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We study a nonlinear elliptic problem defined in a bounded domain involving
fractional powers of the Laplacian operator together with a concave–convex term. We
completely characterize the range of parameters for which solutions of the problem
exist and prove a multiplicity result. We also prove an associated trace inequality and
some Liouville-type results.

1. Introduction

Over the last few decades the problem

−∆u = f(u) in Ω ⊂ R
N ,

u = 0 on ∂Ω,

has been widely investigated (for a survey see [3], and for more specific problems
see, for example, [5, 13, 36], where different nonlinearities and different classes of
domains, bounded and unbounded, are considered). Other different diffusion oper-
ators, like the p-Laplacian, fully nonlinear operators, etc., have also been studied
(see, for example, [9, 16, 27] and the references therein). We deal with a non-local
version of the above problem for a particular type of nonlinearities, i.e. we study a
concave–convex problem involving the fractional Laplacian operator

(−∆)α/2u = λuq + up, u > 0 in Ω,

u = 0 on ∂Ω,

}

(1.1)

with 0 < α < 2, 0 < q < 1 < p < (N + α)/(N − α), N > α, λ > 0 and where
Ω ⊂ R

N is a smooth bounded domain. The critical case p = (N + α)/(N − α) is
studied in [7].

The non-local operator (−∆)α/2 in R
N is defined on the Schwartz class of func-

tions g ∈ S through the Fourier transform

[(−∆)α/2g]∧(ξ) = (2π|ξ|)αĝ(ξ), (1.2)

or via the Riesz potential (see, for example, [33,40]). Observe that α = 2 corresponds
to the standard local Laplacian.

This type of diffusion operators arises in several areas such as physics, probability
and finance (see, for example, [6, 8, 23, 44]). In particular, the fractional Laplacian
can be understood as the infinitesimal generator of a stable Lévy process [8].
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There is another way of defining this operator. In fact, in the case α = 1, there
is an explicit means of calculating the half-Laplacian acting on a function u in the
whole space R

N as the normal derivative on the boundary of its harmonic extension
to the upper half-space R

N+1
+ : the so-called Dirichlet-to-Neumann operator. The ‘α

derivative’ (−∆)α/2 can be characterized in a similar way, defining the α-harmonic
extension to the upper half-space (see [17] and § 2 for details). This extension is
commonly used in the recent literature since it allows non-local problems to be
written in a local way and this permits the use of variational techniques for these
kind of problems.

In cases where the operator is defined in bounded domains Ω, the above char-
acterization has to be adapted. The fractional powers of a linear positive operator
in Ω are defined by means of the spectral decomposition. In [15], the fractional
operator (−∆)1/2 is considered, defined using the mentioned Dirichlet-to-Neumann
operator, but restricted to the cylinder Ω × R+ ⊂ R

N+1
+ , and it is shown that this

definition is coherent with the spectral one (see also [41] for the case where α �= 1).
We recall that this is not the unique possibility of defining a non-local operator
related to the fractional Laplacian in a bounded domain (see, for example, the def-
inition of the so-called regional fractional Laplacian in [10, 31], where the authors
consider the Riesz integral restricted to the domain Ω). This leads to a different
operator related to a Neumann problem.

There are many results on the subject of concave–convex nonlinearity involv-
ing different (local) operators (see, for example, [1, 5, 9, 18, 22, 27]). Some ideas in
the present paper are taken from [5]. In most of the problems considered in the
aforementioned works, a critical exponent appears, which separates generically the
ranges where compactness results can or cannot be applied (in the fully nonlinear
case, the situation is slightly different, but a critical exponent still appears [18]). In
our case, the critical exponent with respect to the corresponding Sobolev embed-
ding is given by 2∗

α = 2N/(N − α). This is a reason why problem (1.1) is studied
in the subcritical case p < 2∗

α − 1 = (N + α)/(N − α) (see also the non-existence
result for supercritical nonlinearities in corollary 5.6).

The main results proven here characterize the existence of solutions of (1.1) in
terms of the parameter λ. The competition between the sublinear and superlinear
terms plays a role, which leads to different results concerning the existence and
multiplicity of solutions, among other things. By ‘solution’ we mean an energy
solution (see the precise definition in § 5).

Theorem 1.1. There exists Λ > 0 such that, for problem (1.1), the following hold.

(i) If 0 < λ < Λ, there is a minimal solution. Moreover, the family of minimal
solutions is increasing with respect to λ.

(ii) If λ = Λ, there is at least one solution.

(iii) If λ > Λ, there is no solution.

(iv) For any 0 < λ < Λ, there exist at least two solutions.

For α ∈ [1, 2) and p subcritical, we also prove that there exists a universal L∞-
bound for every solution to problem (1.1) independently of λ.
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Theorem 1.2. Let α � 1. Then there exists a constant C > 0 such that, for any
0 � λ � Λ, every solution to problem (1.1) satisfies

‖u‖∞ � C.

The proof of this last result relies on the classical argument of rescaling introduced
in [28], which yields to problems on unbounded domains. Therefore, some Liouville-
type results are required, and this is the point where the restriction α � 1 appears.

The paper is organized as follows. We devote §§ 2 and 3 to studying the fractional
Laplacian in the whole space by means of the α-harmonic extension and obtain a
trace inequality and two non-existence results. In § 4 we consider the α-harmonic
extension in cylinders in order to define the fractional Laplacian in a bounded
domain. We also study an associated linear equation in the local version. Finally,
§ 5 contains the results related to the non-local nonlinear problem (1.1), where we
prove theorems 1.1 and 1.2.

2. The fractional Laplacian in the whole space

In order to study problem (1.1), we need to properly define the fractional Laplacian
in bounded domains. This is done in § 4. Prior to this, we recall the definition of the
fractional Laplacian in the whole space and some of its properties. More specifically,
we obtain a trace inequality that is relevant in what follows and which also has
interest in itself.

2.1. Preliminaries

The fractional Laplacian is defined in the whole space through the Fourier trans-
form (see (1.2)). Recently, it was shown in [17] that this operator can be realized
in a local way by using one more variable and the so-called α-harmonic extension.
This is a main tool in our investigation.

More precisely, if u is a regular function in R
N , we say that w = Eα(u) is its α-

harmonic extension to the upper half-space, R
N+1
+ , if w is a solution to the problem

− div(y1−α∇w) = 0 in R
N+1
+ ,

w = u on R
N × {y = 0}.

In [17] it is proved that

lim
y→0+

y1−α ∂w

∂y
(x, y) = −κα(−∆)α/2u(x), (2.1)

where

κα =
21−αΓ (1 − 1

2α)

Γ ( 1
2α)

.

The appropriate functional spaces to work with are

Xα(RN+1
+ ) and Ḣα/2(RN ),
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defined as the completion of C∞
0 (RN+1

+ ) and C∞
0 (RN ), respectively, under the norms

‖φ‖2
Xα =

∫

R
N+1
+

y1−α|∇φ(x, y)|2 dxdy,

‖ψ‖2
Ḣα/2 =

∫

RN

|2πξ|α|ψ̂(ξ)|2 dξ

=

∫

RN

|(−∆)α/4ψ(x)|2 dx.

The extension operator is well defined for smooth functions through a Poisson
kernel, whose explicit expression is given in [17]. It can also be defined in the space
Ḣα/2(RN ), and, in fact,

‖Eα(ψ)‖Xα = cα‖ψ‖Ḣα/2 for all ψ ∈ Ḣα/2(RN ), (2.2)

where cα =
√

κα (see lemma 2.2). On the other hand, for a function φ ∈ Xα(RN+1
+ ),

we shall denote its trace on R
N × {y = 0} as tr(φ). This trace operator is also well

defined and it satisfies
‖tr(φ)‖Ḣα/2 � c−1

α ‖φ‖Xα . (2.3)

2.2. A trace inequality

From expression (2.3), the Sobolev embedding implies that the trace also belongs
to L2∗

α(RN ), where 2∗
α = 2N/(N − α). Even the best constant associated to this

inclusion is attained and can be characterized. Although most of the results used
in order to prove the following theorem are known, we have collected them here for
the reader’s convenience.

Theorem 2.1. For every z ∈ Xα(RN+1
+ ), it holds that

(
∫

RN

|v(x)|2N/(N−α) dx

)(N−α)/N

� S(α, N)

∫

R
N+1
+

y1−α|∇z(x, y)|2 dxdy, (2.4)

where v = tr(z). The best constant takes the exact value

S(α, N) =
Γ ( 1

2α)Γ ( 1
2 (N − α))(Γ (N))α/N

2πα/2Γ ( 1
2 (2 − α))Γ ( 1

2 (N + α))(Γ ( 1
2N))α/N

(2.5)

and it is achieved when v takes the form

v(x) = τ (N−α)/2(|x − x0|2 + τ2)−(N−α)/2 (2.6)

for some x0 ∈ R
N , τ > 0 and z = Eα(v).

The analogous results for the classical Laplace operator can be found in [25,36].

Lemma 2.2. Let v ∈ Ḣα/2(RN ), and let z = Eβ(v) be its β-harmonic extension,
β ∈ ( 1

2α, 2). Then z ∈ Xα(RN+1
+ ) and, moreover, there exists a positive universal

constant c(α, β) such that

‖v‖Ḣα/2 = c(α, β)‖z‖Xα . (2.7)

In particular, if β = α, we have c(α, α) = 1/
√

κα.
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Inequality (2.4) only needs the case β = α, which is deduced directly from the
proof of the local characterization of (−∆)α/2 in [17]. The calculations performed
in [17] can be extended to cover the range 1

2α < β < 2, including, in particular, the
case β = 1 proved in [45].

Proof. Since z = Eβ(v), by definition z solves div(y1−β∇z) = 0, which is equivalent
to

∆xz +
1 − β

y

∂z

∂y
+

∂2z

∂y2
= 0.

Taking the Fourier transform in x ∈ R
N for fixed y > 0, we have

−4π2|ξ|2ẑ +
1 − β

y

∂ẑ

∂y
+

∂2ẑ

∂y2
= 0

and ẑ(ξ, 0) = v̂(ξ). Therefore, ẑ(ξ, y) = v̂(ξ)φβ(2π|ξ|y), where φβ solves the problem

−φ +
1 − β

s
φ′ + φ′′ = 0, φ(0) = 1, lim

s→∞
φ(s) = 0. (2.8)

In fact, φβ minimizes the functional

Hβ(φ) =

∫ ∞

0

(|φ(s)|2 + |φ′(s)|2)s1−β ds

and it can be shown that it is a combination of Bessel functions [34]. More precisely,
φβ satisfies the following asymptotic behaviour:

φβ(s) ∼
{

1 − c1s
β for s → 0,

c2s
(β−1)/2e−s for s → ∞,

(2.9)

where

c1(β) =
21−βΓ (1 − 1

2β)

βΓ ( 1
2β)

, c2(β) =
2(1−β)/2π1/2

Γ ( 1
2β)

.

Now we observe that
∫

RN

|∇z(x, y)|2 dx =

∫

RN

(

|∇xz(x, y)|2 +

∣

∣

∣

∣

∂z

∂y
(x, y)

∣

∣

∣

∣

2)

dx

=

∫

RN

(

4π2|ξ|2|ẑ(ξ, y)|2 +

∣

∣

∣

∣

∂ẑ

∂y
(ξ, y)

∣

∣

∣

∣

2)

dξ.

Then, multiplying by y1−α and integrating in y,
∫ ∞

0

∫

RN

y1−α|∇z(x, y)|2 dxdy

=

∫ ∞

0

∫

RN

4π2|ξ|2|v̂(ξ)|2(|φβ(2π|ξ|y)|2 + |φ′
β(2π|ξ|y)|2)y1−α dξ dy

=

∫ ∞

0

(|φβ(s)|2 + |φ′
β(s)|2)s1−α ds

∫

RN

|2πξ|α|v̂(ξ)|2 dξ.
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Using (2.9), we see that the integral
∫ ∞

0

(|φβ |2 + |φ′
β |2)s1−α ds

is convergent provided β > 1
2α. This proves (2.7) with c(α, β) = (Hα(φβ))−1/2.

Remark 2.3. If β = 1, we have φ1(s) = e−s, and Hα(φ1) = 2α−1Γ (2 − α) [45].
Moreover, when β = α, integrating by parts and using the equation in (2.8),
with (2.9), we obtain

Hα(φα) =

∫ ∞

0

[φ2
α(s) + (φ′

α)2(s)]s1−α ds

= − lim
s→0

s1−αφ′
α(s)

= αc1(α)

= κα. (2.10)

Lemma 2.4. Let z ∈ Xα(RN+1
+ ) and let w = Eα(tr(z)) be its α-harmonic associated

function (the extension of the trace). Then

‖z‖2
Xα = ‖w‖2

Xα + ‖z − w‖2
Xα .

Proof. Observe that, for h = z − w, we have

‖z‖2
Xα =

∫

R
N+1
+

y1−α(|∇w|2 + |∇h|2 + 2〈∇w,∇h〉).

But, since tr(h) = 0, we have
∫

R
N+1
+

y1−α〈∇w,∇h〉 dxdy = 0.

Lemma 2.5. If g ∈ L2N/(N+α)(RN ), and f ∈ Ḣα/2(RN ), then there exists a con-
stant ℓ(α, N) > 0 such that

∣

∣

∣

∣

∫

f(x)g(x) dx

∣

∣

∣

∣

� ℓ(α, N)‖f‖Ḣα/2‖g‖2N/(N+α). (2.11)

Moreover, the equality in (2.11) with the best constant holds when f and g take the
form (2.6).

The proof follows by a standard argument that can be found, for example, in [24,
45].

Proof. By Parçeval’s identity and the Cauchy–Schwarz inequality, we have
(

∫

RN

f(x)g(x) dx

)2

=

(
∫

RN

f̂(ξ)ĝ(ξ) dξ

)2

�

(
∫

RN

|2πξ|α|f̂(ξ)|2 dξ

)(
∫

RN

|2πξ|−α|ĝ(ξ)|2 dξ

)

.
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The second term can be written using the results of [35] as

∫

RN

|2πξ|−α|ĝ(ξ)|2 dξ = b(α, N)

∫

R2N

g(x)g(x′)

|x − x′|N−α
dxdx′,

where

b(α, N) =
Γ ( 1

2 (N − α))

2απN/2Γ ( 1
2α)

.

We now use the following Hardy–Littlewood–Sobolev inequality [35],

∫

R2N

g(x)g(x′)

|x − x′|N−α
dxdx′

� d(α, N)‖g‖2
2N/(N+α),

where

d(α, N) =
π(N−α)/2Γ ( 1

2α)(Γ (N))α/N

Γ ( 1
2 (N + α))(Γ ( 1

2N))α/N
,

with equality if g takes the form (2.6). From this, we obtain the desired esti-
mate (2.11) with the constant ℓ(α, N) =

√

b(α, N)d(α, N).
When applying the Cauchy–Schwarz inequality, we obtain an identity provided

the functions |ξ|α/2f̂(ξ) and |ξ|−α/2ĝ(ξ) are proportional. This means

ĝ(ξ) = c|ξ|αf̂(ξ) = c[(−∆)α/2f ]∧(ξ).

We conclude by observing that if g takes the form (2.6) and g = c(−∆)α/2f , then
f also takes the form (2.6).

Proof of theorem 2.1. We apply lemma 2.5 with g = |f |(N+α)/(N−α)−1f , then use
lemma 2.2 and conclude using lemma 2.4. The best constant is

S(α, N) =
ℓ2(α, N)

κα
.

Related to this result, we cite [20], where it is proved that the only positive
regular solutions to (−∆)α/2f = cf (N+α)/(N−α) take the form (2.6).

Remark 2.6. If we let α tend to 2, when N > 2, we recover the classical Sobolev
inequality for a function in H1(RN ), with the same constant [43]. In order to pass
to the limit on the right-hand side of (2.4), at least formally, we observe that
(2−α)y1−α dy is a measure on compact sets of R+ converging (in the weak∗ sense)
to a Dirac delta. Hence,

lim
α→2−

∫ 1

0

(
∫

RN

|∇z(x, y)|2 dx

)

(2 − α)y1−α dy =

∫

RN

|∇v(x)|2 dx.

We then obtain

(
∫

RN

|v(x)|2N/(N−2) dx

)(N−2)/N

� S(N)

∫

RN

|∇v(x)|2 dx,
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with the best constant

S(N) = lim
α→2−

S(α, N)

2 − α

=
1

πN(N − 2)

(

Γ (N)

Γ ( 1
2N)

)2/N

.

It is achieved when v takes the form (2.6) with α replaced by 2.

3. Some non-existence results in unbounded domains

In this section we prove two Liouville-type results in the half-space R
N+1
+ and the

quarter-space R
N+1
++ that will be useful in § 5.4 in order to obtain uniform a pri-

ori bounds for the solutions to problem (1.1). These results have a corresponding
formulation for the fractional Laplacian operator.

3.1. A problem in the half-space

Theorem 3.1. Let 1 � α < 2. Then the problem in the half-space R
N+1
+ ,

− div(y1−α∇w) = 0 in R
N+1
+ ,

∂w

∂να
(x) = wp(x, 0) on ∂R

N+1
+ = R

N ,

⎫

⎬

⎭

(3.1)

has no positive bounded solution provided p < (N + α)/(N − α).

Theorem 3.1 is proved in the case α = 1 in [32]. On the other hand, Chen et
al . [19] consider the corresponding non-local problem and perform a different proof
of the same result, using integral estimates, which is valid in the whole interval
0 < α < 2.

The proof that we present here is based on the well-known method of moving
planes, introduced by Alexandrov and first used in the context of partial differential
equations by [29,39], among others.

We begin by establishing some useful notation in order to apply the moving planes
method. The points of the upper half-space R

N+1
+ are denoted by X = (x, y), where

x = (x1, . . . , xN ) and y > 0. Fix ρ > 0 and consider the sets

Σρ = {X ∈ R
N+1
+ ; xN > ρ}, Tρ = {X ∈ R

N+1
+ ; xN = ρ}. (3.2)

For every X = (x, y) ∈ R
N+1
+ we define the reflection across the hyperplane Tρ by

Xρ = (xρ, y) = X + 2(ρ − xN )eN = (x1, . . . , 2ρ − xN , y).

Let us also consider the point Pρ = (0, . . . , 0, 2ρ, 0) ∈ Σρ, whose reflection is the
origin, and the set Σ̃ρ = Σ̄ρ \ {Pρ}. Let B+

r denote the half-ball B+
r = {|X| <

r, y > 0} (B+
r (X0) when the centre X0 = (x0, 0) is not the origin), and let its

non-flat part of the boundary be denoted by S+
r = {|X| = r, y > 0} (respectively,

S+
r (X0)).
We also define the operator

−Lαw = yα−1 div(y1−α∇w) = ∆w +
1 − α

y

∂w

∂y
(3.3)
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in such a way that problem (3.1) can be written in the form

Lαw = 0 in R
N+1
+ ,

∂w

∂να
= wp for y = 0.

⎫

⎬

⎭

(3.4)

Two easy properties of the operator Lα are used in the following:

Lα(fg) = fLαg + gLαf + 2〈∇f,∇g〉,
Lα(|X|γ) = γ(γ + N − α)|X|γ−2.

}

(3.5)

Finally, the so-called fractional Kelvin transform will also be useful. We consider,
for a function f defined in R

N , its fractional Kelvin transform as Kα(f)(x) =
|x|α−Nf(x/|x|2). It is well known that this transform behaves under the action of
the fractional Laplacian in a similar way to the standard Kelvin transform with the
Laplacian

(−∆)α/2Kα(f)(x) = |x|−α−N (−∆)α/2f(x/|x|2).
We are interested in defining the analogous fractional Kelvin transform for the
function w and the operator Lα. Let z(X) = |X|γw(ξ), ξ = X/|X|2. It is a matter
of calculus to see that

Lαz(X) = |X|γ−4(Lαw(ξ) + (γ + N − α)|X|2(γw(ξ) − 2〈ξ,∇w(ξ)〉)).

Therefore, if we choose γ = α − N and w is α-harmonic, we obtain that z is also
α-harmonic, and so it turns out to be the α-harmonic extension of Kα(f) if w is
the α-harmonic extension of f . In other words, E ◦ Kα = Kα ◦ E.

Now let w be any solution to problem (3.4), and set µ = supB+
1

w. Then there
exists ε > 0 such that w(X) � ε|X|α−N for |X| � 1, y > 0. To see this, observe
that, by the Harnack inequality [14, lemma 4.8], we have ε = infS+

1
w � cµ > 0. By

comparison, we conclude using (3.5) and [14, proposition 4.10]. Let v = Kα(w). We
have that v satisfies analogous properties to w, but for the inversion variable

v(X) � ε in B+
1 ,

v(X) � µ|X|α−N in R
N+1
+ \ B+

1 ,

}

(3.6)

as well as being a solution to the problem

−Lαv = 0 in R
N+1
+ ,

∂v

∂να
= |x|−γvp for y = 0, |x| �= 0,

⎫

⎬

⎭

(3.7)

where γ = (N + α) − (N − α)p > 0.
We now proceed with the reflection. Let

ψρ(X) = v(Xρ) − v(X). (3.8)

Clearly, Lα(ψρ) = 0 in R
N+1
+ . We want to prove that ψρ � 0 in Σ̃ρ. Recall that v

may have a singularity at the origin, and therefore ψρ may have a singularity at
Pρ. We begin with the following result.
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Lemma 3.2. With the above notation, we have ψρ � 0 in Σ̃ρ, provided ρ > 0 is
sufficiently large.

Proof. Let β > 0 be some constant to be chosen later, and let

ϕρ(X) = |Z|βψρ(X), Z = X + eN+1 = (x, y + 1). (3.9)

From equation (3.7), we obtain

Lα(ϕρ) − βy1−α|Z|−2[(−β + N − α)ϕρ + 2〈Z,∇ϕρ〉] = 0. (3.10)

Assume by contradiction that there exists δ > 0 such that

inf
Σ̃ρ

ϕρ = −δ < 0. (3.11)

First of all, we observe that (3.6) implies

|ϕρ| � c|X|β+α−N → 0 for |X| → ∞,

if we take β < N − α. On the other hand, close to the possible singularity Pρ, we
have ϕρ > 0. In fact, if X ∈ B+

1 (Pρ), then Xρ ∈ B+
1 , and then v(Xρ) � ε. Since

v(X) � µ|X|α−N � µρα−N , we obtain

ϕρ(X) � |Z|β(ε − µ|ρ|α−N ) > 0 in B+
1 (Pρ),

provided ρ is sufficiently large. Therefore, the infimum in (3.11) is achieved in a
point of regularity of ϕρ. As for the interior points, the above choice of β gives that
equation (3.10) does not allow for interior minima to exist. Finally, the fact that
ϕρ = 0 on Tρ leads to the only possibility of the infimum being achieved, namely,
on the part of the boundary Σρ ∩ {y = 0}. Then let (x0, 0) ∈ Σρ ∩ {y = 0} be such
that ϕρ(x0, 0) = −δ.

We claim that the boundary condition in (3.7) implies

∂ϕρ

∂να
(x0) > 0, (3.12)

which will give the desired contradiction. It is at this point that the condition α � 1
enters.

By Leibniz’s rule, we have

∂ϕρ

∂να
(x0) = |(x0, 1)|β ∂ψρ

∂να
(x0) + ψρ(x0, 0)

∂|Z|β
∂να

(x0).

The first term is bounded below, since, by using (3.6), (3.7) and the mean value
theorem, we obtain

∂ψρ

∂να
(x0) = |xρ

0|−γvp(xρ
0, 0) − |x0|−γvp(x0, 0)

� |x0|−γ(vp(xρ
0, 0) − vp(x0, 0))

� p|x0|−γvp−1(x0, 0)ψρ(x0, 0), (3.13)

and thus

|(x0, 1)|β ∂ψρ

∂να
(x0) � −pδ|x0|−γ−(p−1)(N−α)

� −cρ−2.
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For the second term,

∂|Z|β
∂να

(x0) =

⎧

⎪

⎨

⎪

⎩

0 if α < 1,

−β|(x0, 1)|β−2 if α = 1,

−∞ if α > 1.

For the case where α > 1, we conclude that ∂ϕρ/∂να(x0) = +∞. In the case where
α = 1, a sharp control of the above terms gives (3.12); this is done in [32]. In the
case where α < 1, the condition (3.12) is not necessarily true.

The moving planes method begins with a plane in which we find some kind of
symmetry and then we see how far this plane can be moved while keeping that sym-
metry. The above lemma, instrumental in unbounded domains, provides a ‘starting
plane’. The following lemma establishes that we can move that plane up to the
origin.

Lemma 3.3. Let ρ0 be defined as

ρ0 = inf{ρ > 0; ϕµ � 0 in Σ̃µ for all ρ < µ < ∞}. (3.14)

Then ρ0 = 0.

Proof. By lemma 3.2, ρ0 is finite. Suppose that ρ0 > 0. By continuity, we have
ϕρ0

= |z|βψρ0
� 0 in Σ̃ρ0

. Since γ > 0 and ρ0 > 0, we have by the boundary
condition that ψρ0

�≡ 0 in Σ̃ρ0
. Also, by (3.13), ∂ψρ0

/∂να � 0 on {y = 0} ∩ Σ̄ρ0
.

Clearly, Lα(ψρ0
) = 0 in R

N+1
+ and, in particular, in the set

R0 = {|X − Pρ0
| = 1

2 |ρ0|, y � 0}.

Therefore, by proposition 4.10 of [14], we have ψρ0
> 0 in R0. Let δ = infR0

ψρ0
> 0.

The function ψρ0
may have a singularity at Pρ0

, so we construct the following
auxiliary function. Let hε be the solution to the problem

Lα(hε)(X) = 0, ε < |X − Pρ0
| < 1

2 |ρ0|, y > 0,

hε(X) = δ, |X − Pρ0
| = 1

2 |ρ0|, y � 0,

hε(X) = 0, |X − Pρ0
| = ε, y � 0,

∂hε

∂να
(X) = 0, ε < |X − Pρ0

| < 1
2 |ρ0|, y = 0.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.15)

Then lemma 4.11 of [14] implies

ψρ0
� hε in ε � |X − Pρ0

| �
1
2 |ρ0|, y � 0. (3.16)

Letting ε → 0+ we have limε→0+ hε ≡ δ by the uniqueness of the α-harmonic exten-
sion. Therefore,

ψρ0
� δ in 0 < |X − Pρ0

| �
1
2 |ρ0|, y � 0. (3.17)

Since ϕρ0
� ψρ0

in Σ̃ρ0
, we have

lim
ρ→ρ0

inf
R0

ϕρ � inf
R0

ϕρ0
� δ. (3.18)
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If ρ0 is the infimum, there exists a sequence ρk ր ρ0 such that

inf
Σ̃ρk

ϕρk
< 0. (3.19)

Clearly, lim|X|→∞ ϕρk
= 0. Recalling (3.18) the infimum in (3.19) must be attained

at some finite point Xk ∈ Σ̄ρk
\ B|ρ0|/2(Pρ0

) with sufficiently small |ρk − ρ0|. On
the other hand, Xk �∈ Tρk

, since ϕρk
≡ 0 in Tρk

. Therefore, Xk must belong to the
set

{X ∈ R
N+1; y = 0, xN > 0, |X − Pρ0

|2 �
1
4 |ρ0|2}. (3.20)

Reasoning as in lemma 3.2, this leads to the desired contradiction.

Now we can deal with the proof of the main theorem in this subsection.

Proof of theorem 3.1. Let w be any solution to problem (3.1) and consider its frac-
tional Kelvin transform v = Kα(w). By lemma (3.3) we have

v(x1, . . . , xN , y) � v(x1, . . . ,−xN , y) for xN > 0.

The same argument fits for negative xN giving the reverse inequality. Therefore,
v(X) is symmetric with respect to the xN -axis. Obviously, we can apply this argu-
ment in every direction perpendicular to y-axis. Hence, v(X) is a two-variable
function, as is w(X). Indeed,

w(X) = φ(|x|, y) (3.21)

for some function φ. Hence, w is independent of (x1, . . . , xN ), and therefore w(X) =
w(y).

To complete the proof we consider the problem in one dimension.

−(y1−αw′)′ = 0 for y > 0,

lim
y→0+

y1−αw′(y) = wp(0).

⎫

⎬

⎭

(3.22)

The solutions of this problem are of the form w(y) = c − cp/αyα with c � 0,
which implies that the only non-negative solution is w ≡ 0.

3.2. A problem in a quarter-space

Theorem 3.4. Let 1 � α < 2. Then the problem in the first quarter

R
N+1
++ = {X = (x′, xN , y) | x′ ∈ R

N−1, xN > 0, y > 0}

and
− div(y1−α∇w) = 0, xN > 0, y > 0,

∂w

∂να
(x′, xN ) = wp(x′, xN , 0),

w(x′, 0, y) = 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.23)

has no positive bounded solution, provided that p < (N + α)/(N − α).

Theorem 3.4 is proved in the case α = 1 in [15]. We begin with a generalization
of proposition 6.1 of [21].
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Lemma 3.5. Suppose w is a solution of the following problem:

−Lαw � 0, w � 0 in R
2
+,

∂w

∂να
� 0 for y = 0,

⎫

⎬

⎭

(3.24)

then w is a constant.

Proof. Let X0 = (x0, y0) ∈ R
2
+. Given ε, δ ∈ (0, 1), we define the function

ψ(X) = εw(X0) log

( |X − X0|2
δ2

)

+ Cδ, (3.25)

where
Cδ = max

S+

δ (X0)

(w(X0) − w(X)),

where
S+

δ (X0) = {|X − X0| = δ, y � 0}.

It is clear that
ψ(X) ≡ Cδ on S+

δ (X0)

and, taking sufficiently small δ, we have

ψ(X) � w(X0) � w(X0) − w(X) on S+
e1/ε(X0). (3.26)

A direct calculation shows that if α ∈ (1, 2), then

−Lαψ � 0 in R
2
+,

∂ψ

∂να
= ∞ for y = 0.

Thus, by the maximum principle,

ψ(X) � w(X0) − w(X) for X ∈ R
2
+, δ < |X − X0| < e1/ε.

Letting ε → 0 and then δ → 0, we have w(X0)−w(X) � 0 for any X0, X ∈ R
2
+.

Lemma 3.6. Let p � 0 and let C be a positive constant. Then there is no solution
to the problem

−Lαw = 0, 0 < w � C in R
2
++ = {x > 0, y > 0},

∂w

∂να
= wp on {x > 0, y = 0},

w = 0 on {x = 0, y � 0}.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.27)

Proof. First, we show that w(x, 0) → 0 as x → ∞. Suppose, by contradiction, that
there exists a sequence ηm → ∞ as m → ∞ and such that w(ηm, 0) → K > 0. Let
us define wm(x, y) = w(x + ηm, y). It clearly holds that

−Lαwm = 0, 0 < wm � C in Rm = {x > ηm, y > 0},

∂wm

∂να
= wp on {x > ηm, y = 0},

wm = 0 on {x = ηm, y � 0}.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.28)
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Moreover, wm(0, 0) → K. So that, taking a subsequence of wm if necessary, we have
wm → w̃ with

−Lαw̃ = 0, 0 � w̃ � C in R
2
+,

∂w̃

∂να
= w̃p

� 0 for y = 0.

⎫

⎬

⎭

(3.29)

Since w̃(0, 0) = K, lemma 3.5 implies w̃ ≡ K, but by the boundary condition we
have that

∂w̃

∂να
(0, 0) = w̃p(0, 0) = Kp > 0,

which leads to a contradiction. Therefore, w(x, 0) → 0 as x → ∞.
Following [14], we define the function

Φ(x) =
1

2

∫ ∞

0

y1−α(|wx(x, y)|2 − |wy(x, y)|2) dy,

see also [15] for the case where α = 1. Differentiating inside the integral, we have

1

2

∫ ∞

0

∂

∂x
[y1−α(|wx|2 − |wy|2)] dy =

∫ ∞

0

y1−α(wxxwx − wywxy) dy.

We want to see that this integral converges. By lemma 4.3 of [14], we know that
there exists some β ∈ (0, 1) such that w ∈ C2,β . Moreover, by proposition 4.6
of [14],

∫ ∞

0

y1−α(|wxxwx| + |wywxy|) dy

� M1

(
∫ 1

0

y1−α(|wx| + |wy|) dy +

∫ ∞

1

y1−α(|wx| + |wy|) dy

)

� M2

(

M3 +

∫ ∞

1

y1−α

y + 1
dy

)

< ∞,

for some constants M1, M2, M3 > 0. Note that the last integral is convergent pro-
vided 1 < α < 2. We recall that, in the case where α = 1, a sharper estimate is
used in [15]. Now let

G(w) =

∫ w

0

f(s) ds.

By dominated convergence, and since |∇w(x, y)| → 0 as y → ∞, integrating by
parts yields

[Φ(x) + G(w(x, 0))]x =

∫ ∞

0

y1−α[wxxwx − wywxy](x, y) dy + [f(w)wx](x, 0)

= lim
y→0

[y1−αwywx + f(w)wx](x, y)

= lim
y→0

[y1−αwywx − y1−αwywx](x, y)

= 0.
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Therefore, Φ(x) + G(w(x, 0)) is constant. The rest of the proof is exactly the same
as in [15]. Using that w(x, 0) → 0 as x → ∞ and lemma 5.1 of [14], we obtain

Φ(x) + G(w(x, 0)) ≡ 0.

Since w ≡ 0 in {x = 0, y � 0}, it follows that

0 = 2Φ(0) =

∫ ∞

0

|wx|2(0, y) dy,

which implies wx = 0 on {x = 0, y > ε} for every ε > 0. Since Lα is a non-
degenerated elliptic operator in {x = 0, y > ε}, by Hopf’s lemma this leads to a
contradiction.

With these two results, a standard argument completes the proof.

Proof of theorem 3.4. By an analogous argument to the proof of theorem 3.4 for
the (x1, . . . , xN−1) variables (with the analogous lemmas 3.2 and 3.3), it is easy to
see that any positive solution of (3.23) depends only on two variables: xN and y.
Therefore, applying proposition 3.6, the proof is complete.

4. The fractional Laplacian in a bounded domain

4.1. The α-harmonic extension

To define the fractional Laplacian in a bounded domain we follow [15] (see
also [41]). The idea is to use the α-harmonic extension introduced in [17] to define
the same operator in the whole space, but restricted to our bounded domain. To
this end, we consider the cylinder

CΩ = {(x, y) : x ∈ Ω, y ∈ R+} ⊂ R
N+1
+ ,

and denote by ∂LCΩ its lateral boundary.
We first define the extension operator and fractional Laplacian for smooth func-

tions.

Definition 4.1. Given a regular function u, we define its α-harmonic extension
w = Eα(u) to the cylinder CΩ as the solution to the problem

− div(y1−α∇w) = 0 in CΩ ,

w = 0 on ∂LCΩ ,

w = u on Ω.

⎫

⎪

⎬

⎪

⎭

(4.1)

As in the whole space, there is also a Poisson formula for the extension operator in
a bounded domain, defined through the Laplace transform and the heat semigroup
generator et∆ (see [41] for details).

Definition 4.2. The fractional operator (−∆)α/2 in Ω, acting on a regular func-
tion u, is defined by

(−∆)α/2u(x) = − 1

κα
lim

y→0+
y1−α ∂w

∂y
(x, y), (4.2)

where w = Eα(u) and κα is given as in (2.1).
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This operator can be extended by density to a fractional Sobolev space.

4.2. Spectral decomposition

It is classical that the powers of a positive operator in a bounded domain (or in
an unbounded domain, provided the spectrum is discrete) are defined through the
spectral decomposition using the powers of the eigenvalues of the original operator.
We show next that, in this case, this is coherent with the Dirichlet–Neumann oper-
ator defined above. Let (ϕj , λj) be the eigenfunctions and eigenvectors of −∆ in Ω
with Dirichlet boundary data. Define the space of functions defined in our domain
Ω as

H
α/2
0 (Ω) =

{

u =
∑

ajϕj ∈ L2(Ω) : ‖u‖
H

α/2

0

=
(

∑

a2
jλ

α/2
j

)1/2

< ∞
}

,

its topological dual as H−α/2(Ω), and the energy space Xα
0 (CΩ) of functions defined

in the cylinder CΩ as the completion of C∞
0 (Ω × [0,∞)) with the norm

‖z‖Xα
0

=

(
∫

CΩ

y1−α|∇z|2
)1/2

.

Lemma 4.3.

(i) The eigenfunctions and eigenvectors of (−∆)α/2 in Ω with Dirichlet boundary

data are given by (ϕj , λ
α/2
j ).

(ii) If

u =
∑

ajϕj ∈ H
α/2
0 (Ω),

then Eα(u) ∈ Xα
0 (CΩ) and

Eα(u)(x, y) =
∑

ajϕj(x)ψ(λ
1/2
j y),

where ψ(s) solves the problem

ψ′′ +
1 − α

s
ψ′ = ψ, s > 0,

− lim
s→0+

s1−αψ′(s) = κα,

ψ(0) = 1.

(iii) In the same hypotheses, (−∆)α/2u ∈ H−α/2(Ω), and

(−∆)α/2u =
∑

ajλ
α/2
j ϕj .

(iv) It holds that

‖(−∆)α/2u‖H−α/2 = ‖(−∆)α/4u‖L2 = ‖u‖
H

α/2

0

= κ−1/2
α ‖Eα(u)‖Xα

0
.
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The proof of this result is straightforward. The function ψ coincides with the
solution φα in problem (2.8). The calculation of the norms is also straightforward.
Using the orthogonality of the family {ϕj}, together with

∫

Ω
ϕ2

j = 1,
∫

Ω
|∇ϕj |2 = λj

and (2.10), we have
∫

CΩ

y1−α|∇Eα(u)(x, y)|2 dxdy

=

∫ ∞

0

y1−α

∫

Ω

(

∑

a2
j |∇ϕj(x)|2ψ(λ

1/2
j y)2 + a2

jλjϕj(x)2(ψ′(λ
1/2
j y))2

)

dxdy

=

∫ ∞

0

y1−α
∑

a2
jλj(ψ(λ

1/2
j y)2 + (ψ′(λ

1/2
j y))2) dy

=
∑

a2
jλ

α/2
j

∫ ∞

0

s1−α(ψ(s)2 + (ψ′(s))2) ds

= κα

∑

a2
jλ

α/2
j

= κα

∑

(ajλ
α/4
j )2.

4.3. The trace inequality

Using the trace inequality in the whole space (2.4), we obtain the corresponding
inequality for bounded domains. To do this, we consider v ∈ Xα

0 (CΩ). Its extension
by zero outside the cylinder CΩ can be approximated by functions with compact
support in R

N+1
+ . Thus, the trace inequality (2.4), together with Hölder’s inequality,

gives a trace inequality for bounded domains.

Theorem 4.4. For any 1 � r � 2N/(N −α), and every z ∈ Xα
0 (CΩ), it holds that

(
∫

Ω

|v(x)|r dx

)2/r

� C(r, α, N, |Ω|)
∫

CΩ

y1−α|∇z(x, y)|2 dxdy, (4.3)

where v = tr(z).

4.4. The linear problem

We now use the extension problem (4.1) and the expression (4.2) to reformulate
the non-local problems in a local way. Let g be a regular function and consider the
following problems: the non-local problem

(−∆)α/2u = g(x) in Ω,

u = 0 on ∂Ω,

}

(4.4)

and the corresponding local one

− div(y1−α∇w) = 0 in CΩ ,

w = 0 on ∂LCΩ ,

− 1

κα
lim

y→0+
y1−α ∂w

∂y
= g(x) on Ω.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.5)
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We want to define the concept of the solution to (4.4), which is done in terms of
the solution to problem (4.5).

Definition 4.5. We say that w ∈ Xα
0 (CΩ) is an energy solution to problem (4.5)

if, for every function ϕ ∈ C1
0(CΩ), it holds that

∫

CΩ

y1−α〈∇w(x, y),∇ϕ(x, y)〉 dxdy =

∫

Ω

καg(x)ϕ(x, 0) dx. (4.6)

In fact, more general test functions can be used in the above formula whenever the
integrals make sense. A supersolution (respectively, subsolution) is a function that
verifies (4.6) with equality replaced by ‘�’ (respectively, ‘�’) for every non-negative
test function.

Definition 4.6. We say that u ∈ H
α/2
0 (Ω) is an energy solution to problem (4.4)

if it is the trace on Ω of a function w that is an energy solution to problem (4.5).

It is clear that a solution exists, for example, for every g ∈ H−α/2(Ω). In order
to deal with problem (4.5) we shall assume, without loss of generality, that κα = 1,
by changing the function g.

This linear problem is also mentioned in [14]. There, some results are obtained
using the theory of degenerate elliptic equations developed in [26]. In particular, a
regularity result for bounded solutions to this problem is obtained in [14]. We prove
here that the solutions are in fact bounded if g satisfies a minimal integrability
condition.

Theorem 4.7. Let w be a solution to problem (4.5). If g ∈ Lr(Ω), r > N/α, then
w ∈ L∞(CΩ).

Proof. The proof follows from the well-known Moser iterative technique, which we
take from [30, theorem 8.15], and uses the trace inequality (4.3). Without loss of
generality, we may assume w � 0, and this simplifies notation. The general case is
obtained in a similar way.

We define, for β � 1 and K � k (k to be chosen later), a C1([k,∞)) function H
as follows:

H(z) =

{

zβ − kβ , z ∈ [k, K],

linear, z > K.

Let us also define v = w + k, ν = tr(v), and choose as test function ϕ:

ϕ = G(v) =

∫ v

k

|H ′(s)|2 ds,

∇ϕ = |H ′(v)|2∇v.

Observe that it is an admissible test function, although it is not C1. Substituting
this test function into the definition of the energy solution, we obtain, on the one
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hand
∫

CΩ

y1−α〈∇w,∇ϕ〉 dxdy =

∫

CΩ

y1−α|∇v|2|H ′(v)|2 dxdy

=

∫

CΩ

y1−α|∇H(v)|2 dxdy

�

(
∫

Ω

|H(ν)|2N/(N−α) dx

)(N−α)/N

= ‖H(ν)‖2
2N/(N−α), (4.7)

where the last inequality follows by (4.3), and, on the other hand,
∫

Ω

g(x)ϕ(x, 0) dx =

∫

Ω

g(x)G(ν) dx

�

∫

Ω

g(x)νG′(ν) dx

�
1

k

∫

Ω

g(x)ν2|H ′(ν)|2 dx

=
1

k

∫

Ω

g(x)|νH ′(ν)|2 dx. (4.8)

Inequality (4.7), together with (4.8), leads to

‖H(ν)‖2N/(N−α) �

(

1

k
‖g‖r

)1/2

‖(νH ′(ν))2‖1/2
r/(r−1) = ‖νH ′(ν)‖2r/(r−1), (4.9)

by choosing k = ‖g‖r. Letting K → ∞ in the definition of H, inequality (4.9)
becomes

‖ν‖2Nβ/(N−α) � ‖ν‖2rβ/(r−1).

Hence, for all β � 1, the inclusion ν ∈ L2rβ/(r−1)(Ω) implies the stronger inclusion
ν ∈ L2Nβ/(N−α)(Ω), since 2Nβ/(N − α) > 2rβ/(r − 1) provided r > N/α. The
result now follows, as in [30], by an iteration argument, starting with

β =
N(r − 1)

r(N − α)
> 1 and ν ∈ L2N/(N−α)(Ω).

This gives ν ∈ L∞(Ω), and then w ∈ L∞(CΩ). In fact, we get the estimate

‖w‖∞ � c(‖w‖Xα + ‖g‖r).

Corollary 4.8. Let w be a solution to problem (4.5). If g ∈ L∞(Ω), then w ∈
Cγ(C̄Ω) for some γ ∈ (0, 1).

Proof. Using theorem 4.7, the result follows directly from [14, lemma 4.4], where it
is proved that any bounded solution to problem (4.5) with a bounded g is Cγ .
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5. The nonlinear non-local problem

5.1. The local realization

We deal now with the core of the paper, i.e. the study of the non-local prob-
lem (1.1). We write that problem in the local version as follows. A solution to
problem (1.1) is a function u = tr(w) > 0, the trace of w on Ω × {y = 0}, where w
solves the local problem

− div(y1−α∇w) = 0 in CΩ ,

w = 0 on ∂LCΩ ,

∂w

∂να
= f(w), w > 0 in Ω,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(5.1)

where
∂w

∂να
(x) = − lim

y→0+
y1−α ∂w

∂y
(x, y). (5.2)

Note. In order to simplify notation in what follows we shall denote, when no
confusion arises, w for the function defined in the cylinder CΩ as well as for its
trace tr(w) on Ω × {y = 0}. Also, in the above definition we have neglected the
constant κα appearing in (4.2) by a simple rescaling.

As we have said, we shall focus on the particular nonlinearity

f(s) = fλ(s) = λsq + sp. (5.3)

However many auxiliary results are proved for more general reactions f satisfying
the growth condition

0 � f(s) � c(1 + |s|p) for some p > 0. (5.4)

Remark 5.1. According to the previous note, the results on the coefficient λ for
the local problem (5.1)–(5.3) in this section are translated into problem (1.1) with λ
multiplied by κ

p(q−1)−1
α .

Following definition 4.5, we say that w ∈ Xα
0 (CΩ) is an energy solution of (5.1)

if the following identity holds
∫

CΩ

y1−α〈∇w,∇ϕ〉 dxdy =

∫

Ω

f(w)ϕ dx

for every regular test function ϕ. In an analogous way we define the sub- and
supersolution.

We now consider the functional

J(w) =
1

2

∫

CΩ

y1−α|∇w|2 dxdy −
∫

Ω

F (w) dx,

where

F (s) =

∫ s

0

f(τ) dτ.

For simplicity of notation, we define f(s) = 0 for s � 0. Recall that the trace satisfies
w ∈ Lr(Ω) (again, this means tr(w) ∈ Lr(Ω)) for every 1 � r � 2N/(N − α) if
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N > α and 1 < r � ∞ if N � α. In particular, if p � (N + α)/(N − α) and f
verifies (5.4), then F (w) ∈ L1(Ω), and the functional is well defined and bounded
from below.

It is well known that critical points of J are solutions to (5.1) with a general
reaction f . We also consider the minimization problem

I = inf

{
∫

CΩ

y1−α|∇w|2 dxdy : w ∈ Xα
0 (CΩ),

∫

Ω

F (w) dx = 1

}

,

for which, by classical variational techniques, below the critical exponent the infi-
mum I is achieved. This gives a non-negative solution in a standard way. Later on
in the paper, we shall see that this infimum is positive provided λ > 0 is sufficiently
small. On the contrary, for sufficiently large λ, the infimum is the trivial solution.

We now establish two preliminary results. The first result is a classical procedure
of sub- and supersolutions to obtain a solution. We omit its proof.

Lemma 5.2. Assume that there exist a subsolution w1 and a supersolution w2 to
problem (5.1) verifying w1 � w2. Then there also exists a solution w satisfying
w1 � w � w2 in CΩ.

The second result is a comparison result for concave nonlinearities. The proof
follows the lines of the corresponding one for the Laplacian performed in [11].

Lemma 5.3. Assume that the function f(t)/t is decreasing for t > 0 and consider
w1, w2 ∈ Xα

0 (CΩ) as positive subsolution and supersolution, respectively, to prob-
lem (5.1). Then w1 � w2 in C̄Ω.

Proof. By definition we have, for the non-negative test functions ϕ1 and ϕ2 to be
chosen in an appropriate way,

∫

CΩ

y1−α〈∇w1,∇ϕ1〉 dxdy �

∫

Ω

f(w1)ϕ1 dx,

∫

CΩ

y1−α〈∇w2,∇ϕ2〉 dxdy �

∫

Ω

f(w2)ϕ2 dx.

Now let θ(t) be a smooth non-decreasing function such that θ(t) = 0 for t � 0,
θ(t) = 1 for t � 1, and set θε(t) = θ(t/ε). If, in the above inequalities, we set

ϕ1 = w2θε(w1 − w2), ϕ2 = w1θε(w1 − w2),

we obtain

I1 �

∫

Ω

w1w2

(

f(w2)

w2
− f(w1)

w1

)

θε(w1 − w2) dx,

where

I1 :=

∫

CΩ

y1−α〈w1∇w2 − w2∇w1,∇(w1 − w2)〉θ′
ε(w1 − w2) dxdy.
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Now we estimate I1 as follows:

I1 �

∫

CΩ

y1−α〈∇w1, (w1 − w2)∇(w1 − w2)〉θ′
ε(w1 − w2) dxdy

=

∫

CΩ

y1−α〈∇w1,∇γε(w1 − w2)〉 dxdy,

where γ′
ε(t) = tθ′

ε(t). Therefore, since 0 � γε � ε, we have

I1 �

∫

Ω

f(w1)γε(w1 − w2) dx � cε.

We conclude as in [5]. Letting ε tend to zero, we obtain

∫

Ω∩{w1>w2}

w1w2

(

f(w2)

w2
− f(w1)

w1

)

dx � 0,

which, together with the hypothesis on f , gives w1 � w2 in Ω. Comparison in CΩ

follows easily by the maximum principle.

Now we show that the solutions to problem (5.1)–(5.4) are bounded and Hölder
continuous. In § 5.4 we obtain a uniform L∞-estimate in the case where f is given
by (5.3) and the convex power is subcritical.

Proposition 5.4. Let f satisfy (5.4) with p < (N + α)/(N − α), and let w ∈
Xα

0 (CΩ) be an energy solution to problem (5.1). Then w ∈ L∞(CΩ) ∩ Cγ(C̄Ω) for
some 0 < γ < 1.

Proof. The proof closely follows the technique of [12]. As in the proof of theorem 4.7,
we assume w � 0. We consider, formally, the test function ϕ = wβ−p, for some
β > p + 1. The justification of the following calculations can be made substituting
ϕ by some approximated truncation. We therefore proceed with the formal analysis.
We obtain, using the trace immersion, the inequality

(
∫

Ω

w(β−p+1)N/(N−α)

)(N−α)/N

� C(β, α, N, Ω)

∫

Ω

wβ .

This estimate allows us to obtain the following iterative process

‖w‖βj+1
� C‖w‖βj/(βj−p+1)

βj
,

with βj+1 = N/(N −α)(βj +1−p). To have βj+1 > βj we need βj > (p−1)N/(α).
Since w ∈ L2∗

α(Ω), starting with β0 = 2N/(N −α), we obtain the above restriction
provided p < (N + α)/(N − α). It is clear that, in a finite number of steps, we get,
for g(x) = f(w(x, 0)), the regularity g ∈ Lr for some r > N/α. As a consequence,
we obtain the conclusion by applying theorem 4.7 and corollary 4.8.

5.2. A non-existence result

The following result relies on the use of a classical Pohozaev-type multiplier.
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Proposition 5.5. Assume that f is a continuous function with primitive F , and
w is a bounded energy solution to problem (5.1). Then the following Pohozaev-type
identity holds

1

2

∫

∂LCΩ

y1−α〈x, ν〉|∇w|2 dσ − N

∫

Ω

F (w) dx + 1
2 (N − α)

∫

Ω

wf(w) dx = 0,

where ν is the (exterior) normal vector to ∂Ω.

Proof. Just use the identity

〈x, ν〉yα−1 div(y1−α∇w) + div[y1−α(〈(x, y),∇w〉∇w − 1
2 (x, y)|∇w|2)]

+ (1
2 (N + 2 − α) − 1)|∇w|2 = 0.

This equality for C2 functions can be checked using calculus. For energy solutions
we use a classical approximation procedure.

As a consequence, we obtain a non-existence result in the supercritical case for
domains with particular geometry.

Theorem 5.6. If Ω is star-shaped and the nonlinearity f , F are as in the previous
proposition and satisfy the inequality ((N − α)sf(s) − 2NF (s)) � 0, then prob-
lem (5.1) has no bounded solution. In particular, in the case f(s) = |s|p−1s, this
means that there is no bounded solution for any p � (N + α)/(N − α).

The case α = 1 has been proved in [15]. The corresponding result for the Lapla-
cian (problem (1.1) with α = 2) comes from [38].

5.3. Proof of theorem 1.1

Here we prove theorem 1.1 in terms of the solution of the local version (5.1). For
the sake of readability, we split the proof into several lemmas. From now on, we
define

− div(y1−α∇w) = 0 in CΩ ,

w = 0 on ∂LCΩ ,

∂w

∂να
= λwq + wp, w > 0 in Ω,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(Pλ)

and consider the associated energy functional

Jλ(w) =
1

2

∫

CΩ

y1−α|∇w|2 dxdy −
∫

Ω

Fλ(w) dx,

where

Fλ(s) =
λ

q + 1
sq+1 +

1

p + 1
sp+1.

Lemma 5.7. Let Λ be defined by

Λ = sup{λ > 0: problem (Pλ) has a solution}.

Then 0 < Λ < ∞.
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Proof. Consider the eigenvalue problem associated to the first eigenvalue λ1, and
let ϕ1 > 0 be an associated eigenfunction (see lemma 4.3). Then, using ϕ1 as a test
function in (Pλ), we have that

∫

Ω

(λwq + wp)ϕ1 dx = λ1

∫

Ω

wϕ1 dx. (5.5)

Since there exist positive constants c, δ such that λtq + tp > cλδt, for any t > 0 we
obtain from (5.5) (recall that w > 0) that cλδ < λ1, which implies Λ < ∞.

To prove Λ > 0, we use the sub- and supersolution technique to construct a
solution for any small λ. In fact, a subsolution is obtained as w

¯
= εϕ1, ε > 0 small.

A supersolution is a suitable multiple of the function g solution to

− div(y1−α∇g) = 0 in CΩ ,

g = 0 on ∂LCΩ ,

∂g

∂να
= 1 in Ω.

This proves the third statement in theorem 1.1.

Lemma 5.8. Problem (Pλ) has at least a positive solution for every 0 < λ < Λ.
Moreover, the family {wλ} of minimal solutions is increasing with respect to λ.

Remark 5.9. Although this Λ is not exactly the same as that of theorem 1.1 (see
remark 5.1), we have not changed the notation for the sake of simplicity.

Proof of lemma 5.8. We already proved in the previous lemma that problem (Pλ)
has a solution for every small λ > 0. Another way of proving this result is to look
at the associated functional Jλ. Using theorem 4.4, we have that this functional
verifies

Jλ(w) =
1

2

∫

CΩ

y1−α|∇w|2 dxdy −
∫

Ω

Fλ(w) dx

�
1

2

∫

CΩ

y1−α|∇w|2 dxdy − λC1

(
∫

CΩ

y1−α|∇w|2 dxdy

)(q+1)/2

− C2

(
∫

CΩ

y1−α|∇w|2 dxdy

)(p+1)/2

,

for some positive constants C1 and C2. Then, for sufficiently small λ, there exist
two solutions of problem (Pλ), one given by minimization and another given by the
mountain-pass theorem [4]. The proof is standard, based on the geometry of the
function g(t) = 1

2 t2 − λC1t
q+1 − C2t

p+1 (see, for example, [27] for more details).
This in particular proves Λ > 0.

We now show that there exists a solution for every λ ∈ (0, Λ). Later in the paper
(see lemma 5.11), we shall prove that there are in fact at least two solutions in the
whole interval (0, Λ).

By definition of Λ, we know that there exists a solution corresponding to any value
of λ close to Λ. Let us denote it by µ, and let wµ be the associated solution. Now wµ

is a supersolution for all problems (Pλ) with λ < µ. Take vλ as the unique solution
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to problem (5.1) with f(s) = λsq. Obviously, vλ is a subsolution to problem (Pλ).
By lemma 5.3, vλ � wµ. Therefore, by lemma 5.2, we conclude that there is a
solution for all λ ∈ (0, µ) and, as a consequence, for the whole open interval (0, Λ).
Moreover, this solution is the minimal one. The monotonicity follows directly from
the comparison lemma.

This proves the first statement in theorem 1.1.

Lemma 5.10. Problem (Pλ) has at least one solution if λ = Λ.

Proof. Let {λn} be a sequence such that λn ր Λ. We denote by wn = wλn the
minimal solution to problem (Pλn). As in [5], we can prove that the linearized equa-
tion at the minimal solution has non-negative eigenvalues. Then it follows, as in [5],
that Jλn(wn) < 0. Since J ′

λn
(wn) = 0, we easily obtain the bound ‖wn‖Xα

0 (CΩ) � k.
Hence, there exists a weakly convergent subsequence in Xα

0 (CΩ) and, as a conse-
quence, a weak solution of (Pλ) for λ = Λ.

This proves the second statement in theorem 1.1.
To conclude the proof of theorem 1.1, next we show the existence of a second

solution for every 0 < λ < Λ. It is essential to have that the first solution is given
as a local minimum of the associated functional, Jλ. To prove this last assertion we
follow some ideas developed in [2].

Lemma 5.11. Problem (Pλ) has at least two solutions for each λ ∈ (0, Λ).

Proof. Let λ0 ∈ (0, Λ) be fixed and consider λ0 < λ̄1 < Λ. Take φ0 = wλ0
, φ1 = wλ̄1

as the two minimal solutions to problem (Pλ) with λ = λ0 and λ = λ̄1, respectively,
then, by comparison, φ0 < φ1. We define

M = {w ∈ Xα
0 (CΩ) : 0 � w � φ1}.

Note that M is a convex closed set of Xα
0 (CΩ). Since Jλ0

is bounded from below
in M and it is semicontinuous on M , we obtain the existence of ω

¯
∈ M such that

Jλ0
(ω
¯
) = infw∈M Jλ0

(w). Let v0 be the unique positive solution to problem

− div(y1−α∇v0) = 0 in CΩ ,

v0 = 0 on ∂LCΩ ,

∂v0

∂να
= vq

0 in Ω.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(5.6)

The existence and uniqueness of this solution is clear (see lemma 5.3). Since, for
0 < ε ≪ λ0 and Jλ0

(εv0) < 0, we have εv0 ∈ M , then ω
¯

�= 0. Therefore, Jλ0
(ω
¯
) < 0.

Using arguments similar to those in [42, theorem 2.4], we obtain that ω
¯

is a solution
to problem (Pλ0

). There are two possibilities.

• If ω
¯

�≡ wλ0
, then the result follows.

• If ω
¯

≡ wλ0
, we just have to prove that ω

¯
is a local minimum of Jλ0

. Assuming
that this is true, the conclusion in part (iv) of theorem 1.1 follows by using a
classical argument. The second solution is given by the mountain-pass theorem
(see, for example, [4]).
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We now prove that the minimal solution wλ0
is in fact a local minimum of Jλ0

.
We argue by contradiction.

Suppose that ω
¯

is not a local minimum of Jλ0
in Xα

0 (CΩ). Then there exists a
sequence {vn} ⊂ Xα

0 (CΩ) such that ‖vn − ω
¯
‖Xα

0
→ 0 and Jλ0

(vn) < Jλ0
(ω
¯
).

Let wn = (vn − φ1)
+ and zn = max{0, min{vn, φ1}}. It is clear that zn ∈ M and

zn(x, y) =

⎧

⎪

⎨

⎪

⎩

0 if vn(x, y) � 0,

vn(x, y) if 0 � vn(x, y) � φ1(x, y),

φ1(x, y) if φ1(x, y) � vn(x, y).

We set

Tn ≡ {(x, y) ∈ CΩ : zn(x, y) = vn(x, y)}, Sn ≡ supp(wn),

T̃n = T̄n ∩ Ω, S̃n = Sn ∩ Ω.

Note that supp(v+
n ) = Tn ∪ Sn. We claim that

|S̃n|Ω → 0 as n → ∞, (5.7)

where

|A|Ω ≡
∫

Ω

χA(x) dx.

By the definition of Fλ, we set

Fλ0
(s) =

l0
q + 1

sq+1
+ +

1

p + 1
sp+1
+ for s ∈ R,

and obtain

Jλ0
(vn) =

1

2

∫

CΩ

y1−α|∇vn|2 dxdy −
∫

Ω

Fλ0
(vn) dx

=
1

2

∫

Tn

y1−α|∇zn|2 dxdy −
∫

T̃n

Fλ0
(zn) dx +

1

2

∫

Sn

y1−α|∇vn|2 dxdy

−
∫

S̃n

Fλ0
(vn) dx +

1

2

∫

CΩ

y1−α|∇v−
n |2 dxdy

=
1

2

∫

Tn

y1−α|∇zn|2 dxdy −
∫

T̃n

Fλ0
(zn) dx

+
1

2

∫

Sn

y1−α|∇(wn + φ1)|2 dxdy −
∫

S̃n

Fλ0
(wn + φ1) dx

+
1

2

∫

CΩ

y1−α|∇v−
n |2 dxdy.

Since
∫

CΩ

y1−α|∇zn|2 dxdy =

∫

Tn

y1−α|∇vn|2 dxdy +

∫

Sn

y1−α|∇φ1|2 dxdy

and
∫

Ω

Fλ0
(zn) dx =

∫

T̃n

Fλ0
(vn) dx +

∫

S̃n

Fλ0
(φ1) dx,
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by using the fact that φ1 is a supersolution to (Pλ) with l = λ0, we conclude that

Jλ0
(vn) = Jλ0

(zn) +
1

2

∫

Sn

y1−α(|∇(wn + φ1)|2 − |∇φ1|2) dxdy

−
∫

S̃n

(Fλ0
(wn + φ1) − Fλ0

(φ1)) dx +
1

2

∫

CΩ

y1−α|∇v−
n |2 dxdy

� Jλ0
(zn) + 1

2‖wn‖2
Xα

0
+ 1

2‖v−
n ‖2

Xα
0

−
∫

Ω

{Fλ0
(wn + φ1) − Fλ0

(φ1) − (Fλ0
)u(φ1)wn} dx

� Jλ0
(ω
¯
) + 1

2‖wn‖2
Xα

0
+ 1

2‖v−
n ‖2

Xα
0

−
∫

Ω

{Fλ0
(wn + φ1) − Fλ0

(φ1) − (Fλ0
)u(φ1)wn} dx.

On one hand, taking into account that 0 < q + 1 < 2, we obtain that

0 �
1

q + 1
(wn + φ1)

q+1 − 1

q + 1
φq+1

1 − φq
1wn �

1
2q

w2
n

φ1−q
1

.

The well-known Picone inequality [37] establishes

|∇u|2 − ∇
(

u2

v

)

· ∇v � 0

for differentiable functions v > 0, u � 0. In our case, by an approximation argument,
we obtain

λ0

∫

Ω

w2
n

φ1−q
1

dx � ‖wn‖2
Xα

0
.

On the other hand, since p + 1 > 2,

0 �
1

p + 1
(wn + φ1)

p+1 − 1

p + 1
φp+1

1 − φp
1wn

�
1
2rw2

n(wn + φ1)
p−1

� C(p)(φp−1
1 w2

n + wp+1
n ).

Hence, using that p + 1 < 2∗
α and claim (5.7),

∫

Ω

{

1

p + 1
(wn + φ1)

p+1 − 1

p + 1
φp+1

1 − φp
1wn

}

dx � o(1)‖wn‖2
Xα

0
.

As a consequence, we obtain that

Jλ0
(vn) � Jλ0

(ω
¯
) + 1

2‖wn‖2
Xα

0
(1 − q − o(1)) + 1

2‖v−
n ‖2

Xα
0

≡ Jλ0
(ω
¯
) + 1

2‖wn‖2
Xα

0
(1 − q − o(1)) + o(1).

Since q < 1, it results that

Jλ0
(ω
¯
) > Jλ0

(vn) � Jλ0
(ω
¯
) for n > n0,

which is a contradiction with the main hypothesis. Hence, ω
¯

is a minimum.
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To complete the proof we have to prove claim (5.7). For small ε > 0, and for
δ > 0 (δ to be chosen later), we consider

En = {x ∈ Ω : vn(x) � φ1(x) ∧ φ1(x) > ω
¯
(x) + δ},

Fn = {x ∈ Ω : vn(x) � φ1(x) ∧ φ1(x) � ω
¯
(x) + δ}.

Using the fact that

0 = |{x ∈ Ω : φ1(x) < ω
¯
(x)}|

=

∣

∣

∣

∣

∞
⋂

j=1

{

x ∈ Ω : φ1(x) � ω
¯
(x) +

1

j

}∣

∣

∣

∣

= lim
j→∞

∣

∣

∣

∣

{

x ∈ Ω : φ1(x) � ω
¯
(x) +

1

j

}∣

∣

∣

∣

,

we obtain, for sufficiently large j0, that if δ < 1/j0, then

|{x ∈ Ω : φ1(x) � ω
¯
(x) + δ}| �

1
2ε.

Hence, we conclude that |Fn|Ω �
1
2ε.

Since ‖vn − ω
¯
‖Xα

0
→ 0 as n → ∞, particularly by the trace embedding

‖vn − ω
¯
‖L2(Ω) → 0,

we obtain that, for large n � n0,

1
2δ2ε �

∫

CΩ

|vn − ω
¯
|2 dx �

∫

En

|vn − ω
¯
|2 dx � δ2|En|Ω .

Therefore, |En|Ω �
1
2ε. Since S̃n ⊂ Fn ∪ En, we conclude that |S̃n|Ω � ε for n � n0.

Hence, |S̃n|Ω → 0 as n → ∞, and the claim follows.

5.4. Proof of theorem 1.2 and further results

We start with the uniform L∞-estimates for solutions to problem (1.1) in its local
version given by (Pλ).

Theorem 5.12. Assume α � 1, p < (N +α)/(N −α) and N � 2. Then there exists
a constant C = C(p, Ω) > 0 such that every solution to problem (Pλ) satisfies

‖w‖∞ � C

for every 0 � λ � Λ.

The proof is based on a scaling method of [28] and two non-existence results (see
theorems 3.1 and 3.4).

Proof of theorem 5.12. By contradiction, assume that there exists a sequence
{wn} ⊂ Xα

0 (CΩ) of solutions to (Pλ) verifying that Mn = ‖wn‖∞ → ∞ as n → ∞.
By the maximum principle, which holds for our problem [26], the maximum of wn

is attained at a point (xn, 0), where xn ∈ Ω. We define Ωn = 1/µn(Ω − xn), with
µn = M

(1−p)/α
n , i.e. we centre at xn and dilate by 1/µn → ∞ as n → ∞.
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We consider the scaled functions

vn(x, y) =
wn(xn + µnx, µny)

Mn
for x ∈ Ωn, y � 0.

It is clear that ‖vn‖ � 1, vn(0, 0) = 1 and, moreover,

− div(y1−α∇vn) = 0 in CΩn
,

vn = 0 on ∂LCΩn ,

∂vn

∂να
= λMq−p

n vq
n + vp

n in Ωn × {0}.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5.8)

By the Arzelà–Ascoli theorem (the solution is Cγ ; see proposition 5.4), there exists
a subsequence, which we again denote by vn, which converges to some function v
as n → ∞. In order to see the problem satisfied by v we pass to the limit in the
weak formulation of (5.8). We observe that ‖vn‖∞ � 1 implies ‖vn‖Xα

0 (CΩ) � C,
since

∫

CΩ

y1−α|∇vn|2 = λMq−p
n

∫

Ω

vq+1
n +

∫

Ω

vp+1
n � C.

Defining dn = dist(xn, ∂Ω), there are two possibilities as n → ∞ with regard to
the behaviour of the ratio dn/µn:

(i) {dn/µn}n is not bounded;

(ii) {dn/µn}n remains bounded.

In the first case, since Bdn/µn
(0) ⊂ Ωn, and Ωn is smooth, it is clear that Ωn

tends to R
N and v is a solution to

− div(y1−α∇v) = 0 in R
N+1
+ ,

∂v

∂να
= vp on ∂R

N+1
+ .

Moreover, v(0, 0) = 1 and v > 0, which is a contradiction with theorem 3.1.
In the second case, we may assume that dn/µn → s � 0 as n → ∞. As a

consequence, passing to the limit, the domains Ωn converge (up to a rotation) to
some half-space Hs = {x ∈ R

N : xN > −s}. Here we obtain that v is a solution to

− div(y1−α∇v) = 0 in Hs × (0,∞),

∂v

∂να
= vp on Hs × {0},

with ‖v‖∞ = 1, v(0, 0) = 1. In the case where s = 0, this is a contradiction with
the continuity of v. If s > 0, the contradiction comes from theorem 3.4.

Next we prove a uniqueness result for solutions with a small norm.

Theorem 5.13. There exists at most one solution to problem (Pλ) with a small
norm.

We follow the arguments in [5] closely, thereby establishing the following result.
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Lemma 5.14. Let z be the unique solution to problem (5.6). There exists a constant
β > 0 such that

‖φ‖2
Xα

0 (CΩ) − q

∫

Ω

zq−1φ2 dx � β‖φ‖2
L2(Ω) for all φ ∈ Xα

0 (CΩ). (5.9)

Proof. We recall that z can be obtained by minimization as follows:

min

{

1
2‖ω‖2

Xα
0 (CΩ) − 1

q + 1
‖w‖q+1

Lq+1(Ω) : ω ∈ Xα
0 (CΩ)

}

.

As a consequence,

‖φ‖2
Xα

0 (CΩ) − q

∫

Ω

zq−1φ2 dx � 0 for all φ ∈ Xα
0 (CΩ).

This implies that the first eigenvalue a1 of the linearized problem

− div(y1−α∇φ) = 0 in CΩ ,

φ = 0 on ∂LCΩ ,

∂φ

∂να
− qzq−1φ = aφ on Ω × {0},

is non-negative.
Assume first that a1 = 0 and let ϕ be a corresponding eigenfunction. Taking into

account that z is the solution to (5.6), we obtain that

q

∫

Ω

zqϕ dx =

∫

Ω

zqϕ dx,

which is a contradiction.
Hence a1 > 0, which proves (5.9).

Proof of theorem 5.13. Consider A > 0 such that pAp−1 < β, where β is given
in (5.9). Now we prove that problem (Pλ) has at most one solution with L∞-norm
less than A.

Assume by contradiction that (Pλ) has a second solution w = wλ + v verifying
‖w‖∞ < A. Since wλ is the minimal solution, it follows that v > 0 in Ω × [0,∞).
We now define η = λ1/(1−q)z, where z is the solution to (5.6). Then it verifies
− div(y1−α∇η) = 0 with boundary condition ληq. Moreover, wλ is a supersolution
to the problem that η verifies. Then, by comparison, lemma 5.3, applied with f(t) =
λtq, v = η and w = wλ, yields

wλ � λ1/(1−q)z on Ω × {0}. (5.10)

Since w = wλ + v is a solution to (Pλ), we have, on Ω × {0},

∂(wλ + v)

∂να
= λ(wλ + v)q + (wλ + v)p

� λwq
λ + λqwq−1

λ v + (wλ + v)p,
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where the inequality is a consequence of the concavity; hence,

∂v

∂να
� λqwq−1

λ v + (wλ + v)p − wp
λ.

Moreover, (5.10) implies wq−1
λ � λ−1zq−1. From the previous two inequalities we

obtain
∂v

∂να
� qzq−1v + (wλ + v)p − wp

λ.

Using that ‖wλ + v‖∞ � A, we obtain (wλ + v)p − wp
λ � pAp−1v. As a consequence,

∂v

∂να
− qzq−1v � pAp−1v.

Taking v as a test function and φ = v in (5.9), we arrive at

β

∫

Ω

v2 dx � pAp−1

∫

Ω

v2 dx.

Since pAp−1 < β, we conclude that v ≡ 0, which gives the desired contradiction.

Remark 5.15. This proof also provides the asymptotic behaviour of wλ near λ = 0,
namely, wλ ≈ λ1/(1−q)z, where z is the unique solution to problem (5.6).
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