AUTHCF	Gregory, Thcmas E.
TiIIE	A Computer Program for Calculation of Scotts Coefficient of Cbserver Reliability.
INSTITUTICN	Texas Univ., Austin. Research and Development Center for $I \in a c h \in r$ Education.
SPONS AGENCY	Office of Education (DHEW), Washington, D.C.
FEPOFT NO	F-Ser-21
PUB DATE	Stp 69
GRANT	USOE-6-10-108
NOTE	10 E .
PDES PRICE	ELRS Erice MF-\$0.25 $\mathrm{HC}-\$ 0.60$
DESCRIETOES	*Classroom OLservation Technigues, *Computer
	Frograms, Educational Research, *Reliability,
	*Research Methodology, *Statistical Analysis
IDENTIFIERS	FORTRAN, Inter rater Feliability, Observer Feliability

ABSTRACT
Scott's coefficient is an improved method for estimatiny observer reliability using any system which assigns events to mutually exclusive categories. The formula is the ratio of the actual difference between obtained and chance agreement to the maximum difference between obtained and chance agreement. A Fortran program for calcilating this reliability coefficient is presented. The program can be used with from 2 to 20 observers and can include any number of ckservations as long as the product of the observaticns times the ctservers does not exceed 200. The observation system cannot exceed 30 categories. There are four outputs of the program including the average reliability coefficient of all possible pairs of otservers, the average difference between all possible pairs cf observers for each category, the fercentage of each observer's total assignments fcund in each category, and each observer's average coefficient cf reliabiljty with all other observers. The data deck arrangement and program listing are included. (PR)

the university of texas ai AUSTIN / AUSTIN PUBLIC SCHOOLS / TEXAS EDU. CATION AGENCY
U.S. DEPARTMENT OF HEALTH. EDUCATION \& WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPROOUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES.
SARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION GR POLICY.

A COMPUTER ミROGRAM
FOR CALCULATION OF
SCOTT'S COEFFICIENT
OF OBSERVER RELIABILITY

Thomas B. Gregory

Report Series No. 21

September, 1969

> The Research and Development Center for Teacher Education The University of Texas at Austin

This research was conducted with partial support of USOE Grant No. 6-10-108. The author wishes to acknowledge the assistance of Dr. Donald J. Veldman, Dr. Marcella Kysilka and Dr. O.L. Davis, J̌., in the preparation of tins program.

A COMPIUTER PRGGRAM FOR CALCULATION OF SCOTT ${ }^{\text {'S }}$ COEFFICIENT OF OBSERVER RELIABILITY

By

Thomas B. Gregory ${ }^{1}$
Indiana University

The past decade has witnessed the development of numerous observation systems that attempt to objectively record the ongoing verbal and nonverbal events occurring in the classroom. Flander's Interaction Analysis (1960) and the several revisions of the OScAR (e.g., Medley and Mitzel, 1953; Medley and others, 1968) are notable examples of this trend. Since such descriptive systems increasingly are being utilizzed as criterion measures in educational research, the problem of obtaining valid estimates of inter-observer reliability is a crucial one.

Scott (1955) proposed a method of estimating the reliability of observers using any observation system that assigns events to mutually exclusive categories. The method marks an

[^0]improvement over conventional methods that are based on the percentage of observer agreements: Since such methods require the assumption of equi-probability of occurrence for all categories, they are inappropriate for these observation systems, The formula for Scott's coefficient is:
$$
M Y=\frac{P_{o}-P_{e}}{1-P_{e}}
$$
where P_{0} (observed percent of agreement) represents the percentage of judgements on which two observers. agree when coding the same data independently; and \ddot{r}_{e} is the percent of agreement to be expected by chance. 7%, then, is the ratio of the actual difference between obtained and chance agreement to the maximum difference between obtained and chance agreement (Scott, 1955, p. 323). Detailed procedures for hand-calculation of 7 axe found elsewhere (Flanders, 1960, 1967)。

General Description of the Gomputer Program

This Fortran program may be used with from 2 to 20 observers. Any number of individual observations may be included as long as the product of the observation $N \mathrm{~N}$ the observer N does not exceed 200 (i.e., the maximum observation N for 20 observers is 10). The observation system cannot exceed 30 categories. Data may be input as decimal fractions or percents of the total assignments by each observer or as raw scores for each category for each observer. Any input format may be specified. Subroutine CCDS (Veldman, 1967, p. 132) allows several separate jobs to be "stacked" if the need arises.

Four outputs of the program are:

1. The average difference between all possible pairs of observers fior each category.
2. The percentage of each observer's total assignments found in each category.
3. The average reliability coefficient of all possible pairs of observers.
4. Each observer's average coefficient of jeliability with all other observers.

Data Deck Arrangement

Gard 1 Title Control Card

Columns:

1-80 Title identifying this particular job. It may be of any length but cannot be left blank.

Gard 2 Parameter Control Card
Columns:
1-5 Number of observers (max., 20).
6-10 Number of observations (max., 200 / observer N).
11-15 Number of categories in the system (max., 30).
16-20 A 1 if data is input as percents of total, a 2 if data is input as decimal fractions of total, or a 3 if data is input as raw scores for each category. 21-80 Blank.

Card 3
Columns:
1-80 An appropriate format statement (F mode) for reading the data as it is arranged on the tab cards (e.g., (10X, 10F3)).

4

Card 4 Beginning of the data deck arranged with all of observer l's observations first, then all of observer 2 's,... then all of observer N's.

Last Card Another Title Control Card indicating the beginning of a new job or a blank card.

Program Listing

REFERENCES

Flanders, Ned A. Interaction Analysis in the Classroom. Minneapolis: University of Minnesota, College of Education, (Pre-Publication draft), 1960. (Mimeographed).
\qquad . "The Problems of Observer Training and Reliability." Pp. 158-66 in Amidon, Edmund J, and Hough, John B. Interaction Analysis: Theory, Research, and Application. Reading, Massachusetts: Addison-Wesley Publishing Co., 1967.

Medley, Donald M. and Mitrel, Harold E. "A Technique for Measuring Classroom Behavior." Journal of Educational Psychology, 49: 86-92; 1958.
Medley, Donald M., Schluck, Carolyn G, and Ames, Nancy P. Assessing the Learning Environment in the Classroom: A Manual for Users of OScAR 5V. Princeton: Educational Testing Service, 1968. (Mimeographed).
Scott, William A. "Reliability of Content Analysis: The Case for Nominal Scale Coding." Public Opinion Quarterly, 19: 321-25; Fall, 1955.
Veldman, Donald J. Fortran Programming for the Behavioral Sciences. New York: Holt, Rinehart and Winston, 1967.
ODIMENSION R(30,200), RT(30,20), PI(20.20), S(200), DIF(30),
lAVG(30), ADIF(30), RAVG(20), KF(16)
5 CALL CCDS (KF, NR, NT, NC, NP, N)
$T P_{I}=0$
DO 25 I $=1, N C$
DO $10 \mathrm{~J}=1 \mathrm{INR}$
10 RT(I9.J) $=0$
15 ADIF(I) $=0$
DO 20 I = 1,NR
20 RAVG(I) $=0$
NRT = NR * NT
READ KF, ($($ R(I,J), $1=1, N C), J=1, N R T)$
DO $25 \mathrm{I}=1$, NC
DO $25 \mathrm{~J}=1$,NRT
25 R(I,J) = R(I.J) +0.00001
GO TO. (55, 45, 30) NP
30 DO 35 I = 1,NC
DO $35 \mathrm{~J}=1$.NRT
35 SiJ) = SUMF (R, J, NC, 301
DO $40 \mathrm{~J}=1$, NR
DO 40 I $=1$ I NC
40 R(I,J) = R(I,J) / S(J)
45 DO $50 \mathrm{~J}=1$ ONRT
DO 50 I $=1 \% N C$
50 RiII,J) $=$ R(I) J) * 100
$55 \mathrm{NT1}=1$
NT2 $=$ NT
DO $70 \mathrm{~J}=1$, NR
DO $65 \mathrm{I}=1$ N NC
DO $60 \mathrm{~K}=\mathrm{NT} 1, \mathrm{NT2}$
$60 \operatorname{RT}(I, J)=R T(I, J)+R(I, K)$
65 RT(I,J) $=$ RTII,J) / NT
NT1 $=$ NT1 + NT
70 NT2 = NT2 + NT
DO 85 I = 1 ,NR
DO $85 \mathrm{~J}=1$, NR
IF (I .NE. J! GO TO 75
PI(I, J) $=1$
GO TO 85
75 DO $80 \mathrm{~K}=1$, NC
$D I F(K)=A B S(R T(K, I)-R T(K, J))$
$A D I F(K)=A D I F(K)+D I F(K)$
80 AVG(K) $=((1 R T(K, I)+R T(K, J)) / 2)$ ** 2$)$ *. . 01
DIFS = SUMF (DIFF, 1, NC, 30)
AVGS $=$ SUMF (AVG, 1, NC, 30)
PI(I.J) $=(100-$ DIFS - AVGS) $/(100-A V G S)$
85 TPI = TPI + PI(I,J)
DO $90 \mathrm{~K}=1, \mathrm{NC}$
90 ADIF(K) $=A D I F(K) / i N R * N R-N R)$
$T P I=(T P I-N R) /(H R * N R-N R)$
DO 100 I $=1$ I NR
DO $95 \mathrm{~J}=1, \mathrm{NR}$
IF (I .EQ. J) GO TO 95

RAVG(I) $=$ RAVG(I) + PI(IPJ)
95 CONTINUE
100 RAVG(I) = RAVG(I) / (NR - 1)
PRINT 105
1050FORMAT. (37H1PERCENT OF TOTAL FOR EACH CATEGORY. // 22H CAT. A.DIF

1. RATER /1

PRINT 110, (J, J = 1 , NR)
110 FORMAT (13X, $2015 / 1$
DO 120 I = 1 ,AIC
PRINT 115, I, ADIF(I), (RT(I,J), J = 1;NR)
115 FORMAT (/ $1 \mathrm{X}, \mathrm{I} 2, \mathrm{~F}$.2. 3 X, 20F5.1)
120 CONT INUE PRINT 125, TPI
125 FORMAT (/: 39HOCOEFFICIENT FOR ENTIRE RATER GROUP IS F6.4)
PRINT 130, NR
1300FORMAT (/ 66HOSCOTTS RELIABILITY COEFFICIENTS FOR ALL POSSIBLE COM IBINATIONS OF , I2, $9 H$ RATERS. /
CALL PRTS (PI, NR, NR, 1H, 20)
PRINT 135
135 FORMAT. (// 34HOAVERAGE R WITH ALL OTHER RATERS. //)
PRINT 140, (I, RAVG(I), I = 1,NR)
140 FORMAT (I3, F10.4 /)
GO TO 5
END
C
SUBROUTINE CCDS (KF, Ki, KJ, KK, KL, KM)
c
DIMENSION KF(16), KH(16)
READ 5. KH
5 FORMAT (16A5)
IF (KH(1) •EQ. KH(2)) STOP
READ $10, \mathrm{KI}, \mathrm{KJ}, \mathrm{KK}, \mathrm{KL}, \mathrm{KM}, \mathrm{KF}$
10 FORMAT (5I5 / 16A5)
PRRINT 15, KH, KI, KJ, KK, KL, KM, KF
150FORMAT 11H1, 16A5 // 11H PARAMETERS / 13H COL $1-5=$, $15 /$
$113 \mathrm{HCOL} 6-10=$, $15 / 13 \mathrm{HCOL} 11-15=$, $15 / 13 \mathrm{H}$ COL $16-20=$,
215 / 13H COL 21-25 = $15 / / 15 H$ DATA FORMAT $=$, 16A5)
RETURN
END
c
SUBROUTINE PRTS $(X, N, M, K H, N D)$
C
DIMENSION X(ND,M)
IF (M .GT. 1) GO TO 20
PRINT 15
DO 10 I $=1, N, 10$
$J=$ MINO (I + 9, N)
PRINT 5, KH, ($\mathrm{K}, \mathrm{K}=\mathrm{I}, \mathrm{J}$)
5 FORMAT (/ A7. 10I111)
10 PRINT 15, (XiKo1), K = 1, J)
15 FORMAT (10X, 10F11.4)
RETURN.
20 DO $25 \mathrm{~K}=1, \mathrm{M}, 10$

```
    PRINT 15
    L = MINO (K + 9, M)
    PRINT 5, KHs (J, J = Kol)
    DO 25 I = 1,N
25 PRINT 30, I, (X(I;J), J = K,L)
30 FORMAT (/ I6, 4X, 1OFIl.4)
RETURN
END
```


COBTOMTDM

The followine tumetan was accidentially ontutad from the wogran listing:

```
    FUNCTION SUMF (X: K!Ks:NN. NDS
C
    OIWAFNSION MTHD:11
    SUMF=O
        N = 1ABS (NN)
        K=\ABS (KK)
        [F (NN| E. 5% 5. 10
        5 IF (KK) IS, 350 25
        10 1F (k<< 彐.N. E5. 45
        IF DO 20 1 = I.N
        20 SUMF == SUMF + X\K.I\ ** 2
        DETUF2N
        2500 30 1=1 1NN
        30 SUMF = SUMF + X(\l,K) ** z
        porumN
        35 DO \triangleO I = I:N
        40 SUMF = SUMF + X\K:\:
        RETUFN
        4500 50 I = I N
        50 SUMF = SUMF + X{1:KK
        55 RETMMRN!
        ENO
```


[^0]: $1_{\text {Formerly, Department of Curriculum and Instruction, College }}$ of Education, The University of Texas at Austin.

