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1 . INTRODUCTION 

1.1. Computer experiments 

In the last two decades the use of electronic computers in statis-

tical mechanics has developed from being just a tool for computing 

approximate values of configuration integrals to an alternative way of 

doing experiments, or at least to a way of getting quasi-experimental 

results for theoretical models. 

Some noteworthy points in this development will be mentioned here. 

In 1953 Metropolis et al.' computed values for the configuration 

integral of a two-dimensional system of 224 hard disks by means of the 

Monte Carlo method. They used a modification of the crude Monte Carlo 

method, generating a Markov chain of configurations with transition 

probabilities giving rise to the canonical distribution function for the 

configurations in the limit of infinitely long Markov chains. The 

Monte Carlo method gives only equilibrium properties, but the succession 

of configurations in a Markov chain can be thought of as a quasi-kinetic 

behaviour of the system. This concept is used e.g. in the kinetic Ising 

model 

Soon afterwards (1956) Alder and Wainwright ' introduced the 

molecular-dynamics method by solving numerically the equations of motion 

of systems with a hard-core interaction. They obtained in this way 

static quantities (related to the equation of state) as well as time-

dependent ones as the velocity autocorrelation function. 

A breakthrough to more realistic systems was made in 1964 by Rahman. 

He solved the equations of motion, written as difference equations, of a 

system of 864 particles with a Lennard-Jones interaction chosen to 
1 .4) simulate liquid argon . He was the first to stress the relevance of 

these computations for quasi-elastic neutron scattering. He computed 

in this spirit apart from the velocity autocorrelation function also 
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the density-density correlation function in space and time. Later on, 

not only the self-diffusion coefficient but also bulk and shear viscosi-

ties and the heat conductivity that are much harder to calculate for 

such a system have been determined. ' This method, suitable for sys-

tems with any interaction potential given in an analytic or tabulated 

form, is presently being applied for the simulation of such complicated 

systems like water ' , molten salts ' and plasmas. 

As a final example, the conceptually important result is mentioned 
1 9) 

of Alder and Wainwright in 1970, i.e. the discovery of the long-
time tails of the velocity autocorrelation function. 

This thesis is concerned with a molecular-dynamics study of a 

problem which is also mostly of a conceptual nature. In the study of the 

density dependence of transport coefficients Dorfman and Cohen 

discovered that a power-series expansion of the transport coefficients 

is most likely to be impossible. Their argument is based on a phase 

space estimate of the integrals yielding the higher-order density 

corrections to the low-density (Boltzmann) values of the transport 

quantities. As the restriction imposed by the (irreducible) N-body 

dynamics on the phase space is not sufficient to guarantee the 

convergence of the integrals over the pertinent collision sequences, 

they concluded that the density series proposed so-far was divergent 

in sufficiently high order (depending on the dimensionality of the 

system). 

We will show that the so-called Lorentz gas is an ideal molecular-

dynamics testing ground for this issue. The Lorentz gas is a random 

assembly of spherical scatterers through which one spherical particle 

moves. The fixed scatterers are chosen to be point-particles and cannot 

move. Another type of Lorentz gas, the wind-tree model due to 
1.11) 

Ehrenfest, has been studied in another context by Wood and Lado ;in 

this model a point-particle is scattered by fixed parallel squares. 

The phase space of the Lorentz gas is (N + 2)d dimensional, d 

being the dimensionality of the system and N the number of scatterers. 

Since the absolute value of the momentum of the moving particle is a 

constant of motion, trajectories always remain on the same sphere in 
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momentum space. This makes integrals over momentum space trivial. The 

positions of the scatterers are not affected by the time evolution of 

the system, and therefore a Monte Carlo procedure is needed to sample 

their Nd-dimensional configuration space. The trajectory of the moving 

particle in a given configuration of the scatterers can be computed 

by means of molecular dynamics in a simplified version with respect 
1 .12) 

to Alder and Wainwright ; there being only one moving particle 

with constant velocity. In this way phase space can be sampled 

properly if enough computing time is available and if there are no 

closed pockets in the generated configurations of scatterers. Such 

closed pockets,which are disconnected regions in the configuration 

space of the moving particle, can be dealt with by a Monte Carlo 

procedure for the generation of initial positions of the moving 

particle. 

The computations presented here are an example of obtaining quasi-

experimental results for a theoretical model that has no clear-cut 

analogue in nature. 

1.2. Diffusion in the Lorentz gas 

Transport coefficients can be calculated from equilibrium 

averages of time correlation functions. These functions provide also 

a particularly suitable starting point for the investigation of the 

density dependence of transport coefficients. Zwanzig ' designed a 

simple scheme for computing the coefficients of a power-series expansion 

in the density for transport coefficients. However, as mentioned before, 

actual calculations lead to divergencies in certain expansion coefficients. 
1.14-1.17) 

Proper resummation gave rise to terms logarithmic in the density 

Although these theoretical predictions date from several years ago, 

there is as yet no experimental confirmation for the existence of 

logarithmic terms. The reason is that for real systems the coefficients 
1 18) 

of these terms are unknown and, probably, small ' . This smallness 

is supported by the result of the explicit calculation ' ' ' for 

the three-dimensional Lorentz gas of the coefficient of the first 
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logarithmic term in the density expansion for the diffusion coefficient. 

For the two-dimensional Lorentz gas the coefficient of the first 

1 . 17) 

logarithmic term turns out to be comparatively large . The main ob-

jective of the present study is to find confirmation for the existence 

of this term from combined Monte Carlo and molecular-dynamics calculations 

(for which the model is very well suited). 

Another reason for studying the Lorentz gas is provided by Ernst 
1 . 19) 

and Weyland . They derived an expression for the earlier mentioned 

long-time behaviour of the velocity autocorrelation function for a 

d-dimensional Lorentz gas at low densities. In systems with complete 

hydrodynamics like the hard-sphere gas the expression has a positive 
. ,. ^-d/2 ^ 1.9, 1.20) 

sign and contains an inverse power of time: t ; see refs. , 
1.21) 

and ref . For the Lorentz gas, where diffusion is the only hydrodynamic 
-ïsd-l 

mode, the expression has a negative sign and a t behaviour. Therefore 

the diffusion coefficient, which is the time integral over the velocity 

autocorrelation function, remains finite also in two dimensions. This 

asymptotic behaviour of the velocity autocorrelation function is a very 

small effect. 

1.3. Survey 

In chapter 2 theoretical considerations on the Lorentz gas are 

presented. In section 2.1 the Lorentz gas is defined, together with 

the most important quantities. In the first part of section 2.2 an out-

line of the expansion method is given, whereas the second part gives a 

summary of the calculations of van Leeuwen and Weyland for the expansion 

coefficients up to the first logarithmic ones both for d = 2 and d = 3. 

In sub-section 2.2.3 the diagrams giving a regular contribution to the 

same order in the density as the first logarithmic term are listed 

together with their contributions f or the two-dimensional case. The 

numerical computations are discussed briefly. In sub-section 2.2.4 the 

diagrams contributing to the squared logarithmic term, one order higher 

in the density, are listed together with their contributions, which could 

be obtained analytically. In sub-section 2.2.5 the Boltzmann expressions 
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are given for the velocity autocorrelation function as well as the 

expressions for asymtotic long times found by Ernst and Weyland. 

In section 2.3 expressions are derived for the free-time distribution 

and the mean free time. These quantities have been chosen as a test on 

the randomness of the scatterers and they serve the purpose rather well. 

The distribution of first free times is purely exponential but the free-

time distribution (including second, third, etc. free times as well) must 

be handled with care. It turns out to be essential in what way one takes 

averages over the results of different configurations. In the appendix 

an explicit calculation is given^ for the two-dimensional case, of the 

joint distribution of the first and second free time, leading to a non-

exponential behaviour for the distribution of second free times. The 

chapter closes with some considerations on finite-size effects. 

The method of computation is explained in chapter 3, starting with 

the crude Monte Carlo method for generating different configurations 

of scatterers. In section 3.2 the computation of trajectories by means 

of molecular dynamics is described. In the next section different ways 

of obtaining the velocity autocorrelation function and the mean square 

displacement are discussed. The computational method for obtaining the 

diffusion coefficient from these functions is given in section 3.4. 

The computation of the mean free time and distribution of free times 

is dealt with in section 3.5, where the different ways of taking 

averages are emphasized. 

In chapter 4 the computer results are presented on the mean free 

time, the distribution of free times, the velocity autocorrelation 

function, the mean-square displacement and the diffusion coefficient. 

In chapter 5 the conclusions are summarized. 
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2. THEORY 

2.1. Definition of the model 

The essential feature of a Lorentz gas is that only one particle 

moves in an assembly of static particles. In the classical case one 

has for the Hamilton function 

2 
Nn'^ ->- ^ 1 - } • - > • 

H(x,R ) = ^ + .E V, (q - R.) + TTT • 5 • V . (R, - R.) , (2.1) 
2m j=l dy j 2. if] st i j 

- > - - > • - ^ - > - - > -

where x stands for (p,q), q is the position and p = mv the momentum of 

the moving particle, m being its mass and v its velocity. The coordinates 
N ->- -> 

of the N static particles are denoted by R = (R,, ..., R ). For the 
-> ->• 

dynamical part of the interaction V (q - R.), operating between the 

moving particle and scatterer j, we take a spherically symmetric hard-

core potential 

°° for I q - R, I -S a , 

V (q - Rj) = ' (2.2) 

0 for |q - R.I > a . 

->• ->• 
Similarly, for the interaction V (R, - R.) between two scatterers we take 

st 1 ] 

" for R. - R. Cf a , I 1 :' s 
V ^(R. - R.) = (2.3) 
St 1 j 

0 for IR. - R.I > a . 
' 1 j' s • -

f.- • • ' 

Furthermore we will assume the scatterers to be point-particles, a = 0 , 

so the third term in (2.1) is zero. 

With these specifications our model is a system of N point-scatterers 
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between which a single sphere of radius a is moving. Alternatively the 

model can be looked at as being a system of N possibly overlapping 

scatterers of radius a with one moving point-particle. The system is 

enclosed in a d-dimensional box of volume Q.. Instead of the density of 

* d 
scatterers n = N/S2, the reduced density n = no will be used, which is 

dimensionless. Strictly speaking, it is necessary for the analysis below 

to take the thermodynamic limit (N -> •» and fl -> •», keeping n fixed) . 

The diffusion coefficient of the moving particle is the quantity 

of most interest in this study. The relation between the diffusion co-

efficient D at a certain temperature T and the velocity autocorrelation 

function reads 

D = ̂  ƒ dt <v(0). v(t)> , (2.4) 
i a Q i 

where v(t) denotes the velocity of the moving particle at time t and the 

average <..> is a canonical average over all distributions of the 

scatterers and of the moving particle (with temperature T ) . One can 

write (2.4) in more detail, 

1 <» N N ->- r N •, •* 
D = - ƒ dt/dx/dR p(x,R ) v. {exp tL(x,R )} V , (2.5) 

N 
making use of the Liouville operator L(x,R ) defined by 

{exp tL(x,R )} X = x(t), x(0) = X , (2.6) 

and the canonical distribution function given by 

p(x,R^) = {exp -BH(X,R") l/Zdx/dR^ exp -BH(X,R'^) , (2.7) 

with B = 1/kT, k being Boltzmann's constant. 

The absolute value v of the velocity of the moving particle is a 

constant of motion. Therefore the average over the Maxwell-Boltzmann 

distribution v' (v), needed to obtain results at a given temperature T, 

does not interfere with the spatial averages. Denoting by <..> the 
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average over the spatial coordinates only, we find for the average at 

fixed temperature T: 

<v(0) . v(t)>^ = /dv .̂ (̂v) <v(0). v(t)> , (2.8) 

where in the average on the right-hand side the absolute value v of the 

velocity of the moving particle is kept fixed. Apart from a trivial fac-

tor V , the velocity dependence of <v(0). v(t)> appears only in the form 

of a scale factor in the time dependence. Thus we may write 

<v(0). v(t)> = v^ <ii(.vt/a) , (2.9) 

where a factor a is included to define a reduced time 

t* = vt/a . (2.10) 

Inserting (2.8) and (2.9) into (2.4) and using t as an integration va-

riable one finds 

For our purpose it is more convenient to use a diffusion coefficient D 

for a fixed velocity v,for which one easily obtains 

D = - ƒ dt <v(0) . v(t)> = — ƒ dt* 4j(t*) . (2.12) 
'̂  0 ^ 0 , 

Another useful scaling quantity is the Boltzmann mean free time x, 

which will be discussed in detail in section 2.3. Since the scatterers 

are point-particles the collision rate V, the number of collisions per 

unit time, is easily calculated. One obtains for its inverse,!, the reduced 

mean free time T* = vi/a, the expression 

T* = 1/a^n* , • (2.13) 
d 
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where a is the reduced cross section, given by a = 1, a = 2 and 

a = IT. Defining a reduced time s = t*/T* and subsequently a reduced 

velocity autocorrelation function (j) (s) = i()(t*), we find from (2.12) the 

reduced diffusion coefficient 

D/va = — ƒ" ds (|)(s) . (2.14) 
'^ 0 

From a numerical point of view it may be convenient to calculate 

alternatively the diffusion coefficient from the slope of the mean 

square displacement at long times: 

D/va= lim g 4 ^ , (2.15) 
2d ds 

where 

A(s) = <[q(s) - q(0)]^>/a^ , (2.16) 

q(s) being the position of the moving particle at time s. 

2.2. Density expansion 

2.2.1. Outline of the expansion method 

The scheme for the density expansion of the diffusion coefficient 

(or rather of its inverse) has been given in detail by Van Leeuwen and 
2 1) Weyland ' for the two- and three-dimensional Lorentz gas of spherical 

particles. It can be summarized as follows. First one performs an Ursell 
N 

expansion on the time-evolution operator exp tL(x,R ) in eq. (2.5) . 

This already gives a density expansion for the velocity autocorrelation 

function 

*(t*) = 1 + J i n*^ \'-^*^ ' '̂ •̂ '̂ ^ 
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where the coefficient B„(t*) denotes the contribution of the Jl-particle 

Ursell operator. Unfortunately, the coefficient B„(t ) increases with time 

as t* . Therefore the time integral over these terms diverges for t* -> «>. 

This is not surprising, since a density expansion for the diffusion co-

efficient itself does not exist, the diffusion coefficient becoming 

larger and larger the more dilute the system of scatterers is. Therefore 

one should rather aim at a density expansion for the inverse diffusion 

coefficient. 

For that purpose it is convenient to study the Laplace transform 

i()(z*) of the velocity autocorrelation function ijj(t*): 

ijj(z*) = ƒ e iiit*) dt* . (2.18) 
0 

According to (2.12) D/va is related to I(J (z*) as 

D/va = lim -i>(z*) , (2.19) 
z*->0 '^ 

where we have deliberately used the limit z* ->• 0 notation in order to 

deal with anticipated long-time divergencies, which demonstrate them-

selves in singular small z* behaviour. From (2.5) and (2.19) the 

following formal expression for \p {z*) can be obtained: 

<p{z*) = v~^ /dq/dR^ p(q,R") V . [z - L(x,R^)]~"^ V , (2.20) 

->• N 
where p(q,R ) is the microcanonical distribution function, which is 

suitable for obtaining spatial averages at fixed v. The Laplace variable 

z conjugated to t is z = z* v/a. In the extreme dilute limit one has 

L(x,R ) V = V and therefore ip (z*) diverges as z* . Thus \p(z*) is written 

iP(z*) = [ z* + Y(z*)] ^ , (2.21) 

where Y(Z*) incorporates the co l l i s i on e f f e c t s . 
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This quantity Y(Z*) can be expanded in the density, 

Y(Z*) = ^l^ n*^ >'ji'̂ *' • '2.22) 

2.1) 
A complete treatment " gives for the first few y (z*) the following re-
sults : 

Y^(Z*) = - Z B^(Z*) 

Y2(Z*) = - Z [ 62(2*) - Bj(z*)] 

Y3(Z*) = - Z [B3(z*) - 2B2(z*) B^(z*) + B^(z*)] . (2.23) 

The function B.(z*) is related to the Jl-particle Ursell operator, being 

equal to the product of the Laplace transform of B.(t ) (2.17) and a 

factor z - L(x), where L(x) is the Liouville operator in the case of free 

streaming. 

The original hope was that the y (z*) would behave well for z* ->• 0 

such that eq. (2.22) implies a series expansion for va/D. The earlier 

mentioned divergencies '̂ t̂* exhibit themselves as singularities '̂ 'Z* 

in the B„(z*) . As (2.23) indicates, the relation between Y»(2*) and the 

B.(z*) is such that the dominant singularities are subtracted and then 

Y„ (z*) possibly stays finite for z* ->- 0. Thus one would obtain a power 

CO P 

va/D = ^l^ n*" Yĵ (O) . (2.24) 

However, this subtraction mechanism does not work, since also other 

singularities than the dominant ones occur. As will be shown in the 

following sections, the density expansion turns out to be in two dimen-

sions 

va/D = c^n* + c'n* In n* + c n*^ + c"n* (In n*)^ + ... (2.25) 
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with 

ĉ  = i^, c' = - |i, c^ = - 4.68, c'^ = 24.10, (2.26) 

and in three dimensions 

n^ 4- "K ' n"̂  1 n n"^ va/D = b n* + b n* + b'n* In n* + ... (2.27) 

with 

bĵ  = 3TT , b2 = 19.05 , b^ = 0.o45 . (2.28) 

2.2.2. First few expansion coefficients 

The calculation of c,, c', b , b and b' will now be outlined, as 

performed by Van Leeuwen and Weyland2 • ̂  ' 2.2) _ .jĵg function B„(z*), 

introduced in (2.23), is defined in terms of the usual reduced density 
-+ i, i. 

distribution function g(q,R ) and the collision operator B (x,R ) as 

-> Jl 
Bjĵ (z*) = a"̂ '̂  ̂  . / ^ g(q,R^ B^(x,R^ V , (2.29) 

V 

i 
where B (x,R ) is proportional to the Laplace transform of the Ursell 

operator of the moving particle and Jl scatterers. To give an example, the 

so-called binary kernel B (x,R.), which involves only one scatterer, 

is defined as 

-+ oo —2t ^ 

B (x,R.) = ƒ dt e [exp tL(x,R.) - exp tL(x)] [z - L(x)] , (2.30) 
Z 1 Q 1 

->-
Two contributions can be recognized in the binary kernel B (x,R.): one 

r ">• ' 

due to a real collision, B (x,R.), corresponding to the two-particle 
operator exp tL(x,S.), and the other due to a virtual collision, 
V 

B (x,R.), corresponding to the free streaming operator exp tL(x) . One 
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has obviously 

B (x,R.) = B^(x,R.) - B^(X,R.) . (2.31) 
Z 1 Z 1 Z 1 

To evaluate the coefficients Y,(2*) it is necessary, for £ 5- 2, to 
Jl 

introduce the binary collision expansion. By this expansion B (x,R ) is 

expressed as an iterated sum over products of the binary kernel, B (x,R.). 

This means that the generated collision sequences are characterized by 

the number of collisions that the moving particJ.e suffers from a certain 

number of scatterers. One has in particular for B^(2*): 

6.,(z*) = .L e„ . (z*) , (2.32) 
2 ]=2 2,3 

where in B.-, . (z*) the first subscript denotes the number of scatterers 
2, D 

involved and the second one the number of binary kernels, i.e. the number 

of collisions. 

Furthermore it is useful to divide the contributions in 'dynamical' 

and 'statistical' ones: 

Bj^(z*) = BJ^(2*) + 6̂ ''(2*) , (2.33) 

with the def in i t ions 

->• i 
6 / ( z * ) = a -^ • f —TV B (x,R )v 

X, 2 J l ; z 

V 

-> i 

B^^(z*) = a~^^ ^ . ƒ ^ [ g ( q , R S - 1] B^(x,R^v . (2.34) 
V 

The statistical (more complicated) part is defined such that it is zero 

for large distances between the particles. The motivation for this 

division is that possible divergencies can only originate from contri-

butions at asymptotically large distances and therefore will occur do-

minantly in the (relatively simple) dynamical part. 

For the calculation of Y,(Z*), see (2.23), there is no need for the 

binary collision expansion. In the limit of z* ->• 0 there is no contri-
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st 
bution from 3 (z*), since this quantity remains finite in this limit due 

to the factor [g(q,R) - 1] which is zero for large distances. The dyna-

mical part B. (Z*) is easily evaluated and substitution in (2.23) leads 

to 

Yf (2*) = 
8/3 for d = 2 

for d = 3 

(2.35) 

I n s p e c t i n g t h e e x p r e s s i o n (2.23) for Y O ( 2 * ) , we observe t h a t c o n t r i -

b u t i o n s a r i s e from bo th B.(z*) and B , ( z * ) . The f i r s t c o n t r i b u t i o n 6 (z*) 

t h e dynamical t w o - s c a t t e r e r s t w o - c o l l i s i o n s c o n t r i b u t i o n , has t h e p r o -

p e r t y 

2,2 
(z*) [ B ? ^ ( Z * ) ] ( 2 . 3 6 ) 

because the two collisions occur at two independent scatterers (and no 

statistics is involved). Therefore both the singular terms of (2.36) 

cancel in (2.23), as was indicated in the last section. The first non-

vanishing collision sequence appears through B„ -,(z*), where the moving 
2 , 3 

p a r t i c l e c o l l i d e s wi th a f i r s t s c a t t e r e r , then wi th a second s c a t t e r e r 

and again w i t h t h e f i r s t one (see f i g . 2 . 1 ) . This p r o c e s s i s d i v e r g e n t i n 

Fig. 2.1. Collision sequence corresponding to 6„ v('3*Jj the first and 
A, 6 

the last collision chosen to be real. 

the two-dimensional case for z* -> 0 and leads to 
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Y2^3<^*' = - I" (|)̂  In z* + 0(1) for d = 2 . (2.37) 

The second suffix of y. .(z*) has the same meaning as the one of B„ .(z*) 
'1,3 ^ i,j 

(2.32) and counts the number of binary collision operators involved in 

the diagram. 

In order to convert the power series in the density n*, which di-

verges with z* ̂  0, into a convergent series, one performs a renorrnali-

zation summation. In the case mentioned above, Y, T(Z*)/ which is the 

lowest order ring diagram, one sums over all the higher-order ring 

diagrams Yn j ,[z*] and obtains the so-called ring sum Y (z*): 

Y,(2*) = J2"^'^'!J1.1<^*^ • '2.38) 

This sum is hard to do in general, but fortunately the main interest is 

in the n* -* 0 behaviour. As a general guide-line for renormalization, 

which is also of computational value, one can use the following receipt. 

Take a diagram, e.g. YO -)(2*), where all collisions are real (B (x,R.)), 
' -> 

except the first and the last one (B (x,R,)), and dress it with all 
z 1 

V ->-
possible virtual collisions (B (x,R,)). As a first approximation the 

contribution of such a sum is obtained by replacing the parameter z* 

by z* + a n * (see (2.13) for the definition of a,). Then one may take 

the limit z* ̂  0 and one sees that a In z* in the unrenormalized con-

tribution is replaced by a In n* in the renormalized diagram contribution, 

called Y,'o (2*). Along these lines the regular contributions can also be 

obtained, though often with considerable more effort. Weyland and 
2 .2) 

Van Leeuwen " obtained for the ring sum Y (2*) in this way 

Y^(0) = - ̂  (j)2 n*2 In n* + 0(n*^) for d = 2 . (2.39) 

In the three-dimensional case Y^fz*) is finite. Of the dynamical 
dy dy 

terms only Y, ,(0) and Y^^C^) have been evaluated: 
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^2^3^°' = TT̂  (1/3 + 4TT^/105) 

^2^4'°' " " °"^^ - °'°^ 

for d = 3 . (2.40) 

Because of the rapid decrease in the contributions of diagrams with an 
2 .2) 

increasing number of collisions and the same number of scatterers " , 

it was argued by Van Leeuwen and Weyland that the contribution from 

higher-order terms would only amount to a few percent. The statistical 

terms are all zero to lowest order in the density for our case of point-

scatterers . 

The calculation of Y-,(2*) does yield a divergent result in three 

dimensions. The responsible diagrams are YO ,1(2*) and YT j-(2*) . Their 

contributions amount to 

3 
In z* + 0(1), 

for d = 3 . (2.41) 

^3^4*^*' = -^ In 2* + 0(1), 

Y'^^. (z*) = - [77̂ /4 - 0.215] In z* + 0(1) 
3,5 

It is clear from (2.41) that it will not suffice to sum over the ring 

diagrams Y (Z*) only to remove these divergencies, but that one also 

has to sum over a special class of diagrams Y (2*) corresponding to 
•. s 

Y, i-(2*). The result of these sums reads 
3 / -> 

Y (0) + Y (0) = 0.215 n*'̂  In n* + 0 (n*'') . (2.42) 
r s 

2.2.3. Higher-order regular contributions in two dimensions 

For the comparison of the computer-experiment results with the 

diffusion coefficient obtained from the density expansion, which com-

parison will be performed mainly for the two-dimensional case, it is 

convenient to know the contributions from terms next to the first 
„2 

singular one. In this section the diagrams of order n* will be dis-
cussed and their contributions will be given. There are four sources 
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*2 
of regular contributions of order n'' : 

1) lim YT''^^(0) , = -3.572, 
n* -^ 0 2,3 regular 

2) lim I3 n^'-^N-^^^ (0)^1.020, 
" " ° (2.43) 

Ad 1) This contribution results from a more complete calculation of 

a part of the ring sum Y (0)/ see (2.38) and (2.39). The logarithmic 

term in (2.39) is due to the renormalized diagram Y^'^ (0)- This re-

normalized diagram also gives a regular contribution of order n* , in the 

low-density limit. The calculation is complicated and contains a serie_ 

expansion in terms of Bessel functions. The first term in this expansion 

can be obtained analytically and yields the logarithmic term and a regular 

contribution. The other terms in this expansion, all regular, have to be 

computed numerically. The series converges fast. The first seven terms 

have been computed to obtain the above mentioned result, the next six 
-4 

terms would contribute by an amount of the order of 10 

Ad 2) The other part of the ring sum contains renormalized ring 

diagrams of higher order, Yn'o , with Jl ï. 3. At first sight it may be 

surprising that diagrams with more than two scatterers do contribute to 

order n* . Indeed the unrenormalized diagrams Yo 5 contribute to order 
Jl, Jl+1 

n* , but the renormalization leads to cancellation of Jl - 2 powers of the 

density. For the calculation it is convenient to split the sum over the 

higher-order ring diagrams into two parts. One sum converges slowly, 

but fortunately can be done analytically, giving a contribution of 

64(*5 - l/ïï)/9. The other sum converges rapidly, successive terms de-

creasing by about a factor of ten. The result obtained is: 

-0.2724 + 0.00005. 
dy 

Ad 3) This infinite number of diagrams, y (0) , for Jl >- 4, is 
generated by the binary collision expansion, see (2.32). Together they 
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represent all possible collision sequences between the moving particle 

and two scatterers only, with the total number of collisions >. 4. They 

give a non-zero contribution only when all the collisions are real, ex-

cept the first and the last collision. No diagram could be reduced further 

than to a three-dimensional integral. These integrals have been computed 

numerically. For even Jl the diagrams appear to give negative and for odd 

Jl positive contributions. After 20 terms the absolute value of the terms 

is reduced to 0.1% of the first term. The sum of two succeeding terms, 

of opposite sign, is even smaller. The sum of terms between 20 and 40 

indeed appears to be negligible. The succeeding ones will be even more so, 

especially because the accuracy of the numerical integration of the first 

terms is not much better than one percent. 
2 

Ad 4) This last contribution of order i* comes from a class of dia-
grams closely related to the renormalized diagram y ' . In the renorma-

Fig. 2.2. Two diagrams of the special alass^ the first and the last 

collisions chosen to be. real. 
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lization procedure diagrams are 'dressed' with an arbitrary number of 

intermediate scatterers, undergoing virtual collisions only. It has been 

argued by Weyland and Van Leeuwen " that the ring diagram Y.-,% supplied 

with intermediate scatterers hit twice virtually gives rise to a special 

class contributing in qualitatively the same way as Y,'-, itself. The two 

most simple diagrams out of this special class are shown in fig. 2.2. 
r ,dy 

Taking YO -T and the special class together one arrives at the same lo-

garithmic term as given in (2.39). The regular contribution of the spe-

cial class is easily obtained from the numerical integration of a two-

dimensional integral. 

2.2.4. Higher-order singular contributions in two dimensions 

The most divergent part of Y-2(0) , which gives rise to *5C"(ln n*) 

in the low-density limit after renormalization, consists of quite a 

number of diagrams. They are listed together with their respective 

contributions in table 2.1. The first diagram in table 2.1 is shown in 

fig. 2.3 as an example. Similarly to (2.37) only the 'dynamical' part of 

the diagrams lead to a density dependence of this kind. It should be noted 

that B. is a short-hand notation for B (x,R.). The binary collision 
1 z 1 

->-
operator B (x,R.) is defined in (2.30) and its real and virtual parts, 

B^(x,R.) andB^(x,R.), in (2.31) 
z 1 z 1 

Fig. 2.2. The diagram B^ B^ B^ B^ B 

the first and the last collision chosen to be real. 
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C o n t r i b u t i o n 

( 4 / 3 ) ^ [ ( 8 / 3 ) - 2] 

( 4 / 3 ) 2 2 

( 4 / 3 ) 2 1/3 

( 4 / 3 ) 2 1/3 

- ( 4 / 3 ) 2 ^^2 

( 4 / 3 ) 2 ^^2 

0 

0 

( 4 / 3 ) 2 

( 4 / 3 ) 2 

( 4 / 3 ) 2 

( 4 / 3 ) 2 

( 4 / 3 ) 2 [ 3 / 1 6 - 1] 

( 4 / 3 ) 2 [ 3 / 1 6 - 1] 

Table 2.1. Diagrams contributing to hc'ldn n*) 
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2.2.5. Velocity autocorrelation function 

For the analysis of the velocity autocorrelation function it is 

convenient to have an expression correct to lowest order in the density, 

the Boltzmann approximation. This can be easily obtained by substituting 

(2.35) into (2.21), leading to 

exp (- 8 n*t*/3) for d = 2 

exp (- TT n*t*) for d = 3 

iiJ„(t*) = (2.44) 
B 

Reducing the time t* with respect to the Boltzmann mean free time T*, this 

gives 

exp - 4s/3 for d = 2 

<J)„(s) = (2.45) 

exp - s for d = 3 

The main interest in the velocity autocorrelation function itself lies in 

its behaviour for long times. On the basis of kinetic theory Ernst and 
2.3) 

Weyland derived the asymptc 

lation function for long times: 

2.3) 
Weyland derived the asymptotic behaviour of the velocity autooorre 

A ' ^ > = 

* / 2 

- n*/TT s 
3_ 5_ 

- (3TI)2 n * 2 / l 6 s 2 

for d = 2 

for d = 3 

(2.46) 

The results hold to lowest order in the density and originate from the 

ring diagrams (which go beyond the Boltzmann approximation). They differ 

from the results for fluids with moving particles only ((|) (s) "^ s ) 

by the fact that the long-time tail has a negative sign and contains an 

additional factor s ". This also means that it will be possible to inte-
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grate the velocity autocorrelation function up to the infinitely long 

times, in order to obtain the diffusion coefficient. 

2.3. Free-time distribution 

The subject of this section is not essential for the main objective 

of this thesis: the density dependence of diffusion. Apart from the fact 

that the Boltzmann mean free time is a useful scaling quantity, the cal-

culation of the distribution of free times and the mean free time has 

been undertaken to provide a check on the machine calculations. Initially 

it was thought that the free-time distribution could be calculated exact-
2.4) 

ly . However, the experimental result turns out to differ from the 

theoretical result. As will be shown in this section, this can be attri-

buted to complications in the theoretical concepts involved. 

For the first free time, the distribution and the mean can be 
N 

easily derived. The first free time t.(x,R ) is defined as the time 

until the first collision takes place in a configuration of N scatterers 
N 
R , the initial position and momentum of the moving particle being spe-

-y ->-
cified by x = (p,q) . The probability density P., (t) for finding a t = t 

is easily expressed in terms of the Dirac 6-function: 

Pĵ (t) = < 6 {t^(x,R^) - t} >^ ^N , (2.47) 

where the average has to be taken over all allowed points in phase space 

on the energy surface corresponding to velocity v. It is convenient for the 

derivation to introduce the quantity 

A^ (t) = ƒ P„(t') dt' , (2.48) 

which is a measure for finding a t . > t. Performing the time integral in 

(2.48) after substitution of (2.47) and writing the ensemble average 

explicitly one has 
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A (t) = ƒ..ƒ dxdR^ H{t, (X,R") - t} / ƒ..ƒ dxdR*̂  , (2.49) 

where H is the Heaviside function (H(t) = 0 for t < 0, H{t) = 1 for t 5. 0) 

and the subscript v denotes that the integration over velocity space has 

to be performed at constant v. The integrand in the numerator is only 

different from zero when none of the scatterers is in a volume of base 

a a and height vt attached to the moving particle (again: a. = 1 , 

a„ = 2 and a., = TT) . If the volume of the moving particle H (fl = 2a 
2 3 3 m m 
for d = 1 , ÏÏ = ïïG for d = 2 and ÏÏ = 47Ta /3 for d = 3) is taken into 

m m 
account by introducing a corrected vo.lume Ü' = Ü - ü , one obtains by 

m 
performing the integrations 

d-1 N N 
A„(t) = (fi' - vta^a ) / a' . (2.50) 
N d 

Using the Boltzmann mean free time T = (nva a ) or rather the 

Boltzmann mean free time for a system of N scatterers 

T̂ , = T(1 - nn /N) , (2.51) 
N m 

eq. (2.50) can be rewritten as 

A^(t) = (1 - t/T^N)" . (2.52) 

By differentiation P., (t) is obtained 

P̂ ,(t) = T"/ (1 - t/T N)^"^ (2.53) 

N N N 
and in the limit of an infinite system one has 

P(t) = lim Pj,(t) = T~ exp (-t/T) . (2.54) 
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By taking the first moment of this distribution function one finds that 

the average of the first free time is equal to the Boltzmann mean free 

time: 

lim <t > N = T . (2.55) 
1 x,R 

N-x» 

For the distribution of free times, considering now the free times after 

the first one as well, the situation is more complicated. For the one-

2.5) 

dimensional case Wood derived an explicit expression for the distri-

bution of free times. This is not a pure exponential and the mean free 

time deviates from the Boltzmann mean free time by a factor two. In 

appendix A the joint distribution of the first and the second free time 

is calculated for the two-dimensional case. Here too, the distribution 

of the second free time is not exponential and the average second free time 

deviates from the Boltzmann value. 
2 .4) 

In a previous paper ' it has been derived that there is a simple 

connection between the distribution of the first free time and that of 

the free times in general. However, this requires a special way of taking 

averages over different configurations. It is unfeasable to determine the 

free-time distribution by calculating the third-, fourth-, etc. free-time 

distribution and taking the average, in view of the complexity of the 

second-free-time distribution. Below a weighted distribution function of 

free times will be derived having exact correspondence with the (exponent-

ial) distribution of first free times. 
N 

Let M^(t;x,R )dt be defined as the number of free times between t and 

t + dt when the moving particle is followed for a time T, starting at x 
N in a configuration of scatterers R . Since each of the free times larger 

than t on the trajectory contains one first free time of value t, one 

has the equality 

ƒ M (t";x,R^)dt" = f"^ 5(t {x(t') ,R'^} - t)dt' . (2.56) 
t 0 ^ 
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t. [x(t').RNj 

Fig. 2.4. The first free time t.. as a function of the trajectory time t'. 

The discontinuities are caused by collisions. Each dot repre-

sents a free time. Each free time larger than t contains one 

first free time equal to t. 

This is illustrated in fig. 2.4, where it should be noted that each value 

x(t'), on the trajectory, is a valid starting point for a first free time. 

The integration from 0 to T on the right-hand side is enclosed in 
N 

M,̂ (t";x,R ) by definition. Furthermore x(t') is a dynamical variable, 
^- -> -i-

x = (p,q), with the momentum p changing discontinuously due to collisions 

and q changing continuously with time because of free streaming. 

We want to make use of ergodicity but care must be taken because of 
N 

the occurrence of pockets. Let a pocket in a configuration R be defined 
as a region which is enclosed on all sides by scatterers (in the picture 

that the scatterers are overlapping particles of radius a and the moving 
N 

particle is a point-particle). In a configuration R without pockets, 

ensemble and time averages are equal: 

<6(t^{x,R^} - t)>^ = lim ^ /'^6(t^{x(t') ,R^} - t) dt' 
T-K» 0 

(2.57) 

where <...> denotes the average over all possible x, keeping |p| fixed. 

In a configuration with pockets this equality holds for each pocket 
N 

separately. The average over all configurations R , to be taken below, 

has to be extended by an average over all pockets in that case. Since 
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this aspect merely complicates the notation, it will not be taken into 

account in the following. 

Corresponding to P„(t) a distribution function of first free times 
N 

for one configuration can be defined: P(t;R ). From an equation similar 

to (2.47), 

P(t;R") = <6(t^{x,R'^} - t)>^ , (2.58) 

one finds with (2.56) and (2.57) 

N 1 <» N 
P(t;R ) = lim - ƒ M (t";x,R )dt" . (2.59) 

T-x» t 

In the computer experiment a histogram is obtained which gives the 
N 

relative frequency m̂  (t ;x,R ) in interval k: 

m^(tj^;x,R") = [N^(X,R'^) (tj^-tj^_^)rV^k M^(t";x,R'^)dt" . (2.60) 

Vl 
N 

Here N (x,R ) is the number of collisions occurring on the trajectory and 

the result is made independent of the width of the interval, (t, -t ,) , 
N 

by dividing by the width. The mean free time T (x,R ) of a trajectory in 
N 

a configuration R , the moving particle being followed for a time T 

starting at x, is defined by the relation 

T^(x,R^) = T/N^(x,R^) . (2.61) 

Elimination of M,^(t";x,R ) from (2.59) and (2.60) gives 

lim m^(tj^;X,R'^)/T^(x,R") =[P(t^_^;R") - P^ (tĵ  ; R^ ] / (tĵ -tĵ _̂  ) . (2.62) 
T-x» 

The average over all possible configurations is 

lim m^(tj^;x,R^/T^(x,R")>j^N = [ P N ( \ _ I ) - ^N'^k* ̂  ̂ ' \ ~ V l ̂  " ^2-63) 

It should be noted that pockets can be taken into account by including 
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an average over x on the left-hand side. An explicit expression for the 

right-hand side follows from substitution of (2.5 3) or, in the limit N-><», 

of (2.54). Thus the experimental (measurable) left-hand side of eq. (2.63) 

should be equal to the theoretical right-hand side (2.63). 

Some additional remarks should be made regarding the mean free time. 

For the derivation of (2.13) the expression for the collision rate T was 

inverted to give the Boltzmann mean free time. Because the scatterers are 

point-particles, this was originally believed to be the correct mean free 

time. As will be shown in chapter 4 the experimental mean free time shows 

significant deviations from this expression at high densities.it was point-
2 5) ed out by Wood " , that the problem arises because averaging and inversion 

are non-commuting operations and for higher densities this apparently 

demonstrates itself. So one cannot expect in general that the average, 

over different configurations, of the mean free time per configuration 

(inverse collision rate) is equal to the mean free time calculated by 

inverting the average collision rate. More explicitly, one can write for 

the first average T : 

_. N -1 " -1 
T = N l^ T/N^(a) = T N 2:? N^ (a) , (2.64) 
e c a = l T c a = l T 

N 
denoting different configurations (x,R ) by a and averaging over N con-
figurations. The correct average T' is given by 

_i N _i N -1 '̂  
T' = N Z? T / N I^ N (a) = T / N if N (a) . (2.65) 
e c a = l c a = l T c a=l T 

The same problem is met in averaging the distribution of free times. 

Analogous to (2.64) a straightforward average, q (s ), over configurations 

can be defined in terms of the normalized distribution per configuration 

\(s^;a) : 

-1 ^ 
q (s, ) = N l": m^(s, ;a) . (2.66) 
e k c a=l T k 

Analogous to (2.65) an alternative average q'(s ) can be defined 

http://densities.it
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N N 
q' (s, ) = l": m^{s.;a)N{a)/ Z^ N^(a) = 
e k a=l T k T a=l T 

N 
= (T'/T) N"^ I^ m (S ;a) N (a) . '2.67) 

e c a=l i K i 

It is easily verified that the alternative average over the distributions 

is in correspondence with the left-hand side of (2.63) and only differs 

from it by a factor T'. e 

It is worth mentioning here how the alternative average affects 

the results for the one-dimensional system. In the first place it yields 

the correct Boltzmann value for the mean free time. Secondly it gives 

a pure exponential behaviour for the free-time distribution. 

2.4. Finite-size effects 

One of the main concerns in computer experiments simulating infinite 

systems is always the size of the system, which is here determined by 

the number of scatterers N. The N-dependence can rarely be analysed 

rigorously and practically always it has to be done experimentally. The 

results of such an analysis will be discussed in section 4.3. Yet, it 

would be very convenient to have beforehand an estimate of the N-dependence 

as a function of the density. 

The clearest defect a small system can show is that the moving-part-

icle passes through the system without undergoing collisions. By the 

application of periodic boundary conditions this will partially be re-

medied, but not completely because in some cases the moving particle may 

continue to walk through the system without collisions (channelling). So 

the number of free times larger than the time t*, needed by the moving 
L 

particle to travel across the system, should be kept small. 

Let us assume that the free-time distribution is identical to the 

distribution of first free times, eq. (2.54), which is a reasonable 

approximation for long times as follows from the appendix and the experi-

mental results. Then, the fraction f of the free times larger than 
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l/d 
t*(=L* = Q, /a) can be computed. This gives for two and three dimensions 
L 
respectively: 

ij 

exp - 2(Nn*) for d = 2 

f = exp - t*/T* = i 2 

exp - TTN^ n*^ for d = 3 .(2.58) 

So one needs larger N for smaller densities to keep f below a certain 

value. Some of the highest values for f are for the two-dimensional 
-3 —7 

systems studied: f = 1.8 x 10 for N = 2000 and n*= 0.005, f = 7.2 x 10 

for N = 500 and n*= 0.1. For the three-dimensional case one has: f = 0.14 

for N = 100 and n*= 0.05, f = 0. lb for N = 2000 and n'*= 0.01. 

In the three-dimensional case the given values of f are rather high, 

but not all the free times contained in f lead to erroneous contributions. 

One special event that does give errors consists of successive collisions 

of the moving particle with a scatterer and one of its nearest images 

across the periodic boundary. For this situation a geometrical factor can 

be calculated, determined by the angles under which a scatterer sees its 

periodic images. Multiplication of f with this geometrical factor gives 

the probability that this special event takes place. Assuming a random 

orientation of the velocity after the first collision, one finds for the 

geometrical factor f in the two-dimensional case: f = 2 x 10 for 
g _2 ^ 

N = 2000, n*= 0.005 and f = 2 x 10 for N = 500, n*= 0.1. The product 
g 

of f and f gives an extremely small probability for this special event in 
g 

both situations. In three dimensions one finds for the geometrical factor: 

f = 1 X 10~ for N = 100, n*= 0.05 and f = 4 x lo" for N = 2000, 
g g 

n*= 0.01. 

Other events like travelling repeatedly across the system without 

collisions are not so easily handled. The results in section 4.3 indicate 

that their influence is dominant. However, the most important result of 

this section is that once it has been established that within a given 

accuracy a system is large enough for a certain density, it will be the 

more so for higher densities. 
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3. METHOD OF COMPUTATION 

3.1. Monte Carlo method 

In the computer experiment one has to simulate for a given density 

n* an infinite system of point-scatterers with one moving particle of 

radius a. The trajectory of the moving particle has to be computed, 

starting from a given position with given velocity, and the average over 

all possible initial conditions of the moving particle has to be per-

formed. This has been approximated by generating many different confi-

gurations of a finite number of scatterers N and by computing the traject-

ory of the moving particle in each configuration for one initial condition. 

The number N should be large enough to make finite-size effects sufficient-

ly small. 

Since the scatterers are point-particles, the configurations can be 

obtained from a crude Monte Carlo method: the coordinates should be chosen 

from random numbers uniformly distributed on the interval (0, L*). This 

holds only partly for the coordinates of the moving particle since they 

should not give overlap with one of the scatterers. 
3.1) 

The (pseudo-)random number generator used is RANDU from IBM 

This is a multiplicative congruential generator, so it generates a random 

integer U. , from U. according to 
^ 1 + 1 1 ^ 

U. , = a.U. modulo M , (3.1) 
1+1 1 

where one has for the multiplier a = 65539 = 2 + 3 and for the modulus 
31 

M = 2 , the exponent being equal to the word size of the machine minus one 

sign-bit. 

Many tests on the randomness of numbers produced by random generators 
3.2) 

have been developed, see e.g. Knuth . Multiplicative congruential 
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generators for which a is of the order of vM pass quite a number of 
3.3) 

tests . The tests on uniformity and serial correlation have been 

performed by the author on the generator used here (3.1), showing random 

behaviour with high accuracy. However, congruential generators do show 

serious deviations from randomness with respect to d-tuples, being 

important for the case that consecutive (pseudo-) random numbers are 

used as coordinates in d-dimensional space. This has been found by 
3 3) 

MacLaren and Marsaglia for triples (d = 3) and this feature has been 
3 4) explained by Marsaglia by showing that 'random numbers fall mainly 

in plains'. The upper bound for the number of plains containing all 

d-tuples appears to decrease rapidly with d. Some tests sensitive in 
2 3 5) 

this respect are the r test and the test on d-dimensional uniform-
2 

ity. In the r test one computes the distribution of distances r 

occurring in a d-dimensional cu):)e between points having (pseudo-) random 

numbers as coordinates. In a test on d-dimensional uniformity the d-

dimensional cube is divided in smaller cubes (cells) and the occupation 

numbers of the cells are computed. 

The distribution of free times and the mean free time, obtained 

from the trajectory of a moving particle in a configuration of scatter-

ers can also provide a check on the randomness of a configuration. Though 

there are some problems in the theoretical expressions for these quantities 

(section 2.3), they turned out to be useful. 

For the 2-dimensional configurations the coordinates of the 

scatterers (x.,y.) have been obtained from the generator (3.1) 

consecutively: 

X. =U2._i L V M , y. =U^. L V M . (3.2) 

Although this way of generation suffers from the above-mentioned defect, 

the number of planes containing all the positions appears to be suf-

ficiently large to let the generator pass all three tests, even if the 
2 

width of the interval in the r test or the cell-size in the 2-dimensional 

uniformity test is made small (of the order of L*/100 to L*/ 1000). 

For the 3-dimensional configurations the strategy of eq (3.2) 
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X. = U., . ̂  L*/M, y. = U,. , L*/M, z. = U. . L*/M, (3.3) 
1 3i-2 i 3i-l 1 3i 

leads to configurations failing all three tests, thus being significant-

ly non-random. Another way of obtaining the coordinates from the same 

generator, 

X, = U. L*/M, y, = U^^. L V M , Z. = U2^^. L*/M, (3.4) 

turned out to give satisfactory results for all three tests. Therefore 

eq.(3.4) has been used for the generation of 3-dimensional configurations, 

see also R. Amadori 

3.2. Molecular-dynamics method. 

The subject of this section is the solution of the equation of motion 

of the moving particle in a given configuration of scatterers. In 

addition to the generation of positions (section 3.1) the initial velocity 

of the moving particle and the boundary conditions have to be specified. 

As usual in this type of computations periodic boundary conditions are 

imposed on the system. In this case they result in a model of one particle 

moving in an infinite lattice with the chosen configuration of scatterers 

as unit cell. The magnitude of the velocity is a constant of motion and 

is used as a scaling quantity. The initial direction is chosen at random. 

It follows from the hard-sphere interaction, eq. (2.2), that the 

moving particle undergoes instantaneous collisions, changing its velocity 

in direction, and that it moves freely between the collisions. The al-

gorithm for this type of motion is a simplification of the one already 
3.7) 

described by Alder and Wainwright . The relation between the velocities 
- > • - > • 

before and after a collision, v and v' respectively, reads 

v' = V - 2 (v.'a .)'a ./a , (3.5) 

where one has a, = q - R., q denoting the position of the moving particle 
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at the moment it collides with scatterer i at position R. . For the deter-
1 

mination of the moment t. of the collision between the moving particle 

starting from q(0) and scatterer i at R., assuming that the other scat-

terers do not interfere, one uses the equation 

q(0) + vt. - R. = a. . (3.6) 
1 1 1 

The solution for the time t. from this equation, which can be obtained 

after taking the square, reads 

t. = - V. (q(0)-R^)/v2 + [{ V. (q(0)-R^)/v2}2 - {(^{O)-R.)^-a^ ]/v^\'^. 

(3.7) 

This may result in (see fig. 3.1): 

1) no real roots (no collision), 

2) negative roots (collision in the past), 

3) one or two positive roots (the smallest root is the physical one). 

Fig. 2.1. Solutions of eq. (2.6). The indices correspond to the cases 

mentioned below eq. (2.7). 

-y -> 

Starting from an initial state (q(0),v) the smallest positive t. 

(i = 1, 2,..., N) determines the next collision. The particle freely 

moves for a time t,, the change in direction of the velocity due to the 

collision is computed and the procedure is repeated. The computation of 
t. for all scatterers before everv collision demands a lot of machine-time. 
1 
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However, the computing time can be reduced by considering only the scat-

terers in the neighbourhood of the moving particle. For this purpose a grid 

is imposed on the system, with a cell size that is considerably smaller 

than the volume of the system. This of course raises the problem that 

the m>oving particle could miss a collision with a scatterer lying in an 

adjacent cell. 

One way to overcome this problem is to enlarge the cells by a region 

of width a in all the coordinate-directions, thus giving the cells an 

overlapping region of width 2a. These enlarged cells can now be treated 

separately. A dummy free time is introduced which represents the time it 

takes for the moving particle to reach the boundary of its cell. If the 

moving particle does not collide with one of the scatterers of its cell 

before it crosses the boundary at some position, that position is taken 

as a new starting point and the procedure is repeated in tlie adjacent cell. 

In enlarging the cells the periodic boundary conditions have to be taken 

into account. During the motion these conditions can easily be handled 

by computing the number of the adjacent cell properly. This method has 

been used for the computations in two dimensions. 

For the 3-dimensional case this method was too extensive to program 

and therefore another method was chosen which is equally efficient. In 

that method there is no overlap between the cells. The problem of missing 

a collision is solved by considering all surrounding cells (there are 

26 of them, in three dimensions) together with the cell in which the 

moving particle is. In this cube of 27 cells a cube is defined smaller by 

an amount of a in all coordinate-directions. The smallest free time found 

within this smaller cube determines the next collision. After performing 

the collision the whole procedure is repeated, if necessary in an adjacent 

cell. If the computed next collision would have to take place outside the 

smaller cube, there is no guarantee that it is indeed the next one. The 

particle is moved to the boundary of the adjacent cell and the whole pro-

cedure is repeated. If no collision is found with any of the scatterers 

within the 27 cells, the particle is moved to the boundary of its cell and 

only a limited number of cells (9) have to be considered in the following 

step. To facilitate the handling of the periodic boundary conditions in 
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this case, the system is enlarged with a layer of a thickness of one cell 

in all coordinate-directions. 

In both methods the optimal number of cells depends upon the number 

of scatterers and also the density. In the first method the lower bound 

on the number of cells is trivial, being 1, and the minimum length of a 

cell is 2a. In the second method the lower bound on the number of cells 

is 27 and the minimum length of a cell is a. 

3.3. Correlation functions 

The numerical solution of the equation of motion results in the 
->- -y 

velocity v(s) and the position q(s) of the moving particle as a function 

of the reduced time s = t/x, measured with respect to the initial state 

of the moving particle. The correlation functions at a certain density 

are obtained as an average over N correlation sequences for one con-

figuration of scatterers and an average over the results of N configu-

rations. The normalized velocity autocorrelation function of the moving 

particle is 

Nc Nf 

*'^£' = F i r jil î i v(s.).^(s.ts^)/v2 , (3.8) 
c f 

->• 

where the dependence of v on configuration j is not indicated explicitly. 

Similarly the mean square displacement is obtained as 

Nc Nf 

'̂=Jl' = F i r jil Jl (q(s,+ŝ )-q(s.))2/a2 . (3.9) 
c f -̂  

The integer i runs from zero to a maximum value i and one has 
max 

s = hi, h being the time increment with which the correlation function 

is sampled. The starting time of correlation sequence i is s. on the 

absolute time scale. 

It saves computing time for the solution of the eauation of motion 

if the delay s. - s. _ . between two succeeding correlation sequences, 
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i - 1 and i , i s t a k e n much s m a l l e r than t h e maximum t ime hJl for which 
max 

the correlation sequence is sampled. On the other hand if one would take 

the delay as small as the time increment h, the information is still so 

much correlated that succeeding correlation sequences scarcely improve the 

statistical accuracy. The time-ilelay s.-s. , is thus to be chosen as a com-
1 1-1 

promise between minimizing the total time the moving particle is followed 

in a configuration and minimizing the number of correlation sequences needed 

to obtain a certain statistical accuracy. The value s.-s. , = h, measured 
1 1-1 3 

in units of T, has been adopted in many cases; other values being — and 1. 

In the machine program, the values of a number of correlation sequences 

at their respective s are computed at a certain time s, where £ follows 

from i = s /h = (s - s.)/h for each sequence i. One is only interested in 

values of i which satisfy the condition 0 < £ < Jl . This condition de-
max 

terraines the correlation sequences which are to be considered at time s. 
-> -> 

For each sequence the starting conditions q(s.) and v(s.) are still 

kept in memory at s. In this way of programming it saves time to have the 

time-delay s.-s. . as a multiple of h. 

Another way of computing correlation functions can be found from the 

observation that the average over i in eq. (3.8) is a discrete convolution, 
3 Q\ 

as was pointed out by Futrelle and McGinty ' . By taking discrete fourier 

transforms the number of operations can be reduced considerably, especially 

when the fast-fourier-transform (FFT) technique is used. However, for the 

low-density calculations that are our main objective, this method turned 

out to take more machine-time on comparison. The reason for this can 

easily be understood from the observation that the time-delay between two 

succeeding functions in the FFT method is inherently equal to the time 

increment h. So this method samples less efficiently than the method 

described before. Moreover there is the disadvantage that the statistical 

accuracy of the correlation function decreases for longer times. The 

situation is even worse in the case of high densities where the velocity 

autocorrelation function has a long negative tail. In the method used 

here it is possible to work with different time increments at the same 

time, a small one for the region where the function decays fast and a 

large one to sample the tail which varies slowly. An efficient choice 

for the long-time increment is the delay time, s,-s. , . 
1 1-1 
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3.4. Diffusion coefficients 

The numerical integration of the velocity autocorrelation function 

(eq. (2.14)) to obtain the 'experimental' diffusion coefficient is 

restricted in its accuracy because of the time increment h adopted and 

because of the finite time h£ for which the correlation function is 
max 

considered. The first point could be settled satisfactorily by taking 

h = 0.1 or h = 0.15. Then the error due to the size of h is smaller than 

the statistical error. In many cases, when the statistical error was not 

extremely small, h = 0.2 could be taken as well. The error due to the 

size of h could be estimated by using different integration rules, or 

alternatively by applying one integrc.tion rule for a number of values 

for h and extrapolating these results to h = 0. All results to be men-

tioned later have been obtained with Simpson's integration rule. The 

second point cannot be settled so easily, because the required value of 

I depends upon the density and hence cannot be given in general. 

The numerical differentiation of the mean square displacement has 

been replaced by a least-squares fit of a straight line, the slope of 

which is proportional to the diffusion coefficient (eq. (2.15)). The 

time increment for the mean square displacement should not be chosen too 

small since succeeding points would then be highly correlated. Values 

that have been used are h = 0.5 and h = 1. Another important value is 
Jl , the choice of which is closely related to the problem for the 
max ^ '^ 

velocity autocorrelation function: strictly speaking, the mean square 

displacement i s only a straight line after the velocity autocorrelation 

function has become zero. By omitting more and more points of the mean 

square displacement in the least-squares fit beginning at small times, one 

can find a value of s beyond which the slope does not vary outside the 

statistical accuracy. This value of s has to coincide with the time above 

which the velocity autocorrelation function is zero within the limits of 

accuracy. So one has two different, though not independent, criteria for 

the determination of Jl 
max 
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3.5. Mean free time and distribution of free times 

Most of the experimental mean free times have been computed with 

(2.64) and the standard deviations have been obtained from the differences 

with the mean value. In a few test runs the validity of the alternative 

average (2.65) has been checked. Both types of results have been compared 

with the Boltzmann mean free time. 

Also most of the average distributions of free times have been ob-

tained using the straightforward average (2.66), which reads more ex-

plicitly 

_̂  Nc , NT(a) 

%^\^ = \ ah \ ("» £̂ 1 ^»'^£ - \-l^ - «'^£ - \>^/h ' t̂ -lO» 

where s is the reduced free time (t /x) before the £ collision. H de-

notes the Heaviside function, H(s) = 0 for s < 0 and H(s) = 1 for s ̂  0, 

k runs from 1 to a maximum value k and the time interval of the histo-
max 

gram is h = s - s . The value h = 0.05, almost always used, is small 
k k—1 

enough for a detailed sampling of the distribution and is large enough 

with respect to statistics. The value k = 400 was almost always large 
max -' 

enough to cover the range of the computed free times. The alternative 

average (2.67) has been considered as well in some cases, reading 

q;(s^) = (xyT) nl' f; /^ " {H(s^ - ŝ _̂ ) - H(s^ - s^)}/h . (3.11) 

One way to analyze the obtained histograms is to compare them with 

the right-hand side of (2.63), which we denote by Q (s ) and which reads 

explicitly 

This gives in the thermodynamic limit, N -> 
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Q(Sĵ ) = exp(-Sĵ ) {exp(h) - 1 }/h . (3.13) 

Another way of studying the distribution of free times is to introduce an 

adjustable parameter r\, the inverse of the mean free time, in Qf,(s, ) or 

Q(s, ) which can take into account that the mean free time deviates from 

X or X. The functions N 

^N'^'*^^ = "̂^ (̂  - '^^k-l''^'^'^ - (1 - nSj^/N)""S/h (3.14) 

and, in the limit N ̂ - «•, 

Q(Sĵ ;n) = n exp(-nSj^) {exp(nh) - l}/h (3.15) 

are obvious generalizations of (3.12) and (3.13) respectively. 

As mentioned at the end of section 2.3 q' (s, ) differs from the left-
^e k 

hand side of eq. (2.63) by a factor x'. This difference can be easily 

accounted for by absorbing this factor in (3.14) or (3.15), giving after 

cancellation against the factor n the functions 

Qĵ (Sĵ ;n) = { (1 - ns^_^/N)^"^ - (1 - riSĵ /N)̂ "̂ }/h (3.16) 

and 

Q(Sĵ ;n) = exp(-nS|^){exp(nh) - l}/h . (3.17) 

These same functions Q., (s, ;n) and Q(s ;ri) have been used for the analysis 

of q (s, ) . Although the choice between (3.14), (3.15) and (3.16), (3.17) 

is less unique in this case, we have decided to do so, because q (s, ) 
e k 

and q' (s ) have the same dimensionality. The results justify this choice. 
A least-squares fit of Q (s ;ri) or Q(s ;r|) provides us with a value for 

N k k 
n , which is an estimate for the inverse mean free time. 
e 
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COMPUTATIONAL RESULTS 

4.1. Two-dimensional Lorentz gas 

The computations for the two-dimensional Lorentz gas have been per-

formed from very low densities, where deviations from the Boltzmann regime 

are small, up to high densities, where diffusion becomes impossible. As 

has been shown in chapter 2, the effect of finite N, the number of scat-

terers, is larger for lower densities. Therefore, in general the values of 

N used for low densities have been chosen larger than those for the higher 

densities. Since the verification of a series expansion in the density is 

the main object, the major part of machine time has been spent on the low-

density region. 

In table 4.1 the characteristic parameters and most important results 

of the molecular-dynamics computations are given. The various columns 

contain respectively 

1) the reduced density n*, 

2) the number of scatterers N, 

3) the number of configurations of scatterers N , 

4) the total number of correlation sequences N,N used in the 
^ f c 

averaging procedure, 

5) the experimental mean free time x reduced with respect to the 

Boltzmann infinite-system mean free time x, 

6) the reciprocal of the collision rate n as obtained from a 

least-squares fit of the distribution of free times, 
2 

7) the normalized x -variable resulting from the above-mentioned fit, 

8) the reduced diffusion coefficient D /va, as obtained from inte-

grating the velocity autocorrelation function. Up to the density 

n* = 0.1 this function has been computed in 100 equidistant points. 



Table 4.1. Characteristic parameters and results for the 2-dimensional Lorentz gas. 

1 

n* 

0.003 

0.004 

0.004 

0.005 

0.005 

0.010 

0.010 

0.015 

0.015 

0.020 

0.020 

0.030 

0.040 

0.050 

0.050 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

2 

N 

8000 

8000 

8000 

8000 

2000 

8000 

2000 

8000 

2000 

8000 

2000 

2000 

2000 

2000 

2000 

altc 

2000 

2000 

2000 

2000 

2000 

3 

N 
c 

800 

800 

4000 

800 

3200 

1600 

1600 

800 

1600 

1600 

1600 

400 

400 

280 

2000 

ïrnative 

400 

320 

240 

160 

160 

4 

N^N f c 

(10^) 
20 

20 

10 

20 

40 

20 

20 

10 

20 

20 

20 

5 

5 

3.5 

1 

2 

1.6 

1.2 

0.8 

0.8 

5 

X /x 
e 

0.9995(3) 

0.9993(3) 

0.9999(3) 

0.9995(3) 

1.0004(3) 

0.9997(3) 

0.9999(4) 

0.9995(4) 

1.0001(4) 

0.9995(4) 

1.0002(4) 

1.0003(5) 

0.9983(7) 

1.0005(11) 

1.0018(12) 

0.9985(11) 

0.999(1) 

0.999(1) 

0.998(2) 

0.997(2) 

0.998(2) 

6 

-1 

0.9994(3) 

0.9990(3) 

0.9997(4) 

0.9992(3) 

1.0002(3) 

0.9994(3) 

0.9999(3) 

0.9991(4) 

1.0000(3) 

0.9992(3) 

1.0000(3) 

0.9998(6) 

0.9975(5) 

0.9998(7) 

1.0003(10) 

0.9973(10) 

0.998(1) 

0.998(1) 

0.998(1) 

0.995(1) 

0.996(1) 

7 
2 

X 

1.07 

1.15 

1.15 

1.23 

1.24 

1.17 

0.95 

1.19 

0.95 

1.01 

1.07 

1.02 

0.92 

1.27 

1.09 

1.05 

1.02 

1.15 

0.97 

0.98 

1 .01 

8 

D /va e 

61.20(9) 

45.69(6) 

45.68(10) 

36.34(5) 

36.40(4) 

17.80(2) 

17.77(3) 

11 .59(2) 

11.57(2) 

8.525(13) 

8.547(13) 

5.498(16) 

3.931(11) 

3.049(10) 

3.039(16) 

2.424(13) 

2.033(12) 

1.692(10) 

1.442(11) 

1 .255(11) 

9 

s 
X 

15 

15 

15 

15 

10 

15 

10 

15 

10 

15 

10 

15 

15 

15 

20 

20 

20 

20 

20 

20 

10 

D /va 
e 

3.014(28) 

11 

s ,s 
n X 

20,100 



Table 4.1. (continued). 

1 

n* 

0 . 1 0 

0 . 1 2 

0 . 1 4 

0 . 1 6 

0 . 1 8 

0 . 2 0 

0 . 2 0 

0 . 2 0 

0 . 2 2 

0 . 2 4 

0 . 2 6 

0 . 2 8 

0 . 3 0 

0 . 4 0 

0 . 4 0 

0 . 6 0 

0 . 6 0 

0 . 8 0 

0 . 8 0 

2 

N 

500 

500 

500 

500 

500 

2000 

3 

N 
c 

200 

200 

200 

200 

200 

2000 

4 

^ f ^ c 

(10^) 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

1 

a l t e r n a t i v e 

500 

500 

500 

500 

500 

500 

2000 

200 

200 

200 

200 

200 

200 

2000 

a l t e r n a t i v e 

2000 2000 

a l t e r n a t i v e 

2000 2000 

a l t e r n a t i v e 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

1 

1 

1 

5 

T e A 

0 . 9 9 9 ( 3 ) 

1 . 0 0 4 ( 4 ) 

1 .002(4 ) 

1 . 0 0 2 ( 7 ) 

1 . 0 0 7 ( 7 ) 

1 . 0 2 1 ( 3 ) 

0 . 9 9 4 ( 6 ) 

1 . 0 1 4 ( 5 ) 

1 . 0 1 4 ( 1 1 ) 

1 . 0 2 5 ( 8 ) 

1 . 0 2 9 ( 1 0 ) 

1 . 0 5 5 ( 1 2 ) 

1 . 0 6 6 ( 9 ) 

1 . 1 1 5 ( 5 ) 

1 . 0 1 8 ( 9 ) 

1 . 1 9 0 ( 9 ) 

1 . 0 0 0 ( 1 0 ) 

1 . 2 8 3 ( 1 3 ) 

1 . 0 1 1 ( 1 7 ) 

6 

- 1 
n 

e 

0 . 9 9 4 ( 2 ) 

1 . 0 0 0 ( 2 ) 

0 . 9 9 4 ( 2 ) 

0 . 9 9 6 ( 2 ) 

0 . 9 9 7 ( 3 ) 

1 . 0 1 6 ( 1 ) 

0 . 9 9 5 ( 1 ) 

1 . 0 0 2 ( 3 ) 

1 . 0 0 3 ( 3 ) 

1 . 0 1 4 ( 3 ) 

1 . 0 1 8 ( 3 ) 

1 . 0 3 6 ( 3 ) 

1 . 0 4 6 ( 4 ) 

1 . 0 8 9 ( 4 ) 

1 . 0 0 5 ( 2 ) 

1 . 1 4 8 ( 5 ) 

0 . 9 8 9 ( 2 ) 

1 . 2 1 1 ( 6 ) 

1 . 0 0 4 ( 2 ) 

7 

2 
X 

1 .23 

1 .08 

1 .23 

1 .09 

1.42 

1 .67 

1 .02 

2 . 0 4 

1 .21 

1 .66 

1 .22 

1 .73 

2 . 8 2 

11 

1 .64 

16 

1.41 

21 

1.17 

8 

D ^ / v a 

1 . 2 1 7 ( 2 2 ) 

0 . 9 3 4 ( 2 0 ) 

0 . 7 1 7 ( 1 4 ) 

0 . 6 0 0 ( 1 1 ) 

0 . 4 5 8 ( 7 ) 

0 . 3 8 5 ( 8 ) 

0 . 3 6 4 ( 8 ) 

0 . 3 0 8 ( 8 ) 

0 . 2 4 9 ( 6 ) 

0 . 2 0 6 ( 6 ) 

0 . 1 5 3 ( 3 ) 

0 . 1 3 9 ( 5 ) 

0 . 0 3 7 ( 3 ) 

9 

s 
X 

30 

30 

30 

30 

30 

30 

30 

45 

45 

45 

45 

45 

90 

10 

D^ /va 

1 . 2 0 7 ( 2 1 ) 

0 . 9 1 8 ( 2 8 ) 

0 . 7 0 2 ( 1 6 ) 

0 . 6 1 0 ( 1 2 ) 

0 . 4 6 2 ( 1 2 ) 

0 . 3 6 8 ( 5 ) 

0 . 3 6 5 ( 9 ) 

0 . 3 0 4 ( 8 ) 

0 . 2 4 8 ( 6 ) 

0 . 2 0 7 ( 7 ) 

0 . 1 5 6 ( 5 ) 

0 . 1 3 7 ( 5 ) 

0 . 0 4 0 ( 2 ) 

11 

s , s 
n X 

3 0 , 5 0 

3 0 , 5 0 

3 0 , 5 0 

3 0 , 5 0 

3 0 , 5 0 

3 0 , 1 0 0 

3 0 , 5 0 

4 5 , 5 0 

4 5 , 5 0 

4 5 , 5 0 

4 5 , 5 0 

4 5 , 5 0 

9 0 , 1 0 0 

^ N o t a t i o n : 0 .9995(3) = 0.9995 ± 0 .0003 ; 1.283(13) = 1.283 ± 0 . 0 1 3 . 
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Time increments of h = 0.1, 0.15 or 0.2 have been used. For den-

sities higher than n* = 0.1, in addition to the 100 points with 

h = 0.1 or 0.2 the velocity autocorrelation function has been 

computed in 80 points with a 5 times larger time increment: 

h = 0.5 or 1.0, 

9) the maximum time s up to where the velocity autocorrelation 

function has been integrated, 

the reduced diffusion coeffic; 

slope of the mean square displacement, 

the minimum time s and th n 
slope has been determined. 

10) the reduced diffusion coefficient D /va, as obtained from the 
e 

11) the minimum time s and the maximum time s between which the 
n X 

For the lines marked by the word 'alternative' in the second column, 

the same configurations of scatterers and trajectories of the moving 

particle have been used as in the preceding line to compute the alternative 

averages, x' (2.65) and q'(s ) (3.11) , instead of the straight-forward 

averages. 

For low densities up to a density n* = 0.2 it is found that x /x is 

in good agreement with the value 1, taking into account the standard 

deviation. (Reducing x with respect to x instead of x gives a negligible 

change in the numbers). For higher densities Xg/x becomes significantly 

too high. For the few cases studied at high density, x'/x does appear to 

be in agreement with the theoretical value 1. 
4.1) 

For the case of the Ehrenfest wind-tree model. Wood has also 

observed that x is a good approximation to x' for low densities and a 

bad one for high densities. His explanation for this effect is that for 

higher densities the distribution of mean free tiiaes, as obtained for 

different configurations of scatterers, becomes broader. This leads to 

larger values for the higher relative moments of the distribution and 

these become non-negligible in an expansion of x in terms of x'. More 

explicitly, one can make an expansion of the average of the inverse of 

variable t in terms of the inverse of the average of t and one obtains 
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-1 -1 f, t-<t>,-l 
<t > = <t> <{1 + ] > 

^<t>-^{l.lii^f^ - ^ i ^ i g ^ t...} . (4.1) 

The fitted values n for n have been obtained from a minimization 
^ 2 

procedure for the reduced x -variable 

2 200 - 2 2 
X^ = (1/199) Z^^^ {Q(s^;n) - %^^^)y/\ • (4.2) 

where Q(s ;n) and q (s ) are defined in (3.16) and (3.9) respectively and 

a, is the standard deviation of q (s. ) . Only the first 200 intervals of 

the distributions have been used rather than all the 400 computed ones 

because of the smaller statistical accuracy of the last 200 intervals. The 

standard deviations of n have been obtained from the variance-covariance 
e 

matrix in the fitting procedure. 
The inverted values n behave in much the same way as x /x. Of course, e • ' e 

for the so-called alternative lines in table 4.1 q'(s ), defined in (3.10), 
e K 

has been used in eq. (4.2) rather than q (s, ) . 
2 ^e k 

The reduced x -variable gives a measure for the correctness of the 
2 

fit. For the lower densities the values for x are in reasonable agreement 

with the most probable value 1, be it that they are somewhat high in 

general. For high densities the deviations from 1 are significant as 

regards the results for the straightforward average q (s ). Again for the 

alternative average q'(s ) the results are quite satisfactorily close to 1. 

In fig. 4.1 a few examples are given of the behaviour of the terms 

sum of eq. (4.2). Only the first 120 values of k are shown, giving a 

range for the reduced time s, from 0 to 6. 

As regards the alternative average x/> the major part of the values 

is situated between + 1 and - 1 as expected. For a low density, n* = 0.05, 

this also holds for the straightforward average x^- For a high density, 

n* = 0.8, large deviations from the expected behaviour are observed. 
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Fig. 4.1. Details of the 2-dimensional free-times distribution. For the low-

density case n* = 0.05 (N = 2000, N - 2000) xl is given in (a) 

and Xh in (b). For the high-density case n* = 0.8 xl is given 

in (a) and Xj. in (d). In (e) Q(sj^;'n=l) is given for reference 

to an absolute scale. The abscissa is identical in all causes. 

Qualitatively these deviations are in agreement with the differences be-

tween the free-times distributions of the first and the second free time, 

shown in fig. A.5. 

The diffusion coefficients obtained from the velocity autocorrelation 

function agree reasonably well with those from the mean square displace-

ment, as should be. For further analysis the former ones have been used. 

In case more than one value is mentioned in column 8 of table 4.1 at the 

same density, the average has been determined using weight factors pro-

portional to the inverse square of the pertinent standard deviations. 

In fig. 4.2 the inverted experimental diffusion coefficients are 

given as a function of the density. Error bars have been omitted when 

they are smaller that the dots. For low densities (up to n* = 0.1) the 

agreement with the first few terms of the density expansion (2.25) is 

very good. 
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Fig. 4.2. The experimental inverse diffusion coefficient as a function of 

the density for the 2-dimensional case (dots). The sum of the 

first four terms in the density expansion, va/D = en* + 

c'n* In n* .2 ,2 1 
+ a^n* + o'^n* (In n*) ', is presented by the line. 

For low densities the data are shown on an enlarged scale. 

va/D n* (dots) with the Bi 

(dashed line). 

Fig. 4.3. Comparison of va/Dn* (dots) with the Boltzmann term c = 16/2 

For a closer inspection of the low-density region, va/D is divided 
e 

by n* and the result is compared in fig. 4.3 with the Boltzmann value 

c^ (dashed line). For decreasing densities, va/D n* converges rather well 

towards c^ which is the leading contribution for low densities. 

Next, the Boltzmann contribution c is subtracted from va/D n* and 
••• e 

the difference is again divided by the density. The resulting data show 

a remarkable increase for n* -> 0 in fig. 4.4. The seven lowest densities 

for which the most extensive computations have been carried out show 

clearly the decrease of the first logarithmic term for increasing density. 

They indicate that the coefficient c^ is of the right order of magnitude. 

From these data it can be concluded that the density expansion of the 

inverted diffusion coefficient for the 2-dimensional Lorentz gas does 
contain a logarithmic term. 

This conclusion is also suggested by a comparison of the least-squares 

fits of either a^ln n* + a^ + o:2n*(ln n*) 2 or a + a n * + a n*2 to the 
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Fig. 4.4. Comparison of (va/D n* - c..)/n* (dots) with the most important 

logarithmic term c'ln n* (line). 

Fig. 4.5. Comparison of (va/D n* - cJ/n* - c'ln n* (dots) with the re-
e 1 ^ z 

maining terms c„ + c" n*(ln n*) ' (line). 

2 
experimental data (va/D - c n*)/n* . This has been done starting from low 

densities with an increasing number of data points, as given in fig. 4.4. 

The results for the coefficients are tabulated in table 4.2 for a few 

cases. Quantitatively, these results are not very meaningful, both because 

of the large errors for the coefficients and hence their fluctuating values 
2 

and because of large values for the x - variable, leading to values of 
2 

about 90% in the x - test (this should be 50%). The important point that 

this comparison does show is that in case one wants to describe the data 

with a power series, one needs coefficients increasing by about a factor 

of 10 with each order. 

A more appropriate numerical test on the validity of the series 

expansion (2i25) is provided by the difference of the experimental in-

verted diffusion coefficient and the predicted one, divided by the 

experimental standard deviation: x (va/D v a / D ) / a (va/D ) , where 
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Table 4.2. Least-squares fit results of either a. In n* + a. + a.j^*(ln «*;2 

.2 or a + a.n* + a„n*" to a number i of data points as given 
o 1 2 max •" '^ ° 

in fig. 4.4 starting from low densities. The errors given have 

been obtained from the variance-covariance matrix in the fitting 

procedure. 

i 
max 

6 

7 

8 

9 

10 

" o 

- 7 ( 7 ) 

- 6 ( 5 ) 

- 1 3 ( 5 ) 

- 1 3 ( 4 ) 

- 1 4 ( 4 ) 

«1 

- 9 ( 4 4 ) 

0 . 5 ( 2 9 ) 

- 4 4 ( 3 0 ) 

- 4 7 ( 2 4 ) 

- 5 3 ( 2 6 ) 

" 2 

2 1 ( 6 ) 

9 ( 3 6 ) 

6 7 ( 3 6 ) 

7 1 ( 2 8 ) 

7 9 ( 3 0 ) 

a 
o 

3 7 ( 2 ) 

3 6 ( 1 ) 

3 6 ( 3 ) 

3 4 ( 2 ) 

3 4 ( 1 ) 

^1 

(10^) 

- 8 5 ( 4 2 ) 

- 7 0 ( 1 9 ) 

- 7 4 ( 1 1 ) 

- 5 3 ( 1 2 ) 

- 4 7 ( 1 0 ) 

^2 

(10^) 

164 (153 ) 

104 (51 ) 

120 (22 ) 

6 8 ( 2 0 ) 

5 8 ( 1 4 ) 

a is the standard deviation in D /va. The absolute value of x * should D e n* 

be of order 1 and the + and - signs should be distributed at random. 

From the second column of table 4.3 it is clear that x ^j.^^^-'-^ *̂ ^̂  test 

for the values of the coefficients given in (2.26), even for low densi-

ties. The values are all negative and their amplitude is much too large. 

The deviations for higher densities are not so serious, because they can 

be accounted for by higher order terms in the series expansion. 

In fig. 4.5 the discrepancy is also illustrated, by plotting 
2 2 2 

(va/D - en* - c'n* In n*)/n* and comparing it with c + c"n*(ln n*) . 

From this figure one might prefer a larger negative value for c , say 

c_ = -8.5, than the theoretically calculated one (c. = - 4.68). From 

column 3 of table 4.3 it is seen that this gives a more satisfactory 

behaviour for x * for the lowest densities. This might justify a re-

examination of the diagrams contributing to c„ and their computation. 

For the velocity autocorrelation function at low densities, some 

examples are given in fig. 4.6 for densities up to n* = 0.02. These 

functions deviate by a small amount from the Boltzmann result (("„(s) 
B 

[see (2.45)] , therefore the difference <j) (s) - 'l>_(s) is shown. In repre-
B 

senting the data points by lines no smoothing was involved. For times 
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Table 4.2. Comparison of the experimental diffusion coefficient va/D with 
^ 2 

the series expansion (2.25): x * = (va/D - va/D)/a^(va/D ) \ 

where a„ is the standard deviation in D /va. In column 2 the 
D e 

coefficients in va/D have been chosen according to (2.26). In 

column 2 the value c„ = - 8.5 has been used rather than - 4.68. 

n* 

0.003 

0.004 

0.005 

0.010 

0.015 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

x„* 

C2= - 4 . 6 8 

- 0 .55 

- 1.79 

- 3.87 

- 7.95 

- 7.99 

-13 .94 

- 8.21 

- 5.71 

- 7.90 

- 1.73 

- 3.32 

0.18 

2 .05 

3.95 

'̂ n* 

C2= - 8 . 5 

0 .95 

0.66 

0.49 

- 0.84 

1.61-

- 1.57 

- 1.72 

2.88 

2.91 

4.48 

3.13 

7.18 

7.90 

9.86 

s > 6 an enlarged scale is used to give an idea of the influence of the 

cutoff at s = 10 or s = 15 on the values of D /va listed in column 8 of 
e 

table 4.1. For a number of points, error bars are given. It should be 

noted that for times of the order s = 10 no substantial contribution to 

the diffusion coefficient can be expected for the densities shown. 

For the investigation of the asymptotic behaviour for long times 
the function (f (s) - 4" (s) has also been used. For low densities the contri-

B 

bution due to the ring diagrams is dominant. From these diagrams the asymp-

totic expression (j) (s) has been derived [see (2.46)] . To improve thestatistics, 
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Fig. 4.6. The difference of the experimental velocity autocorrelation 

function '^(s) and the Boltzmann result ^^(s) for five of the 

low densities (lines). In drawing the lines no smoothing was 

involved. The tail for s > 6 has been given on a four times 

larger scale (dots). 

averages over the lowest-densities results up to n* = 0,02 have been taken, 

including a weight factor 1/n* (since 't',(s) is linear in the density). 

Two averages have been computed this way: one for results with time in-

crement h = 0.1 [dots in fig 4.7] and the other one with h = 0.15 [crosses] 

The resulting data are compared in fig 4.7 with <t> (s)/n* on a log-log scale 

From the comparison one can state that for times s < 9 the asymptotic be-

haviour as predicted by Ernst and Weyland has not yet set in. For larger 

times the data do not disagree with the asymptotic expression, but in 

this region the values are too small compared to the error bars to allow 

for a more specific conclusion. The time integral over <t) (s) ̂ for large 

s is finite, in contrast to the moving-hard-disks case studied by 

Alder and Wainwright 4.2) , and would contribute only a fraction to the 

diffusion coefficient for s > 10 of 3 x 10 

6 X 10~^ for n* = 0.02. 

for n* 0.005 and of 



66 

Fig. 4.7. The function i> (s) -^ (s), averaged over several densities with 

weight factor 1/n*, plotted on a log-tog scale. The dots repre-

sent the average for h = 0.1, N = 2000 and the crosses the one 

for h = 0.15, N = 8000. The straight line represents the corres-
2 

ponding asymptotic expression ^.(s)/n* = - 1/(T\S ) . 

For higher densities i> (s) is significantly different from zero even 

for s > 10. Therefore, 't'(s) has been calculated for larger values of s as 

well. In fig 4.8 i) (s) is shown for 3 densities and the tails are shown on 

an enlarged scale. In fig. 4.9 the corresponding mean square displacement 
2 

A(s) is shown. It has been multiplied by n* to arrive at a siiitable scale: 

one factor n* for the reduction of the time axis by x and a second factor 

n* for the linear term in the series expansion of va/D. It is clear that for 

higher densities one has to wait longer before A(s) becomes linear. For 

n* = 0.3 it is doubtful whether it becomes linear at all. The explanation 

is that at high densities it becomes very likely that scatterers in a 

configuration form more or less closed pockets from which the moving 

particle cannot escape or at least not within a reasonable short time. It 

has not been possible to determine the percolation limit, i.e. a critical 

density n*, above which no diffusion is possible anymore. 
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10 20 30 40 50 

Fig. 4.8. The velocity autocorrelation function i^(s) for s < 10 has the 

smallest negative value for n* - 0.1 and the largest one for 

n* = 0.2 (lines). The statistical error is slightly larger than 

the line thickness. The tail for 10 < s < 50 is given for the 

same three densities on an enlarged scale (dots). 

2 

Fig. 4.9. The reduced mean square displacement h(s)n*' for three densi-

ties starting with s = 10. The linear behaviour sets in for 

a larger time the higher the density. 

4.2. Three-dimensional Lorentz gas 

The calculations performed for the three-dimensional Lorentz gas are 

much less extensive than for the two-dimensional case. From (2.27) it can 

be derived that the evidence for logarithmic terms in the density expansion 

for the inverse diffusion coefficient is much harder to obtain in three 

dimensions than in two dimensions. Therefore, having obtained some results 

(cases with N = 100 in table 4.4) showing good agreement with the first 

two terms in the expansion it was decided to spend no more time on the 

three-dimensional case. Later on some more extensive computations (cases 

with N = 2000 in table 4.4) have been performed for the study of the non-



Table 4.4. Characteristic parameters and results for the 2-dimensional Lorentz gas 

1 

n* 

0.01 

0.05 

0.05 

0.10 

0.10 

0.15 

0.20 

0.20 

0.25 

0.30 

0.30 

0.35 

0.40 

0.40 

0.60 

0.60 

0.80 

0.80 

2 

N 

2000 

2000 

100 

2000 

100 

100 

2000 

100 

100 

2000 

100 

100 

2000 

100 

2000 

alt« 

2000 

alte 

3 

N c 

480 

100 

100 

500 

20 

20 

500 

20 

20 

500 

20 

20 

500 

20 

2000 

?rnativ( 

2000 

ïrnativé 

4 

^f^c 

(loS 

0.96 

1 

0.15 

1 

0.15 

0.15 

1 

0.15 

0.15 

1 

0.15 

0.15 

1 

0.15 

1 

:i 

1 

2 

5 

^e/^ 

0.999(1) 

1.001(2) 

1.004(5) 

0.998(1) 

0.972(7) 

0.95(1) 

1.001(2) 

1.02(2) 

0.97(2) 

1.003(2) 

1.02(2) 

1.03(3) 

1.008(3) 

1.00(3) 

1.045(6) 

0.990(8) 

1.095(8) 

0.998(8) 

6 

^N/^ 

1.000 

1.000 

0.998 

1.000 

0.996 

0.994 

1.000 

0.992 

0.990 

0.999 

0.987 

0.985 

0.999 

0.983 

0.999 

0.999 

0.998 

0.998 

7 

-1 

0.998(1) 

1.000(1) 

0.998(1) 

1.000(1) 

1.002(1) 

1.006(1) 

1.040(2) 

0.991(1) 

1.084(2) 

0.994(1) 

8 

2 
X 

1.19 

1.09 

1.23 

1.05 

1.16 

1.07 

2.66 

1 .16 

4.34 

1.06 

9 

D^/va 

10.55(11) 

1.98(2) 

2.02(7) 

0.902(8) 

0.93(3) 

0.53(2) 

0.379(4) 

0.41(3) 

0.28(1) 

0.198(2) 

0.20(1) 

0.16(1) 

0.108(2) 

0.115(5) 

0.0298(8) 

0.0102(5) 

10 

s 
X 

40 

50 

50 

60 

50 

50 

60 

50 

50 

60 

50 

50 

70 

50 

90 

90 

11 

D /va e 

10.52(10) 

1.97(2) 

2.04(6) 

0.895(7) 

0.93(3) 

0.54(2) 

0.377(4) 

0.40(3) 

0.28(1) 

0.198(2) 

0.21(1) 

0.16(1) 

0.105(2) 

0.115(5) 

0.0299(6) 

0.0101 (4) 

12 

s ,s n X 

40,100 

50,100 

45,50 

60,100 

45,50 

45,50 

60,100 

45,50 

45,50 

60,100 

45,50 

45,50 

70,100 

45,50 

90,100 

90,100 
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gaussian behaviour of Van Hove's self correlation function which can be 

related to the asymptotic behaviour of the velocity autocorrelation 
4.3) function . However the unfavorable ratio between the magnitude of 

these non-gaussian correlations and the statistical accuracy obtained 

prevented us from presenting these results here. 

In table 4.4 the results for the three-dimensional case are pre-

sented. This table has the same structure as table 4.1, except for one 

column which has been added (column 5). The values of the re.luced 

Boltzmann mean free time for a finite system, T /T, are given in this 

column, since the deviation from the infinite-system value is not 

negligible in all cases. 

At low densities, like in the two-dimensional case, x /x is in good 
e 

agreement with the theoretical value 1, or rather x /l. For high densi-

ties X /x is significantly too high, the alternative average x'/x giving 

satisfactory results. The results on the free-times distribution, 
-1 2 characterized by r) and x , confirm this behaviour for the cases the dis-
^ -1 

tribution has been determined. The fitted value n is in good agreement 
2 ® 

with X /t and x shows only large deviations from 1 for the straightfor-

ward average at high densities. 

The diffusion coefficients D /va shown in column 9 (table 4.4) have 
e 

been obtained by integrating the velocity autocorrelation function. They 

are in good agreement with the ones obtained from the mean square dis-

placement given in column 11. For the situations with N = 100 the velo-

city autocorrelation function has been determined in 100 equidistant 

points with a time increment h = 0.1 and in addition to these for larger 

times in 80 points with a time increment h = 0.5. For the situations 

with N = 2000 both the time increments have been doubled: giving h = 0.2 

and h = 1.0 respectively. It should be noted that the upper bound s 

(column 10) for n* = 0.5 and n* = 0.8 may be too small or even does not 

exist, which would mean that diffusion is not possible at these high 

densities. 

In fig. 4.10 the inverted experimental diffusion coefficients are 

given as a function of density; the dots represent results for the 

N = 2000 systems and the crosses some of the results for the N = 100 
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Fig. 4.10. The experimental inverse diffusion coefficient as a function 

of the density for the 3-dimensional case with N = 2000 (dots) 

and N - 100 (crosses). The sum of the first three terms in the 

2 3 

density expansion, va/D - b..n* + i„n* + b'n* In n*, is present-

ed by the line. For low densities the data are shown on an 

enlarged scale. 

systems. Error bars have been omitted when they were smaller than the 

symbols used. For low densities up to n* = 0.25 the agreement with the 

full line representing the first few terms of the density expansion (2.27) 

is very good. Dividing va/D by n* gives in fig. 4.11 a nice reproduction 

of the Boltzmann contribution b. = 3TT (dashed line) going to n* = 0 and 

the data agree reasonably with the remaining terms of the series expansion 
2 

b2n* -I- b^n* In n*(full line) . Substracting the Boltzmann contribution and 

dividing once more by the density gives the results as shown in fig. 4.12. 

The full line represents b -t- b'n*ln n*. The fact that this line hardly 

deviates from a constant illustrates the smallness of the logarithmic 

term. The agreement between the data at low densities and the remaining 

part of the series expansion is not so good on this scale. Although the 
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Fig. 4.11. Comparison of va/D n* [dots (N = 2000) and crosses (N = 100)] 

with the Boltzmann term b., = 3-n (dashed line) and with 

„n* + bl J. 
1 

In n* (full line). 

Fig. 4.12. Comparison of (va/D n* - b )/n* [dots (N - 2000) and crosses 

(N - 100)] with the remaining terms b^ + b'n*ln n* (line). 

error bars are large, the data show preference for a lower value of b„. 

The velocity autocorrelation function ij)(s) is shown for some densi-

ties (situation with N = 2000) in fig. 4.13, the error bars are smaller 

than the thickness of the drawn lines. The tails up to 100 mean free times 

are shown on an enlarged scale (dots). The corresponding mean square dis-

placements are given in fig. 4.14. For every tenth point the error bar is 

given, whenever it is larger than the thickness of the line drawn through 

the data. It is seen that for the high density n* = 0.8 A(s) does not be-

come linear before s = 100. ... 
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Fig. 4.12. The velocity autocorrelation function ^(s) for s < 11 for three 

densities (lines). The tail for 10 < s < 100 is given for the 

same densities on an enlarged scale (dots). 

2 
F^g. 4.14. The reduced mean square displacement h(s)n*' for three densi-

ties. 

4.3. Results on the N-dependence 

Calculations concerning the dependence of the properties of the 

Lorentz gas on the number of scatterers N in the system, still employing 

periodic boundary conditions, were set up to find values of N for which 

the system is indistinguishable, within the limits of the statistical 

accuracy, from an infinite one. The strategy is to start with N = 1 and 

to increase N until the results are seen to converge. In section 2.4 it 

has been argued that finite-size effects will be the more serious the 

lower the density. 

In the calculations on the N-dependence the number of collisions 

performed in each configuration is kept constant (see table 4.5). There-

fore, the number of correlation sequences N fluctuates somewhat and so 

does the total number of correlation sequences N N used in the averaging 
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procedure. For N = 1 there is no need to generate configurations with a 

different position of the scattering centre since the periodic boundary 

conditions always give a perfect lattice. This lattice breaks up into 

closed pockets for densities n*> 0.25 in two dimensions and n*> /2/4 =0.35 

in three dimensions. The distribution function of the free times q (s ) 

Table 4.6. N-dependenoe in two and three dimensions. In all cases N = 100. 

1 
n* 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

O.Ol 

0.01 

0.01 

0.01 

0.01 

0.01 

0.05 

0.05 

O.05 

0.05 

0.05 

0.05 

2 
N 

1 

2 

4 

8 

25 

50 

1 

2, 

4 

8 

25 

50 

1 

2 

4 

8 

25 

50 

3 
N,N 
f c 
(10^) 

1.0 

1.2 

1.4 

1.5 

1.5 

1.5 

1.4 

1.5 

1.5 

1.5 

1.5 

1.5 

1.2 

1.3 

1.4 

1.5 

1.5 

1.5 

4 
X^/X 

d = 

0.688(3) 

0.884(24) 

0.948(21) 

0.989(17) 

0.983(10) 

0.995(7) 

0.965(7) 

0.992(11) 

0.989(9) 

0.999(8) 

0.999(4) 

0.993(4) 

d = 

0.797(4) 

0.911(14) 

0.964(11) 

0.979(11) 

0.987(8) 

0.989(5) 

5 

^N/^ 

2 

0.686 

0.843 

0.921 

0.961 

0.987 

0.994 

0.969 

0.984 

0.992 

0.996 

0.999 

0.999 

3 

0.791 

0.895 

0.948 

0.974 

0.992 

0.996 

6 

x2 

(n=l) 

1959 

315 

75 

22 

3.6 

1.7 

591 

112 

63 

26 

5.3 

2.6 

376 

99 

31 

11 

2.5 

1.5 

7 
D /va 

(sL) 

2.26(15) 

2.62(26) 

2.10(13) 

1.94(8) 

1.21(6) 

1.26(5) 

39(5) 

37(3) 

26(2) 

33(4) 

20(1) 

18(1) 

2.83(25) 

3.62(42) 

2.32(10) 

2.54(25) 

2.00(7) 

2.03(6) 

is very peculiar for N = 1. It was found to consist of a number of isolated 

peaks corresponding to free times between nearest neighbours, next-nearest 

neighbours and so on in the lattice formed by the periodic boundary condi-
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tions. Beyond a certain time, which varies with the density, the peaks 

get connected. 

For the two-dimensional case an intermediate density n*= 0.1 is 

discussed first. In fig 4.15 the free-times distribution q (s, ) is shown 
e k 

for some values of N. The significant peaks are easily identified as due 

to nearest, next-nearest and higher order periodic images of the scatterers. 

The deviations of the experimental mean free time x /x from 1 are very 

large but in very good agreement with x /x (columns 4 and 5 of table 4.5). 
2 

The decrease of x , calculated for q (s, ) with respect to Q(s ;ri=l) 
e k k 

Fig. 4.15. The frequency distribution q (s-,) for d - 2 and n* 0.1 with 

increasing N going downwards. Lines have been drawn through 

the data except for intervals which had zero intensity. 

Fig. 4.16. The velocity autocorrelation function <t> (s) for d = 2 and 

n* = 0.1. The positive tail for small N is clearly demonstrated 

(although the behaviour for 10 < s < 50 is not shown here). 

in eq. (4 .1) , becomes considerable with increasing N (column 6 in table 

4.5) . 
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The diffusion coefficient D /va, obtained from integration of (j) (s) 

with a maximum time s = 50, is much too large for small N (last column 
X 

of table 4.5). It appears that lack of randomness in the system favours 

diffusion for densities that are not too high. This means that the event 

of repeated travelling across the system without collisions is dominant. 

This is also demonstrated in fig. 4.16 by the behaviour of (j) (s) . This 

function decreases relatively slowly for small N and has a long positive 

tail which was observed to be significantly different from zero at s = 50 

for N = 1. For N = 25 it approaches its asymptotic behaviour, which can 

also be concluded from the values of D /va in table 4.5 and the cases 
e 

with N = 500 and N = 2000 for n* = 0.1 in table 4.1. 

The other density studied in two dimensions is n* = 0.01 and this is 

a rather low one (table 4.5). The limiting value of D /va is obtained 

for larger values of N. The system with N = 50 is probably still too 

small although this cannot be concluded from a calculation with this 

statistical accuracy. More extensive calculations gave N = 100: 
D /va = 18.0 ± 0.2, N = 500: D /va = 17.7 ± 0.1, N = 2000: e e D /va = 17.77 ± 0.03 and N = 8000: D /va = 17.80 ± 0.02. e e 

From these results it can be concluded that the systems mentioned 

in table 4.1 are large enough to be free of significant finite-size 

effects. This is confirmed by the fact that results on the diffusion 

coefficient for different N at the same density, e.g. for n* = 0.005 with 

N = 2000 and N = 8000, show no significant systematic differences. 

In the three-dimensional case the ;i-dependence of one of the lowest 

densities mentioned in section 4.2, n* = 0.05, has been investigated. 

Here too, x /x is considerably smaller than 1, but it is in reasonable 

agreement with x /x (table 4.5). For N = 25, D /va seems to have reached 

its asymptotic value. So the systems with N = 100 in table 4.4 are suf-

ficiently large to make finite-size effects neglectable compared to the 

obtained statistical accuracy. This is also confirmed by the data from 

the N = 2000 systems at the respective densities. However, this is rather 

surprising in view of the f values calculated in section 2.4. Apparently, 

travelling once across the system without collisions is less harmful in 

the 3-dimensional than in the 2-dimensional case. This was also indicated 
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by the values of the geometrical factor f given in section 2.4. 

References 

4.1) Wood, W.W., private communication 

4.2) Alder, B.J. and Wainwright, T.E., Phys. Rev. hi_ (1970) 18 

4.3) Wood. W.W., (1974) in Fundamental Problems in Statistical Mechanics III 

Ed. E.G.D. Cohen, North-Holland Publishing Company, Amsterdam 1975 



77 

5. CONCLUSIONS 

Qualitative evidence has been obtained for a logarithmic term in 

the density expansion of the inverse diffusion coefficient for the two-

dimensional Lorentz gas. As the arguments used by Van Leeuwen and Weyland 

to arrive at the expression for the logarithmic terms are similar to 

those used for other systems, the evidence found in this case sustains 

the occurrence of logarithmic terms in other, and more realistic, systems. 

The computations are not conclusive with respect to the power-like 

decay of the velocity autocorrelation function. They do show that the 

asymptotic behaviour is not dominant before 9 mean free times, even for 

low densities. This makes it very hard to verify this behaviour. 

For the three-dimensional case the results show reasonable agree-

ment for the diffusion coefficient with the predicted density expansion 

and thus confirm the expectation that evidence for logarithmic terms 

in three dimensions is very hard to obtain. 

As regards the mean free time and distribution of free times good 

agreement has been observed between theoretical and experimental results, 

if use is made of a more appropriate alternative average described in 

this thesis. 
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APPENDIX: The joint distribution of the first and second free time for 

the two-dimensional case. 

The derivation given in this appendix is a modification of a cal-
2 5) culation performed by Wood * for the overlapping Ehrenfest wind-tree 

model. Consider a two-dimensional Lorentz gas of N point-scatterers in 

a volume Ü, with density n = N/f2, and a moving particle (disk) of radius 

a. Let t (x,R ) denote the time until the first collision and t„(x,R ) 

the time between the first and the second collision, starting with initial 

condition x = (p,q) of the moving particle, of which the trajectory in 

phase space is further completely determined by the configuration of 
N scatterers R . The joint distribution P„(t ,t ) to be calculated is 

defined by 

P2(t^,t2) =< 6 [t^ - t^(x,R^)] 6 [t2 - t2(x,R'^)]> , (A.1) 

->-
where the average has to be performed over all possible values of q and 
N ->--)-
R and over all possible directions of the velocity v(= p/m). This average 

N 
can be reduced without loss of generality to an average over R alone. 

For the joint distribution four factors are important, as will be 

discussed for the simple case shown in fig. A.1. Here L is the initial 

position (of the centre) of the moving particle, L the position at the 

first collision, L the position at the second collision and (ji is the 

scattering angle for the first collision; the distances L B , LJ and L„E 

are all equal to a and furthermore one has L.L = vt. and LL„ = vt . 

1) The probability f-dt that one of the scatterers gives a first 

free time between t, and t,-i-dt, is equal to the product of the density 

N/(n - ira ) of the scatterers, corrected for the volume of the moving 

particle, and the area 2avdt. of width vdt along CDK. Because of sym-

metry one needs to consider only the part CD, taking a factor 2 into 
2 

account. So one has f4dt = 2avdt N/(n - na ) . 
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Fig. A.1. Case A with conditions IK > HK, GM > HM. 

Ü = ABCDJEFGHI, £ 
'A 

2, L 
I' 

- a, L..L Vt and LL - ut . 

2) The probability f ,d(|) that the angle between the velocities before 

and after the first collision is between (j) and (|)-̂d(() is proportional to 

dy, with y varying from 0 to a along DC. Taking L' as the position of the 

scatterer and requiring that the angle of incidence equals the angle of 

reflection, one obtains for the relation between y and <j) the result 

y = a cos 4<t>. Thus, for 0 '̂  (f ̂ fTone has f ,d<t) = h sin h<^ <3L()> , where the 

factor a has been dropped because of normalization. 

3) The probability f^dt that one of the scatterers gives a second 

free time between t and t -fdt is equal to the product of the density 
^ z z 

(N - l)/(n - TTo ) of the remaining scatterers and the area £ avdt„ of width 

vdt along EFG. In the case shown in fig. A.1 one has £ = 2 , but in 

other cases £ may differ from that value; e.g. when for small t it may 

occur that MG < MH. This results in a factor f„dt_ = £ ovdt^ (N-1) / (SI—ira ). 

Z A a 2 

4) The probability f that the collisions at time t, and t do take 

place is equal to the probability that none of the remaining scatterers 

lies inside an area Q. . In fig. A.1. this area is enclosed by the contour 

ABCDJEFGHI. The expression for Q. depends on the case considered. This 
9 M 9 

gives obviously f = { (fl - fl )/(H - ira )} . Combination of the four 
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factors gives for the joint distribution 

P,(t,,t,)dt dt, = ̂ '^-^'2a2v2 ^ J.. ^ ̂ !?A jN-2 ^^,^^ 
2 ^ 2 1 2 ^^ _^^2j2 1 2 0 a^_^^2 

(A.2) 

which in the limit N ->• «= simplifies to 

P., (t, , t . , )dt ,dt . , = 2n a V dt, dt„ ƒ *5£ (sin's i>) {exp - n(fi -•na)]dii, 
2 1 2 1 2 1 2 a a 

(A.3) 

where £ and 9. are functions of t, , t_ and <j). 
a a 1 2 

For the calculation of fl and £ different cases, as shown in 
a a 

fig. A.2, have to be considered. The dashed-dotted lines denote boundaries 

/ 

-e-
CT' 

n 

"' 1 
B 

'V .^^ 

A 

o-tgi<#. vt, 

Fig, A. 2. Different cases in the calculation of P^(t.^,t„), see text. 
u 1 2 

on which the expressions of both fi and £ change. On the dashed lines 
a a 

only the expression for Ü changes. The envelop of region E 4- D is 

drawn for the case (j) = Tr/2, for other values of (}> this region only 

changes quantitatively. The different cases will now be considered in 

detail. 

Case A. (see fig. A.1). The conditions for this simplest case are 



82 

vt > HK and vt > MH, which can be reduced to 

vt > atqh^, vt > atgh<i>. (A.4) 

The expression for the area Ü is easily obtained by correcting for the 

overlap of the area's ABCMKI and FGMKJE. The result is 

2 2 
a. = -na + 2avt + 2avt - o { tĝ stj) - 44)} . 

(A.5) 

For £ one has as mentioned above 
A 

\ = 2 - (A.6) 

In fig. A.1 a situation for (j) > hir has been drawn, for ()> < 4IT one 

obtains in a similar way the same expressions for Q and £ . This will 
^ A A 

hold true for all cases to be discussed. 

Case B. (see fig. A.3), The conditions for this case are vt < HK 

and vt > MS. It is obvious that the condition on vt can be taken to 

Fig. A.2. Case B with conditions IK < HK, GM > SJ4. 

Ü - ABCDJEFGS , £„-2j LB = a, L L = vt and LL = vt 
'V B 1 1 

be weaker than vt > MH, what one might expect from case A. It is 

convenient for the evaluation of fi to choose a point M, such that 
B 1 
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MM // CB; then one also has M,L // ML. By evaluating now the areas 

M.MCB, M MP and M PS A one obtains 

2 2 
n = Tra + 2avt -t- avt (1 -i- cos<j)) - *2 (vt ) sin<|)cos(j) 

2 
+ ha a r c c o s [ 1 - ( v t / a ) sint])]- hia - v t sincji) [ 2avt sinef)-

2, h 
(vt sine})) ] (A.7) 

It is obvious that one has again 

£ = 2 (A.8) 

The explicit expression for the conditions on case B reads 

2 ^ 
vt < atg'jtj), vt > [ 2avt sine}) - (vt sini))) ] - vt cos(fi , (A.9) 

Case C. (see fig. A.4). The conditions for this case are vt > KS„ 

and vt < HM. This case is identical to case B after interchanging the 

Fig, A,4, Case C with conditions GM < HM, IK > S K, 

n^ = ABCDJEFS I, £^ - projection of arc S E onto GE, LB - a, 

L L = yt and LL,. - vt . 

variables t and t , except for the expresssion for £^. Here a point K„ 
1 2 ^ 2 

is chosen, KK // jE. By calculating now the areas K KJE, K KP and 
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K-PS F one f i n d s 

2 2 
n = -ua + 2 a v t . -t- av t (l-Hcoscj)) - h (vt ) sincjicosc}) (A.10) 

2 2 i-
+ ha a r c c o s [ 1- (v t / a ) cos(|i] - 5̂ ( a - v t siniji) [ 2avt sin(}>-(vt sinj)) ] .̂ 

Because the a r e GS l i e s i n s i d e t h e r e g i o n where no s c a t t e r e r s a re a l lowed , 

t h e v a l u e of £ d i f f e r s from two: 

2 2 4 
£ = l-i-[ l - ( v t /o) sine])] cos()) -I- [ 2 (v t_ / a ) sintfi-(vt / a ) s i n (Ji] sin(t) . 

(A.U) 

The c o n d i t i o n s on case C read in d e t a i l 

2 I, 
vt, > [ 2avt sin(i)-(vt siniji) ] - vt cos(t) , vt < atgh<i>. (A.12) 

Case D. (see fig. A.5). The remaining region (see fig. A.2) is dealt 

with by considering, for convenience of the analysis as well as the 

numerical treatment, two more cases D and E. The whole region could be 

covered by any one of these cases. The boundary between the tvra corres-

ponding areas is thus arbitrary and the line vt = vt has been chosen 

because of symmetry. For case D obviously the following conditions hold: 

r 2, h 
vt < vt < I 2ovt sin(|) - (vt sine))) J - vt coscj) . (A.13) 

The calculation of fi is similar to that of Ü , except for the areas 

K PIU and UIS which lead to rather complicated expressions. The distance 

L L will be denoted by 

2 2 h 
£^2 = [ (vt^) -I- (vt2) + 2vt^vt2Cos(j)]^ . (A. 14) 

One finds then 

2 2 
Ü = -no + 2avt, -t- avt^ (l-t-cosct) - h (vt ) sinécosd) + 
D 1 2 2 



85 

2 2 
+ ha c, -4(a-vt sincj)) (vt +vt cosc))) -i- ̂ a (v - u) 

2 2 4 
^(a -2avt sin(ti -l- £ ) £ sinpsinv/sin (p-t-C) , 

(A.15) 

where a number of auxiliary angles have been introduced (see also fig. A.5) 

Fig. A.6. Case D with conditions IK < S K, IK > GM. 

n^ - ABCDJEFS, £^ - projection of arc SE onto GE, LB - a, 

L L = vt and LL - vt . 

C = iIL2P = arctg (vt -I- vt cosf)))/(a - vt sinij)) , 

V = y - ? , 

u = 5 - p , (A.16) 

2 ,h 
U = Î̂ 2''"l " arccos (£^^ _ avt2sin(|))/£^2 (o - 2avt sine}. + Jl^2' ' 

§ = A.SL L = arccos Ji, 2/2a , 
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p = AIL L = arccos vt sin(()/£ . 

By evaluating the arc GS in this case, one finds for the set of allowed 

positions of scatterers along arc SE: 

£ 
2 ,. 2-1-

D 
1 + (vt /2a)sin(() + (vt̂ cos(j) + vt2){ £^2 " ^^° ' ^' (A.I7) 

Case E. This case needs not to be discussed in detail. Q can be 
E 

obtained from Ü by interchanging vt and vt . The expression for £ is 

identical to the one for £ . The conditions for this case read 

, 2, h 
vt < vt_ < I 2ovt sine)) - (vt sinej)) J - vt coscj) . (A. 18) 

As a check on the expressions for the different cases it can be 

shown that they match on the boundaries. It is appropriate to reduce time 

with respect to the Boltzmann mean free time, as has been done in chapter 2 

We define 

ŝ  = 2navt^ = t^/x, S2 = 2navt2 = t2/x (A.19) 

and moreover a reduced volume Q* given by 
a 

n* = n(ü - TTa2) . (A.20) 
a a 

S u b s t i t u t i n g (A.19) and (A.20) i n t o (A.3) and t a k i n g i n t o account t h e 

J acob ian of t h e t r a n s f o r m a t i o n , one f i n d s for the reduced j o i n t d i s t r i -

b u t i o n 

P* (s , , s „ ) d s , d s „ = d s . d s . /'^ &<(, hi- sin^tj. exp - Ü* . (A.21) 
2 1 2 1 2 1 2 a a 

It should be noted that depending upon the pertaining values of s,,s , 
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d) and n* the correct expressions for ü and £ have to be chosen from 
a a 

cases A until E. 

The joint distribution P*(s ,s ) can be obtained from (A.21) by nu-

merical integration over (j). The distribution of the first free time P* ,̂  

can be obtained subsequently by numerical integration over s . This serves 

as a check on the whole procedure since this result should be identical 

to the result for P(t), see (2.54). Numerical integration of P*(s.,s_) over 

s gives the distribution of the second free time P* (s ). Subsequent 

integration over s„ gives another check, since the result should be equal 

to one because of normalization. For a number of densities the distribut-

ion of the second free time P* (s ) is shown in fig. A.6, together with 

a pure exponential. The deviation form a pure exponential increases as a 

function of the density. For s = 0 the distribution is independent of the 

density, in fact P* (0) can be evaluated exactly to give 1/3. In table 

A.1 the first moment <s_> of the distribution of the second free time 

P* o(s ) is given as a function of the density. The deviation of the 

Table A,l. The average of the second free time <s > as a function of 

the density (the time s is reduced with respect to the 

Boltzmann mean free time T ) . 

n* 

0 . 0 0 5 

0 . 0 1 

0 . 0 2 

0 . 0 5 

0 . 1 
0 . 2 

0 . 5 

1.0 

1 0 . 

•=^2^ 

1.02 

1 .03 

1 .05 

1 .10 

1 .14 

1.21 

1.31 

1.37 

1 .43 

average of the second free time from the Boltzmann mean free time in-

creases with density. 

At the densities for which the numerical integration has been per-

formed, the interval 0 to IT for if has been divided into 40 intervals. 



Fi'j. A,6, The distribution of the second free time P c,(^^J for a number of densities. 

For the density n* = 0 the distribution is a pure exponential. 
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The maximum value for s and s used was 7.5; this range has been 

divided into 150 intervals for densities n* > 0.1 and into 300 intervals 

for the lower ones. For all integrations the Simpson (3-point) rule has 

been used, giving an accuracy of better than 1%. 
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SUMMARY 

The numerical study of the Lorentz gas has been undertaken as to 

obtain quasi-experimental data on the density dependence of the diffusion 

coefficient. Primarily the 2-dimensional case has been studied, for which 

the deviations from a pure power series in the density for the inverse 

diffusion coefficient are expected to be most dominant. In the 1-dimen-

sional case there is no diffusion at all and for 3 dimensions the ex-

pected deviations are relatively small. 

For a more substantial comparison of theory and experiment, two ad-

ditional terms in the series expansion of the inverse diffusion coefficient 

have been calculated for the 2-dimensional case: the regular term of the 

same order in density as the dominant logarithmic term and the most im-

portant logarithmic term of one order higher in the density. 

As a check on the computations, especially for the Monte-Carlo part 

of it, expressions have been derived for the distribution function of free 

times and for the mean free time. 

For the computation of the static quantities (initial conditions) the 

crude Monte-Carlo method has been used. The time-dependent behaviour has 

been computed with the method of molecular dynamics (solving the equations 

of motion). For the Monte-Carlo method the generator of pseudo-random num-

bers is essential and its properties have been studied. In this respect the 

distribution function of free times appeared to be useful. Optimalization 

of the molecular-dynamics computations, especially dividing the system 

into sub-systems (cells), resulted in a considerable saving of computing 

time. 

The computed diffusion coefficients far the 2-dimensional case at low 

densities are in good agreement with the predicted dominant logarithmic 

term. The contribution of the two terms calculated in addition to the ones 

already known is not quite satisfactory. 
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The dependence of the results on the size of the system has been 

investigated experimentally. However this investigation could be facili-

tated by using an expression describing the density dependence of finite-

size effects. The influence of finite N on the cases reported is smaller 

than the statistical accuracy obtained. 
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SAMENVATTING 

De numerieke studie van het lorentzgas is ondernomen teneinde quasi-

experimentele gegevens te verkrijgen omtrent de dichtheidsafhankelijk-

heid van de diffusiecoefficient. De aandacht is hierbij vooral gericht 

op het 2-dimensionale geval waar de verwachte afwijkingen van een zuivere 

machtreeks in de dichtheid voor de reciproke diffusiecoefficient het 

grootst zijn. In het 1-dimensionale geval is er geen diffusie en voor 3 

dimensies zijn de verwachte afwijkingen gering. 

Voor een meer solide vergelijking tussen theorie en experiment zijn 

twee extra termen in de reeksontwikkeling van de reciproke diffusiecoef-

ficient berekend voor het 2-dimensionale geval: de reguliere term van de-

zelfde orde in de dichtheid als de dominante logarithmische term en de 

belangrijkste logarithmische term van één orde hoger in de dichtheid. 

Als toetsen voor de numerieke berekeningen, en vooral voor het 

monte-carlo aspect ervan, zijn uitdrukkingen afgeleid voor de verdelings-

functie van de vrije weglengten en voor de gemiddelde vrije weglengte. 

Voor de uitvoering van de numerieke berekeningen is voor de sta-

tische grootheden de eenvoudige monte-carlomethode gebruikt en voor het 

tijdafhankelijk gedrag de methode van moleculaire dynamica. Voor de 

monte-carlomethode is aan de generator van pseudo-randomgetallen de no-

dige aandacht besteed. De verdelingsfunctie van vrije weglengten blijkt 

in dit opzicht een nuttig hulpmiddel. Optimalisering van de moleculaire-

dynaraicaberekeningen, vooral de verdeling van het systeem in cellen, 

leidt tot een grote besparing van rekentijd. 

De berekende diffusiecoefficienten voor het 2-dimensionale geval bij 

lage dichtheden zijn in goede overeenstemming met de voorspelde dominante 

logarithmische term. De bijdrage van de twee extra berekende termen vol-

doet niet aan de verwachtingen. 

De afhankelijkheid van de resultaten van de grootte van het systeem 
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is voornamelijk experimenteel onderzocht, zij het met behulp van een 

theoretische voorspelling voor de afhankelijkheid van de dichtheid. 

De invloed van eindige N voor de beschouwde gevallen is kleiner dan 

de bereikte statistische nauwkeurigheid. 
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dynamische responsie van een systeem niet geschikt is voor effecten op 

tamelijk lange tijden is hun argument voor het exponentieel uiteengegaan 

van traj ectoriën in de faseruimte niet voldoende. De invloed van de grootte 

van het uitwendige veld zal daartoe eerst onderzocht moeten worden. 

G. Cicotti en G. Jacucci, Phys. Rev. Letters 35̂  (1975) 789 

S.D. Stoddard en J. Ford, Phys. Rev. A8 (1973) 1504 



VIII 

Gezien het belang dat de afdeling Technische Natuurkunde hecht aan 

fundamenteel onderzoek als onderdeel in de opleiding tot natuurkundig 

ingenieur verdienen fysisch georiënteerde computersimulaties in deze 

opleiding een plaats. 

IX 

Programma's die terwille van de statistische nauwkeurigheid veel com-

putertijd vergen zouden, bij onvoldoende ruimte in de nachten gedurende 

de werkweek, in het weekeinde gedraaid moeten kunnen worden. Berekeningen 

van dit type vermeld in dit proefschrift hadden ruimschoots uitgevoerd 

kun.ien worden door de computer gedurende een half jaar tijdens de week-

einden niet uit te schakelen. 

C Bruin Delft, 1 maart 1978 


