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ABSTRACT: Recently, Marr and Poggio (1979) presented a theory of human sterco vision. An im-
slementation of that theory is presented, and consists of five steps: (1) The left and right images are gach
Htered with masks of four sizes that increase with eccentricity: the shape of these masks is given b VG VG, )
the laplacian of a gaussian [unction. (2) Zcro-crossings in the fltered im: wwes are found along | horizontal <an

s, (3) For cach mask size, matching tikes place between zero- crossings of the samic sign and roughly the
same ericriation in the twe images, for a range of disparitics up to about the width of the mask’s central
reg \,1 Yiiin this disparity range, Marr and Poggio showed that false tar gcts pose only a simple problom.
(4} The output of the wide masks can control vergence movements, thus causing small masks to come into
correspondence. In this way, the matching process graduaily moves from dealing with large disparitics at a
tow resolution to dealing with small disparitics at 4 high resolution. (5) When a correspondence is achieved,
it is siored in a dynamic buffer, called the 22 -dirmensional sketch. To suppott the sufliciency of the Mace-
Pogelo mrodel of human sterco visivn, the implementation was tested on a wide range of stercograms from
the human stereopsis literature. ‘The performance of the implementation is illustrated and compared with
human perception. As well, statistical assumptions made by Marr and Poggio are supported by comparison
with siatiztics found in practice. Firally, the process of implomenting the theory has ted to the clarification and
refinement ela nuinber of detzils within the theory; these are discussed in detail.,
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1. Introduction

If two objects are scparated in depth from a viewer, then the relative positions of their images will
differ in the two cyes. This difference in relative positions — the disparity — may be measured and used to
estimaté depth. The process of stcrcgo vision, in essence, measures this disparity and uses it to compute depth
information for‘surfaccs in the scene, '

The steps involved in mcasuring disparity are (Marr and Poggio, 1979): (S1) a particular location én a
surface in the scene must be selected from onc'image; (S2) that same location must be identified in th'e other
image; and (S3) the disparity between the two corresponding image points must be measured. The difficulty
of the problem lies in steps (S1) and (S2), that is, in matching the images of the same location — the so-
called correspondence pl:oblcm. For the casce of the human stereo system, it can be shown that this matching
takes place very carly iu the analysis of an image, prior to any rccognition of what is being viewed, using
primitive descriptors of the scenc. This is illustrated by the example of random dot patterns. Julesz (1960)
demonstrated that two images, consisting of random dots when viewed monocularly, may be fused to form
patterns separated in depth when viewed stercoscopically. Random dot stercograms are particularly interesting
because when one tries to set up a correspondence between two arrays of dots, false targets occur in profusion.
A false target refers to a possible but incorrect match between clements of the two views. In spite of such
false targets, and in the absence of any monocular or high level cues, we arc able to determine the correct
correspondence. Thus, the computational problem of human stereopsis reduces to that of obtaining primitive
descriptions of locations to be matched from the images, and of solving the corrcépondcncc problem for these
descriptions.

A compulational theory of the sterco process for the human visual system was recently proposed by Marr
and Poggio (1979). According to this theory, the human v;‘sual processor solves the stercoscopic matching
problem by means of an algorithm that consists of five main steps: (1) The left and right images are each
filtered at different orientations with bar masks of four sizes that increase with cceentricity; these masks have

a cross-section that is approximately the difference of two gaussian functions, with space constants in the ratio
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1:1.75. Such masks essentially perform the operation of a sccond directional derivative after low pass filtering
or smoothing, and can be used to detect changes in intensity at different scales. (2) Zero-crossings in the
filtered images are found by scanning them along lines lying perpendicular to the orientation of the mask.
Since convolving the image with the masks corresponds to performing a second directional derivative, the
zero-crossings of the convolutions correspond to extrema in the first dircctional derivative of the image and
thus to sﬁarp éhanges in the original intensity function. (3) For cach mask size, matching takes place between
zero-crossing segments of the same sign and roughly the same orientation in the two images, for a range of
disparities up to about the width of the mask’s central region. Within this disparity range, Marr and Poggio
showed that false targets pose only a simple problem, because of the roughly bandpass nature of the filters.
4) vThc output of the wide masks can control vergence movements, thus causing smaller masks to come into
'corrcspondcnce. In this way, the matching process gradually moves from dealing with large disparities at low
resolution to dealing with small disparitics at high resolution. (5) When a correspondence is achicved, it is

stored in a dynamic buffer, called the 24-dimensional sketch (Marr and Nishihara, 1978).

An important aspect in the development of any computational theory is the design and implementation
of an explicit algorithm for that theory. There are several benefits from such an implementation. One concerns
the act of implementation itself, which forces one to make all details of the theory explicit. This often uncovers

previously overlooked difficulties, thereby guiding further refincment of the theory.

A sccond benefit concerns the performance of the implementation. Any proposed model of a system
must be testable. In this case, by testing on pairs of sterco images, one can examine the performance of the
implementation, and hence of the theory itself, provided, of course, that the implenientation is an accurate
representation of that ‘thc.ory. In this manner, the performance of the implementation caﬁ] be compnrcd with
human performance. If fhc algorithm differs strongly from known human pcrfdxmancc, 'its suitability as a

biological model is quickly brought into question (c.f. the cooperative algorithm of Marr and Poggio (1976)).

This article describes an implementation of the Marr-Poggio stereo theory, written with particular em-

phasis on the matching process (Grimson and Marr, 1979). For details of the derivation and justification of the
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theory, sce Marr and Poggio (1979),

The first part of this paper describes the overall design of the implementation. Several examples of the
implementation’s performance on different images are then discussed, including random dot stereograms from
the human stereopsis literature suchr as with one image defocussed, noise introduced into part of the images’
spectra, and so forth. It is shown that the implementation behaves in a manner similar to humans on these
special cases. Thirdly, the theory makes some statistical assumptions; these are compared with the actual
statistics found in practice. Next, some points.about the theory that were clarified as a result of writing the

program are discussed. Finally, the results of running the program on some natural images are shown.

2. Design of the program

The implementation is divided into five modules, roughly corresponding to the five steps in the summary

above. These modules, and the flow of information between them, are illustrated in Figure 1. Each of the

components is described in turn,

2.1 Input

There are two aspects of the human stereo system, embedded in the MarﬁPoggio theory, which must be’
made explicit in the input to the algorithm. The first is the position of the cyes withjrcspcct to the scene, as eye
movements will be critical for ob\.mining fine disparity information. The second is Lhé changc in resolution of
analysis of the image with increasing eceentricity.

- To account for these effects, the algorithm maintains as its initial input a sterco pair of images, repre-

senting the entire scene visible to the viewer. This pair of images corresponds to the environment around the
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Figure 1. Diagram of the algorithm. The images of the scene are mapped into the images of the retinas, taking

~ into account the eye positions. Fach image is convolved with a set of dillerent siced masks and ZCIO-Crossings
A . . b .

arce located for cach convolution. For cach size mask, the left and right zero-crossing descriptions are matched.

These matched descriptions are combined into a single representation. As well, the matches from the larger

channels can drive eye vergence movemeits, causing new retinal images to be created and allowing the smaller

channels to come into correspondence.
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visual system, rather than some integral part of the system itself. To create this representation of the scene,
natural images were digitized on an Optronix Photoscan System P1000. The sizes of these images are indicated
in the legends. Grey-level resolution is 8 bits, providing 256 intensity levels, For the random dot patterns

illustrated in this article, the images were constructed by computer, rather than digitized from a photograph.

For a given position or the eyes, relative to the scene, a representation of the images on the two retinas is
extracted. The algorithm creates this retinal representation by obtaining a second, smaller pair of images from
the images representing the whole scenc. The mapping from the scene images into the retinal images accounts
for the two factors inherent in the Marr-Poggio theory. First, different sections of the scenes will be mapped to
the ccntén‘ (fovea) of the retinal images as the positions of the eyes are varied. Since the matchin g process will
take place on the array representing the rctinayimagcs, it is important that the coordinate systems of thosc ar-
ray5 coincide with the current positions of the eyes. Note thaf the portion of the scene image which is mapped
into the retinal image may differ for the two eyes, depending on the relative positions of the ixvo g);)tical axes.
In particular, there may be differences in vertical alignment as well as in horizontal alignment. Sccond, the
Marr-Poggio theory also states that the resolution of the earlier stages of the algorithm — the convolution and
zro-crossings — scales linearly with eccentricity. The most convc‘nicn,t method for dealing with this fact is to
account for the scaling with eccentricity at the level of the extraction of the images. This means that rather
than extracting a set of rctinal images in a linear manner, we may map the scene into thg retinal images by
a mapping whose magnification varics with céccgtricity. By so doing, the later stages of processing need not
cxplicitly account for the variation with cccentricity. Rather, these processes are considered as opcrating on a
uniform grid. Note that this eccentric mapping is not essential, especially for small images. In nost of the cases-

illustrated in this artiélc, the mapping was not used.

After the completion of this stage, the implementation has created a representation of the images that
has accounted for eye position and for retinal scaling with cccentricity. For cach pass of the algorithm,
the matching will take place on the representation of the retinal images, thercby implicitly assuming some

particular cye positions. Once the matching has been completed, the disparity values obtained may be used to
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change the positions of the two optic axes, thus causing a new pair of retinal images to be extracted from the

representations of the scene, and the matching process may proceed again,

2.2 Convolution

Given the rctinai representations 'of the images, it is then necessary to transform them into a form upon
which the matcher may operate. Marr and Poggio (1979) argued that the items to be matched in an image
must be in one-to-one correspondence with well-defined locations on a physical surface. This led to thg use of
image predicates which correspond to changes in intensity. Since these intensity changes can occur over a wide
range of scales within a natural image, they are detected scparately at different scales, This is in agreement with
the findings of Campbell and Robson (1968), who showed that visual information is processed in parallel by
a number of indcpcndcnt spatial-frcqumc'y-tuncd c1*1e1n;1¢13, and with the findings of Julesz and Miller (1975)
and Mayth and Irisby (1976), who showed that spatial-frequency-tuned channels are used in stercopsis and
are independent. Recent work by Wilson and Bergen (1979) and Wilson and Gicse (1977) provided cvidence
for the particular form of these spatial-frequency-tuned operators. Mecasuring. contrast sensitivity to vertical
line stimuli, Wilson and his collaborators showed that the image is ‘convolved with an operator which in one
dimension may be closely approximated by a difference of two gaussian functions (DOG).

In the original theory (Marr and Poggio, 1979), the proposed masks were oriented bar masks whose cross-
section was a difference of two gaussians, as given by the Wilson and Bergen data. If an intensity change
occurs along a particular orientation in the image, there will be a peak in the ‘ﬁrst dircctional derivative of
intensity, and a zero-crossing in the second directional derivative. Thus, the intensity changes in the image
can be located by finding zero-crossings in the output of a sccond directional derivative operator. However,
a number of practical considerations have led Marr and Hildreth (1979) to suggest that the initial operators
not be directional operators. The only non-.dircc[ional linear sccond derivative operator is the Laplacian. Marr
and Hildreth have shown that provided two simple conditions on the intensity function in the neighbourhood

of an cdge are satisfied, the zero-crossings of the second directional derivative taken perpendicular to an edge
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will coincide with the zero-crossings of the Laplacian along that edge. Therefore, theoretically, we can detect
intensity changes occuring at all orientations using the single non-oriented Laplacian operator. Thus, Marr and
Hildreth propose that intensity changes occuring at a particular scale may be detected by locating the zero-
crossings in the output of V2@, the Eaplacian of a gaussian distribution. The operator, together with its fourier

transform, is illustrated in Figure 2. The form of the operator is given by:

V2G(r,0) = |2 — r exp{:-r—g-}.
e o? 202

Given the form of the operators, it is only left to determine the size of these masks. To do this, we
first note that Marr and Hildreth (1979) showed that the operator V2@ is a close approximation to the DOG
-function. Wilson and Bergen’s data indicated DOG filters whose sizes — specified by the width w of the filter's
_ central excitatory region — range from 3.1" to 21” of visual arc. The variable w is related to the constant o of

V2@ by the relation:
o=

2V2
Wilson and Bergen’s values were obtained by using oriented line stimuli, To obtain the diameter of the
corresponding circularly symmetric center-surround receptive field, the values of w must be multiplied by
V2. Finally, we want the resolution of the initial images to roughly represent the resolution of processing by
the cones, and the size of the filters to representthe size of the retinal operators. In the most densely packed
region of the human fovea, the center-to-center spacing of the cones is 2.0 to 2.3 pm, corresponding to an
angular spacing of 25 to 29 arc scconds (O'Brien, 1951). Accounting for the conversion of Wilson and Bergen’s
data, and using the figure of 27 scconds of are for the separation of cones in the fovea, one arrives at values of
w in the range 9 to 63 image clements, and hence, values of o in the range 3 to 23 image clcmcnts.b

Recently, it has been proposed (Marr,l Poggio and Hildreth, 1979) that a further, smaller channel may be
present. This channel would have a central excitatory width of w = 1.5°, roughly corresponding to 4 image

clements.
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Figure 2. The operators G” and V2@G. The top left figure show G, the second derivative of a one-dimensional

guassian distribution, The top right figure shows V2@, its rotationally symmetric two-dimensional counterpart,

The bottom figures show their Fourier transforms,
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The present implementation uses four filters, each of which is a radially syrﬁmetric difference of
gaussians, with w values of 4,9, 17 and 35 image clements. The coefficients of the filters were represented to
a precision of 1 part in 2048. Coefficients of less than o th of the maximum value of the mask were sct to
zero. Thus, the truncation radius of the mask (the point at which all further mask valucs were treated as zero)
was approximately 1.8w, or equivalently, 0.680.

The actual convolutions were performed on a LISP machine constructed at the MIT Artificial Intclligence
- Laboratory, using additional hardware specially designed for the purpose (Knight, etal. 1979). Figures 3 and 4
illustrates some images and their convolutions with various sized masks.

After the completion of this stage of the algorithm, one has four filtered copies of each of the imagcs, each

copy having been convolved with a different size mask.

2.3 Detection and description of zero-crossings

According to the Marr-Poggio theory, the elements that are matched between images are (i) zero-
crossings whose oricntations are not horizontal, and (ii) terminations. The exact definition and hence the
detection of terminations is at present uncertain; as a consequence, only zero-crossings arc used as input to the
matcher.

Since, for the purpose of obtaining disparity information, we may ignore horizontally-oriented segments,
the detection of zero-crossings can be accomplished by scanning the convolved image horizontally for adjacent
elements of opposite sign, or for three horizontally adjacent clements, the middle one of which is zero, the
other two containing convolution values of opposite sign. This gives the position of Zero-crossings to- within an
image clement.

In addition to their location, we record the sign of the zero-crossings {(whether convolution values change
from positive to negative or negative to pqsitivc as we move from left to right) and a rough cstimate of the

local, two-dimensional orientation of picces of the zero-crossing contour. In the present implementation, the

orientation at a point on a zero-crossing segment is computed as the direction of the gradient of the convolu-
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Figure 3. Examples of convolutions with V2@, The top figure shows a natura! image. The bottom figures show

the convolution of this image with a sct of V2@ opcrators. The sizes of these operators are w = 36,18, 9 and

4 image clements.
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Figure 4. Examples of convolutions with V2G. The top figure shows a random dot pattern. The bottom

figures show the convolution of this image with a set of V2@ operators. The sizes of these operators are

w == 36, 18, 9 and 4 image elements.
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tion values across that segment, and recorded in increments of 30 degrees. Figures 5 and 6 illustrate zero-
crossings obtained in this way from the convolutions of Figures 3 and 4. Positive zero-crossings are shown
white, and negative crossings, black.

We compute this zero-crossing description for each image and for each size of mask.

2.4 Matching

. The matcher implements the second of the matching algorithms described by Marr and Poggio (1979,

p.315). For each size of filter, matching consists of 6 steps:

(1) Fix the eye positiohs.

(2) Locate a zero-crossing in one image.

(3) Divide the region about the corresponding point in the second image into three pools.

(4) Assign a match to the zero-‘crossing based on the potential matches within the pools.

(5) Disambiguate any ambiguous matches.

(6) Assign the disparity values to a buffer.

These steps may be repeated several times during the fusion of an image. Given a position for the optic
axes, these matching stéps are performed, with the results stored in a buffer. These results may be used to
refine the eye positions, causing a new set of retinal images to be extracted from the scene, and the matching
steps are performed again.

We now expand upon each of the six steps of the matching prbcess, The first step consists of fixing the
two eye positions. The alignment Betwecn the two zero-crossing descriptions, corresponding to the positions
of the optical axcs, is determined in two ways. The initial offsets of the descriptions are arbitrarily set to zero.
Thereafter, the offsets of the two optical axes are determined by accessing the current disparity values for
a region and using these valucs to adjust the vergence of the eyes. In this implementation, this is done by
modifying the extractic_m of the retinal _imagcs from the images of the entire scene, accounting for the positioné

of the optical axes.
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Figure 5. Examples of zero-crossing descriptions. The top figure show a natural image. The bottom figures
show the zero-crossings obtained from the convolutions of Figure 3. The white lines mark positive zero-

crossings and the black lines, negative ones.
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Figure 6. Examples of zero-crossing descriptions. The top figure show a random dot pattern. The bottom

figures show the zero-crossings obtained from the convolutions of Figure 4. The white lines mark positive

zero-crossings and the black lines, negative ones.
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Once the eye positions have been fixed, and the retinal images extracted, the images are convolved with
the DOG filters, and the zero-crossing descriptions are extmcicd from the convolved images. For a zero-
crossing description corresponding to a particular mask size, the matching is performed by locating a zero-
crossing and exccuting the following operation. Given the location of a zero-crossing in one image, a horizon-
tal region about the same location in the other image is partitioned into three pools. These pools form the
region to be searched for a possible matching zero-crossing and consist of two larger convergent and divergent
regions, and a smaller one lying centrally between them. Together these pools span a disparity range cqual to
2w, where w is the width of the central excitatory region of the corresponding two-dimensional convolution
mask.

The following criteria are used for matching zero-crossings in the left and right filtered images, for éach
pool: “

(1) the Zero-crossings must come from convo‘lutio’ns with the sarﬁc size mask.

(2) the zero-crossings must have the same sign.,

(3) the zero-crossing segments must have roughly the same orientation.

A match is assigned on the basis of the number of pools containing a matching zero-crossing. If exactly
one zero-crossing of the approbriatc sign and oricntation (within 30 degrees) is found within a pool, the
location of that crossing is transmitted to the matcher. If two candidate zero-crossings arc found within one
pool (an unlikely event), the matcher is notified and no attempt is made to assign a match for the point in
question. Iftl;c matcher finds a single crossing in only one of the three pools, that match is accepted, and the
disparity associated with Lhc match is recorded in a buffer. If two or three of the pools contain a candidate’

match, the algonthm records that information for future disambiguation.

'

Once all possiblc una_mbiguous matches have been identified, an attempt is made to disambiguate double
or triplc matches. This is done by sczmning a neighbourhood about the point in question, and rccbrding the
disparity sign of the unambxguous matches wlthm that neig 1bomhood (Disparity sign refers to the sign of

the pool from which lhc match comes: dxvcrgcnt convergent or zero.) If the ambiguous point has a potential




. Sterco Implementation 22 L. Grimson

match of the same disparity sign as the dominant type within the neighbourhood, then that is chosen as the
match (this is the "pulling” effect). Otherwise, the match at that point is left ambiguous.

There is the possibility that the region under consideration does not lie within the —+w disparity range
handled by the matcher. This situatton is detected and handled by the following operation. Consider the case
in which the region does lie within the disparity range -w. Excluding the case-of occluded points, every zero-
crossing in the region will have at least one candidate match (the correct one) ip the other filtered image. On
the other hand, if the region lics beyond the disparity range --w, then the probability of a given zero-crossing
having at least one éandidatc match will be less than 1. In fact, Marr and Poggio show that the probability of
a zero-cyossing having at least one candidate match in this case is roughly 0.7. We can perform the following
operation in this case. For a given cye position, the matching algorithm is run for all the zcr‘o-crossings. Any
crossing for which there is no match is marked as such. If the pcrccntagc of matched points in any pcgion is
less than a threshold of 0 7 then the region is declared to be out of range, and no disparity valucs are ;”xcccpted
for that region,.

The overall effect of the maiching process, as driven from the left image, is to assign disparity valucs to
most of the zero-crossings obtained from the leoft image. An example of the oixtpu»t appears in Figure 7. In
this array, a zero-crossing at position (z, y) with associated disparity d has been placed in a three-dimensional
array with coordinate (z, y, d). For display purposes, the array is shown in the figures as viewed from a point
some distance away. The heights in the figure correspond to the assigned disparities. |

After completion of this stage of the implementation, we have obtained a disparity array for cach mask

size. The disparity values are located only along the zero-crossing contours obtained from that mask,

2.5 Vergence Control

The Marr-Poggio theory states that in .order to obtain fine resolution disparity in formation, it is nccessary
that the smallest channels obtain a matching. Since the range of disparity over which a channel can obtain

a match is dircctly proportional to the size of the channel, this means that the positions of the cycs must
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Figure 7. Results of the algorithm. The top stereo pair is an image of a painted coffee jar. The next two figures
show two orthographic views of the disparity map. The disparities are displayed as {z, y, ¢ — ad(z, )},
where ¢ is a constant and d(z, ) is the difference in the location of a zero-crossing in the right and left images.
For purposes of illustration, a has been adjusted to enhance the fca;ures of the disparity map. The left view
of the disparity map shows the jar as viewed from the lower cdge of the image, and the right view show the
jar as viewed from the left edge of ‘the image. Note that the background plane appears tilted in the disparity‘
map. This agrees with the fused perception. The second stereo pair is a 50% density random dot pattern.
The bottom figure shows the disparity map as viewed orthographically ffom some distance away. All disparity‘

maps are those obtained from the w == 4 channel.
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be assigned appropriately to cnsure that the corresponding zero-crossing descriptions from the two images
are within a matchable range. The disparity information required to bring the smallest channels into their
matchable range is provided by the larger channels. That is, if a region of the image is declared to be out of
range of fusion by the smaller channels, one can frequently obtain a rough disparity value for that region from
the larger channels, and use this to verge the eyes. In this way, the smaller channels can be brought into a

range of correspondence,

Thus, after the disparities from the different channels have been combined, there is a mechanism for

- controlling vergence movements of the eyes. This operates by scarching for regions of the image which do

not have disparity values for the smallest channel, but which do have disparity values for the larger channels.
These large channel values are used to provide a refinement to the current eye positions, thcrcl;y bripging the
smaller channels into range of correspondence. Two possiblc mechanisms for extracting the disparity value
from a region of the image include using the peak value of a histogram of the disparities in that ncighbour-
hood, or using a local average of the disparity values. In the current implcmc_ntation, the scarch for such a

region proceeds outwards from the fovea,

It should be noted here that although the use of disparity information from coarser channels to drive
¢ey¢ movements, allowing smaller channels to come into correspondence, is a necessary condition of the Marr-
Poggio theory, it is not nccessarily the only such condition. In other words, there may be other modules of
the visual system which can initiate eye movements, and thereby affect the input to the matching component,
by altering the retinal images presented o the matcher. An cmmplc of this would be the cvidence of Kidd
et al. (1979) concerning the ability of texture contours to facilitate stercopsis by initiating cye movements.
However, such effects arc somewhat orthogonal to the question of the sufficiency of the matching component
of the Marr-I-‘oggid theory, since they affect the input to the matcher, but not the actual performance of the

matching algorithm itself,
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© 2.6 The 2}-Dimensional Sketch

Once the separafc channcls have performed their matching, the results are combined and stored in a
buffer, called the 24-D sketch. There are several possible methods for accomplishing this. As far as the Marr-
Poggio theory is concerned, the imp.ortant point is that some type of storage of disparity information occurs.
(Perhaps the strongest argument for this is the fact that up to 2 degrees of disparity can be held fused in the
fovea.)

We shall outline two different possibilities for the combination of the different channels. The method
currently used in the implementation will be described below. A more biologically feasible method will be
outlined in the discussion.

One of the critical questions concerning the form of the 2 %D sketch is whether it reflects the scene or the
retinal images. For all the cases illustrated in this article, the sketch was construcied by directly relating the
coordinates of the sketch to the coordinates of the images of the entire scene. That is, as disparity information
was obtained, it was stored in a buffer at the position corresponding to the position in the original scene from
which the underlying zero-crossing came. Since disparity information about the scene is extracted from several
eye positions, in order to store this information into a buffer, explicit information about the positions of the
eyes is required. It will be argued in the discussion that this is probably inappropriate as a model of the
human system. However, for the purposes of demonstrating the effectivencess of the matching module, such a
representation is sufficient. . -

The actual mechanism for storing the disparity values requires some combination of the disparity maps
obtained for cach of the channels. Currently, the sketch is updated, for cach region of the image, by writing
in the disparity values from the smallest channel which is within range of fusion. Vergence movements are
possible in order to bring smaller channels into a range of matching for some region. Further, for those regions
of the image for which none of the channgls can find matches, modification of the eye positions over a scale
larger than that of the vergence movements is possible, By this method, onc can attempt to bring those regions

of the image into a range of fusion.
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There are several possibilities for the actual method of driving the vergence movements. Two of these
were outlined in the previous section.
The final output of the algorithm consists of a representation of disparity values in the image, those

disparities being restricted to positions in the image lying along zero-crossings segments.

2.7 Summary of the process

The complete algorithm, as currently implemented, uses four mask sizes. Initially, the two views of the
scene are mapped into a pair of retinal images. These images are convolved with cach mask. The zero-
crossings and their oricntation are computed, for cach channel and each view. The initial alignments of
the c.yes determine the registration of the images. The matching of the descriptions from cach channel is
per‘formcd for tlis alignment. Any points'v;/ith cither ambiguous matchings or with no maich are marked as
such.

Next, the percentage of unmatched points is checked, for all square neighbourhoods of a particular size.
This size is chosen so as to ensure that the measurement of the statistics of matching within that neighbour-
hood is statistically sound. Only the disparity points of those regions whose percentage of unmatched points
is below a certain threshold, determined by the statistical analysis of Marr and Poggio (1979), are allowed
to remain. All other points are rcmovcd. The values which arc kept are stored into a buffer. At this stage,
vergence movements may take place, using information from the larger channels to bring the smaller channels
into a range where matching is possible. Further, if there are regions of the image which do not have disparity
values at any level of channel, an eye movement may take place in an zmcmpf to bring thosc portions of the’
image into a range where at least the largest mask can perform its matching,

Note that the matchjing préccss takes place independently for cach of the fo‘ur channels. Once the
matching of cach channel is comglctc, the results are combined into a single 1'cprcs<;ntation of the disparities.

' The final output is thus a disparity map, with disparitics assigned along most portions of the Zero-crossing

contours obtained from the smallest masks. The accuracy of the disparitics thus obtained depends on how
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accurately the zero-crossings have been localized, which may, of course, be to a resolution much finer than the

initial array of intensity values that constitutes the image.

3. Examples and Assessment of Performance

A standard tool in the examination of human stereo perception is the random dot stereogram (Julesz,
1960, 1971). This is a p.air of sterco images where cach image, when viewed monocularly, consists only of _
randomly distributed dots, yet when viewed stcrcoscopicqlly, may be fused to yicld patterns scparated in
depth. Such patterns are a uscful tooi f‘of analysing the sterco component of the human visual system, since.
there are no visual cues other than the stercoscopic ones. We can test the sufficiency of the algorithm by
comparing human perception with the performance of the algorithm on such patterns. As well, since random
dot stercograms have well demarked disparity values, it is casy to assess the correctness of the algorithm’s
performance on such patterns.

Table 1 lists some of the matching statistics for various random dot patterns. These are illustrated in
Figures 8-13 and discussed below, , g |

The first pattern consisted of a central square separated in depth from a second plane. The pattern had
a dot density of 50% and its analysis is shown in Figure 7. Each dot was a square with four image clements
on a side. For the algorithm, this corresponds to a dot of approximately two minutes of visual arc. The total
pattern was 320 image clements on a side. The central plane of the figure was shifted 12 image clements in
one image relative to the other. The final disparity map assigned after the matching of the smallest channel
had the following statistics. The number of zero-crossing points in the left description which were assigned

a disparity was 11847. Of these 11847, 11830‘worc disparity vaylucs which were exactly correct, and an
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TABLEOF MATCHES e ,
__ baltern (lAcn‘,lty totul T exact onc‘[)j‘;cl [ WIong _T owrong
Csquare |s0% | 1isdy 11830 N T Y e
square. | 25% CL TS T T 7w
square 10% 56 | 564 I R R
square | 5% 3500|3598 0 2 | e
wedding | 50% 11162 11095 6L | 6 06
hnoiscl 50% 2270 1909 346 IS 7
hnoisc2 S0% | se8y | ool 1868 | 194 2.
_hnoised [ TTE0% | 63 B T R N Y 7.
hnoised [ s0% 8543 | S14 | 3864 R
_uncort| 0% [ 9545 T Toog K B CT
_umeor2 | 50% 4343 4120 » A 2.
uncorr3 50% 134 127 2 ) 5 i 4o
Cuncord|Ts0% | o5y 6325 a1 | Ty

Table 1.

additional 14 deviated by one im age clement from the correct value. Approximately 0.03% of the matched
points, or roughly 3 points in 10600 were in orrectly matched.
A similar Lest was run on patterns with a dot density of 259, 10% and 5%. The resules are itlustrated in
Figure 8. |
For cach of these cases, the numhu of incorreetly matched points was extremely low. These points
which were assigned incorrect disparitics all vecured at the border hetween the two planes, that is, along the
discontinuity in disparity.
A more complex random dot pattern consisted of a wedding cake, built from four dilferent planar layers,
cach separated by 8 nmgc clemenis, or 2 dot widths, This is iltustrated in Figure ‘)
[n this case, the number or Aero-crossing poiuts assigned = disp: wity was THLG2. O these points, 11095
were assigned a disparity value which was anctly correct. and an additional 61 deviated from the correct value
byronc image clement, :\ppumnmul/ 0. ()G/ of the points were mu)mu!) 1 mhul Again, these ncorrect

pomls all ocuncd at the boundarics l)clwwn the plines. A second complex pattern is itlustrated in Figure 9,
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- Figure 8. The top sterco pair is a 25% density random dot pattern

in Figure 7, The bottom stereo pair is a 5% density random dot p

Both disparity maps are obtained from the w = 4 channel,

E. Grimson

. The disparity map below it is displayed as

attern. Its disparity map is shown below it.
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Figure 9. The top stereo pair is a 50% density wedding cake, composed of four planar levels, The disparity
map is shown below it. The bottom stereo pair is a 50% sp‘irall. The disparity map is showh below it, in a

manner similar to Figure 7, Both disparity maps are obtained from the w = 4 channel.
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The object is a spiral with a range of continuously varying disparities.

‘There are a number of special cases of random dot patterns which have been used to test v'au'ious aspects
of the human visual system. The aigorithm was also tested on several of these stercograms. They are outlined
below and a comparison between the performance of the algorithm, and human perception is given.

It is known that if one or both of the images of a random dot stereogram are blurred, fusion of the
stereogram is still possible (Julesz 1971, p.96). To test the algorithm in this case, the left half of a 50% density
pattern was blurred by convolution with a gaussian mask. This is illustrated in Figure 10. The disparity
values obtained in this'cése were not as exact as in the case of no blurring. Rather, there was a distribution

| of disparities about the known correct values. As a result, the percentage of points that might be considered in-
correct {(more thén one image clement deviatioﬁ from the correct value) rose to 6%. However, the qualitative
performance of the algorithm is still that of two planes separated in depth. It is interesting to note that slight
distribution of disparity valucs about those corresponding to the original planes is consistent with the human
perception of a pqir of slightly warped planes.

Julesz and Miller (1975) showed that fusion is also possible in the presence of some types of masking
noise. In particular, if the spectrum of the noisc is disjoint from the spectrum of the pattern, it can be |
demonstrated that fusion of the pattern is still possible. Within the framework of the Marr-Poggio theory, this
is equivalent to stating that if onc introduces noise of such a spectrum as to interfere with one of mé stereo:
channels, fusion is still possible among the other channels, provided the noise does not have a substantial
spectral component ovcrlapping other channcls as well. This was tested on the algorithm by high pass filtering
a second random dot pattern, to create the noise, and adding the noise to one image. In the case illustrated in
Figures 10 and 11, the spectrum of the noisc was designed to interfere maximally with the smallest channel,
In the case shown by HNOISE] and HNOISE? in Table 1, the noise was added such that the maximum
magnitude of the noise was equal to the maximum magnitude of the original image. HNOISEI illustrates
the performance of the smallest channel. HNOISE? illustrates the perfonnancc of the next larger channel. It

can be seen that for this case, some fusion is still possible in the smallest channcl, although it is patchy. The
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- Figure 10. The top stereo pair is a 50% density pattérn in which the left image has been blurred. The disparity
map is shown below it. It can be seen that two planeé are still evident, although they are not as sharply defined
as in Figure 7 or Figure 8. The disparity map is that obtained from the w = 4 channel. The bottom stereo
pair is a 50% density pattern, The left image has had high bass filtered noise added to it so that the maximum
magnitude of the noise‘is equal to the maximum magnitude of the image. The disparity map shown is that

obtained by the w == 9 channel,
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Figure 11. The top stereo pair is a 50% densify patterﬁ. The left image has ahd high pass filtered noise added
to it so that the maximum magnitude of the noise is half the maximum magnitude of the image. The top
disparity map is that obtained from the w == 9 channcl, while the next disparity map is that obtained from the
w == 4 channel. It can be seen that the w = 4 channel obtains a matching only in a few sections of the image.
The bottom sterco pair is a 50% density pattern in which the left image has been compressed in the horizontal
direction. The disparity map froﬁ the w = 4 is displayed below. It can be scen that the two planes are still

evident, although the entire pattern appears slanted. This is in agreement with human perception.
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next larger channel also obtains fusion. In both cases, the accuracy of the disparity values is reduced from
the normal case. This is to bé expected, since the introduction of noise tends to displace the positions of the
zero-crossings. In the case shown by HNOISE3 and HNOISE4 in Table 1, the noise was added such that the
maximum magnitude was twice that-of the maximum magnitude of the original image. Here, matching in the
smallest channel is almost completely climinated (HNOISE3). Yet matching in the next larger channel is only

marginally affected (HNOISE4),

The implementation was also tested on the case of adding low pass filtered noise to a random dot pattern,
with results similar to that of adding high pass filtered noise. Here, the larger channels arc unable to obtain a

good matching, while the smaller channels are relatively unaffected.

If one of the images of a random dot pattern is compressed in the horizontal direction, the human stereo
system is still ablec to ach1evc fusxon (Julcsz 1971 P 213) The alﬁomhm was tcstcd ou this case, and the results
are shown in quc 11. Tt can be seen that the program still obtains a reasonably good match. The planes are

now slightly slanted, which agrees with human perception,

If some of the dots of a pattern are decorrelated, it is still possible for a human observer to achieve
some kind of fusion (Julesz 1971, p.88). Two different types of decorrelation were tested. In the first type,
increasing percentages of the déts in the left image were decorrelated at random. In particular, the cases of
10%, 20% and 309 were tried, and arc illustrated in Figure 12. For the 10% case, (table entry Uncorrl)
it can be seen that the algorithm was still able 40 obtain a good matching of the two planes, although the
total number of zero-crossings assigned a disparity dccrcascd,v and the percentage of incorrectly matched
points increased. When the percentage of decorrelated dots was incrcascd to 209% (table entry Uncorr?.) the
number of matched boints decreased again, although the pereentage of those w thh were incorrectly matched
remained about the same. I“mally, when the pereentage of decorrelated dots was incrcascd to 309 (table entry

Uncorr3), the algorithm found virtually no scction of the image which could be fused.

Thc failure of the algorithm to match the 30%% dccoxrdatcd pattern is caused by the component of the

algorithm whlch cheeks that cach region of the-image is within range of correspondence. Recall that in order
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Figure 12. The top stereo pair is a 50%% density pattern in which the left image has had 109% of the dots
decorrelated. The disparity map is shown below. The bottom stereo pair is a 509 density pattern in which
the left image has had 20% of the dots decorrelated. The disparity map is shown below. Note that in this case

there are large regions of the image for which no match was made.
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to distinguish between the case of two images beyond range of fusion (for the current eye positions) which
will have only randomly matching zero-crossings, and the case of two image within range of fusion, the Marr-
Poggio theory requires that the percentage of unmatched points is less than some threshold. This threshold
is approximately 0.3, according to the statistical analysis of Marr and Poggio (1979). For the case of the‘
pattern with 30% decorrelation, on the average, each region of the image will have roughly 30% of its zero-
crossings differeﬁt and hence the algorithm decides that the region is out of range of correspondence. Hence,
no disparitites are accepted for this region.
| For the algorithm, the computational rcason for the failure to process patterns with 30% deqorrelation
is that it could not distinguish a correctly ﬁatched region of such a pattern from a region which was out of
‘range of correspondence, but had a random set of matches for many of the pointsin the region. It is interesting
to note that many human subjects observe a similar behavior: that is, some kind of fusion for up to 20%
decorrelation, although the fusion becomes increasingly weaker, and virtually no fusion for patterns with 30%
decorrelation.
One can also decorrelate the pattern by breaking up all white triplets along one set of diagonals, and
all black triplets along the other sei of diagonals (Julesz 1971, p.87). The table entry Uncorrd indicates the
matching statistics for this case. Again, it can be seen that the program still obtains a good match, as do human

observers. The performance of the algorithm is illustrated in Figure 13.

4. Statistics

A number of parameters are important for the theory, which makes assumptions about them, and they

have been measured on random dot images. The worst cases occur for patterns with a density of 50%, and
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- Figure 13. The top stereo pair is a 50% density pattern in which the left image has been diagonally decorre-
lated. Along one sct of diagonals, every triplet of white dots has been broken by the insertion of a black dot,
and along the other set of diagonals, every triplet of black dots has been broken by the insertion of a white dot.
The disparity map is shown below. The bottom stereo pair is a speciél case of Panum’s limit. The left ‘uﬁage is
forined by superimposing two slightly displaced copies of the right image. The disparity map is shown below,

and consists of two superimposed planes.
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TABLE O STATISTICS

parameter expected worst large channel medium channel small channe

case-behavior w o= 15 w=17 w0

average distance
between zero-crossings 2w 151w 1.38 w 1.87 w

of same sign

probability of
candidates in at >.50 7 75 .69
most one pool

probability of
candidates in <45 21 23 : 31

two pools

probability of

~ candidates in all <.05 02 0L | ol
- three pooly ) _ !
given a candidate ] ‘
near zero, ‘
probability of no >.9 .88 .85 I .87
other candidates I

Table 2.

for such patterns the worst case values enceuntered for the parameters have the values shown in ‘Table 2. The

theoretical worst case bounds used by Marr and Poggio appear for comparison.
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5. Comments and Discussion : .

Implementing a computational theory offers us the opportunity of testing its adequacy. In this case, I
have found that the performance of the implementation coincides well with that of human subjects over a
broad range of random dot test cases obtained from the literature, including defocussing of, compression of,
and the introduction of various kinds of‘ masking noise to one image of a random dot stereo pair.

The process of implementing the theory also led to the following observations and refinements of the
theory. |

(1) There are a number of questions concerning the form of the 24-D sketch. The first critical questioﬁ
concerns whether the sketch reflects the initial or the retinal images. In the first case, the coordinates of thé
sketch would be directly .rclated to the coordinates of the images of the cntire scene., However, since disbari&
mfotmatlon about the sculc is umactcd from scvc1a1 eye pos@tiops, ‘in order to store this information into a
buffel w1th cooxdmate system connected to the image of the scene, explicit information about the positions of
the eyes is required. For the computer implementation, this is possible, but for a model of the human visual
system, it seems unlikely that such information is available to the stereo process. In the second case, no such
problem arises. Here, the coordinates of the sketch arc directly related to the coordinates of the retinal images.
Such a system would be retinocentric, reflecting the current positions of the eyes. This seems to be the most
natural representation,

The sccond question concerns the use of a fovea. Different sections of the images are analyzed at different
resolutions, for a given position of the optical axes. An important conscquence of this is that the amount of
buffer space required to store the disparity will vary widely in the visual ficld, being much greater for the fovea
than for the periphery. This also suggests the use of a retinocentric representation, bccause if onc used a frame
that had alrcady allowed fol ¢ye-movements, it would have to have foveal resolution everywhere. Not only
docs such a buffer waste space, b'ut it does not agree with our own c.{pcricncc as perceivers. If such a buffer
were used, we should be able to build up a pereeptual impression of the world that was everywhere as detailed

asitis at the centre of the gaze, and this is clearly not the case.
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The final point about the 25D sketch is that it is intended as an intermediate representation of the
current scene. It is important for such a representation to pass on its information to higher level processes as
quickly as possible, Thus, it probably cannot wait for a representation to be built up over several positions
of the eyes. Rather, it must be refreshed for each cye position. Thus, a refinement to the implementation, as
outlined above, would be to use a representation that is retinocentric, and which represents disparities with

decreasing resolution as eccentricity increases.

For the cases illustrated in this article, the 2%-D sketch was created by storing fine resolution disparity
values into a scene-centered representation. A second alternative is to store values from all channels into a
retinocentric representation, using disparity values from the smaller channels where available, and the coarser

disparities from the larger channels elsewhere. In this way, a disparity representation for a single fixation of the

eyes may be constructed, with disparity resolution varying across the retina. Such a method of creating the 24-

D sketch has been tested on the implementation, with good results,

(2) The neighbourhood over which a search for a matching zero-crossing is conducted is broken into
three pools. In the present implementation, the pools are used to deal with the ambiguous case of two
matching zero-crossings, whilc the disparity valucs associated with a match are represented to within a image
element. A sccond possibility is to use the pools not only to disambiguate multiple matches, but also to assign
a disparity to a match. Thus, a single disparity value, equal to the disparity value of lelc midpoint of the
pool, would be assigned for a matching zero-crossing lying anywhere within the pool. In this scheme, only
three possible disparities could be assigned to a zero-crossing: zero, corresponding to the middle pool, or :—*f,f—”

corresponding to the divergent or convergent pools.

Computer experiments show that cither scheme will work. In the case of a single disparity value for cach
pool, the disparitics assigned by the smallest channel are within an image clement of those obtained using
cxact disparities for each match. This modification was tricd on both natural images and random dot patterns,

and suggests that the accuracy with which the pools represent the match is not a critical factor.

3) Although the Marr-Poggio matcher is designed to match from one image into the other, there is no
& Y
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inherent reason why the matching process cannot be driven from both eyes independently. In fact, there
may be some evidence that this is so, as is shown by the following experiment of O. Braddick (1978) on an
extension to Panum’s limiting case. First, a sparsc random dot pattern was constructed. From this pattern, a
partner was created by displacing the entire pattern by slight amounts to both the left and the right. Thus, for
each dot in the right image, there corresponded two dots in the left image, one with a small displacement to
the left and one with a small displacement to the right. The perception obtained by viewing such a random dot

stereogram is onc of two superimposed planes. .

Suppose the matching process were only driven from one image, for example, matches were made from
the right image to the left. In this case, the implementation would not be able to account for the Braddick
perception, since all the zero-crossings would have two possible cdndidates. However, suppose that the ma%ch-
ing'process were driven independently from bbth the right and left images, and an unambigucus match from
cither side accepted. In this case, although every zero-crossing in the right image would have an ambiguous
match, the implementation would obtain a unique match for cach zero-crossing in the Ieft image. The

implementation was designed to account for matching from either image.

Braddick’s case has been tested on the implementation, and the results are shown in figure 13. It can be

seen that the results of the implementation are that of two transparcm planes.

" (4) The points that were incoxjrcctly matched in the test cascs all lay along depth discontinuitics. The
major reason for this is connected with occlusion of regions. Note that at any depth discontinuity, there will
be an occluded region which is present in one image, but not the other. Any zero-crossings within that region
cannot, of course, have a matching zero-crossing in the other image, Howcvex", there is a certain probability”
of such a zero-crossing being matched incorrectly to a random zero- crossing in thc other image. In principle,
the algorithm detects regions wlmh arc occluded, by checking the statistics of the numbcr of unmatched zero-
cxossmgs, and using such results to mark all zero-crossing matches in the region as unknown. However, for a

region which contains a depth discontinuity, only part of the region will have the above chdmctcnsms Zero-

c1ossmgs in the rest of the region will have a umque match. Thus, whcn the statistical check on thc numbcr
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of unmatched points is performed, it is possible for the entire region to be considered in range, and thus all

matches, including the incorrect ones of the occluded region, will be accepted.

(5) It is interesting to comment on the effect of depth discontinuities for the different sized masks. For
random dot patterns, the zero-crossings obtained from the larger masks tend to outline blobs or clusters of
dots. Thus in general, the positions of the zero-crossings do not correspond to single clements of the underly-
ing image. Suppose ‘the dot pattern consists of one plane separated in depth from a second plane. In such a
case, one might well find a zero-crossing that belongs at one end to dots on the first plane, and at the other end
to dots belonging tb the second plane. Such zero-crossings will be assigned disparities that reflect, to within
the resolution of the channel, the structure of thc image. The zero-crossings lying between the two ends will,
however, receive disparities that smoothly vary from one extreme to the other, The largest channel would thus
not see a plane scparated in depth from a sccond plane, but rather a smooth hump.

For the smaller mask this does not occur, as the zeio-cfossing contours tcnd’ to outline indivi_dua! dots or
connected groups of dots. Thus the disparities assigned are such that the dots belong to one plane or the other
and the final disparity map is one of two separated planes,

To achieve perfect results from sterco, it is probably necessary to include in the 2%-dimcnsional sketch
a way of dealing competently with discontinuitics. Some initial work has already been donc in this direction
(Grimson, in preparation). Interestingly, when one looks at a 5% random-dot stereogram portraying a square
in front of its background, one sces vivid subjective contours at its boundary, although the output of the
matcher does not account for this.

(6) One consequence of the Marr-Poggio theory is that cxplicit disparity values will be obtained only
along the zero-crossing contours. It may be desirable to create a more complete reconstruction of the shapes of
the objects in the scenc, by filling in disparity values between the Zero-crossing co‘n[ours. Some work has been

done in this dircction (Grimson, in prcpamtion) and an example is shown in Figure 14,

(7) A integral part of most computational theories, proposcd as models of aspects of the human visual

system is the usc of computational constraints based on assumptions about the physical world (Marr and
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-Figure 14. Example of filling in the disparity map. The top left figure is the initial image. The top right figure
shows the disparity map associated with tl'm image, where the disparity is represented by the intensity of the
point, The bottom figures show the filled in map, again using intensity to represent disparity. In the left ﬁgurei
the fullji'ange of disparity is shoWn, indiéating the slant of the background plane, and the extreme difference in
disparity between the jar and the background. In the right figure, the intensitics have been adjusted to enhance

the disparities of the jar, indicating the gencral shape of the interpolated surface.
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Poggio, 1979, Marr and Hildreth, 1980, Ullman, 1979). The constraints so derived are critical in the formation
of the computétional theory, and in the design of an algorithm for solving the problem. An interesting ques-
tion to raise is whether the algorithm explicitly checks that the constraints imposed by the theory are satisfied.
For example, Ullman’s rigidity constraint in the analysis of structure from motion is explicitly checked by his
algorithm, For the case of the Marr-Poggio stereo theory, two constraints were outlined, uniqueness and con-
tinuity of disparity values, It is curious that in the algorithm used to solve the stereo problem, the continuity
constraint is explicity checked while the uniqueness constraint is not. Uniqueness of disparity is required in
one direction of matching, since only those zero-crossing segments of one image which have exactly one match
in the second image are aqéepted. However, it may be the case that more than one element of the right image
' couldbbe matched to an element of the left image, for matching in this direction. When matching from the
right image to the left, the same is true. Note that one could easily alter the algorithm to include the checking
of uniqueness, thereby retaining iny those disparity values corresponding to zero-crossing segments with a
unique disparity value when matched from both images. However, the evidence of Braddick discussed above
would indicate that this is not the case. Hence, in the Marr-Poggio stereo theory, although both the require-
ment of uniqueness and continuity are subsumed, only one of these two constraints is explicitly checked by the

algorithm,

(8) It is worth observing the distinction between the performance of the implementation on random
dot patterns and the .performance of the implementation on natural images. Some examples are shown in_‘
Figure 15. The main point is that on the whole, the performance is quite accebtable for random dot patterns,
However, the implementatjon can occasionally fail in the case of natural images. The question is whether this
reflects a basic inadequacy in the thcory and its implementation, or whether there are other aspects of the

visual process interacting with stereo which have not been included in this implementation.

This can be approached in two ways: (1) Is the assumption of modularity incorrect? In other words, is
there something wrong with the matching module as developed by Marr and Poggio, and as implemented

here. (2) Are there other modulés, not considered here, which may affect the input or the output of the
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- Figure 15. Examples of natural images. The top stereo pair is a scene of a basketball game. The disparity map
below is viewed ffom the side, so that the width of the black bars indicates the relative disparity. The bottom
stereo pair is of a sculpture by Henry Moore. The disparity maps below it are also viewed from the side. The
left map illustrates the extreme range of disparity between the trees in the background and the sculpture itself,

- The right map has been adjusted to enhance the disparities of the sculpture, indicating its form.




54

o




Stereo Implementation ‘ o 55 o o o o E. Grimson

matching module? : SR o : S e

The results of testing the implementation on the broad range of images, indicated in previous sections,
seems to indicate that the matching module is acceptable as an independent one. In particular, the agreement
between the performance of the algorithm and that of human observers on the many random dot pattemég
seems to indicate that the matching module is acceptable, since in these cascs, all other visual cues have been

isolated from the matcher. .

When we tur‘n.to natural images, it is reasonable to expect that other visual modules may anecf [1:10 iripiff
to the maiéher and that they may alter the output of the matcher. This is"n:ot to suggest that the mafcher is
incorrect, only that the effects of other modules must be taken into account in order to explain the complete
human perception. For éxample, the evidence of Kidd, Frisby and Mayhew (1979} concerning the abilify of .
texture boundaries to drive eye vergence movements indicates that other visual information besides disparity
may alter the position of the eyes, and thus thc input to the matcher. However, it dbcs not necessarily imply

that the matcher itself needs to be medified,

Interestingly, the performance of the implementation supports this point. The implementation, which 1s
considered a distinct module, also performs very welt on random dot patterns, where there is no possibility
of interaction with other visual processes. For many natural images, this is still true. However, occasionally
it is the case that a natural image provides some difficulty for the implementation. A particular example of
this cceurs in the image of Figure 16 . Here, the regular pattern of the windows provides a strong false targets
problem. In running the implementation, the following behavior was observed. If the optical axes were aligned
at the level of ‘thc building, the zero-crossings corresponding to the windows were all assigned a correct dis-
parity. If, however, the optical axes were aligned at the level of the trees in front ofthc building, the windows
were assigned an incorrect dispérity, duc to the regular pattern of zero-crossings associated with them. Clearly,
this scems wrong. Yet is the hnp}cmcntatiqn wrong? Curiously, if one fuses the zero-crossing descriptions of
the convolved images without eye movements, human observers have the same problem: if the eyes are fixated

at the level of the building, the windows arc correctly matched; if the eyes are fixated at the level of the trees,




Sterco Implementation 56 o E Grimson

Figure 16. The false targest problem., The top figures are a stereo pair of a group of buildings. The bottom
B f [ ! 5 I 4

figures show the zero-crossing deseri wtions of these images. The reaular nattern of the windows of the rear
O o I & o i

building causes difficultics for the matcher, If the alignment of the eyes corresponds to fixating at the level

of the building, the algorithm matches the zero-crossings corresponding to the windows correctly, If the
alignment of the cyes corresponds to fixaling at the level of the trees in front of the building, the algorithm
matches the zero-crossings corresponding to the windows incorrectly. Uxperiments indicate that under similar

conditions humans have a similar perception,
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the windows are incorrectly matched. I would argue that this implies that the implementation, and hence the
theory of the matching process is ivn fact correct. Given a particular set of zcro-crossing;;, the module finds
any acceptable matching and writes it into the 2%;D sketch. However, it is probably the case that some later
processing module, which examines the contents of the 24-D sketch, is capable of altering the contents stored
-there, basc_:d on more global information than is available to the matching component of the stereo process,
Thus, T would suggest that future refinements to the Marr-Poggio theory must account for the interac-

tions of other aspects of visual information processing on the input and output of the matching module. Some

initial work has already been done in this direction (Grimson, in preparation).
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to distinguish between the case of two images beyond range of fusion (for the current eye positions) which
will have only randomly matching zero-crossings, and the case of two image within range of fusion, the Marr-
Poggio theory requires that the percentage of unmatched points is less than some threshold. This threshold
is approximately 0.3, according to the statistical analysis of Marr and Poggio (1979). For the case of the‘
pattern with 30% decorrelation, on the average, each region of the image will have roughly 30% of its zero-
crossings differeﬁt and hence the algorithm decides that the region is out of range of correspondence. Hence,
no disparitites are accepted for this region.
| For the algorithm, the computational rcason for the failure to process patterns with 30% deqorrelation
is that it could not distinguish a correctly ﬁatched region of such a pattern from a region which was out of
‘range of correspondence, but had a random set of matches for many of the pointsin the region. It is interesting
to note that many human subjects observe a similar behavior: that is, some kind of fusion for up to 20%
decorrelation, although the fusion becomes increasingly weaker, and virtually no fusion for patterns with 30%
decorrelation.
One can also decorrelate the pattern by breaking up all white triplets along one set of diagonals, and
all black triplets along the other sei of diagonals (Julesz 1971, p.87). The table entry Uncorrd indicates the
matching statistics for this case. Again, it can be seen that the program still obtains a good match, as do human

observers. The performance of the algorithm is illustrated in Figure 13.

4. Statistics

A number of parameters are important for the theory, which makes assumptions about them, and they

have been measured on random dot images. The worst cases occur for patterns with a density of 50%, and
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- Figure 13. The top stereo pair is a 50% density pattern in which the left image has been diagonally decorre-
lated. Along one sct of diagonals, every triplet of white dots has been broken by the insertion of a black dot,
and along the other set of diagonals, every triplet of black dots has been broken by the insertion of a white dot.
The disparity map is shown below. The bottom stereo pair is a speciél case of Panum’s limit. The left ‘uﬁage is
forined by superimposing two slightly displaced copies of the right image. The disparity map is shown below,

and consists of two superimposed planes.
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TABLE O STATISTICS

parameter expected worst large channel medium channel small channe

case-behavior w o= 15 w=17 w0

average distance
between zero-crossings 2w 151w 1.38 w 1.87 w

of same sign

probability of
candidates in at >.50 7 75 .69
most one pool

probability of
candidates in <45 21 23 : 31

two pools

probability of

~ candidates in all <.05 02 0L | ol
- three pooly ) _ !
given a candidate ] ‘
near zero, ‘
probability of no >.9 .88 .85 I .87
other candidates I

Table 2.

for such patterns the worst case values enceuntered for the parameters have the values shown in ‘Table 2. The

theoretical worst case bounds used by Marr and Poggio appear for comparison.
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5. Comments and Discussion : .

Implementing a computational theory offers us the opportunity of testing its adequacy. In this case, I
have found that the performance of the implementation coincides well with that of human subjects over a
broad range of random dot test cases obtained from the literature, including defocussing of, compression of,
and the introduction of various kinds of‘ masking noise to one image of a random dot stereo pair.

The process of implementing the theory also led to the following observations and refinements of the
theory. |

(1) There are a number of questions concerning the form of the 24-D sketch. The first critical questioﬁ
concerns whether the sketch reflects the initial or the retinal images. In the first case, the coordinates of thé
sketch would be directly .rclated to the coordinates of the images of the cntire scene., However, since disbari&
mfotmatlon about the sculc is umactcd from scvc1a1 eye pos@tiops, ‘in order to store this information into a
buffel w1th cooxdmate system connected to the image of the scene, explicit information about the positions of
the eyes is required. For the computer implementation, this is possible, but for a model of the human visual
system, it seems unlikely that such information is available to the stereo process. In the second case, no such
problem arises. Here, the coordinates of the sketch arc directly related to the coordinates of the retinal images.
Such a system would be retinocentric, reflecting the current positions of the eyes. This seems to be the most
natural representation,

The sccond question concerns the use of a fovea. Different sections of the images are analyzed at different
resolutions, for a given position of the optical axes. An important conscquence of this is that the amount of
buffer space required to store the disparity will vary widely in the visual ficld, being much greater for the fovea
than for the periphery. This also suggests the use of a retinocentric representation, bccause if onc used a frame
that had alrcady allowed fol ¢ye-movements, it would have to have foveal resolution everywhere. Not only
docs such a buffer waste space, b'ut it does not agree with our own c.{pcricncc as perceivers. If such a buffer
were used, we should be able to build up a pereeptual impression of the world that was everywhere as detailed

asitis at the centre of the gaze, and this is clearly not the case.
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The final point about the 25D sketch is that it is intended as an intermediate representation of the
current scene. It is important for such a representation to pass on its information to higher level processes as
quickly as possible, Thus, it probably cannot wait for a representation to be built up over several positions
of the eyes. Rather, it must be refreshed for each cye position. Thus, a refinement to the implementation, as
outlined above, would be to use a representation that is retinocentric, and which represents disparities with

decreasing resolution as eccentricity increases.

For the cases illustrated in this article, the 2%-D sketch was created by storing fine resolution disparity
values into a scene-centered representation. A second alternative is to store values from all channels into a
retinocentric representation, using disparity values from the smaller channels where available, and the coarser

disparities from the larger channels elsewhere. In this way, a disparity representation for a single fixation of the

eyes may be constructed, with disparity resolution varying across the retina. Such a method of creating the 24-

D sketch has been tested on the implementation, with good results,

(2) The neighbourhood over which a search for a matching zero-crossing is conducted is broken into
three pools. In the present implementation, the pools are used to deal with the ambiguous case of two
matching zero-crossings, whilc the disparity valucs associated with a match are represented to within a image
element. A sccond possibility is to use the pools not only to disambiguate multiple matches, but also to assign
a disparity to a match. Thus, a single disparity value, equal to the disparity value of lelc midpoint of the
pool, would be assigned for a matching zero-crossing lying anywhere within the pool. In this scheme, only
three possible disparities could be assigned to a zero-crossing: zero, corresponding to the middle pool, or :—*f,f—”

corresponding to the divergent or convergent pools.

Computer experiments show that cither scheme will work. In the case of a single disparity value for cach
pool, the disparitics assigned by the smallest channel are within an image clement of those obtained using
cxact disparities for each match. This modification was tricd on both natural images and random dot patterns,

and suggests that the accuracy with which the pools represent the match is not a critical factor.

3) Although the Marr-Poggio matcher is designed to match from one image into the other, there is no
& Y
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inherent reason why the matching process cannot be driven from both eyes independently. In fact, there
may be some evidence that this is so, as is shown by the following experiment of O. Braddick (1978) on an
extension to Panum’s limiting case. First, a sparsc random dot pattern was constructed. From this pattern, a
partner was created by displacing the entire pattern by slight amounts to both the left and the right. Thus, for
each dot in the right image, there corresponded two dots in the left image, one with a small displacement to
the left and one with a small displacement to the right. The perception obtained by viewing such a random dot

stereogram is onc of two superimposed planes. .

Suppose the matching process were only driven from one image, for example, matches were made from
the right image to the left. In this case, the implementation would not be able to account for the Braddick
perception, since all the zero-crossings would have two possible cdndidates. However, suppose that the ma%ch-
ing'process were driven independently from bbth the right and left images, and an unambigucus match from
cither side accepted. In this case, although every zero-crossing in the right image would have an ambiguous
match, the implementation would obtain a unique match for cach zero-crossing in the Ieft image. The

implementation was designed to account for matching from either image.

Braddick’s case has been tested on the implementation, and the results are shown in figure 13. It can be

seen that the results of the implementation are that of two transparcm planes.

" (4) The points that were incoxjrcctly matched in the test cascs all lay along depth discontinuitics. The
major reason for this is connected with occlusion of regions. Note that at any depth discontinuity, there will
be an occluded region which is present in one image, but not the other. Any zero-crossings within that region
cannot, of course, have a matching zero-crossing in the other image, Howcvex", there is a certain probability”
of such a zero-crossing being matched incorrectly to a random zero- crossing in thc other image. In principle,
the algorithm detects regions wlmh arc occluded, by checking the statistics of the numbcr of unmatched zero-
cxossmgs, and using such results to mark all zero-crossing matches in the region as unknown. However, for a

region which contains a depth discontinuity, only part of the region will have the above chdmctcnsms Zero-

c1ossmgs in the rest of the region will have a umque match. Thus, whcn the statistical check on thc numbcr
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of unmatched points is performed, it is possible for the entire region to be considered in range, and thus all

matches, including the incorrect ones of the occluded region, will be accepted.

(5) It is interesting to comment on the effect of depth discontinuities for the different sized masks. For
random dot patterns, the zero-crossings obtained from the larger masks tend to outline blobs or clusters of
dots. Thus in general, the positions of the zero-crossings do not correspond to single clements of the underly-
ing image. Suppose ‘the dot pattern consists of one plane separated in depth from a second plane. In such a
case, one might well find a zero-crossing that belongs at one end to dots on the first plane, and at the other end
to dots belonging tb the second plane. Such zero-crossings will be assigned disparities that reflect, to within
the resolution of the channel, the structure of thc image. The zero-crossings lying between the two ends will,
however, receive disparities that smoothly vary from one extreme to the other, The largest channel would thus
not see a plane scparated in depth from a sccond plane, but rather a smooth hump.

For the smaller mask this does not occur, as the zeio-cfossing contours tcnd’ to outline indivi_dua! dots or
connected groups of dots. Thus the disparities assigned are such that the dots belong to one plane or the other
and the final disparity map is one of two separated planes,

To achieve perfect results from sterco, it is probably necessary to include in the 2%-dimcnsional sketch
a way of dealing competently with discontinuitics. Some initial work has already been donc in this direction
(Grimson, in preparation). Interestingly, when one looks at a 5% random-dot stereogram portraying a square
in front of its background, one sces vivid subjective contours at its boundary, although the output of the
matcher does not account for this.

(6) One consequence of the Marr-Poggio theory is that cxplicit disparity values will be obtained only
along the zero-crossing contours. It may be desirable to create a more complete reconstruction of the shapes of
the objects in the scenc, by filling in disparity values between the Zero-crossing co‘n[ours. Some work has been

done in this dircction (Grimson, in prcpamtion) and an example is shown in Figure 14,

(7) A integral part of most computational theories, proposcd as models of aspects of the human visual

system is the usc of computational constraints based on assumptions about the physical world (Marr and
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-Figure 14. Example of filling in the disparity map. The top left figure is the initial image. The top right figure
shows the disparity map associated with tl'm image, where the disparity is represented by the intensity of the
point, The bottom figures show the filled in map, again using intensity to represent disparity. In the left ﬁgurei
the fullji'ange of disparity is shoWn, indiéating the slant of the background plane, and the extreme difference in
disparity between the jar and the background. In the right figure, the intensitics have been adjusted to enhance

the disparities of the jar, indicating the gencral shape of the interpolated surface.
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Poggio, 1979, Marr and Hildreth, 1980, Ullman, 1979). The constraints so derived are critical in the formation
of the computétional theory, and in the design of an algorithm for solving the problem. An interesting ques-
tion to raise is whether the algorithm explicitly checks that the constraints imposed by the theory are satisfied.
For example, Ullman’s rigidity constraint in the analysis of structure from motion is explicitly checked by his
algorithm, For the case of the Marr-Poggio stereo theory, two constraints were outlined, uniqueness and con-
tinuity of disparity values, It is curious that in the algorithm used to solve the stereo problem, the continuity
constraint is explicity checked while the uniqueness constraint is not. Uniqueness of disparity is required in
one direction of matching, since only those zero-crossing segments of one image which have exactly one match
in the second image are aqéepted. However, it may be the case that more than one element of the right image
' couldbbe matched to an element of the left image, for matching in this direction. When matching from the
right image to the left, the same is true. Note that one could easily alter the algorithm to include the checking
of uniqueness, thereby retaining iny those disparity values corresponding to zero-crossing segments with a
unique disparity value when matched from both images. However, the evidence of Braddick discussed above
would indicate that this is not the case. Hence, in the Marr-Poggio stereo theory, although both the require-
ment of uniqueness and continuity are subsumed, only one of these two constraints is explicitly checked by the

algorithm,

(8) It is worth observing the distinction between the performance of the implementation on random
dot patterns and the .performance of the implementation on natural images. Some examples are shown in_‘
Figure 15. The main point is that on the whole, the performance is quite accebtable for random dot patterns,
However, the implementatjon can occasionally fail in the case of natural images. The question is whether this
reflects a basic inadequacy in the thcory and its implementation, or whether there are other aspects of the

visual process interacting with stereo which have not been included in this implementation.

This can be approached in two ways: (1) Is the assumption of modularity incorrect? In other words, is
there something wrong with the matching module as developed by Marr and Poggio, and as implemented

here. (2) Are there other modulés, not considered here, which may affect the input or the output of the
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- Figure 15. Examples of natural images. The top stereo pair is a scene of a basketball game. The disparity map
below is viewed ffom the side, so that the width of the black bars indicates the relative disparity. The bottom
stereo pair is of a sculpture by Henry Moore. The disparity maps below it are also viewed from the side. The
left map illustrates the extreme range of disparity between the trees in the background and the sculpture itself,

- The right map has been adjusted to enhance the disparities of the sculpture, indicating its form.
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matching module? : SR o : S e

The results of testing the implementation on the broad range of images, indicated in previous sections,
seems to indicate that the matching module is acceptable as an independent one. In particular, the agreement
between the performance of the algorithm and that of human observers on the many random dot pattemég
seems to indicate that the matching module is acceptable, since in these cascs, all other visual cues have been

isolated from the matcher. .

When we tur‘n.to natural images, it is reasonable to expect that other visual modules may anecf [1:10 iripiff
to the maiéher and that they may alter the output of the matcher. This is"n:ot to suggest that the mafcher is
incorrect, only that the effects of other modules must be taken into account in order to explain the complete
human perception. For éxample, the evidence of Kidd, Frisby and Mayhew (1979} concerning the abilify of .
texture boundaries to drive eye vergence movements indicates that other visual information besides disparity
may alter the position of the eyes, and thus thc input to the matcher. However, it dbcs not necessarily imply

that the matcher itself needs to be medified,

Interestingly, the performance of the implementation supports this point. The implementation, which 1s
considered a distinct module, also performs very welt on random dot patterns, where there is no possibility
of interaction with other visual processes. For many natural images, this is still true. However, occasionally
it is the case that a natural image provides some difficulty for the implementation. A particular example of
this cceurs in the image of Figure 16 . Here, the regular pattern of the windows provides a strong false targets
problem. In running the implementation, the following behavior was observed. If the optical axes were aligned
at the level of ‘thc building, the zero-crossings corresponding to the windows were all assigned a correct dis-
parity. If, however, the optical axes were aligned at the level of the trees in front ofthc building, the windows
were assigned an incorrect dispérity, duc to the regular pattern of zero-crossings associated with them. Clearly,
this scems wrong. Yet is the hnp}cmcntatiqn wrong? Curiously, if one fuses the zero-crossing descriptions of
the convolved images without eye movements, human observers have the same problem: if the eyes are fixated

at the level of the building, the windows arc correctly matched; if the eyes are fixated at the level of the trees,
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Figure 16. The false targest problem., The top figures are a stereo pair of a group of buildings. The bottom
B f [ ! 5 I 4

figures show the zero-crossing deseri wtions of these images. The reaular nattern of the windows of the rear
O o I & o i

building causes difficultics for the matcher, If the alignment of the eyes corresponds to fixating at the level

of the building, the algorithm matches the zero-crossings corresponding to the windows correctly, If the
alignment of the cyes corresponds to fixaling at the level of the trees in front of the building, the algorithm
matches the zero-crossings corresponding to the windows incorrectly. Uxperiments indicate that under similar

conditions humans have a similar perception,
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the windows are incorrectly matched. I would argue that this implies that the implementation, and hence the
theory of the matching process is ivn fact correct. Given a particular set of zcro-crossing;;, the module finds
any acceptable matching and writes it into the 2%;D sketch. However, it is probably the case that some later
processing module, which examines the contents of the 24-D sketch, is capable of altering the contents stored
-there, basc_:d on more global information than is available to the matching component of the stereo process,
Thus, T would suggest that future refinements to the Marr-Poggio theory must account for the interac-

tions of other aspects of visual information processing on the input and output of the matching module. Some

initial work has already been done in this direction (Grimson, in preparation).
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