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A program is presented that solves for an optimal transformation of data that minimizes skew.
Various possible transformations are represented by a function that depends upon a single parameter, A.
A process of iterative approximations is employed to find a value of A that will transform the data so as
to produce a third moment equal to zero. The transformation found by this process may be used as
computed or used to indicate which of the commonly employed transformations will most adequately
counteract skew. The use of this program in processing data before analysis of variance is discussed.

Transformation of experimental data may serve a
number of purposes, the most common of which is to
make data more amenable to statistical analysis. A
general discussion of the use of transformation for data
can be found in Mueller (1948);, a discussion of
transformation aimed specifically at counteracting
problems of skew can be found in Burros (1951). Most
of the so-called parametric statistical procedures assume
certain basic properties of the data analyzed, such as
normality and homogeneity of variance across groups. In
addition to mathematical requirements for statistical
tests, the interpretation of experimental outcomes may
be greatly simplified if other properties of the data exist,
such as linearity of relationships between variables or
absence of interaction. Transformations have been
proposed to attempt to remedy all of these possible
deficiencies in data (Federer, 1963). By and large, an E
has simply tried various recommended transformations
until he found one that seemed to work. Some
statisticians have approached the problem of finding
workable transformations in a more orderly manner
(e.g., Anscombe & Tukey, 1963; Box & Cox, 1964).
These authors have first selected a family of possible
transformations that can be represented by a one (or
more) parameter function, then they have solved for the
value of the parameter(s) that minimizes the undesirable
aspect of the data.

The present paper and accompanying computer
program employ this approach in finding an optimum
transformation to minimize skew, a very common
deviation from normality occurring in experimental
data. Positive skew appears to be the rule rather than the
exception when one measures latencies or frequencies of
rarely occurring events; fortunately. a tendency for skew
is easily detected by simple examination of the raw data.
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Although violation of the normality assumption does
not usually produce serious departures in Type I error
rates, skewed distributions often have the additional
problem of nonindependence between the variance and
the mean; thus, the assumption of homogeneity of
variance is often violated in conjunction with violation
of the assumption of nommality. The simultaneous
violation of several assumptions is more likely to have
severe effects on Typel errors with parametric tests
(Box. 1953: Boneau, 1960). Previously suggested
methods of finding a satisfactory transformation for
reducing skew have involved plotting of means against
variances and empirically trying various transformations
to reduce the relationship between them (Bartlett,
1947). The transformations commonly used to correct
positive skew are the logarithm, the square root, and the
reciprocal of the raw data.

The present procedure involves the use of a family of
transformations, suggested by Box and Cox (1964). that
depends upon the single parameter, A.

xX* —1
X

where X represents the raw data and Y the transformed
score. When A= -1, this function produces the
reciprocal. transformation, when A =0 the logarithmic
transformation. when A =% the square root, and when
A =1 the data are unchanged. except in a linear manner
that has no effect on skew.! The measure of skew
employed is the dimensionless third moment (DM3 in
the program). which is zero for symmetric distributions
but takes on increasingly positive or negative values
depending upon the severity and direction of skew:

T(Y-Y)PN
(N-1H)(N=-DS°
where Y is the mean, S the standard deviation of Y, and
N the sample size. The following program (Table 1),

written in FORTRAN IV, converges iteratively on a
value of A, such that the third moment equals zero.

Y=

DM3 =
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The program works as follows. First, the sample size
and data are read, and the data are searched for zero or
negative values; if any are found, the absolute value of
the minimum data value plus one is added to each score
before proceeding, since at certain values of A the
transformation is defined only for positive data. Next,
the third moment of the raw data (A =1) is calculated
and printed along with the associated normal deviate.’
All scores are then converted to logarithms (A = 0) and
the third moment recomputed. Having computed the
third moment associated with two values of A, the next
step is to predict, by way of a straight line fit to these
points, the value of X that will produce a third moment
of zero. The data are transformed by this predicted A
value and the corresponding third moment is calculated.
The A values associated with the last two third moments
calculated are then used for a second approximation of
X. This process of approximation is repeated until a X is
found whose associated third moment has an absolute
value less than 0.0001. When this converging process was
tested with 276 samples of 100 scores, each having
various extremes of skew, the number of iterative
approximations required per sample did not exceed 5,
and the average number was 3.35 (SD=0.79). Thus,
convergence was rapid, requiring only seconds of
computer time.

In practice, this program may be used in several ways.
The actual X value produced may be used to transform
the data for purposes of analysis with the assurance that
skew has been minimized. Another use of the A value,
however, is to indicate which of the commonly
recommended transformations will best counteract
skew. If X is near unity, the data do not need correction
for skew; if A is in the vicinity of —1, then the reciprocal
transformation is recommended; a A\ near 0.5 would
argue for the square-root transformation; and a A near
zero would suggest logarithms as the most effective
transformation.

When applied to data from experiments where

analysis of variance (ANOVA) is the appropriate
statistical technique, an additional problem is
encountered: the fact that several groups of data are
available to be corrected for skew, yet only one
transformation can be used for the entire data set. One
approach to this problem is to calculate the residuals
from each group or cell of the design, then pool these
residuals for the purpose of finding a value of A.
Examination of the residuals from ANOVA designs has
been discussed by Anscombe and Tukey (1963).
Another way of approaching the ANOVA problem is to
find As group by group. If all group A values fall in the
vicinity of a commonly used transformation, then the
problem is solved. If they are more widely separated,
then some average X value should be used to determine
the appropriate transformation. If the values of A change
drastically from group to group (or cell to cell), it may
indicate that the effect of the treatment(s) is to
influence the shape of the distribution rather than
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Table 1

DETERMINATION OF LAMDA VALUE MINIMIZING SKEW,

INPUT,
CARD } - SAMPLE StZf PUNCHED IN COLUMNS | - &
CARD 2 - VARIABLE FORMAT CARD,
DATA CARDS.
(THIS SEQUENCE OF INPUT MAY BE REPEATED AS OFTEN AS DESIRED,)
A FINAL BLANK CAPD WILL TERMINATE THE PROGRAM,

ouUTPUT.
THIRD MOMENT OF THE RAW DATA,
STANDARD NORMAL DEVIATE FOR THE SKEW [N THE RAW DATA,
LAMDA ,

laXaXakaiakakaRaksiakaRakakakal

DIMENSION X(1000),Y(1000),FMT(16)
READ(S, 2DN
FORMAT(14)
IF (N.EQ.O) CALL EXIT
XN = N
READ(5, 3)FMT
FORMAT(16A5)
READ(CS,FMTI(X(1),1=1,N)
c CHECK FOR ZERO OR NEGATIVE VALUES IN THE RAW DATA,
XMIN = X(1)
DO 4 1 = 2,N
IF (XMIN,GT.X{(1)) XMIN = X(1)
CONTINUE
IF (XMIN,GT,0.0) GO TO 7
XMIN = 1,0-XMIN
WRITE(6, SOXMIN
FORMAT(1x, 10K THE VALUE,F12,3,448 HAS BEEN AODED TO PRODUCE ALL PO
1SITIVE DATA) ’
0O 61 = I,N
XCI) = XCI)+XMIN
4 FIND THE THIRD MOMENT OF THE RAW DATA (LAMDA = 1),
TM1 = DM3(X,N)
STM = SQRT(6.0¥XN/((XN=-1,0)%(XN-2,0)))
Z = TM1/STM
WRITE(S,8) TM1,Z
FORMAT(29HODIMENS 1ONLESS THIRD MOMENT =,F12,3/26H STANDARD NORMAL
1DEVIATE =,F12,3)
c TAKE LOGS OF RAW DATA (LAMDA = 0),
DC 9 1 = 1,N
9 Y(I) = ALOG(x(!1))
™2 DM3I(Y,N)
XLl = 1.0
XL2 = 0.0
LVE FOR THE PREDICTED LAMDA.
10 APL = (TMI®XL2 ~ TM2%XX11)/{TM1 - TH2)
¢ TRANSFORM THE DATA VY1A THE PREDICTED LAMDA,
00 1L 1 = ,N
11 Y(1) = x{CI)ERApL
c FIND THE THIRD MOMENT OF THE TRANSFORMED DATA.
THA = DM3ICY,N)
4 CHECK THE THIRD MOMENT AGAINST THE CRITERION.
IF (ABS(TMA).LT.0.0001) GO TQ 12
XLl = XL2
XL2 = APL
™1 ™2
™2 ™A
G0 TO 10
12 WRITEC6,13) APL
13 FORMAT(BHOLAMDA =,F12,3///)
[ IF THE USER DESIRES THE TRANSFORMED DATA, WRITE OUT ARRAY Y.
60 To 1
END
FUNCTION DM3{X,N)
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[ CALCULATES THE DIMENSIONLESS THIRD MOMENT OF N VALUES 1N ARRAY X.

DIMENSION X(1)
XB = 0.0
SD = 0.0
OM3 = 0.0
XN = N
DO 11 = I,N
1 xB = xB+Xx(1)
XB = XB/XN
DO 21 = 1,N
D = x(1)-x8
SD = SD+DH2
DM3 = DM34D%%3
SD = SQRT(SD/(XN-1.0))
DM3 = DM3*XN/((XN~1,0)%(XN=2,0)%5D%%3)
RETURN
END

0o

~

simply the mean; thus, a test that is sensitive to
distribution shape rather than to just central tendency
would be recommended. Certain nonparametric tests
might suit the data more adequately.

The important reason that recommends the present
approach for discovering an appropriate transformation
to counteract skew is that it avoids the commonly
employed practice of trying different transformations
until one works. The criterion in the latter approach is
often a transformation that produces a significant test
statistic rather than the desired criterion, that of
minimizing skew.
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NOTES

1. That the transformation (x» — 1)/A froduces logex when
A = 0 can be seen by replacing the term x? with its exponential
series equivalent.

xh—1
A

(A logex)? LA logex)® . ._1]

1
=-—11+ Alogex +
x[ ge 2! 3t

A (logex)?  A? (logex)’
+ + ...
2! 3!

= logex +

When A =0, this expression equals logex. In the program,
division by A was omitted, since this extra step results only ina
linear transformation of data that has no influence on skew.

2. Fisher (1950) has reported that the sampling distribution
of the third moment about zero is anbroximately normal, with a
standard error of [6N/(N — 1)(N — 2)] ¥4 for fairly large samples;
therefore, the normal deviate allows an approximate test for
the significance of skew.
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