ESD RECURD COPY

RETURN TO
SCIENTIFIC \& TECHNICAL INFORMATION OIVISION (ESTI), BULDING 1211
$550-7 B-68-216$

A COMPUTER PROGRAM FOR PHYSICALOPTICS SCATTERING BY CONVEX CONDUCTING TARGETS - 2430-7
J.H. Richmond

May 1968

DEPUTY FOR SURVEILLANCE AND CONTROL SYSTEMS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public
release and sale; its distribution is unlimited.
(Prepared for Contract No. AF 19(628)-67-C-0308 by The Ohio State University, ElectroScience Laboratory, Department of Electrical Engineering, 1320 Kinneor Rood, Columbus, Ohio.)

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

Abstract

This report describes a digital computer program which uses the physical optics approximation to calculate the scattering properties of convex perfectly conducting targets with arbitrary shape. The target shape is described in terms of the coordinates of a large number of points on the surface.

The program handles bistatic as well as backscattering problems. The input data specify the frequency, the incidence angles (θ_{i}, ϕ_{i}) and the scattering angles $\left(\theta_{s}, \phi_{s}\right)$. In the CW case, the output data give the complex elements in the scattering matrix.

The program also handles the pulse case where the incident waveform has a finite number of cycles.

Graphs are included to illustrate typical results for the following target shapes: sphere, spheroids, ogive, and cone.

TABLE OF CONTENTS
Page
I. INTRODUCTION 1
II. TARGET DESCRIPTION 1
III. THE PHYSICAL OPTICS FORMULATION 2
IV. APPROXIMATING THE TARGET WITH A POLYHEDRON 10
V. COMPUTING THE VECTOR AREA FUNCTION 14
VI. COMPUTING THE CW SCATTERING MATRIX 20
VII. COMPUTING THE PULSE RESPONSE 22
VIII. CONCLUSIONS 27
REFERENCES 31
APPENDIX - NUMERICAL RESULTS 32

A COMPUTER PROGRAM FOR PHYSICAL-OPTICS SCATTERING BY CONVEX CONDUCTING TARGETS

I. INTRODUCTION

Although the physical optics approximation for scattering by perfectly conducting targets has well-known limitations, it does provide rapid and efficient calculations which, in many cases, are reasonably accurate when the target is large in comparison with the wavelength.

In this report we present a digital computer program which uses the physical optics formulation to determine the scattering properties of perfectly conducting convex targets with arbitrary shape. Graphs are included to illustrate typical results for several target shapes.

The program is written in the Fortran IV language.

II. TARGET DESCRIPTION

The target shape is described in terms of the cartesian coordinates (x, y, z) of a large number of points on the surface. These points are selected on the intersections of the target surface and the planes $z=z_{1}, z=z_{2}$, etc. The coordinate origin is located in the interior of the target, and the surface is approximated by triangular facets with vertices at the given points. It is assumed that these points cover the surface with a density such that each facet is small in comparison with the wavelength. Experience indicates that reasonably good accuracy can be obtained with as few as 20 points per square wavelength on the target surface. The scattering data converge to the physical optics solution with approximately 80 points per square wavelength. Any further increase in the number of points will simply raise the conputational time.

When used with an IBM 7094 computer, the program will handle up to 1300 points. Magnetic tape or disk storage could be utilized to extend this capability.

The meter is used as the unit of length for the input data.
Punched cards are used for input data with the computer program. Figure 1 illustrates suitable input data for a prolate spheroidal target with major and minor axis lengths of 2 meters and 1 meter, respectively. The first input data card gives an integer N which specifies the number of
planes $z=z_{1}, z=z_{2}, \ldots z=z_{N}$ employed to describe the target. The first line in Fig. 1 indicates that 30 planes are used for the spheroid. This first card is followed by N cards which list the z coordinates $\mathrm{ZI}(\mathrm{I})$ of these planes and the number of points NP(I) on each plane. These cards must be ordered with increasing values of the z coordinate. Thus, in Fig. 1, card 2 indicates that the first plane has $z=-1$ and there is only one point on this plane. Card 3 shows that the second plane is at $z=-0.98525$ and has 12 points. Finally, card 31 shows that the last plane is at $z=1$ and has one point.

The remaining data cards (through 297) list the x and y coordinates of all the points on the target surface. These coordinates are given in pairs (x, y), with three pairs per card. For example, card 32 in Fig. 1 shows that the point on the first plane $(z=-1)$ is at $(0,0)$. The next four cards $(33-36)$ specify 12 points on the second plane, and card 297 locates the point on the last plane at $(0,0)$. The last cards $(298-299)$ are described elsewhere in this report.

In the computer program, the coordinates x_{k} and y_{k} of point k on the plane $z=z_{i}$ are denoted by $F(K)$ and $G(K)$ or $F P(K)$ and $G P(K)$. The input data cards must give these points in an ordered manner, progressing in the clockwise direction (for a distant observer located on the negative z axis) around the contour on the plane $z=z_{i}$. Furthermore, the first given point on the plane $z=z_{i}$ should be the one nearest the first given point on the preceding plane.

The planes $z=z_{i}$ usually have unequal spacing. The spacing be tween these planes, and the number of points on each contour, should be designed to cover the target with a fairly uniform number of points per unit surface area.

The next section develops the physical-optics scattering equations used in the computer program.

III. THE PHYSICAL OPTICS FORMULATION

If the transmitting antenna is at a great distance from the target, it will illuminate the target with an incident field which is essentially a plane wave. In the CW case we let the time dependence $e^{j \omega t}$ be understood and represent the incident electric field intensity as follows:

$$
\begin{equation*}
\underline{E}^{i}=\left(\hat{\theta}_{i} \mathrm{E}_{\theta}^{\mathrm{i}}+\hat{\phi}_{\mathrm{i}} \mathrm{E}_{\phi}^{\mathrm{i}}\right) \mathrm{e}^{j \mathrm{k} \hat{\mathbf{r}}_{\mathrm{i}} \cdot \underline{r}} \tag{1}
\end{equation*}
$$

－1．000 0	1					$\begin{aligned} & 00 c \\ & 003 \end{aligned}$
－0．98525	12					
－0．94750	12					004
－0．89425	16					005
－0．831 ${ }^{-0}$	21					006
－0．76175	24					007
－0．68800	27					008
（CARDS 9	THROUGH 24	ARE NOT SHOWN，				
0.68725	27					025
0.76100	24					026
0.83025	21					027
0.89350	16					028
0.94674	12					029
0.98449	12					030
1．00000	1					031
0 ．	0.					032
0.08556	U－	0.07410	C．04278	0.04278	0.07410	033
0.00000	2． 08556	－0．04278	0.37410	－ 0.07410	0.04278	034
－0．08556	C．COOOC	－0． 7410	－0．04278	－v．0゙4276	－0．07410	035
－0．00000	－0．08556	－． 04278	－0．07410	0． 07410	－0．04278	036
0.15988	\cup 。	0.13846	U． 17994	0.07994	0.13846	037
0.00000	U． 15988	－0．07994	0.13846	－0．13446	0.07 .934	038
－0．15988	Ј．000つ0	－0．13846	－0．07934	－0．07994	－0．13346	039
－0．00000	－0．15988	0.07994	－0．13846	0.13846	－C．07994	040
0.22378	0.	12.20675	$0 \cdot 08564$	U．15824	0．15824	041
0.08564	0.20675	0．00cuo	C．22378	－．． 8564	2.20675	042
－0．15824	－． 15824	－0．20675	0．08564	－）．22378	0.00000	043
－0．20675	－v．00564	－0．15424	－0．15824	－1．0）8564	－3．20675	044
－0．00000	－0．22378	－ 08504	－0．20075	」•158で	－ 2 •15824	045
0.20675	－ .0 .08564					046
1 CARDS 47	THROUGH 2	88 ARE NOT	SHOWN）			
0.16099	0 ．	0.13942	0.08050	－． 08050	0.13942	289
0.00000	0.16099	－0．08050	0.13942	－0．13942	0.08050	290
－0．16099	0.00000	－0．13442	－0．08050	－1）． 38050	－1）．13742	291
－0．00000	－0．16099	2．08．35 C	－0．13942	J．13742	－1．00050	292
0.08771	0.	1． 0.07596	0． 043485	Ј． 04385	0.07596	293
0.00030	U．08771	－0．04385	0.07596	－－2． 27596	0.04385	294
－0．08771	こ． 00000	－0．07596	－0．04385	－0． 24385	－0．07596	295
－0．00000	－0．08771	0.04385	－0．07596	1.07596	－0．04385	296
0 －	\bigcirc－					297
20．0	－ 0	20．0	－ 0			298
$300 \cdot 0$	20	3				299

Fig．1．Typical input data for the computer program．
where $\left(r_{i}, \theta_{i}, \phi_{i}\right)$ are the spherical coordinates of the transmitting antenna, $\left(\hat{\Upsilon}_{i}, \hat{\theta}_{i}, \hat{\phi}_{i}\right)$ are the corresponding unit vectors, *

$$
\begin{equation*}
k=2 \pi / \lambda, \tag{2}
\end{equation*}
$$

λ denotes the wavelength, and E_{θ}^{i} and E_{ϕ}^{i} are complex constants. An arbitrary point on the target surface is assigned the coordinates (r, θ, ϕ), the unit vectors $(\hat{r}, \hat{\theta}, \hat{\phi})$, and the position vector

$$
\begin{equation*}
\underline{x}=r \hat{r} \tag{3}
\end{equation*}
$$

Finally, the receiving antenna is assigned the coordinates ($r_{S}, \theta_{s}, \phi_{S}$) and the unit vectors $\left(\hat{r}_{S}, \hat{\theta}_{S}, \hat{\phi}_{S}\right)$. Thus θ_{i} and ϕ_{i} specify the incidence angles and θ_{s} and ϕ_{s} are the scattering angles. The magnetic field intensity of the incident plane wave is given by

$$
\begin{equation*}
\underline{H}^{i}=\left(\hat{\theta}_{i} E_{\phi}^{i}-\hat{\phi}_{i} E_{\theta}^{i}\right) \frac{e^{j k \hat{r_{i}} \cdot \underline{r}}}{\eta} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\sqrt{\mu / \epsilon} \quad . \tag{5}
\end{equation*}
$$

The current density induced on the illuminated portion of the target surface is approximated as follows:

$$
\begin{equation*}
\underline{\mathrm{J}}=2 \hat{\mathrm{n}} \times \underline{H}^{\mathrm{i}} \tag{6}
\end{equation*}
$$

[^0]where $\hat{\mathrm{n}}$ denotes the outward unit normal vector on the surface. The vector potential for the distant scattered field is given by
\[

$$
\begin{equation*}
\underline{A}=\frac{\mu}{4 \pi r_{s}} e^{-j k r_{s}} \iint \underline{J} e^{j k \hat{r}_{s} \cdot \underline{r}} \quad d s \tag{7}
\end{equation*}
$$

\]

At a great distance from the target, the scattered field is

$$
\begin{equation*}
\underline{E}^{s}=-j \omega \underline{A}=-\frac{j \omega \mu}{2 \pi r_{s}} e^{-j k r_{s}} \iint \hat{n} \times \underline{H}^{i} e^{j k \hat{r}_{s}} \underline{r} \underline{d s} \tag{8}
\end{equation*}
$$

From Eqs. (4) and (8),

$$
\begin{equation*}
\left.\underline{E}^{s}=\frac{e^{-j k r_{s}}}{r_{s}} \hat{\theta}_{i} E_{\phi}^{i}-\hat{\phi}_{i} E_{\theta}^{i}\right) \times \underline{S} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{S}=(j / \lambda) \quad \iint A e^{j k\left(\hat{r_{i}}+\hat{r}_{s}\right) \cdot \underline{r}} d s \tag{10}
\end{equation*}
$$

The distant scattered field is represented by

$$
\begin{equation*}
\underline{E}^{s}=\left(\hat{\theta}_{s} E_{\theta}^{s}+\hat{\phi}_{s} E \phi\right) \frac{e^{-j k r_{s}}}{r_{s}} \tag{11}
\end{equation*}
$$

where $E \mathbb{Z}$ and $\mathrm{E}_{\phi}^{\mathrm{S}}$ denote complex constants. From Eqs. (9) and (11) and the following vector identity,

$$
\begin{equation*}
\underline{A} \cdot(\underline{B} \times \underline{C})=(\underline{A} \times \underline{B}) \cdot \underline{C} \tag{12}
\end{equation*}
$$

it is found that

$$
\begin{equation*}
E_{\theta}^{s}=\left(E_{\theta}^{i} \hat{\phi}_{\mathfrak{i}} \times \hat{\theta}_{s}+E_{\phi}^{i} \hat{\theta}_{s} \times \hat{\theta}_{\mathfrak{i}}\right) \cdot \underline{s} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\phi}^{S}=\left\langle E_{\theta}^{i} \hat{\phi}_{i} \times \hat{\phi}_{s}+E_{\phi}^{i} \hat{\phi}_{s} \times \hat{\theta}_{i}\right\rangle \cdot \underline{s} \tag{14}
\end{equation*}
$$

It is convenient to define the CW scattering matrix as follows:

$$
\binom{E_{\theta}^{\mathrm{S}}}{E_{\phi}^{\mathrm{S}}}=\left(\begin{array}{ll}
S_{11} & S_{12} \tag{15}\\
S_{21} & S_{22}
\end{array}\right) \quad\binom{E_{\theta}^{\mathrm{i}}}{E_{\phi}^{\mathrm{i}}}
$$

From Eqs. (13) through (15), the complex elements in the scattering matrix are given by
(16) $\quad S_{11}=\left(\hat{\phi}_{i} \times \hat{\theta}_{s}\right) \cdot \underline{S}$

$$
\begin{equation*}
s_{12}=\left(\hat{\theta}_{\mathrm{s}} \times \hat{\theta}_{\mathrm{i}}\right) \cdot \underline{s} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
S_{21}=\left(\hat{\phi}_{i} \times \hat{\phi}_{s}\right) \cdot \underline{S} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
S_{22}=\left(\hat{\phi}_{\mathrm{s}} \times \hat{\theta}_{\mathrm{i}}\right) \cdot \underline{S} \tag{19}
\end{equation*}
$$

It is convenient to define a "vector area function" $\underline{A}(w)$ as follows:

$$
\begin{equation*}
\underline{S}=(j / \lambda) \quad \int \underline{A}(w) e^{j k w} d w \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\left(\hat{r}_{i}+\hat{r}_{s}\right) \cdot \underline{r} \tag{21}
\end{equation*}
$$

It may be seen from Eq. (21) that w represents one of the coordinates of a point on the target surface, in a rectangular coordinate system that is rotated in space with respect to the (x, y, z) system. The w axis is coplanar with $\hat{\mathrm{r}}_{i}$ and $\hat{\mathrm{r}}_{\mathrm{s}}$ and bisects the angle between these unit vectors. The unit of length for the coordinate generally differs from that for x, y, and z.

For any point (x, y, z) on the target surface,

$$
\begin{align*}
\mathrm{w}=\left(\sin \theta_{i} \cos \phi_{i}+\sin \theta_{s} \cos \phi_{s}\right) x & +\left(\sin \theta_{i} \sin \phi_{i}+\sin \theta_{s} \sin \phi_{s}\right) y \tag{22}\\
& +\left(\cos \theta_{i}+\cos \theta_{s}\right) z
\end{align*}
$$

Once the vector area function has been calculated, \underline{S} can be determined efficiently from Eq. (20) by numerical integration. Equation (lu) would take more computation time since it involves a surface integral instead of a line integral.

Once \underline{S} has been calculated, the elements in the scattering matrix are determined as follows:

$$
\begin{equation*}
S_{11}=S_{x} X_{11}+S_{y} Y_{11}+S_{z} Z_{11} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
S_{12}=S_{x} X_{12}+S_{y} Y_{12}+S_{z} Z_{12} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
S_{21}=S_{z} Z_{21} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
S_{22}=S_{X} X_{22}+S_{y} Y_{22}+S_{z} Z_{22} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{S}=\hat{x} S_{x}+\hat{y} S_{y}+\hat{z} S_{z} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
X_{11}=-\cos \phi_{i} \sin \theta_{s} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
Y_{11}=-\sin \psi_{i} \sin \theta_{s} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
Z_{11}=-\left(\sin \phi_{i} \sin \phi_{s}+\cos \phi_{i} \cos \phi_{s}\right) \cos \theta_{s} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
X_{12}=\cos \theta_{i} \sin \phi_{i} \sin \theta_{s}-\sin \theta_{i} \cos \theta_{s} \sin \phi_{s} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
Y_{12}=\sin \theta_{i} \cos \theta_{S} \cos \phi_{S}-\cos \theta_{i} \cos \phi_{i} \sin \theta_{s} \tag{32}
\end{equation*}
$$

$$
\begin{align*}
& Z_{12}=\left(\sin \phi_{i} \cos \phi_{s}-\cos \phi_{i} \sin \phi_{s}\right) \cos \theta_{i} \cos \theta_{s} \tag{33}\\
& Z_{21}=\cos \phi_{i} \sin \phi_{s}-\sin \phi_{i} \cos \phi_{s} \tag{34}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{X}_{22}=-\sin \theta_{\mathrm{i}} \cos \phi_{\mathrm{s}} \tag{35}
\end{equation*}
$$

$$
\begin{align*}
& Y_{22}=-\sin \theta_{\mathrm{i}} \sin \phi_{\mathrm{s}} \tag{36}\\
& \mathrm{Z}_{22}=-\left(\cos \phi_{\mathrm{i}} \cos \phi_{\mathrm{s}}+\sin \phi_{\mathrm{i}} \sin \phi_{\mathrm{s}}\right) \cos \theta_{\mathrm{i}} \tag{37}
\end{align*}
$$

In the pulse case, the incident wave is considered to have M complete cycles and a square modulation envelope. M is assumed to be an integer, and the incident field is expressed by

$$
\begin{align*}
E^{i}= & \left(\hat{\theta}_{i} E_{\theta}^{i}+\hat{\phi}_{i} E_{\phi}^{i}\right) \sin \left(\omega t+k \hat{r}_{i} \cdot \underline{r}\right) \tag{38}\\
& \cdot\left[u\left(\omega t+k \hat{r}_{i} \cdot \underline{r}\right)-u\left(\omega t+k \hat{r}_{i} \cdot \underline{r}-\omega \tau\right)\right]
\end{align*}
$$

where E_{θ}^{i} and $\mathrm{E}_{\dot{i}}^{\dot{i}}$ are real constants, $u(x)$ denotes the unit step function, f is the carrier frequency,

$$
\begin{equation*}
\omega=2 \pi f \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
T=1 / f \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=M T \tag{41}
\end{equation*}
$$

The scattered field is given by

$$
\begin{equation*}
E^{s}\left(r_{S}, t\right)=\left[\hat{\theta}_{S} E_{\theta}^{S}\left(t-r_{S} / c\right)+\hat{\phi}_{S} E_{\phi}^{S}\left(t-r_{s} / c\right)\right] \frac{1}{r_{s}} \tag{42}
\end{equation*}
$$

where c denotes the speed of light in free space.
It is convenient to write the following matrix equation

$$
\binom{E_{\theta}^{S}(t)}{E_{\phi}^{S}(t)}=\left(\begin{array}{ll}
F_{11}(t) & F_{12}(t) \tag{43}\\
F_{21}(t) & F_{22}(t)
\end{array}\right)\binom{E_{\theta}^{i}}{E_{\phi}^{i}}
$$

The pulse response of the target is thus defined with four functions of time given by

$$
\begin{align*}
& F_{11}(t)=\left(\hat{\phi}_{i} \times \hat{\theta}_{S}\right) \cdot \underline{F}(t) \tag{44}\\
& F_{12}(t)=\left(\hat{\theta}_{\mathrm{S}} \times \hat{\theta}_{\mathrm{i}}\right) \cdot \underline{F}(\mathrm{t}) \\
& F_{21}(\mathrm{t})=\left(\hat{\phi}_{\mathrm{i}} \times \hat{\phi}_{\mathrm{S}}\right) \cdot \underline{F}(\mathrm{t}) \\
& F_{22}(\mathrm{t})=\left(\hat{\phi}_{\mathrm{s}} \times \hat{\theta}_{\mathrm{i}}\right) \cdot \underline{F}(\mathrm{t})
\end{align*}
$$

where

$$
\begin{align*}
\underline{F}(t)=\frac{1}{\lambda} \iint \hat{n} \cos (\omega t & +k w) \tag{48}\\
& \cdot\left[u(\omega t+k w)-u\left(\omega t+k w-\omega_{\tau}\right)\right] d s
\end{align*}
$$

Equation (48) can also be written as follows

$$
\begin{equation*}
\underline{F}(t)=\frac{1}{\lambda} \int \underline{A}(w) \cos (\omega t+k w)[u(\omega t+k w)-u(\omega t+k w-\omega T)] d w \tag{49}
\end{equation*}
$$

Equation (49) is employed in the computer program since it permits more rapid calculations than Eq. (48).

The scattering waveforms $F_{11}(t), F_{12}(t), F_{21}(t)$ and $F_{22}(t)$ are calculated at a discrete set of equally spaced points in time. The spacing between these points is determined by an integer L, included in the input data, as follows

$$
\begin{equation*}
\Delta T=T / L \tag{50}
\end{equation*}
$$

The first and last points coincide with the initiation and the termination of the pulse response.

It must be noted that the above formulation for the pulse response assumes the incident plane wave has linear polarization. However, it appears that the more general situation could be programmed quite readily.

The physical-optics scattering program is described in some detail in the following sections.

IV. APPROXIMATING THE TARGET
 WITH A POLYHEDRON

Figure 2 shows the first 91 statements or cards in the computer program. Card 26 reads the integer N which specifies the number of planes used in describing the target surface. Card 29 reads the z coordinate $\mathrm{ZI}(\mathrm{I})$ for each of these planes and the number of points $\mathrm{NP}(\mathrm{I})$ on each plane. The dimension statements reserve core storage for 200 planes, 500 points on each plane, and a total of 1300 points.

Card 37 reads the x and y coordinates of the points on the first plane, and card 48 reads the coordinates of the remaining points.

In addition to reading the target description, this first section of the program sets up a polyhedral approximation for the target. This polyhedron has many triangular facets, with vertices at the given points. If each facet is small in comparison with the wavelength, the scattering properties of the polyhedron will be nearly the same as for the real target of interest.

Fig. 2. First section of the computer program.
$R B=(F P(L P)-F(L+1)) * * 2+(G P(L P)-G(L+1)) * * 2$ 062
IF(RA.GT•RB) GO TO 100 063
$98 L P=L P+1$ 064
XB=FP(LP) 065
$Y B=G P(L P)$ 066
$Z B=Z C$ 067
GO TO 110 064
100 $-L+1$ 069
$X B=F(L)$ 070
$Y B=G(L)$ 071
$Z B=Z A$ 072
$110 \times(J)=(X A+X B+X C) / 3$. 073
$Y(J)=(Y A+Y B+Y C) / 3$. 074
$Z(J)=(Z A+Z B+Z C) / 3$. 075
$X N(J)=((Y B-Y A) *(Z C-Z A)-(Z B-Z A) *(Y C-Y A)) * \cdot 5$ 076
$Y N(J)=((Z B-Z A) *(X C-X A)-(X B-X A) *(Z C-Z A)) * \cdot S$ 077
ZN(J) = ($(X B-X A) *(Y C-Y A)-(Y O-Y A) *(X C-X A)) * \bullet$. 078
IF(L•LT•MM•OR•LP•LT•MPP) GO TO 95 079
DO $120 \quad 1=1$.MPP 080
F(1)=FP(1) 081
120 G(1)=GP(1) 082
$M=M P$ 083
$M M=M P P$ 084
$Z A=Z C$ 085
150 CONTINUE 046
NT = J 087
$D Z=.0$ 088
DO $1551=2 . N$ 089
$D E L=Z 1(1)-Z 1(1-1)$ 090
155 1F(DEL•GT•DZ)DZ=DEL 091

Fig. 2. First section of the computer program. (cont.)

Since each facet is assumed to be small, the only parameters that must be determined and stored for each one are its vector area and the coordinates of its midpoint.

Each triangle is assigned an index number denoted by J. The coordinates of a point at the center of triangle J are denoted by $X(J)$, $\mathrm{Y}(\mathrm{J})$ and $\mathrm{Z}(\mathrm{J})$. The cartesian components of the vector area (using the outward normal direction) of triangle J are $\mathrm{XN}(\mathrm{J}), \mathrm{YN}(\mathrm{J})$ and $\mathrm{ZN}(\mathrm{J})$. The dimension statements reserve core storage for these parameters for 2600 triangular facets. The number of triangles is approximately twice the number of points on the target surface, and is denoted by NT.

The technique for fitting a polyhedron to a given array of points is illustrated in Fig. 3. The computer first processes all the triangular facets on the first "zone" of the surface (i.e., the portion of

Fig. 3. A typical triangular facet on the polyhedron.
the surface bounded by the first two planes $z=z_{1}$ and $z=z_{2}$). It then proceeds to the next zone. In the situation illustrated in Fig. 3, the computer is identifying and processing the triangles in Zone II-1. The x and y coordinates of the points on contour II-l are denoted by F and G, and those on contour II by FP and GP. The first triangle on this zone has one vertex at the point $x=F(1), y=G(1)$ and $z=Z I(I I-1)$. Another vertex is at $x=F P(1), y=G P(1)$ and $z=Z I(I I)$. The third vertex of this first triangle is at ($F(2), G(2)$) or ($F P(2), G P(2)$), whichever yields the "most compact" triangle.

When the computer has completed the processing of a given triangle in a given zone, two vertices on the next triangle are predetermined since they coincide with two of the vertices on the last completed triangle. In Fig. 3, these two vertices are indicated by points A and C. Point A is the L-th point on contour II-l and its coordinates are $\mathrm{XA}=\mathrm{F}(\mathrm{L}), \mathrm{YA}=\mathrm{G}(\mathrm{L})$ and $\mathrm{ZA}=\mathrm{ZI}(\mathrm{II}-1)$. Point C is the LP-th point on contour II and its coordinates are $\mathrm{XC}=\mathrm{FP}(\mathrm{LP}$), $\mathrm{YC}=\mathrm{GP}(\mathrm{LP})$ and $\mathrm{ZC}=\mathrm{ZI}(\mathrm{II})$. To establish the third point on the triangle, the computer compares the lengths of the lines AD and BC and selects the shorter one to form one side of the triangle. As shown in Fig. 3, B denotes the (L+1)-th point on contour II-1, and D is the (LP+1)-th point on contour II.

For the situation shown in Fig. 3, BC is shorter than AD. Therefore, B is selected as the third vertex of the triangle and assigned the following coordinates: $\mathrm{XB}=\mathrm{F}(\mathrm{L}+\mathrm{l}), \mathrm{YB}=\mathrm{G}(\mathrm{L}+1)$ and $\mathrm{ZB}=\mathrm{ZA}$. The coordinates of the midpoint of this triangle are calculated in cards 73, 74 and 75 . The vector area of the triangle is given by $(\underline{P} \times \underline{Q}) / 2$, where the vector P extends from A to B and the vector Q extends from A to C. This calculation is arranged by cards 76,77 and 78 to determine the rectangular components of the vector area.

Having completed the processing of triangle J, the computer proceeds with the next triangle in a similar fashion.

When the computer finishes the first section of the program, it has in storage a complete list of the midpoint coordinates and the vector areas of all of the triangular facets on the polyhedron.

V. COMPUTING THE VECTOR AREA FUNCTION

The second section of the computer program reads the coordinates $\left(\theta_{i}, \phi_{i}\right)$ of the transmitting antenna and ($\left.\theta_{s}, \phi_{s}\right)$ of the receiving antenna
and calculates the corresponding vector area function $A(w)$ for the target. This part of the program is shown in Fig. 4.

Card 92 reads $\theta_{i}, \phi_{i}, \theta_{s}$ and ϕ_{s}. These angles are denoted by THI, PHI, THS and PHS. They must be given in degrees (rather than radians) in the input data. For example, card 298 in Fig. l assigns a value of 20 degrees for θ_{i} and θ_{S}, and zero degrees for ϕ_{i} and ϕ_{S}.

In the DO LOOP in cards 115 through 137, the computer scans the w coordinates for all the illuminated facets on the polyhedron to determine the maximum and minimum values of w on the illuminated portion of the target surface. These are designated WMAX and WMIN. $W X, W Y$ and $W Z$ represent the coefficients of x, y and z in Eq. (22).

Cards 138 through 147 calculate the coefficients X_{11}, Y_{11}, etc., defined by Eqs. (28) through (37).

The rectangular components of the vector area function $\mathcal{A}(w)$ are denoted by $A X(K), A Y(K)$ and $A Z(K)$. The program is designed to calculate several values of $A X, A Y$ and $A Z$, representing samples of the functions for uniformly spaced points on the w axis. The dimension statements allow for a maximum of 500 sampling points. The area function is nonzero only for values of w between WMIN and WMAX. Therefore, this portion of the w axis is divided into KX segments and the sampling points are selected at the centers of these segments. Thus, $A X(1), A Y(1)$ and $A Z(l)$ represent the components of $A(w)$ at the center of the first segment (i.e., the segment which begins at $\bar{W} M I N$). Likewise, $A X(K X), A Y(K X)$ and $A Z(K X)$ represent the components of $A(w)$ at the center of the last segment (which terminates at WMAX). The length of each segment (and the spacing between the sampling points) is denoted by DEL. WI and WF denote the values of w at the first and last sampling points.

If the number of sampling points is too small, the area function will not be represented adequately and one cannot expect accurate scattering data. Therefore, the program always calculates the largest number of samples consistent with the input data. To obtain a more detailed area function for a given target, one simply supplies a more detailed description of the target via the input data.

The following expression for the vector area function can be obtained by comparing Eqs. (10) and (20):

$$
\begin{equation*}
\underline{A}(w)=\frac{d}{d w} \iint A \mathrm{ds} . \tag{51}
\end{equation*}
$$

The significance of Eq. (5l) can be clarified by considering the equivalent finite-difference approximation:

$$
\begin{equation*}
\underline{A}(K)=\frac{1}{D E L} \iint_{S_{k}} \hat{n} d s \tag{52}
\end{equation*}
$$

where $A(K)$ represents the area function at the point $w=w_{k}$ and S_{k} denotes a narrow zone on the illuminated portion of the target surface bounded by the planes $w=w_{k}-D E L / 2$ and $w=w_{k}+D E L / 2$.

For the polyhedron with small facets, Eq. (52) takes the following form:

$$
\begin{equation*}
\underline{A}(\mathrm{~K})=\sum \frac{\hat{\mathrm{x}} \mathrm{XN}(\mathrm{I})+\hat{\mathrm{y}} \mathrm{YN}(\mathrm{I})+\hat{\mathrm{z}} \mathrm{ZN}(\mathrm{I})}{\mathrm{DEL}} \tag{53}
\end{equation*}
$$

The summatior indicated in Eq. (53) is programmed in cards 162 through 199 in Fig. 4. In Eq. (53) it is understood that the summation extends only over the illuminated facets with w coordinates in the range $w_{k} \pm$ DEL/2.

A simple shadowing test is programmed in cards 163 and 164. RDTN represents the quantity $\hat{\mathrm{r}}_{\mathrm{i}} \cdot \hat{\mathrm{n}}$. RDTN is calculated for each facet on the polyhedron. The facet is considered illuminated or shadowed according as RDTN is positive or negative. This test is, of course, adequate only for convex targets.

Figure 5 shows the vector area components $A X(w)$ and $A Z(w)$ for a prolate spheroid. $A Y(w)$ is zero for this problem. The input data in Fig. 1 were used for these calculations.

Although independent data are not available for comparison with the curves in Fig. 5, there are two indications that these curves are reliable. First, these area functions lead to accurate physical-optics scattering data. Second, the area functions calculated in the same manner show close agreement with known results for the following cases: backscatter and bistatic scattering from spheres and axial backscatter from spheroids, ogives and cones.
2 READ(5.26)THI.PHI.THS.PHS 092
WRITE (6.31)THI.PHI.THS.PHS 093
STHI=SIN(RAD*THI) 094
CTHI=COS(RA()*THI) 095
STHS = SIN(RAD*THS) 096
CTHS = COS (FAD*THS) 097
SPHI = S IN(RAD*PHI) 098
CPHI = COS (RAD*PHI) 099
SPHS $=S I N(R A D * P H S)$ 100
CPHS = COS (RAD*PHS) 101
SSCS = STHS*CPHS 102
SSSS = STHS*SPHS 103
SICI=STHI*CPHI 104
SISI=STHI*SPHI 105
$W X=S 1 C 1+S S C S$ 106
$w Y=S 1 S 1+S S S S$ 107
$w Z=C T H I+C T H S$ 108
$D E L=D Z * S Q R T(W X * * 2+w Y * * 2+W Z * * 2)$ 109
WMAX = - 1 UOUOOJ. 110
WMIN=1 OUUCUJ. 111
$K=2$ 112
ZA=Z1(1) 113
$Z C=Z!(2)$ 114
DO $200 \quad I=1 \cdot N T$ 115
RDTN=XN(1)*SICI+YN(I)*SISI+ZN(I)*CTHI 116
IF (RDTN.LE.O.) GO TO 200 117
ZNI = ZN(1) 118
ZB=Z(I) 119
IF (ZC.GE•ZU)GO TO 17 U 120
$165 K=K+1$ 121
$2 A=2!(K-1)$ 122
ZC=2! (K) 123
IF (ZC•LT•ZB)GO TO 165 124
$170 \mathrm{DEN}=\mathrm{X}(1)$ \# $\mathrm{XN}(1)+Y(1)$ \#YN(1) 125
$D=D E N+Z B * Z N I$ 126
$F=(D-Z A * Z N I) / D E N$ 127
$\omega A=x(1) * F * W X+Y(1) * F * W Y+Z A * W Z$ 128
$F=(D-Z C * Z N 1) / D E N$ 129
$\omega C=x(1) * F * W X+Y(1) * F * w Y+Z C * w Z$ 130
IF (wC•GE•WA)GO TO 175 131
$W W=W A$ 132
$W A=W C$ 133
$w C=w w$ 134
175 IF (WC.GT•WMAX)WMAX=WC 135
IF(WA•LT•WMIN)WMIN=WA 136
200 CONTINUE 137
X11 $=-$ CPH 1 \#STHS 138
Y11 $=-$ SPHI \# STHS 139
Z11 = - (SPHI*SPHS + CPH1*CPHS) *CTHS 140
×12 =CTHI*SPHI*STHS-STHI*CTHS*SPHS 141
$Y_{12}=S T H I * C T H S * C P H S-C T H I * C P H I * S T H S$ 142
$Z 12=(-C P H 1 * S P H S+S P H 1 * C P H S) * C T H 1 * C T H S$ 143
Z21 = - SPHI*CPHS + CPH1*SPHS 144
×22 = - STHI*CPHS 145
Y22 = - STHI*SPHS 146
Z22=-(CPHI*CPHS + SPHI*SPHS)*こTHI 147
DO $205 K=1.500$ 148
$A X(K)=0.0$ 149
$\Delta Y(K)=0 . U$ 150
$205 \quad A Z(K)=U \cdot U$ 151
$K X=(W M A X-W N I N) / C E L$ 152

Fig. 4. Second section of the computer program.
$F K=K X$ 153
DEL = (WMAX-WMIN)/FK 154
WRITE (6.22)DZ.DEL. WMIN. NMAX 155
DELT=DEL/2• 156
$\omega!=W M I N+D E L T$ 157
$W F=W M A X-D E L T$ 158
$K=2$ 159
ZA=Z1(1) 160
ZC=Z1(2) 161
DO $2301=1 \cdot N T$ 162
RDTN=XN(I)*SICI+YN(I)*SISI+ZN(I)*CTHI 163
IF (RDTN•LE•O•) GO TO 23C 164
ZNI = ZN(1) 165
$2 \mathrm{~B}=2(1)$ 166
IF(ZC.GE.Zu)GO TO 215 167
$210 K=K+1$ 168
$Z A=Z 1(K-1)$ 169
$Z C=Z 1(K)$ 170
IF(ZC.LT•ZB)GO TO 210 171
215 DEN=X(1)*XN(I)+Y(I)*YN(I) 172
$D=D E N+Z S * Z N I$ 173
$F=(D-Z A H Z N) / D E N$ 174
$\omega A=X(1) * F * W+Y(I) * F * W Y+Z A * W Z$ 175
$F=(D-Z C H Z I) / D E N$ 176
$w C=X(1) * F * W X+Y(1) * F * W Y+Z C * W Z$ 177
IF (WC.GE.WA)GO TO 218 178
WW=WA 179
$w A=w C$ 180
$w C=w$ 181
$218 K A=(W A-W 1) / O E L+1.5$ 182
$K C=(w C-\omega!) / D E L+1 \bullet 5$ 183
IF (KA•NE.KC)GO TO 220 184
$A X(K A)=A X(K A)+X N(I)$ 185
$A Y(K A)=A Y(K A)+Y N(1)$ 186
$A Z(K A)=A Z(K A)+Z N(I)$ 187
GO TO 230 188
220 FKA=KA-1 189
$W=F K A * D E L+W I+D E L T$ 190
$D=(W-W A) /(W C-W A)$ 191
$A X(K A)=A X(K A)+X N(I) \# D$ 192
$A Y(K A)=A Y(K A)+Y N(\|) * D$ 193
$A Z(K A)=A Z(K A)+Z N(I) * D$ 194
$F=1$ - -D 195
$A \times(K C)=A \times(K C)+X N(I) \# F$ 196
$A Y(K C)=A Y(K C)+Y N(1) \# F$ 197
$A Z(K C)=A Z(K C)+Z N(I) * F$ 198
230 CONTINUE 199
$w=w 1$ 200
DO $235 k=1 \cdot k x$ 201
$A X(K)=A X(K) / D E L$ 202
$A Y(K)=A Y(K) / D E L$ 203
$A Z(K)=A Z(K) / D E L$ 204
FK=K 205
WRITE (6.22) FK•W•AX(K), AY(K)•AZ(K) 206
$235 w=w+D E L$ 207
$A X(K X+1)=2 \cdot A X(K X)-A X(K X-1)$ 208
$A Y(K X+1)=2 \cdot A Y(K X)-A Y(K X-1)$ 209
$A Z(K X+1)=2 \cdot A Z(K X)-A Z(K X-1)$ 210WRITE (6.23)211

Fig. 4. Second section of the computer program. (cont.)

Fig. 5. Calculated area functions for a prolate spheroid using input data from Fig. l.

VI. COMPUTING THE CW SCATTERING MATRIX

The third section of the computer program, shown in Fig. 6, reads the frequency in megahertz and calculates the CW scattering matrix and the corresponding echo areas. In addition to the frequency, card 212 also reads the integers L and M which are defined in the next section. L and M are not needed for the CW calculations and could just as well be read later at card 249. Suitable input data for card 212 are shown in card 299 in Fig. 1.

This section of the program calculates the vector \underline{S} defined by

$$
\begin{equation*}
\underline{S}=(j / \lambda) \int_{w \min }^{w \operatorname{Ax}} \underset{(w)}{ } e^{j k w} d w \tag{54}
\end{equation*}
$$

The integral in Eq. (54) is evaluated with the "piecewise linear method" described in Reference 1. We integrate over segment k on the w axis and then sum on k. Segment k has length $D E L$ and is centered at $w=w_{k}$. On segment k a straight-line approximation is used for the area function: **

$$
\begin{equation*}
\underline{A}(w)=\underline{a}_{k}+\underline{b}_{k} w \tag{55}
\end{equation*}
$$

By fitting Eq. (55) to the stored samples $\underline{A}(K)$ at w_{k} and $\underline{A}(K+1)$ at w_{k+1}, we find that

$$
\begin{equation*}
\underline{a}_{k}=\left[\underline{A}(K) w_{k+1}-\underline{A}(K+1) w_{k}\right] / D E L \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\mathrm{b}}_{\mathrm{k}}=[\underline{\mathrm{A}}(\mathrm{~K}+1)-\underline{\mathrm{A}}(\mathrm{~K})] / \mathrm{DEL} \tag{57}
\end{equation*}
$$

[^1]The integration in Eq. (54) can be performed analytically when $A(w)$ is given by Eq. (55). This leads to the following expression

$$
\begin{equation*}
\underline{S}=\frac{1}{2 \pi D G} \sum_{k=1}^{K X}[Q K \underline{A}(K)+Q L \underline{A}(K+1)], \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{DG}=\mathrm{k} \mathrm{DEL}, \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
Q K=(G L-j) Q D-Q C \quad, \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
Q L=Q C-(G K-j) Q D, \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
Q C=G B e^{j G B}-G A e^{j G A} \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
Q D=e^{j G B}-e^{j G A} \tag{63}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{GA}=\mathrm{k}\left(\mathrm{w}_{\mathrm{k}}-\mathrm{DEL} / 2\right) \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{GB}=\mathrm{k}\left(\mathrm{w}_{\mathrm{k}}+\mathrm{DEL} / 2\right) \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{GK}=\mathrm{k} \mathrm{w}_{\mathrm{k}}, \tag{66}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{GL}=\mathrm{k} \mathrm{w}_{\mathrm{k}+1} \tag{67}
\end{equation*}
$$

The summation in Eq. (58) is programmed in cards 223 through 236. The rectangular components of \underline{S} are denoted by $S X, S Y$ and $S Z$.

Equations (23) - (26) are programmed in cards 238-241 to calculate the complex elements in the scattering matrix. This scattering matrix is the principal output of this section of the program. With it available, one can use Eq. (15) to calculate the scattering properties of the target for any given incident polarization.

The remaining output from this section does not necessarily have any significance except in special cases. In backscatter problems, however, EAll represents the echo area in square meters. Furthermore, EAll and EAZ2 represent the E-plane and H-plane echo areas when $\phi_{i}=\phi_{s}$ and the target has axial symmetry with respect to the z axis.

Using the techniques described above and the input data shown in Fig. l, the computer yields the following CW scattering data for the prolate spheroid at 300 MHz :

$$
\begin{aligned}
& \mathrm{Sll}=\mathrm{S} 22=-0.1191+\mathrm{j} 0.0637 \\
& \mathrm{~S} 12=\mathrm{S} 21=0 \\
& \mathrm{EAll}=\mathrm{EA} 22=0.229 \\
& \text { EAl2 }=\text { EA21 }=0
\end{aligned}
$$

Although the piecewise-linear integration technique is efficient and successful for most problems, it is not appropriate in forward scattering problems (where $w=0$ everywhere on the target) or in specular scattering from a flat region on the target (where w is constant over a significant portion of the surface). Therefore, the computer output data are not reliable in these cases.

VII . COMPUTING THE PULSE RESPONSE

The pulse scattering problem is treated in the fourth and last section of the program shown in Fig. 7. The entire program is ready for the computer when the four sections are put together (with the card numbers running sequentially from 1 through 345) and backed up with suitable input data (such as cards 1 through 299 in Fig. l).

To explain the pulse calculations, it is convenient to write Eq. (49) in the following form
3 READ（5．29）FMC．L．M 212
WAVE $=299 \cdot 79 / F M C$ 213
WRITE（6．32）FMC．WAVE 214
$T P L=T P / W A V E$ 215
らX＝（．し．．し） 216
$S Y=(.0 \cdot \bullet)$ 217
$S Z=(.0 . .0)$ 218
$G K=T P L * W 1$ 219
$G A=T P L * W M 1 N$ 220
DG＝TPL＊DEL 221
$Q A=(M P L X(C O S(G A) \cdot S I N(G A))$ 222
DO 240 K＝1•KX 223
$G B=G A+D G$ 224
QB＝CMPLX（COS（GB）•SIN（GB）） 225
$G L=G K+D G$ 226
$O C=G B * O B-G A * Q A$ 227
$Q D=Q B-Q A$ 228
OK＝OU＊GL－OC－（．0．1•）＊UU 229
QL＝OC－OD＊GK＋（•0．1•）＊OD 230
$S X=S X+Q K * A X(K)+Q L * A X(K+1)$ 231
$S Y=S Y+Q K * A Y(K)+Q L * A Y(K+1)$ 232
$S Z=S Z+O K * A Z(K)+Q L * A Z(K+1)$ 233
$G A=G B$ 234
$G K=G L$ 235
240 QA＝OH 236
DEN＝TP＊DG 237
S $11=(S X * X 11+S Y * Y 11+S Z * Z 11) / D E N$ 238
$S 12=(S X * X 12+S Y * Y 12+S Z * Z 12) / D E N$ 239
S21＝SZ＊221／DEN 240
$S 22=(S x * \times 22+S Y * Y 22+S Z * \angle 22) / D E N$ 241
WR1TE（0．33）S11．S12．S21．S22 242
EA11＝（CABS（S11）＊＊2）＊FP！ 243
$E A 12=(C A B S(S 12) * * 2) * F P 1$ 244
EA21＝（CABS（S21）＊＊2）＊FP1 245
EA22x（CABS（S22）＊＊2）＊FP1 246
WR1TE（6．34）EA11•EA12•EA21•EA22 247
WRITE（6．23） 248

Fig．6．Third section of the computer program．

$$
\begin{equation*}
\underline{F}(t)=\frac{1}{2 \pi}\left[\cos \omega t \int_{x_{a}}^{y_{a}} \underline{A}(g) \cos g d g-\sin \omega t \int_{x_{a}}^{y_{a}} A(g) \sin g d g\right] \tag{68}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{g}=\mathrm{kw}, \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}_{\mathrm{a}}=\mathrm{GN} \text { or }-\omega \mathrm{t} \text { (whichever is larger), } \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
y_{a}=G X \text { or } \omega_{T}-\omega t(\text { whichever is smaller) } \tag{7l}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{GN}=\mathrm{k} \text { WMIN, } \tag{72}
\end{equation*}
$$

and

$$
\begin{equation*}
G X=k W M A X \tag{73}
\end{equation*}
$$

The area function $A(g)$ is the same as $A(w)$, and it has already been calculated and stored in $A X(K), A Y(K)$ and $A Z(K)$.

The integer L determines the number of points per cycle to be calculated on the scattering waveforms. Card 254 calculates the size of the increments in ωt as follows:

$$
\begin{equation*}
D W T=2 \pi / L . \tag{74}
\end{equation*}
$$

The integer M specifies the number of complete cycles in the incident waveform. The pulse width of the incident waveform, as measured in radians and observed at an arbitrary point in space, is calculated by card 253 as follows:

$$
\begin{equation*}
\omega_{T}=\mathrm{WTAU}=2 \pi \mathrm{M} . \tag{75}
\end{equation*}
$$

The scattering function $\underline{F}(t)$ is nonzero only in the following interval: - GX $<\omega t<\omega \tau$ - GN.

It is convenient to assign symbols to the integrals in Eq. (68) as follows:

$$
\begin{equation*}
\underline{U}(t)=\int_{x_{a}}^{y a} \underline{A}(g) \cos g d g \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{V}(t)=\int_{x_{a}}^{y_{a}} \underline{A}(g) \sin g d g \tag{77}
\end{equation*}
$$

These are functions of time by virtue of the time dependent limits x_{a} and ya. In the program the rectangular components of $\underline{U}(t)$ are denoted by UX, UY and UZ, and the components of $\underline{V}(t)$ are $V X, V Y$ and $V Z$. $W T, S W T$ and CWT denote $\omega t, \sin \omega t$ and $\cos \omega t$.
$\underline{U}(t)$ and $V(t)$ are identically zero for all values of ωt less than or equal to - $\overline{G X}$. Thus, the computer begins the pulse-response calculations by setting $\omega t=-G X(c a r d 261$), initializing $\underline{U}(t)$ and $\underline{V}(t)$ to zero (cards $269-274$) and writing out the first data point on the scattering waveform (card 268). At this point in time, the integration limits are found from Eqs. (70) and (71) to be $\mathrm{x}_{\mathrm{a}}=\mathrm{y}_{\mathrm{a}}=\mathrm{GX}$.

Suppose the computer has just completed the calculation of the scattering data for a given value of ωt, has incremented ωt in card 277, and is preparing to calculate the next point on the scattering waveform. The first step in the procedure is to determine the integration limits x_{a} and ya , denoted by XA and YA. This is accomplished in cards 281 292 in accordance with Eqs. (70) and (71). These cards also determine the indices KA and LA of the segments on the g axis which contain the points $\mathrm{g}=\mathrm{XA}$ and $\mathrm{g}=\mathrm{YA}$, respectively.

The integrals $\underline{U}\left(\mathrm{t}^{\prime}\right)$ and $\underline{V}\left(\mathrm{t}^{\prime}\right)$ currently in storage have limits now denoted by $X B$ and $\overline{Y B}$ by virtue of cards 338 and 339. Since XA and YA are equal to or less than $X B$ and $Y B$, respectively,

$$
\begin{equation*}
\underline{U}(t)=\underline{U}\left(t^{\prime}\right)+\int_{X A}^{X B} \underline{A}(g) \cos g d g-\int_{Y A}^{Y B} \underline{A}(g) \cos g d g \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{V}(t)=\underline{V}\left(t^{\prime}\right)+\int_{X A}^{X B} \underline{A}(g) \sin g d g-\int_{Y A}^{Y B} \underline{A}(g) \sin g d g \tag{79}
\end{equation*}
$$

Calculations based on Eqs. (78) and (79) are, of course, far more efficient than Eqs. (76) and (77).

Equations (78) and (79) are programmed in cards 294-329. The piecewise-linear technique is employed to evaluate the integrals in these equations. The integrals with limits XA and XB are evaluated in the first pass through the DO LOOP that begins with card 299, and those with limits YA and YB are calculated in the second pass. In each pass, $Z A$ and $Z B$ denote the limits of integration. Initially I denotes the index number of the g-axis segment containing the point $g=Z A$ and G is the value of g at the center of this segment. $A(g)$ is treated as a linear function over this segment in the same manner as in Eqs. (55) through (57). GP denotes the value of g at the center of segment $I+1$, and HA and HB are the limits of the subintegral on segment I. When the integration on segment I is finished, the computer moves on to the next segment (unless ZA and ZB lie on the same segment). The following equations are used in cards 310-319 to evaluate the subintegral on segment I:

$$
\begin{equation*}
D I=\left(g_{i+1}-h_{a}\right) \cos h_{a}+\left(h_{b}-g_{i+1}\right) \cos h_{b}+\sin h_{a}-\sin h_{b}, \tag{84}
\end{equation*}
$$

and

$$
\begin{equation*}
D I I=\left(h_{a}-g_{i}\right) \cos h_{a}+\left(g_{i}-h_{b}\right) \cos h_{b}+\sin h_{b}-\sin h_{a} . \tag{85}
\end{equation*}
$$

DG is defined in Eq. (59). In the program, $g_{i}, g i t i, h_{a}$ and $h b$ are denoted by G, GP, HA and HB. SGN is positive in the first pass through this integration loop and negative in the second pass, in accordance with the plus and minus signs in Eqs. (78) and (79).

When the vectors $U(t)$ and $V(t)$ have been calculated, Eq. (68) is used to determine $F(t)$. The rectangular components of $F(t)$ are denoted by FX, FY and FZ in cards 330-332. Finally cards 333-336 calculate the scattering functions defined by Eqs. (43) through (47), and card 337 arranges the writeout of these data on the scattering waveforms for the pulse situation.

The results obtained in this manner (using the input data in Fig. l) for a prolate spheroid are illustrated in Fig. 8.

VIII. CONCLUSIONS

A digital computer program is described which uses the physical optics approximation for scattering by convex perfectly conducting targets with arbitrary shape. The target size and shape are specified by input data giving the coordinates of many points on the surface. This program handles bistatic and backscatter problems. The input data specify the frequency, the incidence angles (θ_{i}, ϕ_{i}) and the scattering angles $\left(\theta_{S}, \phi_{S}\right)$. In the CW case, the output data give the complex elements in the scattering matrix. Typical results are shown in the Appendix for scattering from spheres, spheroids, ogives and cones.

This scattering program also handles the pulse case where the incident wave has a finite number of cycles. For this case, the following additional input data are required: the number of cycles in the incident wavetrain, and the number of points per cycle to be computed for the scattering waveforms. The output data give the four waveforms associated with the four elements in the scattering matrix.

Simple modifications can be made in the program, if desired, to increment the frequency, the incidence angles or the scattering angles. This is convenient for generating various types of scattering curves such as those in the Appendix.
4 CONTINUE 249
LM＝L＊M 250
$F L=L$ 251
$F M=M$ 252
$\omega T A U=T P * F N_{1}$ 253
DWT＝TP／FL 254
IF（LM•E゙U・ひ）心O TO 3Ú 255
DGT＝TPL＊DELT 256
GI＝TPL＊WI 257
$G X=T P L * W M A X$ 258
$G N=T P L * W M 1 N$ 259
DEN＝TP＊DG 260
$W T A=-G X$ 261
WTB＝WTAU－GN 262
$\omega T=W T A$ 263
F11＝0．0 264
F12＝0．0 265
$F 21=0.0$ 266
$F 22=0.0$ 267
WR1TE（6．22）WT．F11．F12．F21．F22 268
$U X=.0$ 269
UY $=.0$ 270
$U Z=.0$ 271
$V X=.0$ 272
VY＝．0 273
$V Z=.0$ 274
$x 3=6 x$ 275
$Y B=G X$ 276
$260 W T=W T+D W T$ 277
1F（WT•GT•WTB）GO TO 300 278
SWT＝SIN（WT） 279
$C W T=C O S(W T)$ 280
$x A=G N$ 281
$K A=1$ 282
$X X=-w T$ 283
1F（XX•LE•XA）GO TO 265 284
$X A=X X$ 285
$K A=(X A-G 1) / D G+1 \cdot 5$ 286
265 YA $=G X$ 287
$L A=K X$ 288
$Y Y=W T A U-W T$ 289
1F（YY•GE•YA）GO TO 268 290
$Y A=Y Y$ 291
$L A=(Y A-G 1) / D G+1 \cdot 5$ 292
268 SGN＝1． 293
$Z A=X A$ 294
$2 B=\times B$ 295
$1=K A$ 296
$F=1-1$ 297
$G=F+D G+G I$ 298
DO 290 K＝1．2 299
IF（ZA•GE．ZH）GO TO 285 300
270 GP＝G＋DG 301
$H A=G-D G T$ 302
$H B=G+D G T$ 303
1F（HA•LT•ZA）HA＝ZA 304
$1 F(H B \cdot G T \cdot Z O) \quad H B=Z B$ 305
$S A=S 1 N(H A)$ 306
$S B=S 1 N(H B)$ 307
$C A=C O S(H A)$ 308
$C B=\operatorname{COS}(H B)$ 109
$C 1=(S A *(H A-G D)+5 \cdot 3 *(G P-H F 3)+C A-C B) * S G N$ 310

Fig．7．Last section of the computer program．
C1I = (SA* (G-HA) +SU* (HS-G) +Cも-CA)*SGN 311
UX=UX+C!*AX(1)+CI!*AX(1+1) 312
$U Y=U Y+C 1 * A Y(I)+C I I * A Y(I+1)$ 313
$U Z=U Z+C!* A C(1)+C 11 * A L(1+1)$ 314
$D I=(S A-S B+C A *(G P-H A)+C B *(H B-G P)) * S G N$ 315
D:1 = (SB-SA+CA* (HA-G) +CB* (G-H(3))*SGN 316
$V X=V X+D 1 * A X(1)+D 1!* A X(1+1)$ 317
$V Y=V Y+D!* A Y(1)+D 1!* A Y(1+1)$ 318
$V Z=V Z+D I * A Z(I)+D I!* A Z(1+1)$ 319
lF(Hd•GE.ZB) GO TO 285 320
$1=1+1$ 321
$G=G P$ 322
GO TO 270 323
$285 Z A=Y A$ 324
$Z B=Y B$ 325
$1=L A$ 326
$F=1-1$ 327
$G=F * O G+G I$ 328
290 SGN=-1. 329
$F X=(U X * C W T-V X * S W T) / O E N$ 330
$F Y=(U Y * C W T-V Y * S W T) / D E N$ 331
$F Z=(U Z * C W T-V Z * S W T) / D E N$ 332
F11=FX*X11+FY*Y11+FZ*Z11 333
F12=FX*X12+FY*Y12+FZ*Z12 334
F21=FZ*221 335
F22=FX*X22+FY*Y22+F゙Z*Z22 336
WRITE(6.22) WT.F11,F12.F2I.F22 337
$X B=X A$ 338
$Y B=Y A$ 339
GO TO 260 340
300 CONT INUE 341
WRITE (6.23) 342
STOP 343
END 344
SDATA 345

Fig. 7. Last section of the computer program. (cont.)

REFERENCES

1. Richmond, J.H., "The Numerical Evaluation of Radiation Integrals, " IRE Transactions, Vol. AP-9, (July 1961), pp. 358-360.
2. Siegel, K.M., et al, "Studies in Radar Cross-Sections VIII Theoretical Cross-Sections as a Function of Separation Angle Between Transmitter and Receiver at Small Wavelengths," UMM-115, Willow Run Research Center, University of Michigan, (October 1953).

APPENDIX
 NUMERICAL RESULTS

This Appendix presents the results obtained with the physicaloptics computer program for several target shapes. Table I lists the number of planes used to describe each target, the total number of points on the target, and the time required for an IBM 7094 to process the target description data and set up the polyhedral approximation. The last column lists the additional computer time needed to calculate the area function and the CW scattering matrix.

TABLE I
 STATISTICS FOR THE TEST CASES

Target Shape		Planes		Points	
Pime for Polyhedron		Area Function and CW Matrix			
Sphere	30		1083		8.6 sec

The dimensions of the targets are specified in Figs. 9 through 13.
It is found from T able I that the computation time for processing the target description data and setting up the polyhedron increases linearly with the number of points on the target surface. The computer handles about 125 points (to establish 250 facets) per second, regardless of the shape of the target.

In generating the area function and the CW scattering matrix, the computer spends very little time on the shadowed facets. Thus, the computation time for this work increases linearly with the number of illuminated facets on the target. This explains why the computer spent twice as much time on the cone (3.3 seconds) as on the sphere (1.6 seconds) as shown in Table I This sphere has approximately 2000 facets, and half
of them are illuminated. The cone also has approximately 2000 facets, and all of them are illuminated for axial incidence.*

In calculating the area function, the computer handles about 670 illuminated facets per second.

To use the computer program most efficiently, one would calculate a significant amount of scattering data for one target before passing on to the next one. Furthermore, to minimize the area-function calculations, one would calculate the scattering data for many different frequencies before changing $\theta_{i}, \phi_{i}, \theta_{S}$ or ϕ_{S}. When these incidence and scattering angles are held constant, the computer generates CW scattering data for 20 different frequencies in one second for the oblate spheroid in Table I, and for 10 frequencies per second for the cone. For the sphere, it generates $C W$ and pulse-response data for a new frequency in one second (with three cycles in the incident wavetrain and 20 calculated points per cycle in the scattering waveform).

Figures 9 through 13 display the numerical results for scattering by several different target shapes. The dots represent the output data from the computer program described herein. The input data listed the coordinates of a large number of points (Table I) distributed almost uniformly over the target surface. The source of the physical-optics data (the solid curves in Figs. 9-13) is described a little farther on in this Appendix.

Figures 9a through l3a show curves of backscatter echo area (in square meters) versus frequency for axial incidence. For each of these targets, it may be noted that the computer output agrees closely with the physical optics solution for all frequencies up to 600 MHz . (This simply indicates that the computer program does a good job in generating physical optics data. It is not implied that the physical optics formulation always gives a good approximation to the exact scattering data.) To obtain equally good results at higher frequencies, it would be necessary to include more points in the input data description of the target.

[^2]Although the computer program has not been adequately tested for the most general target shapes and bistatic situations for which it is designed, it is believed that it will give accurate physical-optics data except for concave targets, forward scattering, and specular scattering from a large flat subsurface. The program could be modified without much difficulty to remove the last two of these exceptions.

All of the targets considered in this Appendix have axial symmetry with respect to the z axis. To check the accuracy of the computer output data shown in Figs. 9a - 13a, closed-form expressions were derived for the vector area function for each of these targets for the backscatter situations with axial incidence. Letting $\theta_{i}=\phi_{i}=\theta_{S}=\phi_{S}=0$, we find from Eq. (22) that $w=2 z$. From symmetry considerations, $A_{X}(w)=$ $A_{y}(w)=0$. For targets having axial symmetry with respect to the z axis, it is convenient to describe the target shape with an equation of the form $\rho=\rho(z)$ where (ρ, ϕ, z) represent the coordinates in the cylindrical system. Then it is easy to show, with the aid of Eq. (51), that

$$
\begin{equation*}
A_{z}(w)=-\pi \rho \rho^{\prime}, \tag{84}
\end{equation*}
$$

where ρ^{\prime} represents the derivative of $\rho(z)$ with respect to z. Equation (84) applies over the illuminated region of the target where ρ^{\prime} is negative, and $A_{z}(w)=0$ over the shadowed region where ρ^{\prime} is positive.

All the targets considered in this Appendix can be represented with the following equation:

$$
\begin{equation*}
F(\rho, z)=A_{1} \rho^{2}+A_{2} z^{2}+A_{3} \rho z+A_{4} z+A_{5} \rho+A_{6}=0 . \tag{85}
\end{equation*}
$$

From Eqs. (84) and (85), the area function for axial backscatter is given in closed form by

$$
\begin{equation*}
A_{z}=\pi \rho\left(2 A_{2} z+A_{3} \rho+A_{4}\right) /\left(2 A_{1} \rho+A_{3} z+A_{5}\right) . \tag{86}
\end{equation*}
$$

For spheres, prolate spheroids and oblate spheroids,

$$
\begin{equation*}
A_{z}=\frac{\pi z B^{2}}{A^{2}} \tag{87}
\end{equation*}
$$

where A and B denote the semimajor and semiminor axes, respectively. For the ogive,

$$
\begin{equation*}
A_{z}=\frac{\pi \rho z}{\sqrt{B^{2}-z^{2}}} \tag{88}
\end{equation*}
$$

where B is the radius of the circular are that generates the ogive.
For the cone,

$$
\begin{equation*}
A_{z}=\pi z \tan ^{2} \alpha, \tag{89}
\end{equation*}
$$

where α denotes the half-angle of the cone.
For axial backscatter from a target with axial symmetry, it is found from Eq. (54) that $S_{x}=S_{y}=0$ and

$$
\begin{equation*}
S_{z}=(2 j / \lambda) \int A_{z} e^{2 j k z} d z \tag{90}
\end{equation*}
$$

The integral in Eq. (90) can be evaluated to obtain closed-form expressions for the scattering matrix and the echo area for the cone and the spheroids. The resulting data are shown by the solid curves with the label "physical optics" in Figs. 9a, 10a, lla and l3a. For the ogive in Fig. 12a, the "physical optics" curve was obtained from Eqs. (88) and (90) with numerical integration.

Figure 9b shows backscatter results for the sphere as a function of the aspect angle. For a true sphere, the echo area is of course independent of aspect angle. Thus, the variations in the computer output data arise from the polyhedral approximation.

Figures l0b - l3b show the backscatter results as a function of the aspect angle $\left(\theta_{i}=\theta_{s}=\theta\right)$ for the spheroids, ogive and cone. The solid curves with the label "physical optics" were obtained with another computer program which is designed especially for backscattering from targets with axial symmetry. The input data for this auxiliary program describes the target shape by assigning numerical values to the coefficients
in Eq. (85). The angles ϕ_{i} and ϕ_{s} are assumed to be zero, the cylindrical coordinates (ρ, ϕ, z) are employed for points on the target surface, and

$$
\begin{equation*}
w=2(\rho \sin \theta \cos \phi+z \cos \theta) . \tag{91}
\end{equation*}
$$

It is found that $S_{y}=0$,

$$
\begin{align*}
& \underline{S}=(j / \lambda) \iint\left(\hat{x} \cos \phi-\hat{z} \rho^{\prime}\right) \rho e^{j k w} d \phi d z \tag{92}\\
& S_{11}=S_{22}=-S_{x} \sin \theta-S_{z} \cos \theta, \tag{93}
\end{align*}
$$

and $S_{12}=S_{21}=0$. The auxiliary program uses numerical integration to evaluate S in Eq. (92).

Bistatic scattering results are shown in Figs. 9c-13c and 9d 13d. These curves apply for axial incidence with $\theta_{i}=\phi_{i}=\phi_{s}=0$, so that

$$
\begin{equation*}
\mathrm{w}=\rho \sin \theta_{\mathrm{s}} \cos \phi+\mathrm{z}\left(1+\cos \theta_{s}\right), \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
S_{X}=-k \int \rho J_{1}\left(k \rho \sin \theta_{s}\right) e^{j k z\left(l+\cos \theta_{s}\right)} d z, \tag{95}
\end{equation*}
$$

$$
\begin{align*}
& S_{y}=S_{12}=S_{21}=0 \tag{96}\\
& S_{z}=-j k \int \rho \rho^{\prime} J_{o}\left(k \rho \sin \theta_{s}\right) e^{j k z\left(l+\cos \theta_{s}\right)} d z \tag{97}
\end{align*}
$$

$$
\begin{equation*}
S_{11}=-S_{x} \sin \theta_{s}-S_{z} \cos \theta_{s}, \tag{98}
\end{equation*}
$$

$$
\begin{equation*}
S_{22}=-S_{z}, \tag{99}
\end{equation*}
$$

and J_{O} and J_{1} represent Bessel functions.

Equations (94) - (99) apply only for axial incidence on a target having axial symmetry. (Similar expressions are given in Reference 2.) These equations were used to develop another auxiliary computer program to generate the E-plane and H-plane curves with the label "physical optics". This program also used the coefficients in Eq. (85) as input data for the target shape, and evaluated S_{x} and S_{z} with numerical integration.

The bistatic curves in Figs. 9-13 agree with the physical-optics echo area expression for the forward-scattering situation:

$$
\begin{equation*}
\sigma=4 \pi A^{2} / \lambda^{2}, \tag{100}
\end{equation*}
$$

where A represents the area of the target projected along the line of sight between the transmitting and receiving antennas. In the forwardscattering situation (and also for backscattering), the physical optics echo area shows no polarization dependence even for a target with arbitrary shape. Equation (100) is not restricted to symmetrical targets or axial incidence.

Though all the data in Figs. 9-13 were obtained with the aid of various digital computer programs based on the physical-optics concepts, the close agreement between the dots (with the label "computer output") and the curves (with the label "physical optics") is significant for two reasons. First, the general program uses a target description technique which differs greatly from that used in the specialized programs. Furthermore, some of the specialized programs used closed-form expressions and others were based on equations involving line integrals or surface integrals, whereas the general program handles each problem in the same manner (setting up the polyhedron, calculating the vector area function, and integrating the area function to obtain the scattering matrix). Having demonstrated that this general procedure gives correct physical-optics data for a variety of target shapes and bistatic and backscatter situations, we have comidence that the program will perform equally well with other targets and situations.

Fig. 9. Scattering data for a sphere with a radius of one meter.

Fig. 10. Scattering data for a prolate spheroid with $\mathrm{A}=1 \mathrm{~m}$ and $\mathrm{B}=0.5 \mathrm{~m}$.

Fig. 11. Scattering data for an oblate spheroid with $A=0.5 \mathrm{~m}$ anu $B=1 \mathrm{~m}$.

Fig. 12. Scattering data for an ogive with $\mathrm{A}=1 \mathrm{~m}$ and $\alpha=22.5^{\circ}$.

Fig. 13. Scattering data for a cone with $\mathrm{L}=1 \mathrm{~m}$ and $\alpha=18^{\circ}$.

[^0]: * The unit vectors in the spherical system are related to those in the rectangular system by $\hat{r}=(\hat{x} x+\hat{y} y+\hat{z} z) / r, \hat{\phi}=\hat{-} \sin \phi+\hat{y} \cos \phi$ and $\hat{\boldsymbol{x}} \times \hat{\theta}=\hat{\phi}$.

[^1]: * When k is used as a subscript it represents the index of a segment on the w axis and is denoted in the program by K. When used otherwise, as in Eqs. (54) and (59), k is defined by Eq. (2) and is denoted in the program by TPL.

[^2]: * For all the targets listed in Table I except the cone, the input data points covered the whole surface and the computer set up a closed polyhedron. For the cone, however, the input data did not cover the flat plate at the base. Since the base is shadowed for all cases shown in Fig. 13, the computed data apply to a cone with a circular disk at the base.

