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Abstract

The Orr-Sommerfeld equation is one of the governing equations of hydrody-
namic stability. Mathematically, it constitutes a non-selfadjoint eigenvalue
problem. Depending on its spectrum being contained in the right complex
half-plane or not, the underlying flow is stable or unstable under some given
perturbation. Here, we focus on the Blasius profile modelling a flow along
a wall. We present a computer-assisted method for computing eigenvalue
enclosures for such non-selfadjoint problems. As a specific result, for a par-
ticular parameter constellation in the Orr-Sommerfeld equation (often used
as test example in the engineering literature), we enclose an eigenvalue in a
circle which is completely contained in the left half-plane. This constitutes
the first rigorous proof of instability for the Orr-Sommerfeld equation with
Blasius profile.

Keywords: Orr-Sommerfeld equation, Blasius profile, instability proof, com-
puter-assisted proof

1 Introduction

The Orr-Sommerfeld equation

(−D2 + a2)2u+ iaR[V (−D2 + a2)u+ V ′′u] = λ(−D2 + a2)u (1.1)

is one of the central equations governing the linearized stability theory of
incompressible flows. It is posed on some real interval I, withD = d/dx, i2 =
−1, and with R denoting the Reynolds number of an underlying fluid which
moves in a stationary flow, perpendicular to I, with given real-valued flow
profile V ∈ C2(I). This flow is exposed to a single-mode perturbation with
wave number a > 0, and the question of stable or unstable reaction of the
flow in response to this perturbation arises. Within the frame of linearized
stability theory, the answer to this question is directly related to the spectrum

1IBM Deutschland, Am Keltenwald 1, 71139 Ehningen, Germany,
jan.lahmann@de.ibm.com

2Mathematisches Institut I, Universität Karlsruhe, 76128 Karlsruhe, Germany,
michael.plum@math.uni-karlsruhe.de

1



of the Orr-Sommerfeld equation (1.1) (with appropriate boundary conditions
for the eigenfunction u, usually of Dirichlet type, posed at the endpoints of
I): The flow is stable (with respect to the wave number a) if the spectrum
is completely localized in the right complex half-plane, otherwise unstable.
For more details on the physical background, see e.g. [9], [11], [14], [27].

In the present article, we will exclusively consider the case where I = [0,∞)
(corresponding to a half-plane flow along a wall), the boundary conditions
read

u(0) = u′(0) = lim
x→∞

u(x) = lim
x→∞

u′(x) = 0, (1.2)

and where the flow profile V is the Blasius profile given by V = f ′, where f
is the solution of the nonlinear boundary value problem

f ′′′ + ff ′′ = 0, f(0) = f ′(0) = 0, lim
x→∞

f ′(x) = 1, (1.3)

which can be shown to exist and to be unique (see also Subsection 3.1).

Numerical results, which can be found in particular in the engineering lit-
erature (see e.g. [7], [11], [13], [14], [15]), give rise to the conjecture that,
for certain constellations of the parameters R and a, one eigenvalue λ of
(1.1), (1.2) is contained in the left complex half-plane, which would imply
instability of the underlying flow. However, this conclusion is critical since
the numerical approximations for λ are very close to the imaginary axis, and
of course undergo the usual numerical errors. An analytical instability (or
stability) proof has never been given, so that, from the mathematical point
of view, the stability question for this problem has been open up to now.

In this article, we will give a first strict mathematical instability proof for a
specific parameter constellation which is some kind of “standard” example
in the literature. For this purpose, we propose a computer-assisted method
for computing rigorous eigenvalue enclosures, in form of circular discs in the
complex plane which definitely contain eigenvalues. An application of this
method to the Orr-Sommerfeld problem provides such a disc which is com-
pletely contained in the left complex half-plane, and thus, proves instability.

Clearly, before being able to formulate precise statements about any kind of
spectral terms, we need an appropriate operator theoretical realization of the
Orr-Sommerfeld problem (1.1), (1.2). The following choice seems to be the
most natural and simple one:

Let X := H2(0,∞)∩H1
0 (0,∞) and Y := L2(0,∞); endowed with the norms

‖u‖X := ‖(−D2 + a2)u‖L2(0,∞), ‖u‖Y := ‖u‖L2(0,∞), (1.4)

both are Banach spaces, and ‖ · ‖X is equivalent to the usual H2-norm (but
better suited for later purposes). Furthermore, let D(A) := H4(0,∞) ∩
H2

0 (0,∞), and define the operators A : D(A) ⊂ X → Y and B : X → Y
by Au and Bu denoting the left-hand and the right-hand side (without λ) of
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equation (1.1), respectively. By [10, Theorem IX.9.5], A is closed, and B is
obviously bounded with norm 1.

Our formulation of (1.1), (1.2) now reads

Au = λBu, (1.5)

constituting a non-selfadjoint eigenvalue problem. In [20], we determined the
essential spectrum of (1.5) (defined as the set of all λ ∈ C such that A− λB
is not a Fredholm operator of index 0) to be the half line

σess = {µ+ a2 + iaR : µ ∈ [0,∞)}, (1.6)

which is obviously contained in the right complex half-plane, so that the sta-
bility problem reduces to the question if the left half-plane contains eigen-
values of problem (1.5). In [20], rough enclosures for the set of all eigenval-
ues have also been derived, which however, except for very small Reynolds
numbers, intersect with both half-planes and are therefore not suitable for
deciding the stability problem.

Therefore, we need more detailed eigenvalue enclosures, which by nowadays
techniques can only be obtained with the aid of computer-assistance. In the
following sections, we will propose such an eigenvalue enclosure method for
general non-selfadjoint problems of the abstract form (1.5), with A and B
denoting a closed and a bounded linear operator between Banach spaces X
and Y . The reason for treating the general equation (1.5) is primarily to
cover other non-selfadjoint eigenvalue problems, e.g. Couette- or Poiseuille-
flows (see e.g. [9], [27]), which however will not be further addressed in this
article.

It is important to remark that variational methods (like the Rayleigh-Ritz
method) which have proved to be powerful tools for computing eigenvalue
bounds, cannot be used for problem (1.5) due to its non-selfadjointness.
Nevertheless, we will apply such variational methods to a certain self-adjoint
auxiliary problem arising in the course of our enclosure method.

We wish to remark, however, that our approach is not of perturbational
type like the methods presented e.g. in [8], [24], [28]; our given problem
is allowed to be “far away” from any selfadjoint or explicitly decomposable
problem. Other approaches for computing eigenvalue enclosures for non-
selfadjoint problems, which however will not be adressed in more detail in
the present article, have been proposed e.g. in [1], [12], [29] (where complex
function theoretical methods are used), and in [22], [23]. In [17], [18], eigen-
value enclosures and stability criteria for the Orr-Sommerfeld equation on a
bounded interval (allowing compactness arguments) are derived.

The paper is organized as follows: In Section 2 we formulate the basic theo-
rem on enclosure and local uniqueness of eigenpairs of problem (1.5), as well
as some extensions; the proof is a bit technical and therefore postponed to
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the appendix. Section 3 contains a description of the main numerical meth-
ods used to compute some of the auxiliar terms needed; we use combina-
tions of standard floating point arithmetic, interval arithmetic [16], and MA-
THEMATICA [31] routines. Section 4 is concerned with the computation of
another auxiliary term via a certain selfadjoint eigenvalue problem. In Sec-
tion 5, we report on the application of the method to the Orr-Sommerfeld
problem, providing the desired instability proof.

2 The basic enclosure theorem

Let X, Y denote complex Banach spaces, D(A) ⊂ X a linear subspace, and
let A : D(A) → Y be linear and closed, and B : X → Y linear and bounded.
Consider the eigenvalue problem

AU = λBU (2.1)

for eigenpairs (U, λ) ∈ (D(A)\{0}) × C. In this section, we will primarily
formulate our basic theorem providing enclosures and local uniqueness of
eigenpairs of problem (2.1).

Let X̂ := X × C and D̂(A) := D(A)× C. Endowed with the norm∥∥∥∥(uσ
)∥∥∥∥

X̂

:=
√
‖u‖2

X + |σ|2, (2.2)

X̂ is a Banach space.

Now suppose that, for instance by numerical means, some approximate eigen-

pair (ω, µ) ∈ D̂(A), ω 6= 0, and a constant δ ≥ 0 bounding its defect

‖Aω − µBω‖Y ≤ δ, (2.3)

have been computed. The computation of ω and δ will be discussed in Section
3. We make the additional assumption that

µ is not an interior point of σres , (2.4)

where the residual spectrum σres is defined to consist of all λ ∈ C such
that A − λB is one-to-one but (A − λB)(D(A)) is not dense in Y . Since
obviously σres ⊂ σess and, due to (1.6), σess has no interior points in case
of the Orr-Sommerfeld problem, condition (2.4) holds, in this case, for every
µ ∈ C.

Besides δ satisfying (2.3), we need some more auxiliary terms: We choose
some scaling parameter γ ∈ C\{0} and some bounded linear functional ϕ :
X → C satisfying ϕ(ω) 6= 0 (e.g., ϕ(u) :=

∫
ωu dx if X is contained in an

L2-space), and suppose that some constant K > 0 has been computed such
that ∥∥∥∥(uσ

)∥∥∥∥
X̂

≤ K‖Au− µBu− γσBω‖Y

(2.5)

for all

(
u

σ

)
∈ D̂(A) such that ϕ(u) = 0.
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The practical computation of K is not an easy task and will be discussed in
Section 4.

Finally, let b > 0 denote some constant such that

‖Bu‖Y ≤ b‖u‖X for all u ∈ X. (2.6)

By (1.4), b := 1 satisfies (2.6) in the Orr-Sommerfeld case.

Theorem 2.1 Suppose that

β := 2bK2|γ|δ < 1. (2.7)

(a) Then there exists an eigenpair (U, λ) ∈ D̂(A) of (2.1) such that
ϕ(U − ω) = 0 and∥∥∥∥(γ(U − ω)

λ− µ

)∥∥∥∥
X̂

≤ α :=
2K|γ|δ

1 +
√

1− β
. (2.8)

(b) If (Ũ , λ̃) ∈ D̂(A) is any eigenpair satisfying ϕ(Ũ − ω) = 0 and∥∥∥∥∥
(
γ(Ũ − ω)

λ̃− µ

)∥∥∥∥∥
X̂

< α +
2

Kb

√
1− β, (2.9)

then Ũ = U, λ̃ = λ (i.e., (U, λ) is locally unique).

(c) Finally, λ is geometrically simple, and BU /∈ (A− λB)(D(A)) (i.e., λ
is also “algebraically” simple).

Sketch of proof: Here, we only refer to some of the essentials used in the
proof; all details are postponed to the appendix.

Introducing the error terms u = γ(U − ω), σ = λ − µ, we easily recognize
that problem (2.1) is equivalent to the equation

(A− µB)u− γσBω = σBu− γ(Aω − µBω) (2.10)

for (u, σ), with the side condition ϕ(u) = 0 (normalizing U). In the main
case to be treated in the proof, the linear operator L given by L

[(
u
σ

)]
:=

(A−µB)u−γσBω (on an appropriate domain of definition) can be inverted
from (2.10) to transform it into a fixed-point equation for the operator T
given by

T

(
u

σ

)
:= L−1[σBu− γ(Aω − µBω)]

on a suitable Banach space. Using (2.3) - (2.7) one can show that T maps

D :=

{(
u

σ

)
∈ X̂ : ϕ(u) = 0,

∥∥∥∥(uσ
)∥∥∥∥

X̂

≤ α

}
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into itself and is moreover contractive on D, whence Banach’s Fixed-Point-
Theorem provides the desired fixed-point of T in D.

Remarks: (i) The crucial condition (2.7) is obviously satisfied if K is “mod-
erate” and if the defect bound δ satisfying (2.3) is sufficiently small, i.e., if
the approximate eigenpair (ω, µ) has been computed with sufficient accuracy
(measured by δ). Also the error bound α in (2.8) is small under these con-
ditions. It does not however make sense to diminish δ by replacing ω by εω
(with small ε > 0); see remark iii).

ii) The simplicity statement c) of Theorem 2.1 is “good news” since it pro-
vides additional information, but of course also “bad news” since it makes
clear that our method is not able to enclose multiple eigenvalues.

iii) The parameter γ scales the eigenfunction and its approximation ω. The
choice of an optimal γ (e.g. in order to minimize β or α) is not clear a
priori and usually needs numerical testing. Observe that γ → 0 is not useful
since (2.5) yields K ≥ 1/(|γ| ‖Bω‖Y ) (by inserting (u, σ) := (0, 1)), so that
β →∞ for γ → 0. Also |γ| → ∞ does not make sense since K does not tend
to zero as |γ| → ∞, whence again β →∞.

iv) The side condition ϕ(u) = 0 in (2.5) is very essential: Omitting it
would allow one to insert (u, σ) := (ω, 0) in (2.5), implying (by (2.3)) that
K ≥ ‖ω‖X/δ. Remark iii) (and (2.6)) moreover yield K ≥ 1/(b|γ| ‖ω‖X).
Altogether, β ≥ 2 max{b|γ| ‖ω‖2

X/δ , δ/(b|γ| ‖ω‖2
X)} ≥ 2, so that (2.7) could

never be satisfied. However, choosing ϕ suitably such that ω (and the eigen-
function U we are looking for) are “away” from the subspace {u ∈ D(A) :
ϕ(u) = 0}, there are good chances to find a “moderate” K (see Section 4).

The local uniqueness statement in part b) of Theorem 2.1 refers to eigenpairs,
which does not directly provide local uniqueness of the eigenvalue. The
following considerations and Theorem 2.2 show a way of closing this gap in
the case where X and Y are Hilbert spaces with inner products 〈·, ·〉X and
〈·, ·〉Y , respectively. Let (2.3) to (2.7) be satisfied, so that the assertions
of Theorem 2.1 hold true. An essential aid to study local uniqueness of
eigenvalues of problem (2.1) is the auxiliary selfadjoint eigenvalue problem

u ∈ D(A), 〈(A− µB)u, (A− µB)v〉Y = κ〈u, v〉X for all v ∈ D(A). (2.11)

We assume that the bottom of the spectrum of (2.11) is a simple eigenvalue
κ1, and that the remaining spectrum is contained in [κ2,∞), for some κ2 >
κ1. Forming the Rayleigh quotient for (2.11) with test function U ∈ D(A)
(given by Theorem 2.1a)) provides (0 ≤) κ1 ≤ |λ − µ|2‖BU‖2

Y /‖U‖2
X , i.e.,

κ1 is usually “small”. Due to the simplicity statement in part c), there
is however some hope that κ2 � κ1, unless there is another eigenvalue of
(2.1) close to µ, i.e., if a local uniqueness statement (of the kind we are
looking for) holds! The variational methods described in Section 4 (in the
context of computing a constantK satisfying (2.5)), which provide eigenvalue
enclosures for selfadjoint problems, constitute a tool for proving that κ2 is
“not too small”, by computing a lower bound for it (at least if κ2 is an
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eigenvalue)! Here, we suppose now that such a “non-small” lower bound for
κ2 is known, and show that this indeed implies a local uniqueness statement
for the eigenvalue λ.

Theorem 2.2 Let (ω, µ), δ, γ, ϕ,K, b, β, α as in (2.3) - (2.8), and let ρ > 0
be such that

ε(ρ) :=
1
√
κ2

(δ + ρb‖ω‖X) <
|ϕ(ω)|
‖ϕ‖X,C

, (2.12)

{
ρ2 + |γ|2ε(ρ)2

[
1 + ‖ω‖2

X

(
|ϕ(ω)|
‖ϕ‖X,C

− ε(ρ)

)−2
]} 1

2

(2.13)

≤ α+
2

Kb

√
1− β.

Then, the set {z ∈ C : |z − µ| < ρ} does not contain any eigenvalue of (2.1)
except (possibly) λ.

Proof: Let (Û , λ̃) ∈ D̂(A) denote an eigenpair of (2.1) such that |λ̃− µ| < ρ.

Let Û be normalized such that ‖Û‖X = 1, 〈ω, Û〉X ≥ 0, and let V :=

ω − 〈ω, Û〉XÛ . First we prove that

‖V ‖X < ε(ρ). (2.14)

This is trivial if ω and Û are linearly dependent. Otherwise, the min-max
principle (see, e.g., [4]) applied to problem (2.11) yields

κ2 ≤ max
r,s∈C

|r|2+|s|2>0

〈(A− µB)(rω + sÛ), (A− µB)(rω + sÛ)〉Y
〈rω + sÛ , rω + sÛ〉X

≤ max
r,s∈C

|r|2+|s|2>0

(|r|δ + |s| |λ̃− µ|b)2

|r|2‖ω‖2
X − 2|r| |s|〈ω, Û〉X + |s|2

= sup
0≤t<∞

(δ + t|λ̃− µ| b)2

‖ω‖2
X − 2t〈ω, Û〉X + t2

.

Elementary differential calculus shows that the supremum is attained at

t =
δ〈ω, Û〉X + |λ̃− µ|b‖ω‖2

X

δ + |λ̃− µ|b〈ω, Û〉X
,

with supremum value

δ2 + (|λ̃− µ|b‖ω‖X)2 + 2δ|λ̃− µ|b〈ω, Û〉X
‖ω‖2

X − 〈ω, Û〉2X
≤ (δ + |λ̃− µ|b‖ω‖X)2

‖V ‖2
X

which implies (2.14).
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By (2.12), we obtain from (2.14) in particular that ‖V ‖X < ‖ω‖X , so that

〈ω, Û〉X 6= 0, and thus, 〈ω, Û〉X > 0 due to the normalization of Û . Moreover,
(2.14) implies∣∣∣∣∣ϕ(Û)

ϕ(ω)
− 1

〈ω, Û〉X

∣∣∣∣∣ =
|ϕ(V )|

|ϕ(ω)|〈ω, Û〉X
<

‖ϕ‖X,C ε(ρ)

|ϕ(ω)|〈ω, Û〉X
. (2.15)

In particular this yields, by (2.12), that ϕ(Û) 6= 0, so that we can define the

eigenfunction Ũ := (ϕ(ω)/ϕ(Û))Û , satisfying ϕ(Ũ − ω) = 0.

Since for 0 < r < a and z ∈ C,

|z − a| < r ⇒
∣∣∣∣1z − 1

a

∣∣∣∣ =
|z − a|
a|z|

<
r

a(a− r)
,

we obtain from (2.15) and (2.12) that∣∣∣∣∣ϕ(ω)

ϕ(Û)
− 〈ω, Û〉X

∣∣∣∣∣ < ε(ρ)
|ϕ(ω)|
‖ϕ‖X,C

− ε(ρ)
〈ω, Û〉X ≤ ε(ρ)‖ω‖X

|ϕ(ω)|
‖ϕ‖X,C

− ε(ρ)
. (2.16)

Furthermore, since V ⊥ Û ,

‖ω − Ũ‖2
X =

∥∥∥∥∥V +

(
〈ω, Û〉X −

ϕ(ω)

ϕ(Û)

)
Û

∥∥∥∥∥
2

X

= ‖V ‖2
X +

∣∣∣∣∣ϕ(ω)

ϕ(Û)
− 〈ω, Û〉X

∣∣∣∣∣
2

.

Using here (2.14) and (2.16) on the right-hand side, we obtain that

‖(γ(Ũ −ω), λ̃−µ)‖X̂ is less than the left-hand side of (2.13), so that (2.9) is

satisfied. Theorem 2.1b) implies λ̃ = λ (and Ũ = U). �

We close this section by some remarks on eigenvalue exclosures, i.e., on the
determination of subsets of C which do not contain eigenvalues of problem
(2.1). First, we attack the question on a local basis. Let µ ∈ C be such that
we suspect that no eigenvalue of (2.1) is close to µ. To prove and to quantify
this conjecture we consider the selfadjoint problem (2.11) again. Suppose
that we have computed a positive lower bound for its bottom eigenvalue κ1

(or, more generally, for the bottom value of its spectrum), by the variational
methods mentioned earlier and to be described in Section 4. Then

there is no eigenvalue λ̃ of (2.1) such that |λ̃− µ| <
√
κ1

b
, (2.17)

since for any given eigenvalue λ̃ we obtain by the min-max principle, with
ũ ∈ D(A) denoting a corresponding eigenelement,

κ1 ≤
〈(A− µB)ũ, (A− µB)ũ〉Y

〈ũ, ũ〉X
=
|λ̃− µ|2‖Bũ‖2

Y

‖ũ‖2
X

≤ |λ̃− µ|2b2.

In principle, we can use local nonexistence statements of the form (2.17)
to prove nonexistence of eigenvalues in arbitrary bounded subsets of C, by
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covering such a set by “local circles” obtained from the statements (2.17).
Of course, it has to be admitted that for “big” bounded subsets, this way
of proceeding requires an enormous computing time, since for each of the
centers µ of the desired “local circles”, a verified positive lower bound for
the bottom eigenvlue κ1 of problem (2.11) must be computed. On the other
hand, it might appear natural, in comparison with other analytical problems,
that nonexistence statements are comparatively hard to obtain.

For the Orr-Sommerfeld problem, rough enclosures for the set of all eigen-
values have been calculated (analytically) in [20]. These enclosing sets have
a compact intersection with the left complex half-plane, so that the above
considerations can in principle be used to prove, for certain parameter con-
stellations, nonexistence of eigenvalues in the complete left half-plane, i.e.,
to prove linearized stability for these parameter constellations. However, due
to the computing time problems mentioned above, such computations have,
up to now, only been carried out approximately, without providing rigorous
statements.

3 Numerical tools

In this section, we briefly report on the numerical tools we used to compute
the terms needed for Theorem 2.1, i.e., an approximate eigenpair (ω, µ) ∈
D̂(A) to problem (2.1), with A and B chosen according to (1.1), and its
defect bound δ (see (2.3)). The computation of a constant K satisfying (2.5)
is postponed to the following Section 4.

For computing (ω, µ) we need, in addition, an approximation Ṽ to the Blasius
profile V generated by (1.3), and the computation of a (rigorous!) defect
bound δ even requires an enclosure for V .

3.1 The Blasius profile

For enclosing V , we consider the following initial value problem associated
with (1.3):

g′′′ + gg′′ = 0, g(0) = g′(0) = 0, g′′(0) = 1. (3.1)

Using the integral equation

u(x) = exp

−1

2

x∫
0

(x− t)2u(t)dt

 =: (Tu)(x) (3.2)

for u = g′′ (see [30]), one can show that the solution g of (3.1) exists on
[0,∞), and that σ := lim

x→∞
g′(x) ∈ (0,∞) exists.

Then,

f(x) := σ−
1
2 g(σ−

1
2x) (3.3)
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solves (1.3) uniquely. By monotone iteration techniques (for the antitone
operator T defined in (3.2)), an enclosure

u ≤ u ≤ u (3.4)

for the solution u of (3.2) can be obtained. In practice, this iteration is carried
out on a compact interval [0, x̂0] only, and the exponentials arising after each
iteration step are replaced by bounding polynomials to facilitate the next
iteration step, carried out by explicit integration using MATHEMATICA
[31]. So (3.4) is obtained on [0, x̂0], with polynomials u and u. By integration
of g′′ = u (using MATHEMATICA again) and by use of the differential
equation for g, we obtain enclosures for g, g′, g′′, g′′′ on [0, x̂0]. Exploiting the
equation (3.2) for u = g′′ in more detail, these bounds can be used to enclose
g, g′, g′′, g′′′ on [0,∞), with linear resp. constant bounds on [x̂0,∞) (see [5],
[19]), and to enclose the value σ = lim

x→∞
g′(x); the result is

σ ∈ 1.655190360230839
26,

with an obvious notation for upper and lower bounds. Using (3.3), we there-
fore obtain enclosures for f, f ′, f ′′, f ′′′, and thus, for V = f ′, V ′, V ′′, on
[0,∞).

For computing an approximation Ṽ ∈ C2[0,∞)∩H2,∞(0,∞), let x0 ≤
√
σ x̂0

(with approximate equality), and let ṽ denote a polynomial satisfying ṽ(x0) =
0 and approximating V ′′ (or, respectively, the arithmetic mean of the upper
and the lower bound for V ′′ obtained before), on [0, x0]. Then

Ṽ (x) := η

x∫
0

t∫
x0

ṽ(s)ds dt (x ∈ [0, x0]), Ṽ (x) := 1 (x ∈ (x0,∞)) (3.5)

(with η chosen such that Ṽ (x0) = 1) approximates V , and is polynomial on
[0, x0]. Note that η ≈ 1 if ṽ is a “good” approximation to V ′′.

3.2 Computation of an approximate eigenpair

For computing an approximate eigenpair (ω, µ) ∈ D̂(A) to the Orr-Sommerfeld
equation (i.e., (2.1) with A, B from (1.1)), we choose M ∈ IN, N := 2M +4,
and use the ansatz

ω =
N∑

j=1

βiϕi, (3.6)

with β1, . . . , βN ∈ C to be determined, and with basis functions ϕ1, . . . , ϕN ∈
D(A) defined by

ϕj+4(x) :=

{
(x− x0)

4xj+1 (x ∈ [0, x0])
0 (x ∈ (x0,∞))

}
,

ϕj+M+4(x) :=

{
0 (x ∈ [0, x0])

(e−ax − e−ax0)4e−jax (x ∈ (x0,∞))

}
10



for j = 1, . . . ,M , and with ϕ1, . . . , ϕ4 chosen linearly independent, such that,
for j = 1, . . . , 4,

ϕj |[0,x0]∈ span {x2, x3, x4, x5},
ϕj |[x0,∞)∈ span {e−ax, e−2ax, e−3ax, e−4ax}, ϕj ∈ C3[0,∞).

Here, a is the wave number entering (1.1). The asymptotic behaviour of these
basis functions is governed by e−ax; this choice is inspired by Fischer [11],
who proved that the exact eigenfunction decays asymptotically like e−ax.

For computing µ and β = (β1, . . . , βN) in (3.6), we use a Ritz-Galerkin
method

β
(
〈Ãϕi, ϕj〉Y

)
i,j=1,...,N

= µβ (〈Bϕi, ϕj〉Y )i,j=1,...,N , (3.7)

where Ã is defined by replacing the coefficients V and V ′′ in A by their piece-
wise polynomial approximations Ṽ and Ṽ ′′ from (3.5). The entries 〈Ãϕi, ϕj〉Y
and 〈Bϕi, ϕj〉Y can therefore be computed by closed form integration, using
MATHEMATICA; for our purpose, a special integration routine has been
constructed for reasons of computing time.

The matrix eigenvalue problem (3.7) is solved approximately, first for some
“moderate” N , by the built-in MATHEMATICA routine.

For improving the quality of the approximation (β, µ), we perform some
inverse iteration steps for problem (3.7) with higher N , with shift parameter
µ̃ taken from the rough calculation.

3.3 Computation of a defect bound

For the computation of a constant δ satisfying (2.3) (rigorously!), we use Ã
as defined in the previous subsection to obtain

‖Aω − µBω‖Y ≤ ‖Ãω − µBω‖Y + ‖Aω − Ãω‖Y

≤ ‖Ãω − µBω‖Y + aR
[
‖V − Ṽ ‖∞‖Bω‖Y + ‖V ′′ − Ṽ ′′‖∞‖ω‖Y

]
. (3.8)

Here, the first term can be computed by closed form integration using MA-
THEMATICA, since all entries are polynomial on [0, x0] and polynomial in
e−ax on [x0,∞).

For the same reason, ‖Bω‖Y and ‖ω‖Y are computable in closed form, so
that the remaining second term in (3.8) can be bounded using the enclosures
for V and V ′′ obtained according to Subsection 3.1.

4 Computation of K

For computing a constant K satisfying (2.5) (and lower bounds for the eigen-
values κ1, κ2 of problem (2.11)) we restrict our considerations, as in the pre-
vious section, to the Orr-Sommerfeld problem specified by (1.3), (1.4) and

11



the definitions before and after that. For the linear functional ϕ used in (2.5)
and Theorem 2.1 we make the special choice

ϕ(u) = 〈u, φ〉Y , where φ(x) :=

{
0 on [0, x0)
e−ax on [x0,∞)

}
, (4.1)

with x0 ∈ (0,∞) as in Section 3. (This ϕ is obviously bounded not only on
X, but even on Y .)

Let Ã : D(A) ⊂ X → Y be defined as in Section 3. Since Ṽ ∈ C2[0,∞) ∩
H2,∞(0,∞), Ã is closed (as A is) by [10, Theorem IX.9.5]. Thus, also the
operators L and L defined by

D(L) := {u ∈ D(A) : ϕ(u) = 0}, Lu := Ãu− µBu,
(4.2)

D(L) := D(L)× C, L
[(

u

σ

)]
:= Lu− γσBω

are closed. (Note that the operator L introduced here involves Ã in place of
A, in contrast to the operator L used - exclusively - in the proof of Theorem
2.1.)

For u ∈ D(A), ‖Au − Ãu‖Y ≤ aR
[
‖Ṽ − V ‖∞+ a−2‖Ṽ ′′ −V ′′‖∞] · ‖u‖X =:

η‖u‖X (observe that ‖u‖Y ≤ a−2‖u‖X), so it is straightforward that (2.5)

holds for K := K̃/(1− ηK̃) if K̃ satisfies∥∥∥∥(uσ
)∥∥∥∥

X̂

≤ K̃

∥∥∥∥L [(uσ
)]∥∥∥∥

Y

for all

(
u

σ

)
∈ D(L) (4.3)

and ηK̃ < 1. The latter condition is not problematic unless K̃ is very large,
since the tight enclosures for V and V ′′ provide a very small upper bound for
η. By a similar treatment, A can be replaced by Ã also in problem (2.11).

For computing K̃, consider the eigenvalue problem

〈L
[(

u

σ

)]
,L
[(

v

τ

)]
〉Y = κ〈

(
u

σ

)
,

(
v

τ

)
〉X̂ for all

(
v

τ

)
∈ D(L) (4.4)

which is, due to the closedness of L, equivalent to an eigenvalue problem for a
selfadjoint operator in the Hilbert spaceD(L), endowed with the graph norm.
Consequently, the min-max principle holds for problem (4.4). In particular,
(4.3) holds for

K̃ :=
1
√
κ1

, with κ1 := min{spectrum of (4.4)}, (4.5)

provided that κ1 > 0. So we are left with the computation of a positive
lower bound for κ1. If the spectrum is initially discrete, we therefore need
eigenvalue bounds for the (selfadjoint!) eigenvalue problem (4.4). The self-
adjointness opens the field for very powerful variational methods providing
such bounds, the most important of which we will briefly describe in the
following subsection.
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4.1 Variational eigenvalue bounds

Variational methods for computing eigenvalue bounds will be described for
the problem

M(u, v) = κN(u, v) for all v ∈ H, (4.6)

with M and N denoting positive definite hermitian sesquilinear forms on the
complex vector space H, such that (H,M(·, ·)) is a separable Hilbert space
and N is bounded. Under these hypotheses, problem (4.6) is equivalent to
an eigenvalue problem for a selfadjoint operator in H. In this sense the usual
spectral terms (like “essential spectrum” etc.) are well defined for problem
(4.6). In particular, let inf σess ∈ IR ∪ {+∞} denote the infimum of the
essential spectrum of (4.6). The Rayleigh extremal values κR,j of problem
(4.6) are defined as

κR,j := inf
U⊂H subspace

dim U=j

max
u∈U\{0}

M(u, u)

N(u, u)
. (4.7)

(Here, the subscript R is chosen to distinguish Rayleigh extremal values
from eigenvalues where necessary.) The sequence (κR,j)j∈IN is monotonically
nondecreasing, and the min-max principle (see [4]) states that either the
whole sequence stays below inf σess and it coincides with the sequence of all
eigenvalues (counted by multiplicity) of (4.6) below inf σess , or there exists
some k ∈ IN such that κR,j < inf σess for j < k, κR,j = inf σess for j ≥ k, and
κR,1, . . . , κR,k−1 coincide precisely with the eigenvalues of (4.6) below inf σess

(there is none if k = 1).

The min-max principle is the basis of obtaining upper eigenvalue bounds via
the well-known

Rayleigh-Ritz method (see, e.g., [26, Theorem 40.1 and Remarks 40.1,
40.2, 39.10]): Let n ∈ IN and v1, . . . , vn ∈ H be linearly independent trial
functions. Define the matrices

A0 := (M(vi, vj))i,j=1,...,n, A1 := (N(vi, vj))i,j=1,...,n (4.8)

and let κ̂1 ≤ κ̂2 ≤ · · · ≤ κ̂n denote the eigenvalues of

A0x = κ̂A1x. (4.9)

Then, if κ̂n is below inf σess , there are at least n eigenvalues of (4.6) below
inf σess , and the n smallest of these (counted by multiplicity), ordered by
magnitude and denoted by κ1, . . . , κn, satisfy

κj ≤ κ̂j (j = 1, . . . , n). (4.10)

Since the matrix eigenvalues κ̂1, . . . , κ̂n can be enclosed by more direct meth-
ods combining numerical linear algebra ideas with interval analysis (see [2]),
the Rayleigh-Ritz method provides a rather direct access to upper eigenvalue
bounds.
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For computing lower bounds we use the method given by the following the-
orem. In its original form, it is due to Lehmann [21], and later it has been
considerably improved by Goerisch (see e.g. [3]) in its range of applicability.
The following version (admitting essential spectrum) can be extracted from
[32, Theorem 2.4].

Theorem 4.1 Let (XG, bG(·, ·)) denote a complex Hilbert space and T : H →
XG an isometric linear operator, i.e., bG(Tf, Tg) = M(f, g) for all f, g ∈ H.
Let v1, . . . , vn ∈ H be linearly independent, as well as w0

1, . . . , w
0
m ∈ XG. Let

w∗
1, . . . , w

∗
n ∈ XG and w0

1, . . . , w
0
m satisfy

bG(Tf, w∗
j ) = N(f, vj), bG(Tf, w0

j ) = 0 for all f ∈ H. (4.11)

In addition to A0 and A1 in (4.8), define the matrices

A2 := (bG(w∗
j , w

∗
k))j,k=1,...,n, A

0
2 := (bG(w0

j , w
0
k))j,k=1,...,m,

(4.12)
F := (bG(w∗

j , w
0
k)) j=1,...,n

k=1,...,m
,

and let C be an approximation (the quality of which influences the quality
of the eigenvalue bounds in (4.14)) to −F (A0

2)
−1; note that A0

2 is invertible
since bG is positive definite.

Suppose that the Rayleigh-Ritz method has been carried out (with trial func-
tions v1, . . . , vn) and that κ̂n < inf σess , so that at least n eigenvalues κ1 ≤
· · · ≤ κn (denoting w.l.o.g. the n smallest ones) below inf σess exist. Suppose
further that some ρ > κ̂n is known such that (−∞, ρ) does not contain any
spectral point of problem (4.6) except κ1, . . . , κn.

Finally, let µ1 ≤ · · · ≤ µn denote the eigenvalues of

(A0 − ρA1)x = µ(A0 − 2ρA1 + ρ2[A2 + CF ∗ + FC∗ + CA0
2C

∗])x (4.13)

(here, the matrix on the left-hand side is negative definite, the one on the
right-hand side is positive definite, whence µk < 0 for all k). Then

κj ≥ ρ− ρ

1− µn+1−j

for j = 1, . . . , n. (4.14)

When applying this theorem one has to solve the major general problem of
finding a suitable parameter ρ with the properties required. If there is an
(n + 1)-st eigenvalue κn+1 < inf σess (such that κ1, . . . , κn+1 are the n + 1
smallest ones), ρ obviously has to satisfy

κ̂n < ρ ≤ κn+1. (4.15)

While the first of these two inequalities is easy to satisfy (since κ̂n is known),
the second is problematic since it requires knowledge of a lower bound for
κn+1, while our present considerations are just aiming at lower eigenvalue
bounds. However, a rather rough lower bound for κn+1 is sufficient in (4.15)
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(to produce very precise bounds by Theorem 4.1). Such rough lower eigen-
value bounds can often be obtained via comparison problems or by a homo-
topy method using a chain of comparison problems, as explained in the next
subsection.

For the application of the Rayleigh-Ritz- and the Lehmann-Goerisch method
to our problem (4.4) we choose

H := D(L), N

((
u

σ

)
,

(
v

τ

))
:= 〈

(
u

σ

)
,

(
v

τ

)
〉X̂ ,

(4.16)

M

((
u

σ

)
,

(
v

τ

))
:= 〈L

[(
u

σ

)]
,L
[(

v

τ

)]
〉Y + c 〈

(
u

σ

)
,

(
v

τ

)
〉X̂ ,

with c > 0 denoting some spectral shift to be chosen later, e.g. on an exper-
imental basis,

XG := Y × Y × C, T

(
u

σ

)
:=

(
L
[(

u

σ

)]
, Bu, σ

)
,

bG((w1, w2, w3), (w̃1, w̃2, w̃3)) := 〈w1, w̃1〉Y + c〈w2, w̃2〉Y + c w3 w̃3,

which clearly satisfy the general assumptions (recall that 〈u, v〉X = 〈Bu,Bv〉Y ).
Let v1 = (u1, σ1), . . . , vn = (un, σn) ∈ D(L) be chosen for forming A0 and
A1 (see (4.8)), with trial functions u1, . . . , un similar to those in Subsec-
tion 3.2, but with the additional property that ϕ(uj) = 0 (j = 1, . . . , n),
obtained e.g. in the form uj = ũj − (ϕ(ũj)/ϕ(ũ0))ũ0, with linearly in-
dependent ũ0, . . . , ũn, ϕ(ũ0) 6= 0. Then, condition (4.11) is satisfied for
w∗

j = (w∗
j,1, w

∗
j,2, w

∗
j,3) (j = 1, . . . , n), as can be derived in a straightforward

way, if w∗
j,1 ∈ D(L∗), w∗

j,2 ∈ H2(0,∞), and

L∗[w∗
j,1] + c

(
(−D2 + a2)w∗

j,2

w∗
j,3

)
=

(
(−D2 + a2)2uj

σj

)
+ τ

(
φ

0

)
(4.17)

(with φ given by (4.1)), where τ ∈ C is arbitrary and L∗ : D(L∗) ⊂ Y → Y0×
C is the adjoint of L : D(L) ⊂ Y0×C → Y (with Y0 := {u ∈ Y : ϕ(u) = 0}).
Direct calculations provide D(L∗) = D(A) and

L∗[u] =

(
(Ã∗ − µB)u− 1

〈φ,φ〉Y
〈(Ã∗ − µB)u, φ〉Y φ

−γ 〈u,Bω〉Y

)
,

with Ã∗ denoting the adjoint of Ã : D(A) ⊂ Y → Y (see also [10, Theorem
IX.9.5]).

(4.17) shows that we can choose

w∗
j :=

(
0,

1

c
(−D2 + a2)uj,

1

c
σj

)
(j = 1, . . . , n). (4.18)

According to (4.11), also w0
j = (w0

j,1, w
0
j,2, w

0
j,3) (j = 1, . . . ,m) have to satisfy

(4.17), now with (uj, σj) replaced by (0, 0). Therefore, we choose

w0
1 := (0, w0

1,2, 0) with (−D2 + a2)w0
1,2 = φ, w0

2 :=
(
0, e−ax, 0

)
, (4.19)
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and, with w0
3,1, . . . , w

0
m,1 ∈ D(A) chosen linearly independent,

w0
j := (w0

j,1, w
0
j,2, w

0
j,3) with ((−D2 + a2)w0

j,2, w
0
j,3) = −1

c
L∗[w0

j,1],
(4.20)

for j = 3, . . . ,m.

Choosing u1, . . . , un and w0
3,1, . . . , w

0
m,1 in the numerical trial function space

described in Section 3, we obtain from (4.18), (4.19), (4.20) that the first
two components of w∗

j and w0
j are polynomial on [0, x0] and polynomial in

e−ax on [x0,∞); observe that also the differential equation solving required
in (4.19), (4.20) (with arbitrary fixing of the free parameters) can be carried
out in closed form and does not lead out of this function class. Consequently,
all matrices in (4.8) and (4.12) can be calculated in closed form by MATH-
EMATICA. The matrix eigenvalue problems (4.9) and (4.13) (with ρ for the
moment assumed to be at hand) are then treated by the method described
in [2], providing verified bounds for the eigenvalues, so that (4.10) and (4.14)
yield enclosures for the eigenvalues κ1, . . . , κn of (4.6), and thus, after sub-
tracting the spectral shift c, for the first n eigenvalues of (4.4).

4.2 A homotopy method

Here, we are aiming at a method for obtaining a suitable parameter ρ satis-
fying the crucial condition (4.15) needed for Theorem 4.1. Besides problem
(4.6), consider a comparison problem withH,M,N replaced by corresponding
terms H0,M0, N0 satisfying the same general assumptions, and moreover,

H0 ⊃ H,
M0(u, u)

N0(u, u)
≤ M(u, u)

N(u, u)
for all u ∈ H. (4.21)

Suppose in addition that, like problem (4.6), the comparison problem also
has at least n + 1 eigenvalues (the n + 1 smallest of which we denote by
κ0

1, . . . , κ
0
n+1, ordered by magnitude) below its essential spectrum. By (4.21),

the min-max-principle immediately provides

κ0
j ≤ κj for j = 1, . . . , n+ 1, (4.22)

so that for (4.15) we can choose ρ := κ0
n+1, provided that κ0

n+1 (or at least
some “close” lower bound for it) is known and moreover, κ0

n+1 > κ̂n. While
the latter condition (implying κ0

n+1 > κn) requires the comparison problem
to be “not too far away” from problem (4.6), the former can often only
be satisfied by choosing a comparison problem deviating substantially from
(4.6).

To escape this dilemma, a homotopy method can be applied: Again one
chooses a problem involvingH0,M0, N0 (now called base problem) with all the
properties required before, except that the condition κ0

n+1 > κ̂n is dropped
now, so that the base problem is allowed to be “far away” from problem
(4.6). Besides the base problem, a family (Hs,Ms, Ns)s∈[0,ŝ] of problems (all
satisfying our general assumptions) has to be chosen which connects the
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base problem monotonically to the given problem (4.6), i.e., (Hŝ,Mŝ, Nŝ) =
(H,M,N) and, for 0 ≤ s ≤ t ≤ ŝ,

Hs ⊃ Ht,
Ms(u, u)

Ns(u, u)
≤ Mt(u, u)

Nt(u, u)
for all u ∈ Ht. (4.23)

By the min-max principle, the eigenvalues κs
j are then monotonically nonde-

creasing in s, for each fixed j ∈ {1, . . . , n+ 1}.

The general homotopy idea is now to compute eigenvalue enclosures for sev-
eral values 0 < s1 < s2 < · · · < sL = ŝ of the homotopy parameter s.
Here, for each j = 1, . . . , L, the lower bound ρ for κ

sj

nj+1, needed for com-

puting lower bounds to κ
sj

1 , . . . , κ
sj
nj by Theorem 4.1, can be obtained from

the lower bound computed for κ
sj−1

nj+1 in the previous homotopy step, since

κ
sj

nj+1 ≥ κ
sj−1

nj+1; this means that the problem at sj−1 serves as a comparison
problem for the problem at sj. In general, nj decreases, in a well-controlled
way, in the course of the homotopy, so that one has to start (at the base
problem) with some more eigenvalues than finally needed. For more details
on the homotopy method, see [25]. An additional remark to be made here is
that, by (4.23), the bottom inf σs

ess of the essential spectrum is also mono-
tonically nondecreasing in s, so that the condition κ̂n < inf σess , required for
the Rayleigh-Ritz method and for Theorem 4.1, is easy to control during the
homotopy.

In the rest of this section, we will briefly describe the special homotopy
chosen for our concrete problem (4.4) or for its shifted version introduced in
(4.16), respectively. The homotopy consists of four parts, described here in
reversed order, for simpler presentation: The given problem is connected to
a simpler base problem, which however is still not solvable in closed form;
this problem is then further connected to the next base problem, still not
solvable in closed form, and so on. Finally, we arrive at the “real” base
problem admitting eigenvalue enclosures by elementary interval analytical
methods.

i) By (4.2), we obtain for M defined in (4.16), for any ε ∈ (0, 1),

M

((
u

σ

)
,

(
u

σ

))
= 〈Lu− γσBω,Lu− γσBω〉Y + c〈

(
u

σ

)
,

(
u

σ

)
〉X̂

≥ (1− ε)〈Lu, Lu〉Y −
(

1

ε
− 1

)
|γ|2‖Bω‖2

Y σσ + c〈
(
u

σ

)
,

(
u

σ

)
〉X̂

=: M0

((
u

σ

)
,

(
u

σ

))
,

so that the base problem (with M0 in place of M , and with H and N un-
changed) has at least n+ 1 (smallest) eigenvalues

κ0
1 = −

(
1

ε
− 1

)
|γ|2‖Bω‖2

Y + c, κ0
j+1 = (1− ε)νj + c (j = 1, . . . , n)
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(with eigenfunctions (uj, σj) such that u1 ≡ 0 and σj = 0 for j ≥ 2) below its
essential spectrum, provided that there are at least n (smallest) eigenvalues
ν1 ≤ ν2 ≤ · · · ≤ νn of the problem

u ∈ D(L), 〈Lu, Lv〉Y = ν〈u, v〉X(≡ ν〈Bu,Bv〉Y ) for all v ∈ D(L) (4.24)

(receiving further treatment in ii)) below its essential spectrum.

Assuming that (lower) bounds for ν1, . . . , νn are at hand, we therefore have
the desired bounds for κ0

1, . . . , κ
0
n+1. Items ii) to iv) below, and the numerical

computations finally yield κ̂n < κ0
n+1 < inf σess for ε := 10−4 and n := 3,

so that the base problem serves directly as a comparison problem, without
need for a homotopy.

ii) For proving the existence of the eigenvalues ν1, . . . , νn below the essential
spectrum of (4.24), and for computing lower bounds to them, we make use
of the idea of Neumann decoupling proposed by Davies [6]. Clearly, for fixed
x0 ∈ (0,∞) (in (4.1)),

D(L) ⊂ {u ∈ L2(0,∞) : u|(0,x0) ∈ H4(0, x0), u|(x0,∞) ∈ H4(x0,∞),
(4.25)

u(0) = u′(0) = 0, ϕ(u) = 0} =: S1 ⊕ S2,

where

S1 := {u ∈ H4(0, x0) : u(0) = u′(0) = 0}, S2 := {u ∈ H4(x0,∞) : ϕ(u) = 0}

(observe that, due to (4.1), ϕ “acts” only on (x0,∞), which is essential for
the above decoupling!). According to the min-max principle, (4.25) implies
that lower bounds for the Rayleigh extremal values νR,j of (4.24) are given

by the Rayleigh extremal values ν
(1)
R,k, ν

(2)
R,k (to be ordered, in total, by mag-

nitude) of the corresponding “decoupled” eigenvalue problems on (0, x0) and
on (x0,∞), respectively, with “Neumann” boundary conditions at x0, i.e., of
the problems

u ∈ S1, 〈L(1)u, L(1)v〉L2(0,x0) = ν(1)〈B(1)u,B(1)v〉L2(0,x0)
(4.26)

for all v ∈ S1,

u ∈ S2, 〈L(2)u, L(2)v〉L2(x0,∞) = ν(2)〈B(2)u,B(2)v〉L2(x0,∞)
(4.27)

for all v ∈ S2,

with L(i), B(i) defined on Si, representing the same differential expressions as
L and B, respectively.

Problem (4.27) has constant coefficients since, due to (3.5), Ṽ = 1 (and Ṽ ′′ =
0) on [x0,∞). Using [10, Theorem IX.9.6], it can be shown that problem
(4.27) has essential spectrum [σ∗,∞), where σ∗ := (max {0, a2 − Reµ})2 +
(aR − Imµ)2 = dist(µ, σo.s.

ess )2 (with σo.s.
ess denoting the essential spectrum of

the original Orr-Sommerfeld problem, given by (1.6)). Moreover, in the case
σ∗ > 0 (i.e., µ /∈ σo.s.

ess ), problem (4.27) has a simple eigenvalue 0 (with
eigenfunction (a+p)e−p(x−x0)−2ae−a(x−x0) where p2 = a2+iaR−µ, Re p > 0),
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and direct (MATHEMATICA-supported) calculations show that there is no
further eigenvalue below σ∗. Consequently, the Rayleigh extremal values
satisfy ν

(2)
R,1 = 0, ν

(2)
R,k = σ∗ for k ≥ 2. Because the Rayleigh extremal values

ν
(2)
R,k of (4.27) and ν

(1)
R,k of (4.26) (which are eigenvalues ν

(1)
k since (4.26) is

posed on a compact interval), in union, are lower bounds for the Rayleigh
extremal values νR,j of (4.24), we therefore obtain

νR,1 ≥ 0, νR,j+1 ≥ ν
(1)
j for all j ∈ IN such that ν

(1)
j ≤ σ∗. (4.28)

In our numerical application, a Rayleigh-Ritz computation for problem (4.26)

shows that the side condition ν
(1)
j ≤ σ∗ in (4.28) is satisfied for j ≤ 7.

Since the lower bounds in (4.28), the computation of which is considered
in iii) below, are too coarse for using the decoupled problem directly as
a comparison problem for problem (4.24), we need a homotopy here: For
0 ≤ s ≤ ∞, we defineNs(u, v) := 〈B(1)u,B(1)v〉L2(0,x0)+〈B(2)u, B(2)v〉L2(x0,∞)

(independent of s), and

Ms(u, v) := 〈L(1)u, L(1)v〉L2(0,x0) + 〈L(2)u, L(2)v〉L2(x0,∞) + c0Ns(u, v)

+ s
3∑

j=0

(
u(j)(x0 − 0)− u(j)(x0 + 0)

)
(v(j)(x0 − 0)− v(j)(x0 + 0)),

with c0 > 0 denoting a spectral shift facilitating the application of Goerisch’s
method in the course of the homotopy. Moreover, let Hs := S1 ⊕ S2 for 0 ≤
s <∞, and H∞ := D(L). The homotopy defined in this way clearly satisfies
(4.23), and it connects (up to the spectral shift) the decoupled problem (s =
0) to problem (4.24) (s = ∞).

Accompanying Rayleigh-Ritz computations provide, in each homotopy step,
a sufficient number of eigenvalues below σ∗, and thus, due to the min-max
principle, below the respective essential spectrum. In this way, we end up
with bounds for the first three eigenvalues of problem (4.24) (below its es-
sential spectrum).

iii) For computing lower bounds to the eigenvalues ν
(1)
j of problem (4.26)

needed for (4.28), we use an additional homotopy. Direct estimates provide,
for u ∈ S1,

〈L(1)u, L(1)u〉L2(0,x0)

= ‖(−D2 + a2)2u+ (iaRṼ − µ)(−D2 + a2)u+ iaRṼ ′′u‖2
L2(0,x0) (4.29)

≥ C1‖(−D2 + a2)2u‖2
L2(0,x0) + C2‖(−D2 + a2)u‖L2(0,x0),

with easily computable constants C1 > 0, C2 ∈ IR. Here, C2 involves (a
positive lower bound for) the smallest eigenvalue τ1 of the problem

u ∈ S1, 〈(−D2 + a2)u, (−D2 + a2)v〉L2(0,x0) = τ〈u, v〉L2(0,x0)
(4.30)

for all v ∈ S1,
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which will be addressed in iv) below. Now we define, for s ∈ [0, 1], Hs =
S1, Ns(u, v) = 〈B(1)u,B(1)v〉L2(0,x0),

Ms(u, v) := s〈L(1)u, L(1)v〉L2(0,x0)

+(1− s)
[
C1〈(−D2 + a2)2u, (−D2 + a2)2v〉L2(0,x0)

+C2〈(−D2 + a2)u, (−D2 + a2)v〉L2(0,x0)

]
for u, v ∈ S1. Clearly, (4.29) shows that this homotopic family satisfies (4.23).
Moreover, the homotopy ends (for s = 1) at problem (4.26), and it starts at
a constant coefficient problem which is, up to normalization, equivalent to

u ∈ S1, 〈(−D2 + a2)2u, (−D2 + a2)2v〉L2(0,x0)
(4.31)

= ζ〈(−D2 + a2)u, (−D2 + a2)v〉L2(0,x0) for all v ∈ S1.

iv) The remaining task is the computation of lower eigenvalue bounds for
the constant coefficient problems (4.30) and (4.31). This is carried out in
the following way by a MATHEMATICA notebook, supported by interval
arithmetic (we give a description for problem (4.31) only): First the strong
formulation of (4.31) is derived; in particular, this calculation provides six
additional boundary conditions (besides u(0) = u′(0) = 0), two of which are

ζ-dependent. Next, a (ζ-dependent) fundamental system (ψ
(ζ)
1 , . . . , ψ

(ζ)
8 ) of

the strong eigenvalue equation is calculated; since this differential equation
involves even order derivatives only, a closed form calculation is indeed possi-
ble. Then, with R

(ζ)
1 , . . . , R

(ζ)
8 denoting the boundary operators, the function

d(ζ) := det(R
(ζ)
j [ψ

(ζ)
k ]) is put up, the zeroes of which are the eigenvalues we

are looking for. Finally, the (first n) zeroes of d(ζ) are enclosed by means
of interval analysis; in particular, the interval Newton method and interval
bisection are used.

5 Enclosure results

Here, we report on the concrete enclosures for a “critical” eigenpair of the
Orr-Sommerfeld problem (2.1) (with A, B from (1.1)), which we obtained
from Theorem 2.1 after performing the numerical approximation and enclo-
sure procedures described in the previous sections.

The Blasius profile V (and V ′, V ′′) have been enclosed and approximated, as
described in Subsection 3.1, using two different choices for the point x0, and
two different degrees NV of the polynomials both in the monotone iteration
procedure and for the approximation process. The results are contained in
the following Table 1.

NV ‖V − Ṽ ‖∞ ≤ ‖V ′ − Ṽ ′‖∞ ≤ ‖V ′′ − Ṽ ′′‖∞ ≤ x0

10 2.04 · 10−3 6.69 · 10−4 1.59 · 10−3 6.43
60 8.57 · 10−15 3.64 · 10−15 7.99 · 10−15 10.29

Table 1: Enclosures of the Blasius profile
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For the wave number a and the Reynolds number R, we choose the following
values which are standard in the engineering as well as in the more theoretical
literature on stability (the factor

√
2 is due to our scaling of the Blasius

equation (1.3)):

a =
√

2 · 0.179, R =
√

2 · 580. (5.1)

Using a polynomial degree N = 74 for computing an approximate eigenpair
(ω, µ) according to Subsection 3.2, and bounding its defect according to
Subsection 3.3, we obtained the preliminary results (for x0 = 6.43):

µ = −1.652772126 + 75.60630560 i, δ ≤ 0.021. (5.2)

With this approximate eigenpair (ω, µ), a constant K satisfying (2.5) is com-
puted, according to the methods described in Section 4, to be

K = 0.2299. (5.3)

After some numerical testing, the scaling parameter γ := R/20 has been
chosen. From (5.2), (5.3), Theorem 2.1 provides the error bound∥∥∥∥( γ(U − ω)

λ− µ

)∥∥∥∥
X̂

≤ 0.202 (5.4)

for an eigenpair (U, λ), so that in particular,

|λ− µ| ≤ 0.202, (5.5)

which proves, according to (5.2), that λ is in the left half-plane, and therefore,
the instability of the Orr-Sommerfeld problem for the parameter constellation
(5.1).

For improving the quality of the bounds (5.4), (5.5), we used the high-degree
results for the Blasius profile in Table 1 (NV = 60), and computed new
approximate eigenpairs (ω, µ), this time with higher polynomial degrees N ,
and with x0 = 10.29; see Table 2. For saving computing time, the “new”
constants K are not computed using the “new” approximate eigenpairs in
the method of Section 4 (which would imply that all eigenvalue calculations
in the various homotopy steps would have to be performed again for each
new (ω, µ), with increasing polynomial degrees), but with a perturbation
argument implying, with Kold from (5.3),

K ≤ Kold

1− εKold
,

with ε involving differences between “old” and “new” Orr-Sommerfeld eigen-
pairs (ω, µ) and between “old” (NV = 10; see Table 1) and “new” (NV = 60)
Blasius profiles.

In this way, we obtained the results contained in Table 2. The error bounds
in the last column hold as well with |λ − µ| replaced by the full error∥∥∥∥( γ(U − ω)

λ− µ

)∥∥∥∥
X̂

(compare (5.4), (5.5)).
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N µ δ ≤ |λ− µ| ≤
114 −1.652756336792 2.58 · 10−3 2.6 · 10−2

+ 75.606472219516 i
134 −1.652756336777 5.62 · 10−5 5.6 · 10−4

+ 75.606472219493 i
154 −1.652756336777 7.83 · 10−7 7.8 · 10−6

+ 75.606472219493 i
174 −1.652756336777 7.65 · 10−9 7.7 · 10−8

+ 75.606472219493 i
194 −1.652756336777 6.02 · 10−11 6.0 · 10−10

+ 75.606472219493 i
214 −1.652756336777 4.24 · 10−12 4.3 · 10−11

+ 75.606472219493 i

Table 2: Eigenvalue enclosures for a and R from (5.1)

The final Table 3 contains results for values of a and R different from (5.1).
Here, the respective constants K (not listed in the table) have not been com-
puted with final rigor: Instead of performing the homotopies described in
Section 4, we used Theorem 4.1 with an estimate for the number ρ (obtained
from the Rayleigh-Ritz computations), so that (4.15) has not been proved
rigorously. Up to this slight lack of rigor, the first line of this table yields the
upper bound 426.59 for the so-called critical Reynolds number Rc. In [7], the
approximation Rc ≈ 426.585 has been computed.

a R µ δ ≤ |λ− µ| ≤
0.25 426.59 −0.000009327 3.83 · 10−9 3.1 · 10−8

+ 42.3111953177 i
0.2 500 −0.0622471354 2.23 · 10−9 2.3 · 10−8

+37.1835973223 i
0.2 1500 −5.1130791417 8.15 · 10−6 1.1 · 10−4

+ 96.1250646277 i
0.2 3000 −7.2354492532 8.31 · 10−4 1.8 · 10−2

+ 175.407270321 i
0.2 4000 −4.8863887472 4.13 · 10−4 1.1 · 10−2

+ 225.813011574 i
0.1 5000 −10.202113420 8.11 · 10−6 2.8 · 10−4

+ 114.984407775 i
0.1 10000 −23.666502784 3.95 · 10−4 2.3 · 10−2

+ 207.439464400 i
0.1 15000 −34.202444724 1.87 · 10−4 9.9 · 10−3

+ 293.760528163 i

Table 3: Eigenvalue enclosures for other values of a and R
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6 Appendix: Proof of Theorem 2.1

For proving Theorem 2.1, we assume that (2.3) to (2.7) hold, and define

X̂0 :=

{(
u

σ

)
∈ X̂ : ϕ(u) = 0

}
, D(L) := D̂(A) ∩ X̂0, (6.1)

L
[(

u

σ

)]
:= Au− µBu− γσBω.

(Note that L defined here involves, in contrast to (4.2), A in place of Ã, which

however will not cause confusion since Ã does not occur in this Appendix.)
We start with two lemmata:

Lemma 6.1 If (A − µB)(D(A)) is dense in Y , then L(D(L)) = Y , and

L−1 : Y → X̂0 exists and is bounded (where X̂0 is endowed with ‖ · ‖X̂).

Proof: Since A is closed, and B and ϕ are bounded, L is closed. Due to
(2.5), L is moreover one-to-one, and L−1 : L(D(L)) ⊂ Y → X̂0 is bounded.
The closedness of L implies closedness of L−1. Therefore, L(D(L)) is closed
in Y . So we are left to show that L(D(L)) is dense in Y .

Thus, let r ∈ Y be given. The denseness assumption for (A − µB)(D(A))
provides sequences (un) and (vn) in D(A) such that, as n→∞,

(A− µB)un → r, (A− µB)vn → γBω in Y. (6.2)

Here, ϕ(vn) 9 0, because otherwise wn := vn − (ϕ(vn)/ϕ(ω))ω would yield

(wn, 1) ∈ D(L) and L
[(

wn

1

)]
= (A − µB)vn − γBω − ϕ(vn)

ϕ(ω)
(A − µB)ω → 0,

contradicting (2.5). Passing to a subsequence of (vn) (but without changing
(un)!) we can therefore achieve that (ϕ(vn)) is bounded away from 0, and
that ‖(A − µB)vn − γBω‖Y ≤ [n(1 + |ϕ(un)|)]−1 for all n (note (6.2)), so
that ϕ(un)[(A − µB)vn − γBω] → 0. Thus, for σn := −ϕ(un)/ϕ(vn) and

zn := un + σnvn, we obtain (zn, σn) ∈ D(L) and L
[(

zn

σn

)]
= (A − µB)un +

σn[(A− µB)vn − γBω] → r according to (6.2), so that r ∈ L(D(L)). �

Lemma 6.2 Let ε ≥ 0, Kbε < 1, and let (ωε, µε) ∈ D̂(A) such that ϕ(ωε −
ω) = 0 and

∥∥∥(γ(ωε−ω)
µε−µ

)∥∥∥
X̂
≤ ε. Then,∥∥∥∥(uσ

)∥∥∥∥
X̂

≤ K

1−Kbε
‖Au− µεBu− γσBωε‖Y for all

(
u

σ

)
∈ D(L).

Proof: Using (2.5) and (2.6) we obtain, for all
(

u
σ

)
∈ D(L),∥∥∥∥(uσ

)∥∥∥∥
X̂

≤ K‖Au− µBu− γσBω‖Y

≤ K‖Au− µεBu− γσBωε‖Y

+Kb[|µε − µ| ‖u‖X + |γ| |σ| ‖ωε − ω‖X ]

≤ K‖Au− µεBu− γσBωε‖Y +Kbε

∥∥∥∥(uσ
)∥∥∥∥

X̂

,
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whence the assertion since Kbε < 1. �

Proof of Theorem 2.1: First we strengthen assumption (2.4) by requiring
that µ /∈ σres .

ad a) To prove the first part (existence and enclosure) of Theorem 2.1 we
have to separate the (easy) case where µ is an exact eigenvalue of (2.1):

In this case, let Û ∈ D(A) denote a corresponding eigenelement. Then,

ϕ(Û) 6= 0, since otherwise (Û , 0) ∈ D(L) and L
[(

Û
0

)]
= 0, contradict-

ing (2.5). Thus, U := (ϕ(ω)/ϕ(Û))Û is an eigenelement (corresponding to

µ) satisfying (γ(U − ω), 0) ∈ D(L), and (2.5), (2.3) yield
∥∥∥(γ(U−ω)

0

)∥∥∥
X̂
≤

K|γ| ‖Aω − µBω‖Y ≤ K|γ|δ ≤ α, i.e., the assertion (2.8).

Now let µ not be an eigenvalue. Since µ /∈ σres , (A − µB)(D(A)) is then

dense in Y . According to Lemma 6.1, L−1 : Y → X̂0 is well-defined and
bounded, so that the (nonlinear!) operator

T : X̂0 → X̂0, T

(
u

σ

)
:= L−1[σBu− γ(Aω − µBω)] (6.3)

is well defined. T maps the closed subset

D :=

{(
u

σ

)
∈ X̂0 :

∥∥∥∥(uσ
)∥∥∥∥

X̂

≤ α

}
(6.4)

into itself, since (6.3), (2.5), (2.6), (2.3), (2.7) provide, for (u, σ) ∈ D,∥∥∥∥T(uσ
)∥∥∥∥

X̂

≤ K‖σBu− γ(Aω − µBω)‖Y

(6.5)

≤ K[b|σ| ‖u‖X + |γ|δ] ≤ K

[
1

2
bα2 + |γ|δ

]
= α,

where the last equality follows by elementary calculations. Moreover, T is
contractive on D, since (6.3), (2.5), (2.6), (6.4) imply, for (u1, σ1), (u2, σ2) ∈
D, ∥∥∥∥T(u1

σ1

)
− T

(
u2

σ2

)∥∥∥∥
X̂

≤ K‖σ1Bu1 − σ2Bu2‖Y

=
1

2
K‖(σ1 + σ2)B(u1 − u2) + (σ1 − σ2)B(u1 + u2)‖Y

≤ 1

2
bK
[
|σ1 + σ2| ‖u1 − u2‖X + |σ1 − σ2| ‖u1 + u2‖X

]
≤ 1

2
bK

∥∥∥∥(u1

σ1

)
+

(
u2

σ2

)∥∥∥∥
X̂

∥∥∥∥(u1

σ1

)
−
(
u2

σ2

)∥∥∥∥
X̂

≤ bKα

∥∥∥∥(u1

σ1

)
−
(
u2

σ2

)∥∥∥∥
X̂

,

and bKα = β/(1 +
√

1− β) < 1 due to (2.7).
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Consequently, Banach’s Fixed-Point-Theorem provides a fixed-point (u, σ) ∈
D of T which is unique in D. The fixed-point equation (and (6.3)) imply all
assertions of part (a) for (U, λ) := (ω + γ−1u, µ + σ); in particular, U 6= 0
since ϕ(U) = ϕ(ω) 6= 0, and (2.8) holds since (u, σ) ∈ D.

ad b) Let (Ũ , λ̃) ∈ D̂(A) denote an eigenpair satisfying ϕ(Ũ − ω) = 0 and

(2.9). Let (ũ, σ̃) := (γ(Ũ − ω), λ̃ − µ). A straightforward calculation shows
that (ũ, σ̃) is a fixed-point of T . Similarly as in (6.5) we obtain∥∥∥∥(ũσ̃

)∥∥∥∥
X̂

=

∥∥∥∥T(ũσ̃
)∥∥∥∥

X̂

≤ K

[
1

2
b

∥∥∥∥(ũσ̃
)∥∥∥∥2

X̂

+ |γ|δ

]
,

so that ‖(ũ, σ̃)‖X̂ /∈ (t1, t2), with t1 < t2 denoting the zeroes of the polynomial
1
2
Kbt2 − t + K|γ|δ, i.e., t1 = α and t2 = α + 2

Kb

√
1− β. Due to (2.9), we

conclude that ‖(ũ, σ̃)‖X̂ ≤ α, i.e., (ũ, σ̃) ∈ D. Since the fixed-point of T is

unique within D, we obtain (ũ, σ̃) = (u, σ), and thus, (Ũ , λ̃) = (U, λ).

ad c) By (2.8), we can apply Lemma 6.2 with ε := α (note that Kbα =
β/(1 +

√
1− β) = 1−

√
1− β < 1) and (ωε, µε) := (U, λ) to obtain∥∥∥∥(uσ

)∥∥∥∥
X̂

≤ K√
1− β

‖Au− λBu− γσBU‖Y for all

(
u

σ

)
∈ D(L). (6.6)

This implies ϕ(Û) 6= 0 for every eigenelement Û ∈ D(A) corresponding to λ,

since otherwise (u, σ) := (Û , 0) ∈ D(L) and the right-hand side of (6.6) van-
ishes for this (u, σ), contradicting (6.6). Therefore, no linearly independent
eigenelements U1, U2 ∈ D(A) corresponding to λ can exist, because then

Û := ϕ(U2)U1 − ϕ(U1)U2 would be an eigenelement satisfying ϕ(Û) = 0.
Thus, λ is geometrically simple.

Assuming for contradiction that BU ∈ (A− λB)(D(A)) we obtain a se-
quence (vn) in D(A) such that (A− λB)vn → BU in Y . Inserting (u, σ) :=
(vn − [ϕ(vn)/ϕ(U)]U, γ−1) ∈ D(L) into (6.6) we obtain that the right-hand
side tends to zero (as n → ∞) but the left-hand side does not, a contradic-
tion.

The theorem is now proved under the additional assumption µ /∈ σres . Drop-
ping this assumption and replacing it by (2.4), i.e. assuming merely that µ
is not an interior point of σres, we obtain a sequence (µn) in C such that
µn /∈ σres and εn := |µn − µ| → 0. We may assume that Kbεn < 1 for
n ∈ IN, whence Lemma 6.2 provides, with ε := εn and (ωε, µε) := (ω, µn),
that (2.5) holds with µn and Kn := K/(1 − Kbεn) in place of µ and K,
respectively. Moreover, (2.3) holds with µn and δn := δ + εn‖Bω‖Y in place
of µ and δ. Clearly, Kn → K and δn → δ as n → ∞. Thus, re-starting the
sequence at some sufficiently high index (and re-indexing) we can achieve,
using (2.7), that βn := 2bK2

n|γ|δn (tending to β) satisfies βn < 1, and that,
for αn := 2Kn|γ|δn/

(
1 +

√
1− βn

)
(converging to α),

α1 − αn + |µ1 − µn| <
2

Knb

√
1− βn for n ∈ IN. (6.7)
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According to the version of the theorem proved so far, we obtain a sequence

(Un, λn) ∈ D̂(A) of eigenpairs of (2.1) such that the assertions a), b), c) hold,
for each n ∈ IN, with the corresponding n-dependent terms. In particular,
by (6.7)∥∥∥∥(γ(U1 − ω)

λ1 − µn

)∥∥∥∥
X̂

≤
∥∥∥∥(γ(U1 − ω)

λ1 − µ1

)∥∥∥∥
X̂

+ |µ1 − µn| ≤ α1 + |µ1 − µn|

< αn +
2

Knb

√
1− βn,

i.e., (Ũ , λ̃) := (U1, λ1) satisfies the n-dependent condition (2.9) (and ϕ(Ũ −
ω) = 0), whence U1 = Un, λ1 = λn. The eigenpair sequence (Un, λn) is
therefore constant, equal to (U1, λ1) =: (U, λ).

Part a) of the theorem now follows immediately by letting n → ∞ in the

corresponding n-dependent statement. To prove part b) let (Ũ , λ̃) ∈ D̂(A)

satisfy ϕ(Ũ − ω) = 0 and (2.9). Then, also the n-dependent statement (2.9)

holds for n sufficiently large, implying Ũ = Un = U, λ̃ = λn = λ. Finally,
part c) follows immediately from the corresponding n-dependent statement
and the constancy of the sequence (Un, λn). �
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