is the identity matrix. If
dW/dt is not close to zero, W is updated using

Wi(t + 1) =Wi(t) +
dW

dt
. (15)

Finally, selected features resulting from the training pro-
cess are estimated using minimum square error method
(MSE) [17, 18].

(i) From (8), the training matrix is reconstructed as

Rtrain ≈ C
(

RR
)T
. (16)

(ii) Substitute (9) into (16):

Rtrain ≈ CN×V

(

RR
)T
= CN×VAS. (17)

(iii) There, the reduced dimensionality selected features
from the training set are estimated by

Qtrain = CA. (18)

Same procedure followed for training data is used for
testing; and Rtest is projected into the reduced matrix

(

RR
)

from the training procedure. The reduced dimensionality ex-
tracted features from the testing procedure are estimated by
using

Qtest = RtestR
RA. (19)

3.3. Fuzzy classifier modeling

The matrices Qtrain and Qtest contain the reduced dimension-
ality extracted features from subimages where each one of
size N by v. Each class of subimages (normal, abnormal, be-
nign, and malignant) is represented by a single fuzzy rule
by aggregating the membership functions of each antecedent
fuzzy set using the information about selected feature values
of training subimages.

The proposed fuzzy-based classification algorithm can be
summarized as follows.

(1) Four activation functions µbs, µms, µas, µns, with each
one is of size N by 1, are initialized to 0 where each
element of them represents the aggregated member-
ship functions of the selected feature values for the cor-
responding testing subimage. Each one represents the
degree of activation of the selected feature values and
so these parameters are defined as

(i) µbs: represents the degree of activation for the be-
nign testing subimages,

(ii) µms: represents the degree of activation for the
malignant testing subimages,

(iii) µas: represents the degree of activation for the ab-
normal testing subimages, and

(iv) µns: represents the degree of activation for the
normal testing subimages.

(2) Since subimages have different intensities and the goal
is to reduce the variation and the computational com-
plexity, the selected features of Qtrain and Qtest are
mapped into a limited range of [r1, r2] using

q(x, y) = r1 +

(

q(x, y)−min(q)
)(

r2 − r1

)

max(q)−min(q)
. (20)

(3) Using (21), membership functions of fuzzy sets of the
testing subimages are obtained from the product space
of the selected features from the training phase:

Ai j

(

x j
)

=

si
(

x j
)

s
(

x j
) , i = 1, . . . , v; j = 1, . . . ,N , (21)

where si(x j) represents number of samples of the cur-
rent feature x j , s(x j) represents the total number of
all samples in the current feature x j , that is, the prod-
uct space of the current feature. Also, the subscript ( j)
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Table 1: Different sets used to evaluate the detection algorithm performance.

#
Training set Testing set

ROS Normal Total ROS Normal Total Size-pixels

1 60 59 119 59 60 119 35× 35

2 60 59 119 59 60 119 35× 35

3 60 59 119 59 60 119 45× 45

4 60 59 119 59 60 119 45× 45

5 60 59 119 59 60 119 45× 45

is the index for the selected feature for each training
subimage, and (i) is the index for the current processed
sample of the current feature.

(4) The membership functions are normalized by using

Ai j

(

x j
)

=

Ai j

(

x j
)

maxi j
(

A j

(

x j
)) . (22)

(5) The degree of activation of the developed membership
functions is computed for the testing subimages for
µas, µns in the detection phase and for µbs, µms in the
diagnosis phase by aggregating estimated membership
functions:

µi(x) =
N
∑

j=1

Ai j

(

x j
)

. (23)

(6) There are many methods used in the literature to de-
termine to which class a subimage belongs (i.e., nor-
mal/abnormal or benign/malignant). An efficient one
is the maximum algorithm. It classifies the testing
subimage into the class that has the maximum degree
of activation according to (24) where C1 is used as an
index of a testing subimage being identified as normal
or abnormal and C2 for being identified as benign or
malignant:

C1 = max
(

µas(x),µns(x)
)

,

C2 = max
(

µms(x),µbs(x)
)

.
(24)

4. EXPERIMETAL RESULTS

Table 2 shows results of the proposed CADD algorithm
against PCA and ICA algorithms for the same testing data
using fuzzy classifier. Algorithm accuracy is defined as the ra-
tio between number of correctly classified testing subimages
and total number of testing subimages. Results demonstrate
that combining ICA and PCA algorithms improves the total
algorithm performance in all testing sets over usage of PCA
algorithm only. PCA algorithm has a best result of 80.67%
while 84.03% for the proposed CADD algorithm as shown
in Table 2. The proposed algorithm improved PCA algorithm
accuracy with an average of 8.56% for all tests.

Table 2 also shows the simulation results of ICA algo-
rithm versus the proposed CADD algorithm. ICA algorithm
has an accuracy of 49.58% in all testing sets. In contrast,
the best result of applying the proposed CADD algorithm is
84.03%. These results indicate that using PCA algorithm for

dimensionality reduction before ICA algorithm improves the
ICA algorithm accuracy with an average of 50.51%. Results
from ICA algorithm show that fuzzy classifier performance
is degraded when no dimensionality reduction module is
implemented. A fuzzy classifier requires features reduction
method in order to minimize total number of membership
functions and improves its accuracy. As for ICA algorithm
alone, each subimage has larger number of selected features
and therefore fuzzy classifier performance is degraded in all
testing subimages.

The experimental results of the proposed CADD algo-
rithm as a computer-aided diagnosis system are shown in
Table 3. The best result is 78% where 15 malignant subimages
out of 25 are correctly classified and 31 benign subimages out
of 34 are correctly classified.

This system uses several parameters that impact the per-
formance and accuracy of results such as the number of
selected principal components, learning rate, and mapping
range.

4.1. Number of selected PC

Using PCA algorithm to reduce data dimensionality as a pre-
processing step for ICA algorithm affects the total algorithm
accuracy. In Table 4, simulation results on test sets 1–5 (PC
indicates the number of selected principal components) are
shown. These results indicate that selecting less than 11 prin-
cipal components achieves acceptable results in all simula-
tions. This means that less than 0.81% of principal compo-
nents are selected for subimages of size 35×35 pixels and less
than 0.5% of principal components are selected for subim-
ages of size 45× 45 pixels. This is harmony with all literature
that used PCA algorithm for dimensionality reduction.

4.2. Learning rate

The learning rate for computing the change in W for ICA
algorithm determines the speed of convergence for dW/dt
and it impacts the total algorithm accuracy. Figures 4–8 show
learning rate impact on test sets 1–5. It can be concluded that
choosing a learning rate close to 0.0045 produce acceptable
results for all sets.

4.3. Mapping range

Figures 9–13 show the accuracy of the results versus the map-
ping range values for all test sets 1–5 and it can be concluded
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Table 2: FP and FN ; and total PCA, ICA, and PCA-ICA algorithms accuracy.

Set
PCA ICA CADD

PC FP FN Accuracy FP FN Accuracy PC FP FN Accuracy

1 19 17.65% 25.21% 57.14% 10.08% 40.34% 49.58% 25 15.13% 18.48% 66.39%

2 20 26.05% 10.08% 63.87% 10.08% 40.34% 49.58% 10 12.61% 18.48% 68.91%

3 5 10.08% 14.29% 75.63% 10.08% 40.34% 49.58% 5 9.24% 6.73% 84.03%

4 6 12.61% 21% 66.39% 10.08% 40.34% 49.58% 5 20.17% 10.08% 69.75%

5 5 11.75% 7.58% 80.67% 10.08% 40.34% 49.58% 6 7.56% 8.41% 84.03%

Table 3: Computer-aided diagnosis using CADD algorithm.

Set
Training set Testing set

Size-pixels PC
CADD Algorithm

Benign Malignant Total Benign Malignant Total FP FN Accuracy

1 34 26 60 34 25 59 35× 35 36 5.1% 16.9% 78%

2 34 26 60 34 25 59 45× 45 6 8.48% 13.55% 77.97%
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Figure 4: Learning rate impact on algorithm accuracy for test set
no. 1 where other parameters are kept constant.
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Table 4: Number of selected principal components impact on algorithm accuracy where learning rate and mapping range of each set are
kept fixed.

PC Set no. 1 Set no. 2 Set no. 3 Set no. 4 Set no. 5

5 61.35% 65.55% 84% 69.75% 81.52%

6 55.46% 64.71% 79.83% 68.07% 84.03%

7 62.19% 66.39% 78.99% 68.91% 82.35%

8 66.39% 66.39% 78.99% 65.55% 78.15%

9 59.66% 66.39% 70.59% 67.23% 76.47%

10 58.82% 68.91% 80.67% 66.39% 74.79%

11 63.03% 65.55% 69.75% 63.87% 75.63%

12 58.82% 60.5% 72.27% 63.03% 78.15%

13 62.19% 63.87% 70.59% 63.87% 74.79%

14 63.87% 62.19% 73.95% 62.19% 77.31%

15 57.98% 63.03% 69.75% 63.03% 73.95%

16 62.19% 59.66% 68.07% 63.03% 76.47%

17 62.19% 67.23% 72.29% 63.87% 77.31%

18 63.03% 60.5% 71.43% 62.19% 76.47%

19 64.71% 67.23% 72.29% 64.71% 79.83%

20 62.19% 64.71% 79.83% 62.19% 73.95%

21 60.5% 66.39% 74.79% 61.35% 80.67%

22 63.03% 66.39% 78.15% 62.19% 71.43%

23 63.03% 63.87% 80.67% 63.87% 74.79%

24 58.82% 60.5% 73.95% 62.19% 80.67%

25 59.66% 60.5% 68.91% 63.03% 79.83%
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Figure 8: Learning rate impact on algorithm accuracy for test set
no. 5 where other parameters are kept constant.

that choosing a mapping range equal to [0, 9] or [0, 15] is
acceptable for all testing sets.

The proposed system performance is a parameter-
dependent and an investigation of this dependency is outside
this presentation but rather is left for future investigations.
Efforts developed earlier such as in [19, 20] can be investi-
gated. Estimating the parameters will continue to be one of
the main disadvantages of algorithms such ICA where hu-
man intervention is needed.
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Figure 9: Mapping range impact on algorithm accuracy for test set
no. 1.

In other classification methods such as in fractal models,
[7], a set of 30 mammograms are used that contains single
and clustered microcalcifications. 50 subimages are extracted
and divided into 30 subimages for the training phase and 20
subimages for the testing phase. Results of using two differ-
ent multilayer subnetworks in neural network-based classi-
fier indicate that the proposed system has a classification ac-
curacy of 90%. Also, in discrete wavelet transform method
[9], a set of 60 mammograms are used. Masses are segmented
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Figure 10: Mapping range impact on algorithm accuracy for test
set no. 2.
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Figure 11: Mapping range impact on algorithm accuracy for test
set no. 3.

manually as a preprocessing step for the classification system.
The proposed system classifies masses into round, nodular,
or stellate. Results indicate a classification accuracy of 83%.
In [13], 330 subimages are cropped and scaled into sizes of
20× 20, 40× 40, and 60× 60 pixels form all MIAS mammo-
grams as one subimage from each mammogram. Results us-
ing ICA-Rough indicate a classifications accuracy of 82.22%
for subimages of size 60 × 60 pixels and for PCA-Rough of
88.57% for subimages of size 40× 40 pixels.

Furthermore, Table 2 shows that each test set has differ-
ent algorithm accuracy so cropping size for example has an
impact on the results.

5. CONCLUUDING REMARKS

A CADD system has been developed and implemented. Its
framework is based on integrating PCA, ICA, and fuzzy
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Figure 12: Mapping range impact on algorithm accuracy for test
set no. 4.
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Figure 13: Mapping range impact on algorithm accuracy for test
set no. 5.

logic. The performance of the proposed CADD is com-
pared against PCA and ICA performance individually. Ex-
tensive simulations using 833 subimages are performed.
These results indicate that combining ICA and PCA al-
gorithms improves PCA algorithm accuracy about 8.56%
for all test sets and ICA algorithm accuracy about 50.51%.
The best results are obtained with subimage sizes of 45 ×
45 pixels over the 35 × 35 size. Using ICA algorithm for
feature extraction without using a preprocessing module
of PCA degraded fuzzy classifier performance. ICA takes
advantage of the reduction of dimensionality and noise
to produce more accurate and robust results. Parameter
values play a vital role in the system’s performance and
their selection should be investigated to improve system’s
robustness. Other membership functions can be modeled
based on mean and standard deviation of selected feature
values.
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