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A Computerized Study

RF-Power

of the Class-C-Biased

Amplifier

JENS VIDKJAER, MEMBER,IEEE

Abstract–Commrisons between experiments and simulations on a

widely used output stage in mobile transmitters are made. It is demon-

strated that the operation cycle in this type of circuit differs from the

one commonly assumed. The reason is that base widening dominates
the feedback effect of the transistor.

I. INTRODUCTION

E
VER since RF-power transistors became available, the

transistorized transmitter power stage has been a con-

stant challenge to circuit designers and analysts, but still

the construction of RF-power amplifiers is often considered as

an experimental art rather than a conventional circuit design.

This paper presents a computer simulation of a widely used

output stage in mobile transmitters. It is demonstrated that

the basic working principles of the circuit differ from the

common perception. The new aspect which has led to this

conclusion is that high-level transistor effects, especially base

widening, have been taken into consideration. The excess

Manuscript received July 15, 1977; revised October 5, 1977.
The author is with the Electronics Institute, Technical University

of Denmark, Lyngby, Denmark.

charge in the base, when the transistor conducts current, is

thereby stored in the base-emitter capacitance instead of

the base-collector capacitance as usually assumed. This

clearly alters the feedback effects in the transistor and em-

phasizes the need for a revision of the analytical design tools.

It is a fact, however, that simulations where high-level

effects are not taken into consideration may provide reason-

ably accurate results [1]. Therefore, care will be taken in

order to point out the differences between the two situations

and demonstrate that if the amplifier has no tendency for

instability, the simpler approach will give correct results al-

though it is based on oversimplified assumptions.

II. THE CLASS-C-BIASED RF-POWER AMPLIFIER

The amplifier stage and measurement setup to be considered

in this investigation is shown in Fig. 1. The transistor is biased

for class C operation through the chokes Lb and Lc. The

input matching network raises the rather low fundamental

frequency transistor input impedance to the impedance level

of the generator, and the output matching network provides

the collector load which gives maximum output power. The

following points apply to the experimental setup.

0018 -9200/78/0400-0247 $00.75 @ 1978 IEEE
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Fig. 1. Experimental RF-power amplifier and measurement setup.
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Fig. 2. Experimental collector and base voltage waveforms observed
on the amplifier of Fig. 1.

1) The tuning condition is observed through the reflected

voltage at the input dual directional coupler and from the

load line directional coupler.

2) The oscilloscope is connected directly across the base

terminal in order to minimize uncertainties from stray ele-

ments. The scope thereby provides the major part of the

base damping.

3) The collector probe is mounted in a connector in order

to ensure reproducible experiments, although a minor de-

gradation of performance data results.

Fig. 2 shows the experimental collector and base voltage

wave shapes when the circuit is operated as specified in the

first row of Table I. The performance data which are achieved

agree with the transistor data sheets. 1 The equivalent circuit

for simulating the experimental setup is given in Fig. 3, and

the following circumstances should be mentioned.

1The transistor is a Motorola 2N3632 RF-power transistor specified

for VHF-UHF application. Typical data for Pin = 2 W: Pout = 1.5W
at 100 MHz, Pout = 7 W at 300 MHz.

1) The input divider circuit R ~ and R2 gives a simple

method for simulating the input dual directional coupler.

Using Eg = 2Vin, cf. Fig. 1, it is easily proven that the effec-

tive values of V,ef in both the experimental setup and the

equivrdent circuit correspond to each other.

2) LE ~ and LB ~ represent the emitter and the base lead

inductances, The inductance of the collector has been dis-

regarded as a separate component since this does not con-

tribute significantly to the computations, but its value has

been added to Lz.

3) A minor part of the base damping has been moved from

the external base node to the internal node for computational

reasons. As lZin I~~. MHZ= 3 S?i, no appreciable errors are

introduced this way.

4) The collector probe equivalent has been given details

sufficient for modeling the probe influence on the amplifier

performance. No attempts have been made, however, to

model the oscilloscope response accurately.

5) The transistor models will briefly be outlined in subse-

quent sections. Two levels of modeling have been applied

where a) clearly accounts for the traditional perception of

the amplifier operation mode.

a) A basic model including no appreciable high-level

effects. In a phenomological context, this model corresponds

practically to the Gummel model in [2].

b) An extended model which, in addition, includes cur-

rent saturation in the collector, base widening, and junction

breakdown.

The computed wave shapes of some important circuit

variables which could be experimentally observed are shown

in Fig. 4, where (a) gives the full simulation based on the

extended transistor model and (b) gives the steady- state part

for the basic model. The corresponding performance data are

shown in Table I, and it is seen that only minor differences

appear both here and in the wave shapes of the simulations.

This raises clearly the question of whether or not the high-

level effects are of importance for the amplifier, but it should

be recognized that the result is in close agreement with the
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Fig. 4. Simulated responses of the circuit in Fig. 3. (a) The full re-
sponse where high-level transistor effects are included in the tran-
sistor model. The initial steps in the curves are the iteration of the

Aprille and Trick steady-state search algorithm. (b) The steady-
state part of a similar simulation using a basic transistor model
where no appreciable high-level effects are taken into account.

intentions behind the circuit design. The transistor is em- iterations in the Aprille and Trick steady-state search algo-

bodied between two tuned circuits WMch force the terminal rithm [3] are required to find a steady state solution.’ To

current to be approximately sinusoidal. The purpose of doing demonstrate the influence of the high-level effects, one must,

so is to make the circuit operation as independent of the non-

linear transistor characteristics as possible. That it works is 2In a ~ne~ c~cuit, the steady-state algorithm will find the solution

implicitly observable from the simulations where only few after one iteration.
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TABLE I

PERFORMANCE DAT.4 FORTHEAMPLIFIERSOFFIGS. 1 AND3

Trimmer Settingsa Collector

(pF) Vout (volt) Pout (Watt) Efficiency Vref (volt)

Pi~ = 1.7 (Watt) c, C2 C3 C4 1 harm. eff. 1 harm. llC (Amp) (Percent) rms

Experiment, Fig. 2 17 45 16.3 9.6 26.2 13.7 0.675 73

Simulation ex-

0.24

tended transistor
model, Fig. 4(a) 13.3 41 16.0 9.6 25.9 13.4 0.657 73 0.27

Simulation, basic
transistor model,
Fig. 4(b) 12.8 41 15.0 8.4 26.5 14.0 0.697 72 0.29

aThe amplitlers are tuned to give maximum output power.

therefore, either go inside the transistor and consider its fun-

damental operation or impose circuit conditions which will

disturb the sinusoidal currents. As the internal transistor

behavior is accessible exclusively from simulations, both of

these approaches will be taken below in order to make the

final conclusions partly on the basis of observations which

can be proven experimentally.

Comparing the experimental and simulated results, the

following points should finally be mentioned.

1) The differences in input trimmer settings may seem high.

Using the computed fundamental frequency transistor input

impedance of (3 Q + jl.5 $2), it is easily shown that a measur-

ing error of only 1 nH in the total values of L ~ and LB 1 may

account for the same differences,

2) Discrepancies between experimental and simulated

voltage wave shapes lie mainly in their higher harmonics and

are supposed to originate mostly from the oscilloscope re-

sponse (bandwidth ~ 800 MHz, rise time ~ 0.4 ns).

III. SUMMARY OF HIGH-LEVEL EFFECTS AND

TRANSISTOR MODELS

A brief and unified summary of those high-level effects in

the RF-power transistor which have proven to be of impor-

tance for the amplifier performance will be given below. The

main emphasis is given to the circuit consequence, and the

reader is referred to the literature for a detailed discussion of

the basic physical mechanisms and their modeling.

A. Current Saturation

The electron velocity Ue in silicon will depart from the

common ohmic expression Ve = VOE at high electrical field

strengths and ten& to saturate at the scattering limited ve-

locity ulim. Among the different approximations which have

been suggested for this field-to-velocity relationship, the

following expression posesses both reasonable accuracy and

analytical simplicity [4]:

u. (1~1) = VIk [1 - exp (- lEIVo/uIfi)]. .(1)

Considering the collector as an isolated sample of silicon with

length WCC,doping i’VD,and cross-sectional area A, the voltage

across this sample may now be written

~~ = ~~ (lC) = ~]irn~o ~ [~linr/(~lim - ~C)l (2)

where

Kc = FVCCE voltage across the unmodulated col-

lector

l?. = WCC/@4iVDp0 resistance of the unmodulated col-

lector

~lirn = + Q~DAUlim collector scattering limited current,

sign (lli~ ) = sign (lc).

The nonlinear current-voltage relationship in (2) will clearly

give a higher power dissipation in the collector than a simple

ohmic model. Inclusion of current saturation should there-

fore result in a more accurate collector loss simulation than

a series resistance in the collector lead may account for. The

most important consequence of (2) is, however, that current

saturation also provides the foundation for base- widening

modeling as considered next.

B. Base Widening

If the current-cent rolled voltage across the collector series

resistance (2) equals or exceeds in magnitude the internal

base-collector voltage ljBC - @c, the transistor will not

become saturated in the usual manner if the transistor has

a long, low-doped collector. OC PO) denotes the built-in

potential of the collector junction. Instead, both majority

and minority carriers will be injected from the base into a

part of the metallurgical collector which thereby acts as an

extension to the base [5] - [7]. A simplified sketch of a

one-dimensional transistor structure, the carrier, and the

field distributions under base-widening conditions are shown

in Fig. 5 (cf. [6]). Denoting

z = wcc[w~~ collector width-to-base width ratio

q = A WB/ Wcc base-widening ratio

rF~ = WjM/nDn pre-base-widening transit time3

the forward transit time may generally be expressed

Tf z QEd/IEt = TFO (1 + Z~)2 (3)

s H~a~ has shown [8] that n is practically a COnStant = 4 in the

ideal double-diffused transistor, and this is consistent with the Web-
ster region which exists in the extended base [x ~, X2]. Other doping
profiles may, however, still be modeled by (3) using a Z parameter

which differs from the simple width ratio above.
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Fig. 5. Simplified sketch of a one-dimensional transistor under base-

widening conditions. (a) Definition of transistor variables and their
orientations. (b) Carrier concentrations and dopings. (c) Distribu-
tion of electrical field strength.

where QEd is the emitter-injected diffhsion charge in the

base and IEt is the emitter-injected current component which

traverses the base. It can be shown, cf. [7], that if I]C I <

l~lim 1, the field distribution in the collector is well approxi-

mated by a step function as in Fig. 5. The base-widening

ratio can consequently be written

~ 1- (VBC - @c)/VcC(lc) (base widening) (4a)
.

LO (no base widening) [4b)

where base widening occurs if ~ >0 in (4a). The equation

follows from the obvious requirement that VBC - @c must

be equal to the integral of E over the entire base-to-collector

region [xO, x~ ].

Using (2)-(4) the functional dependency which governs the

current traversing the base takes the form

IEt = i& (QEd, VBC, IC)

fQE~/~FO [1 +-Zq(ZC, llIC)]2 (base widening)

=
{

(5a)

(JQE~/TFo(no base widening), (5b)

The relationship is shown in normalized form in Fig. 6 assum-

ing static conditions, i.e., ]C ~ - IEt. It demonstrates the

main effect of base widening in the RF. power amplifier. To

maintain a given current level when the transistor goes into

base widening, a tremendous amount of charge has to be fed

into the base. If this excess charge car-mot be supplied im-

mediately, a decrease in the current Iesults. The actual,

dynamic cycle of the amplifier, which is also indicated in

the figure, shows this effect.

Less important for RF-power applications, but directly

observable in the transistor characterist its, is the associated

dc current gain decrease which results from base widenirig

.0 ~ , I 1 I 1
0 2 4 6 8 10 12 14 qd

Fig. 6. Normalized plot of the expression in [5) using Z = 2.8 and
assuming static conditions lEt = - lc, it = l&/Zlim 1, q~ = IQEd

TFOhm !>and u = I ( ~BC - ‘@c)/~ oJ]im 1. The I1OCUSshows the actual,
dynamic cycle which the transistor traverses during the operation
of the amplifier.
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Fig. 7. (a) Experimental and (b) simulated’ characteristics of the
2N3632 RF-power transistor. The dashed line indicates the bound-
ary for base widening as given by q = O in,(4a).

because the excess charge gives additional recombination

current to lEr [Fig. 5(a)] . This is seen in the, transistor char-

acteristics of Fig. 7 where the boundary for base widening is

shown. Since the computer simulations of the amplifier will

be a main source for the following conclusions, both experi-

mental and simulated characteristics are shown in order to

demonstrate their close resemblance and tlhereby the accuracy

Qf the simulated results.

A dynamic consequence of base widening is further illus-

trated by the fo~ard recovery experiment in Fig. 8. In
,.

curve 1 the transistor is operated to and from a bias point at

the bpundary to base widening, whereas curve 2 shows the
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Fig. 8. Forward recovery experiment demonstrating the excess charge
storirw effect of base widenirw in both (a) ex~eriment and (b) simu-
lation: In curve 1 the transis~or is operated to the boundary for base
widening. In curve 2 the transistor is operated into base widening
and an excessdelay of approximately 15 ns results.

corresponding result when the bias point lies well in base

widening. The excess charge storage is clearly observable in

the latter curve from the shape of the trailing edge.

C. Emitter Breakdown

Emitter breakdown occurs at a relatively low reverse bias

voltage across the emitter junction, and therefore has two

origins, avalanche multiplication and Zener (tunnel) effect.

Denoting the base-emitter current component prior to mul-

tiplication lErO, the avalanche-generated current may be

expressed by the Miller approximation, cf. [9], [10].

I~av = (ME - 1) (1-,0 + IEt)

where

ME = [1 - (l VEil/V’’A)N~]-l , V~j <0. (6)

IZEA and NE are positive constants and VEj denotes the

emitter junction voltage. The Zener current may be approxi-

mated [11 ]

IE,U = - GTu(@E - VEj) exp [- (VTU/(@E- ~Ej))l’21,

V~j < ~~ (7)

where GT ~, l’~u are positive constants and @E(>0) is the

built-in potential. Ignoring a possible interaction between

avalanche and Zener currents, the base-emitter current com-

ponent becomgs

IEY = IEro + IEav +IEtu. (8)

The joint effect of the two mechanisms is illustrated in Fig. 9

by the sharp breakdown in the characteristics of the inverted

) I 1 I I T I 1
1 Volt Id,”

2N3632/INVERTED

B

04 rnA /step

4
E

Fig. 9. (a) Experimental and (b) simulated characteristics of the
inverted 2N3632 transistor showing emitter breakdown as a joint
effect of avalanche multiplication and Zener (tunnel) effect.

?,
c Oc

B

+

aE= aEd+QEa+QE,

‘C=‘Cd+ ‘Ca+ ‘CJ

Fig. 10. Full equivalent diagram for the model of the intrinsic tran-

sistor of Fig. 3 showing orientations of the variables. The physical
meaning of the components are given in Table II. Components in
brackets contribute insignificantly to the RF-power amplifier
performance.

transistor. As will be apparent in the simulations, emitter

breakdown will not take place in a properly designed and

operated amplifier. But if the amplifier turns unstable, break-

down may occur occasionally, and it therefore becomes a

potential source of transistor damage, as will be shown.

D. Transistor Models [12]

The full transistor equivalent circuit, which has been used in

the simulations, is shown in Fig. 10 and Table II. The topol-

ogy of the equivalent circuit applies both to the basic model

and to the extended model. The distinctions between the two

levels of modeling lie in the functional relations among the

variables, and the most significant differences are as follows.

1) The extended model uses a relationship of the type in

(5a) and (5b) for ~E~. The basic model uses (5b) throughout.

2) The voltage drop across the collector bulk region in the

extended model is of the form
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TABLE II

COMPONENTSIN THETRANSISTOREQUIVALENTCIRCUIT,FIG. 10

Symbols ~omponent Physical Effects Included (extended model onlya)

zEt, Zct Transit currents across the base Basic transistor action, high injection in base, base-width modulation, base wideninga includ-

ing current saturation

lEY, lCP Other resistive currents Recombination in base, recombination in bulk regions, high injection in bulk regions, space-

charge-generated currents, carrier lifetime modulation in basea, avalanche current sa, Zenei’

(tunnel) currentsa

QEj, QG Charges Junction capacitance

QE., Qc. Charges Diffusion charge storage in bulk regions

$,(& Charges Diffusion charge storage in base

Ohmic voltage Collector series resistance including current saturation and base wideninga

VBr Ohmic voltage Base series resistance including conductivity modulation

vEr Ohmic voltage Emitter series resistance

~cr=Vcc(1c)[1 - ~(~c,VBC)], (9)

as may be deduced from the considerations leading to (4).

The basic model includes only a fixed resistor RO.

3) The extended model includes breakdown mechanisms of

the type in (8) for both the emitter and the collector junctions.

I__, and ICY contain only base recombination, base-injected,

and space-charge-generated currents in the basic model.

During the simulations, it turned out that the components

shown in brackets did not contribute ;appreciably to the

final results, and they will not be considered further in the

following.

IV. THE OPERATION MODE OF THE RF-POWER

AMPLIFIER

As mentioned iriitially, the transistor terminal currents are

forced to be sinusoidal by the matching networks. Iri Fig. 11

the currents are broken up into resistive and capacitive currertt

components inside the extended transistor model. The most

important observation to be made here is the shape of the

transit current &~ which exhibits an initial spike4 as a corl-

sequence of base widening. How this appears will be a main

concern in this section. Considering the base current com-

ponents, it should be noted that the rssistive current ~Ef.

gives only a minor contribution to the total base current lB.

Like lB, the variation of the total base charge QB must also

take the shape of a sine wave so the transistor can be con-

sidered as driven by a sinusoidal charge source. The appre-

ciable fundamental frequency input resistance is caused by

the emitter lead inductance LE1. As may be seen, the voltage

across the lead inductance VE 1 has a positive projection on

the base curren~ (~ 2.5 fl).

Fig. 12 illustrates how the total base charge is distributed

between the emitter and the collector capacitances. Also,

the junction voltages are shown. The major observation in

the figure is that the collector charge Qc closely follows the

course of the junction voltage VCj throughout the operation

41n amp~~ers using different kinds of output matching networks>

the spike may be observed. Fig. 4 of [13] :shoWs,for instance, a

phenomenon like this is an incorrectly tuned class E amplifier.

CLW3SC POWERRMPLIFIER

1 AM I.
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? AMP

0 AMI>

1nsecfdw

Fig. 11. Details of the operation in the extended transistor model,
including high-level effects, showing terminal currents, collector
current components, base current components, and voltage across
the emitter lead inductance.

cycle. Since Qc practically remains, zero or negative,, the

transistor is prevented from becoming saturated. This is

caused by the base-widening mechanism as considered next

in Fig. 13. First it should be noted how the emitter diffusion

charge QEd (indicated by hatching) is contained in the total

emitter charge QE. The emitter junction capacitance is filled

up to a nearly constant charge level QEO. When more charge

is supplied, the transistor starts to conduct at time t~. At that

time, the collector is still heavily back-lbiased so no base

widening takes place and the current &r grows up rapidly

according to (5b). When the collector voltage reaches a

sufficiently low magnitude, base widening causes a consider-

able rise in the transit time t-f, cf. (3)-(4). The sinusoidal

drive charge cannot maintain the current and a steep fall in

the current begins at time tb~. As seen, the decrease in ~Et
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Fig. 12. Details of the operation in the extended transistor model
showing collector junction voltage, emitter junction voltage, total
base charge, and components of the total base charge.
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Fig. 13. Details of the operation in the extended transistor model
showing collector-base voltage, transit current pulse, collector
current (dotted), total emitter charge including diffusion charge
(hatched area), and base-widening modulated transit time.

is stopped when it has the magnitude of the total collector

current -lC. After this, the transit current is practically

locked to the collector terminal current under static con-

ditions of the type in Fig, 6 for a while because the collector

voltage is of limited variation so the charging current Icc be-

comes insignificant. When the collector voltage again starts to

increase, the charging current takes over, as seen in Fig. 11,

and closes the conducting period at time tco.

With background in the discussion above, it is possible to

summarize main topics of the amplifier operation by means

of the simplified block diagram given in Fig. 14. The follow-

ing points should be noted initially.

1) At the output side of the transistor, the base-emitter

voltage is ignored in comparison with the collector voltage.

2) The collector series resistance, the emitter lead induc-

tance, and the resistive base-emitter current component lEY

are disregarded. The block diagram consequently does not

suffice for maximum or optimum performance considerations.

3) The nonlinear properties of the transistor junctions are

approximated by simple breakpoint functions where the
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Fig. 14. Simplified block diagram illustrating the operation of the
power amplifier.

charge is assumed to fill up the junction capacitance to a

fixed positive level. When this is exceeded, the voltage is kept

fixed and the excess charge is stored as diffusion charge.

4) The role of the input bias network is to maintain the

necessary average base charge.

Besides the input loop, four loops are involved in the control

of the amplifier mode. Loop 1, which contains the tuned

output network, will clearly determine t“he long term prop-

erties of the circuit. But since a large negative charge swing

is required in order to give the transistor a sufficiently high

collector voltage pulse, a short term gain regulation also must

take place when the charge is going positive. This is done b y

means of loops 2-4 where loop 2 is in function when the

transistor is cut off or conducts current without base widen-

ing. Thereby, loop 2, in connection with loop 1, has the role

of determining the timing of the circuit t~!, tb w, tco. Loop 3

is activated when the output from the upper integrator pro-

vides a collector voltage which initiates base widening and

lowers the transit current IEt. When Ilrt reaches -Ic, the

input to the integrator becomes nearly zero and loop 4 tends

to fix this condition. When the charge drive is again going

negative, it cannot be maintained so loop 2 is activated and

starts the cutoff period. This step-by-step regulation is the

advantageous property of base widening since loop 3 guar-

antees that the transit current pulse is limited and locked to

the oscillation mode of the tuned load network within each

cycle.

It is illuminating to compare the operation cycle developed

here with the cycle which results if the basic transistor model

is employed for simulating the circuit. .As shown in Fig. 4,

the terminal currents are comparable in the two cases so both

the charge drive and the resultant gain must be nearly equal.

Loops 3 and 4 in the block diagram are,, however, absent so

loop 2 must provide the short term gain control through the
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Fig. 15. Details of the operation of the basic transistor model where
high-level effects are absent showing collector junction voltage,
transit current pulse, coltector current (dotted), collector charge
including diffusion charge (first hatched area), and emitter charge
including diffusion charge (second hatched area).

whole period. To absorb the excess drive charge, the tran-

sistor must therefore saturate and allow Qc to take positive

values at the base summing point.

Fig. 15 shows how this works, and it is readily seen that the

collector diffusion charge Qca (first hatched area) has over-

taken that amount of charge which in the other model, Fig. 13,

was passivated by the base-widening mechanism. The transit

time is approximately constant in the basic transistor model

so the current pulse IEf now follows the shape of the emitter

diffusion charge QEd (second hatched area). This current

pulse is, however, unrealistically sensitive to disturbances of

the circuit because it is not locked to the oscillation mode of

the load network, but instead it is constantly dependent on

a perfect dynamic balance in a system which includes the high

gain block [ l/~FO ]. In summary, the two types of models

show the same overall performances as a ccmsequence of equal
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Fig. 16. Collector voltage and supply current waveforms showing
spurious oscillations when the total base damping is 470$2, cf. Fig. 1.
(a) Experimental oscillation. (b) Simulated oscillation where high-
level effects are included in the transistor model. The steady-state
search algorithm has been applied at the time given by the dashed
line, and it is also demonstrated that a steady-state mode exists.
(c) Simulated response when no high-level effects are included in
the transistor model.

charge drives and in turn equal voltage swings at the collector.

In the steady state, this forces their regulation loops to pro-

vide practically the same circuit response, although the regu-

lating mechanisms are quite different. If, on the other hand,

the circuit is arranged so that a steady-state mode does not

exist or if it is difficult to reach, the simulations will show

highly different responses. As will be demonstrated, only the

transistor model which includes base widening is able to

match with experiments.

V. THE OBSERVABLE CONSEQUENCESOF

BASE WIDENING

The occurrence of spurious oscillations in the considered

type of amplifier is a widely known phenomenon. As dis-

cussed in [14], these may originate from a latent, nonlinear

self-oscillation in the transistor bias network. In terms of the

block diagram of Fig. 14, the self-oscillation may be thought

of as an interaction which can be excited between the input

bias loop and the output loops (1-4). This sort of oscillation

may be avoided by proper damping of the base choke Lb,

but for illustration purposes, an underdamped amplifier will

be considered.

Fig. 16(a) shows the experimental collector voltage of the

amplifier in Fig. 1 using a total base damping of Rb = 470 fl.

The spurious oscillation is readily seen as a low-frequency

modulation in the wave shape. It should be mentioned,

however, that the circuit may exhibit a hysteresis effect in

the sense that a strict steady-state response is also possible

under the same working conditions. In the present case, the

low-frequency oscillations may be suppressed by a slight
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Fig. 17. Details of the operation in the transistor model corresponding

to Fig. 16(b) showing collector-base voltage, emitter charge including
diffusion charge (hatched), transit time, transit current pulses, and
the resistive base-emitter current component.

overdrive of the amplifier. When the input signal is again

carefully lowered down to the nominal level, the amplifier

remains stable. If this amplifier is simulated by means of the

extended transistor model, the response appears as shown in

Fig. 16(b). After the initial transient, the resemblance to the

experimental observations is obvious. Also, the two-state

properties can be demonstrated as the steady-state search

converges shortly after it has been initiated at the time indi-

cated by the dashed line. This should be considered as a con-

sequence of the locking effect mentioned above. The non-

linear self-oscillation is constantly excited by the drive signal.

The connection of the transistor gain to the mode of the load

circuit, however, makes the amplifier insensitive to perturba-

tions in the operation mode and keeps the amplifier stable.

It is, therefore, not surprising that simulation of the same

circuit under the same working conditicms, but using the

basic transistor model, gives the result of Fig. 16(c). This

ever-growing oscillation is clearly out of range with experi-

ments. Neither does the use of the steady-state search, even

at the most favorable times, converge nor does the use of

higher, but still realistic, collector series resistance values limit

the oscillation. The dynamic properties in the two simulations

are therefore quite different. Fig. 17 shc}ws some details of

the internal transistor operation in the computation leading

to Fig. 16(b). Considering the self-oscillation as a low-fre-

quency modulation of the mean charge level in the base over

a signal period, the figure demonstrates how base widening

keeps the oscillation limited. The transit time rf follows

closely the variations in the emitter difhrsion charge QEd

(hatched areas) so the resultant current pulses &t do not

exhibit the same degree of variation. Since base widening in

this way gives a consistent and experimentally observable

exdanation of the amr-iifier behavior. the operation mode..r------------ .
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developed on the basis of this effect seems to be the only

acceptable one for the class C RF-power amplifier.

It should finally be mentioned that to obtain the correct

amplitude of the spurious oscillations in simulations requires

an accurate modeling of all three high-level transistor effects

considered in Section III. Omission of either current satura-

tion or emitter breakdown or both will also result in an oscilla-

tion of limited amplitude, but it will settle at a significantly

higher level than the one shown here. Thle dependency of

emitter breakdown is especially of importance because it

indicates that every time spurious oscillations occur in the

considered type of amplifier, emitter degradation becomes a

possible source for transistor damage. In the example above

where the spurious oscillation is of relatively small amplitude,

a considerable, negatively going spike in }Er is observed.

Also, if load mismatches are imposed, this effect will be much

stronger. So although base widening tends to limit the spur-

ious oscillation, it does not exclude the existence of the under-

lying self-oscillation, and measures like those given in [14]

should be taken to avoid the phenomenon.

VI. CONCLUSIONS

It was shown above that the mechanism of base widening is

of primary importance for explaining the overall performance

of the common class- C’-biased RF-power amplifier stage.

By taking this effect into account, the mode of the amplifier

was shown to differ from what has commonly been assumed,

especially with respect to the shape of the current pulse

through the transistor. Much of the work on class c amplifier

design in the literature is, however, based on more or less

idealized current pulse shapes of the typle which appears

when base widening is absent, so clearly the results cannot

be transferred to situations where heavy buse widening con-

t rols the operation mode. This seems to be the case in most

output stages of single-ended transmitters because the tran-

sistors are commonly utilized to near the borderlines with

regard to frequency and current capability. The treatment

of the amplifier in this paper has been limited to a qualitative

discussion. It is supposed, however, that the material pre-

sented here gives a convenient starting point for the remain-

ing task of establishing useful analytic design tools.
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A Fast and Unilateral Monolithic Switch for Analog Signals

KLAAS B. KLAASSEN AND JACQUES C. L. VAN PEPPEN

Abstract–This correspondence cleats with a monolithic switch circuit

for voltage-type analog signals. The circuit constitutes a unilateral,
impedance buffering changeover switch, which is capable of fast signaf

switching (10 ns changeover time) and can handfe wide-spectrum signafs

(dc–100 MHz). The switch introduces only a small offset (< 1 mV)

and causes only small (< 50 mV ), short lasting (< 50 ns) switching

spikes.

INTRODUCTION

In many electronic systems, analog signal switches are re-

quired for signal routing such as interruption or diversion of

the signal path. Examples are the switches in data acquisition

systems used for multiplexing a large number of data sources

and the switches in signaf processing systems used to switch

“on” and “off” particular electronic functions.

The requirements for an ideal analog switch are manifold.
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The basic requirement is that in the “on” state of the switch,

the analog signal must not onfy retain its form, but also its

amplitude, while in the “off” state, the signal must be totally

intemupted. Therefore, in the “on” state, the transfer of the

switch must be exactly unity and, for dc-signaJ applications,

the switch may not introduce zero errors. Any parasitic feed-

through in the “off” state should be kept as small as possible.

An analog switch can also be used for signal sampling. For

this application, the switch must be capable of switching a

signaf on and off very fast. A signal switch may not produce

voltage spikes at the switchover moments. In practice, how-

ever, such transients will be inevitable, but they must be kept

small and short. Finrdly, for many purposes it is advantageous

that the switch can only pass a signal from input to output and

that it is insensitive to load variations. For these purposes, the

switch circuit must be unilateral and must have a high input

impedance and a low output impedance.

DESIGN CONSIDERATIONS

In a monolithic circuit the components that can best be

realize d are n-p-n transistors. Therefore, the switch circuit

has been designed with only transistors in such a way that the

above required properties are determined by the good n-p-n

transistors, while p-n-p transistors are only used for

compensation.

Fig. 1 shows a simple configuration for a signal switch that

satisfies almost all of our requirements. In fact, this configura-

tion is nothing else but an offset-compensated emitter-follower

[ 1] whose tail current can be switched on and off. In the “on”
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