
This article was downloaded by: [Universita Studi la Sapienza]
On: 24 October 2011, At: 02:24
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/goms20

A concave optimization-based approach
for sparse portfolio selection
D. Di Lorenzo a , G. Liuzzi b , F. Rinaldi c , F. Schoen a & M.
Sciandrone a
a Dipartimento di Sistemi e Informatica, Università di Firenze, Via
di Santa Marta 3, 50139, Firenze, Italy
b Istituto di Analisi dei Sistemi e Informatica, Consiglio Nazionale
delle Ricerche, Viale Manzoni 30, 00185, Roma, Italy
c Dipartimento di Informatica e Sistemistica, Sapienza Università
di Roma, via Ariosto, 25, 00185, Roma, Italy

Available online: 15 Aug 2011

To cite this article: D. Di Lorenzo, G. Liuzzi, F. Rinaldi, F. Schoen & M. Sciandrone (2011): A
concave optimization-based approach for sparse portfolio selection, Optimization Methods and
Software, DOI:10.1080/10556788.2011.577773

To link to this article:  http://dx.doi.org/10.1080/10556788.2011.577773

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/goms20
http://dx.doi.org/10.1080/10556788.2011.577773
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Optimization Methods & Software
iFirst, 2011, 1–18

A concave optimization-based approach for sparse portfolio
selection

D. Di Lorenzoa*, G. Liuzzib, F. Rinaldic, F. Schoena and M. Sciandronea

aDipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy;
bIstituto di Analisi dei Sistemi e Informatica, Consiglio Nazionale delle Ricerche, Viale Manzoni 30, 00185

Roma, Italy; cDipartimento di Informatica e Sistemistica, Sapienza Università di Roma, via Ariosto, 25,
00185 Roma, Italy

(Received 8 February 2010; final version received 26 March 2011)

This paper considers a portfolio selection problem in which portfolios with minimum number of active
assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfo-
lio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The
resulting problem is a difficult combinatorial problem. We propose an approach based on the definition
of an equivalent smooth concave problem. In this way, we move the difficulty of the original problem
to that of solving a concave global minimization problem. We present as global optimization algorithm
a specific version of the monotonic basin hopping method which employs, as local minimizer, an effi-
cient version of the Frank–Wolfe method. We test our method on various data sets (of small, medium,
and large dimensions) involving real-world capital market from major stock markets. The obtained
results show the effectiveness of the presented methodology in terms of global optimization. Further-
more, also the out-of-sample performances of the selected portfolios, as measured by Sharpe ratio, appear
satisfactory.

Keywords: zero-norm programming; concave programming; Frank–Wolfe method; basin hopping
method

1. Introduction

Portfolio selection theory studies how to allocate an investor’s available capital into a prefixed set
of assets with the aims of maximizing the expected return and minimizing the investment risk.

We denote by n the number of available assets, by μ ∈ Rn the vector of expected returns of the
assets, and by Q ∈ Rn×n the symmetric positive semidefinite matrix whose generic element qij is
the variance of returns of assets i and j. Usually, both the vector μ and the matrix Q are not known
analytically but can be estimated using historical data.

Let us assume that one unit of capital is available and that we want it to be fully invested. Then,
let x ∈ Rn be the vector of decision variables, where xi is the fraction of the available capital to
be invested into asset i, with i = 1, . . . , n. Since the available capital is to be entirely used for
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2 D. Di Lorenzo et al.

investment and no short positions are allowed, vector x must satisfy the constraints

eTx = 1, x ≥ 0,

where e ∈ Rn denotes the column vector of all ones. Then, by this notation, μTx is the expected
return of the portfolio and xTQx is the variance of the portfolio which can be used as a measure
of the risk connected with the investment [20]. Hence, the classical Markowitz portfolio selection
model [20] seeks for solutions that minimize the risk (xTQx) while maximizing the expected
return (μTx) of the portfolio.

In the traditional Markowitz portfolio selection model [20], this bi-objective problem is trans-
formed into a single-objective optimization problem, where the objective function is the risk of the
portfolio (xTQx), and the expected return (μTx) of the assets is fixed to a chosen value. Formally,
the optimization problem is stated as the following convex quadratic programme

min
x∈Rn

xTQx

s.t. μTx = β

eTx = 1

x ≥ 0,

(1)

where β is the desired expected return of the portfolio. The main drawback of problem (1) is that
means and covariances of the assets are not sufficiently accurate since they have to be estimated
from historical (and typically) noisy data. Indeed, it is extremely difficult to estimate the mean
returns to working precision and this is a known phenomenon referred to as mean blur [18,21].
Besides, the mean–variance model (1) is very sensitive to distributional input parameters. As a
result, the model amplifies any estimation error, thus yielding extreme portfolios which, as it can be
seen, perform poorly in out-of-sample tests [5,10,12,22]. Several variants of the Markowitz model
have been proposed and many attempts have been undertaken to ease the mentioned amplification
of estimation errors and yield more stable portfolios. In [3], Bayesian estimation of means and
covariances has been employed. In [8,16], additional portfolio constraints have been imposed in
the model in order to guide the optimization process towards more diversified portfolios. In [9],
the use of a James–Steiner estimator for the means has been proposed which steers the optimal
allocations towards the minimum-variance portfolio. The employment of robust estimators has
been investigated in [12]. In [2,6,11,13], an important class of portfolio selection problems has
been defined by limiting the number of assets to be held in the portfolio so as to reduce both the
transaction costs and the complexity of portfolio management. Such a constraint, as argued in
[6], helps inducing sparsity of the selected portfolio and can be a remedy to the high instability
of classic methods for portfolio selection.

In particular, in [1,2,7], the Markowitz model has been modified by adding to problem (1) a
constraint on the number of assets that can be held in the portfolio. This kind of problems, usually
called cardinality constrained portfolio selection problems, are stated as follows:

min
x∈Rn

xTQx

s.t. μTx = β

eTx = 1

x ≥ 0,

‖x‖0 ≤ K ,

(2)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

2:
24

 2
4 

O
ct

ob
er

 2
01

1 



Optimization Methods & Software 3

where

• ‖x‖0 is the so-called zero-norm of x and indicates the number of nonzero components of x;
• the parameter K is the chosen limit of assets to be held in the portfolio.

Optimal portfolios with a limited number of assets can be achieved by fixing parameter K in (2)
to a sufficiently small value. A different approach for the search of sparse portfolios consists in
replacing the l0 norm in (2) with the more tractable l1 norm [11], or (equivalently) in adding, as
a tunable penalty term, the l1 norm of x to the objective function (1) [6].

Summarizing, we can say that modern portfolio selection problems involve three partially
conflicting objectives:

(a) the risk connected with the portfolio selection (xTQx) to be minimized,
(b) the expected return of the portfolio (μTx) to be maximized,
(c) the number of assets (‖x‖0) held in the portfolio to be minimized.

As such, we have different alternatives to model the portfolio selection problem as a single-
objective optimization problem.

In this work, we focus on the sparsest portfolio, that is, on the following nonsmooth optimization
problem

min
x∈Rn

‖x‖0

s.t. μTx = β

xTQx ≤ α

eTx = 1

x ≥ 0,

(3)

where β is the desired expected return of the portfolio and α is the maximum acceptable level of
risk.

As shown in [2], problem (3) is a difficult, in fact NP-hard, combinatorial problem. Following
[19,24], we choose to tackle it by replacing the nonsmooth objective function ‖x‖0 with a suitable
smooth concave approximating function. This leads to an ‘equivalent’ (in a sense to be specified
later) concave optimization problem. In this way, we move the difficulty of solving (3) to that of
solving a concave global minimization problem. As a global optimization strategy, we adopt the
monotonic basin hopping (MBH) method [15,17] employing as local minimization procedure an
efficient version of the Frank–Wolfe method [14], useful to solve large-dimensional problems.

We observe that the use of the l1 norm in place of the objective function ‖x‖0 can guarantee the
recovery of sparse solutions. However, as shown in [4,24], the solutions which are obtained this
way, although easily obtainable thanks to the convex nature of the problem, are far less sparse
than those obtainable via concave approximations.

Summarizing, the main contributions of the work are:

• the development of a theoretical analysis aimed to prove the equivalence between a general
class of zero-norm minimization problems (including (3)) and smooth concave minimization
problems; in particular, a new equivalence result has been proven which extends previous results
to nonpolyhedral feasible sets;

• the design and implementation of a specific version of the MBH global optimization method
that can be applied to efficiently solve, as pointed out by the numerical experiments, the class
of portfolio selection problems here considered; in particular, this version of the MBH method
is different from previously known ones as it is specifically tailored to this class of problems:
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4 D. Di Lorenzo et al.

a specific perturbation operator, which is the crucial part of any MBH algorithm, has been
designed for this problem and has greatly improved the performance of the method.

The paper is organized as follows. In Section 2, we present the concave optimization-based
approach to transform the combinatorial problem (3) into a theoretical equivalent smooth problem.
In Section 3, we briefly describe a version [23] of the well-known Frank–Wolfe method employed
as local optimizer within our global optimization framework. The proposed global optimization
algorithm is presented in Section 4. The results of the numerical experiments are reported in
Section 5. Finally, Section 6 contains some concluding remarks.

2. Concave formulations of zero-norm minimization problems

In this section, we describe an approach for transforming a zero-norm minimization problem,
which is nonsmooth, into an equivalent (in some sense) smooth concave optimization problem.
The approach used here is very general and can be applied not only to the portfolio selection
problem, but to any optimization problem which involves the minimization of the zero-norm
function over a compact set.

Hence, let us consider the problem

min
x∈Rn

‖x‖0

x ∈ S, x ≥ 0,
(4)

where we assume that S ⊂ Rn is a compact set.
In order to illustrate the idea underlying the concave approach, we observe that the objective

function of problem (4) can be written as follows:

‖x‖0 =
n∑

i=1

s(|xi|),

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for t ≤ 0. The
approach was originally proposed in [19] and is based on the idea of replacing the discontinu-
ous step function by a continuously differentiable concave function 1 − e−αt , with α > 0, thus
obtaining a problem of the form

min
x∈Rn

n∑
i=1

(1 − e−αxi)

x ∈ S, x ≥ 0.

(5)

It has been shown in [19] that, by assuming that S is a polyhedral set, the approximating problem
(5) is equivalent to the given nonsmooth problem (4), that is, for α sufficiently large, there exists
a solution of (5) which yields a solution of the original problem (4).

A similar concave optimization-based approach has been proposed in [25], where the idea is
that of using the logarithm function instead of the step function. The adoption of the logarithm
function is practically motivated by the fact that, due to the form of the logarithm function,
it is better to increase one variable while setting to zero another one rather than doing some
compromise between both, and this should facilitate the computation of a sparse solution. This
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Optimization Methods & Software 5

leads to a concave smooth problem of the form

min
x∈Rn

n∑
i=1

log(ε + xi)

x ∈ S, x ≥ 0.

(6)

The equivalence of (6) with (4), namely that for ε sufficiently small there exists a solution of (6)
which yields a solution of the original problem (4), has been proved in [24] under the assumption
that S is a polyhedral set.

Here, we remove the assumption that S is a polyhedral set, and we study the equivalence
between problem (4) and a problem of the form

min
x∈Rn

n∑
i=1

f u(xi)

x ∈ S, x ≥ 0,

(7)

where f u : R+ → R is a smooth function depending on a parameter u ∈ U ⊆ R.
To this aim, we introduce the following assumptions on the parametrized function f u. There

exists ū ∈ U such that, for any infinite sequence {uk} → ū, we have that:

(i) for each xi ≥ 0, limk→∞ f uk (xi) is well defined,
(ii) for each xi > 0, it follows f uk (0) < f uk (xi) and

lim
k→∞

f uk (0) < lim
k→∞

f uk (xi) < ∞;

(iii) for any x̄i > 0, and for any sequence {xk
i } → x̄i, we have

lim
k→∞

f uk (xk
i ) = lim

k→∞
f uk (x̄i);

(iv) for each xi ≥ 0, one of the following conditions holds: either

lim
k→∞

f uk (xi) =
{

1 if xi > 0

0 if xi = 0
(8)

or

lim
k→∞

f uk (0) = −∞. (9)

It can be shown that, setting U = R+, we have that assumptions (i)–(iv) are satisfied, for instance:

• by the function f u(xi) = (1 − e−uxi), with ū = +∞;
• by the function f u(xi) = log(u + xi), with ū = 0.

In particular, the function f u(xi) = (1 − e−uxi) satisfies condition (8), and function f u(xi) =
log(u + xi) satisfies condition (9). Note that whenever condition (8) holds, we have

lim
k→∞

n∑
i=1

f uk (xi) = ‖x‖0. (10)
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6 D. Di Lorenzo et al.

Let {uk} be any sequence convergent to ū. For each k, let xk be a solution of (7) with u = uk . Thus,
by definition, we have for all k and for each x ∈ S, x ≥ 0

n∑
i=1

f uk
(xk

i ) ≤
n∑

i=1

f uk
(xi). (11)

We prove that any limit point of {xk} is a solution of the original problem (4). In this way, we
provide a theoretical justification regarding the transformation of (4) into the class of smooth
problems defined by (7).

Theorem 2.1 Let {uk} be a sequence such that limk→∞ uk = ū. Let {xk} be a sequence such that
xk solves problem (7) with u = uk. Then, the sequence {xk} admits accumulation points, and all
of them solve problem (4).

Proof Since, for all k, xk solves problem (7), that is, in particular, xk ∈ S, xk ≥ 0. Thus, com-
pactness of S implies that {xk} admits accumulation points. Now, let x̄ be a limit point of {xk} and
x� be a solution of (4). By compactness of S, we have that x̄ ∈ S, x̄ ≥ 0.

Assume by contradiction that x̄ is not a solution of (4), that is,

‖x̄‖0 ≥ ‖x�‖0 + 1. (12)

Consider any i ∈ {1, . . . , n} such that x̄i > 0. From assumption (iii), it follows that

lim
k→∞

f uk (x̄i) = lim
k→∞

f uk (xk
i ) = li. (13)

Then, given any positive ε such that nε < 1, two positive integers k1(ε) and k2(ε) exist such that

f uk (x̄i) ≤ li + ε

2
, for all k ≥ k1(ε),

f uk (xk
i ) ≥ li − ε

2
, for all k ≥ k2(ε).

Thus, for k sufficiently large, we obtain

f uk (x̄i) ≤ f uk (xk
i ) + ε. (14)

Now, let us consider any index i ∈ {1, . . . , n} such that x̄i = 0. Using assumption (ii), we have,
for all k,

f uk
(x̄i) ≤ f uk

(xk
i ). (15)

From (14) and (15), we get that for k sufficiently large, we can write

n∑
i=1

f uk
(x̄i) ≤

n∑
i=1

f uk
(xk

i ) + nε. (16)

Conditions (11) and (16) imply, as x� ∈ S, x� ≥ 0,

n∑
i=1

f uk
(x̄i) ≤

n∑
i=1

f uk
(x�

i ) + nε. (17)

Now let us distinguish the two cases.
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Optimization Methods & Software 7

Case I: Suppose that condition (8) holds. Using (10), we have

lim
k→∞

n∑
i=1

f uk
(x̄i) = ‖x̄‖0

lim
k→∞

n∑
i=1

f uk
(x�

i ) = ‖x�‖0.

Hence, taking the limits for k → ∞ in (17), we obtain

‖x̄‖0 ≤ ‖x�‖0 + nε.

From the above relation and (12), it follows

‖x�‖0 + 1 ≤ ‖x�‖0 + nε,

which contradicts the fact that nε < 1.
Case II: Suppose that condition (9) holds. First, we rewrite relation (17) as follows:∑

i:x̄i>0

f uk (x̄i) + (n − ‖x̄‖0)f
uk (0) ≤

∑
i:x�

i >0

f uk (x�
i ) + (n − ‖x�‖0)f

uk (0) + nε,

from which, we obtain

(‖x�‖0 − ‖x̄‖0)f
uk (0) ≤

∑
i:x�

i >0

f uk (x�
i ) −

∑
i:x̄i>0

f uk (x̄i) + nε.

Taking limits for k → ∞, using (12) and condition (9), we get that the left member of the above
relation tends to +∞, while the right member tends to a finite value (see assumption (ii)), thus
yielding a contradiction. �

3. Frank–Wolfe method as local optimizer

In this section, we describe an efficient version of the Frank–Wolfe algorithm for minimizing a
concave function over a compact convex set and recall some theoretical results about its global
convergence (see [23] for further details and proofs). The main motivations for using the Frank–
Wolfe algorithm as a local minimizer are the following:

• no need to make a line search when minimizing a concave function over a compact convex set
(see Proposition 3.1);

• possibility to reduce the problem dimension at each step of the algorithm, which leads to
significant savings in the computational time (see Propositions 3.2 and 3.3).

Let us consider the problem

min f (x)

x ∈ S,
(18)

where S ⊂ Rn is a nonempty compact convex set having the following form

S = {x ∈ Rn : μTx = β, xTQx ≤ α, eTx = 1, 0 ≤ x}, (19)

and f : Rn → R is a concave, continuously differentiable function, bounded below on S. A version
of the Frank–Wolfe algorithm with unitary stepsize can be described as follows.
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8 D. Di Lorenzo et al.

Frank–Wolfe-unitary stepsize (FW1) algorithm

1. Let x0 ∈ Rn be the starting point;

2. For k = 0, 1, . . .,
if xk /∈ arg minx∈S ∇f (xk)Tx then compute a solution xk+1 of

min
x∈S

∇f (xk)Tx (20)

else exit.

The global convergence property of FW1 algorithm is stated in the following proposition [19].

Proposition 3.1 Let {xk} be a sequence generated by the Frank–Wolfe unitary stepsize
algorithm. Then every limit point x̄ of {xk} is a stationary point of problem (18).

Now consider the problem

min f (x) =
n∑

j=1

φj(xj)

x ∈ S,

(21)

where φj : R → R, for j = 1, . . . , n are concave, continuously differentiable functions. We assume
that f is bounded below on S.

We observe that problem (21) includes as special cases the concave programming problems
presented in Section 2.

The next proposition shows that, under suitable conditions on the concave functions φj, the
algorithm does not change a variable once it has been fixed to zero.

Proposition 3.2 Let {xk} be any sequence generated by the Frank–Wolfe algorithm. There exists
a value M such that, if

φ′
i(0) ≥ M

then we have that for k ≥ 1

xk
i = 0 implies xk+1

i = 0.

On the basis of Proposition 3.2, it is possible to define the following version of the Frank–Wolfe
algorithm with unitary stepsize, where the problems to be solved are of reduced dimension. In
particular, whenever a variable is set to zero at an iteration, the method removes this variable for
all the following ones.

Frank–Wolfe–unitary stepsize-reduced dimension (FW1-RD) algorithm

1. Let x0 ∈ Rn be the starting point.
2. Let I0 = ∅, S0 = S and for k = 1, . . ., let Ik = {i : xk

i = 0}, Sk = {x ∈ S : xi = 0 ∀i ∈ Ik}
if xk /∈ arg minx∈Sk ∇f (xk)Tx then compute a solution xk+1 of

min
x∈Sk

∇f (xk)Tx (22)

else exit.

The special treatment given in the algorithm to the case k = 0 accounts for the possibility that
the method is started from an infeasible point. Note that problem (22) is equivalent to a problem
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Optimization Methods & Software 9

of dimension n − |Ik| and that Ik ⊆ Ik+1, so that the problems to be solved are of nonincreasing
dimensions. This yields obvious advantages in terms of computational time. Since algorithm
FW1-RD is different from the standard Frank–Wolfe method, its convergence properties cannot be
derived from the known result given by Proposition 3.1. Next proposition shows the convergence
of the algorithm to a stationary point.

Proposition 3.3 Let {xk} be a sequence generated by the FW1-RD algorithm. Suppose there
exists a value M such that φ′

j(0) ≥ M for j = 1, . . . , n, then every limit point x̄ of {xk} is a
stationary point.

Concerning the separable concave objective functions of problems (5) and (6), we have, for
j = 1, . . . , n and α, ε > 0,

• φj(xj) = f α(xj) = 1 − e−αxj and φ′
j(0) = α;

• φj(xj) = f ε(xj) = ln(ε + xj) and φ′
j(0) = 1/ε.

Therefore, the assumption of Proposition 3.3 holds for suitable values of the parameters of
the above concave functions, so that algorithm FW1-RD can be applied to solve problems (5)
and (6).

4. Global optimization using the basin hopping method

In this section, we present the global optimization method we used to solve the concave optimiza-
tion problem. The problem introduced in the previous sections is the minimization of a concave
objective function over a compact convex region, that is,

min
x∈Rn

f (x) =
n∑

i=1

f u(xi)

s.t. μTx = β

xTQx ≤ α

eTx = 1

x ≥ 0,

(23)

where f u : R+ → R is a concave function depending on a parameter u and satisfying assumptions
(i)–(iv) of Section 2.

Although concave minimization is quite a special case of global optimization, with many
important properties which may guide towards designing good optimization algorithm, it remains
nonetheless an NP-hard problem. Concavity in particular implies that the global optimum will be
located at an extreme point of the feasible region; as we saw, the Frank–Wolfe algorithm can be
employed to find a stationary point which surely belongs to the frontier of the feasible set. Note
that each iteration of the Frank–Wolfe algorithm applied to (23) requires to solve a problem with
linear objective function, one convex quadratic constraint, and linear constraints, and this can be
efficiently performed by using modern solvers.

However, local optimization is not enough, as the problem under consideration has, in general,
many local optima which are not global. Thus, there is a need to employ some global optimization
strategy in order to fully exploit the interesting properties of the proposed Frank–Wolfe local
method. The most elementary strategy for global optimization is Multistart, which merely consists
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10 D. Di Lorenzo et al.

of repeatedly running a local optimization method from randomly chosen starting points and
retaining the best local optimum found. A few experiments within the context of the problem
described in this paper quickly showed that Multistart is too inefficient, leading to an extremely
slow and computationally expensive convergence to the global optimum. Our choice was to try a
slightly more elaborated method, MBH [15,17]. This is a simple iterated local search algorithm
which consists in applying a perturbation to the current locally optimal solution and starting a
local search from the perturbed point. If the local search leads to an improvement, then the current
local optimum is updated; otherwise, it is left unchanged and the procedure is repeated until, for
a prefixed number of iterations, no improvement is observed. This MBH procedure might be
considered as a refined local search method and included in a Multistart framework. Thus, several
runs of MBH are performed starting from randomly selected points. In order to define a MBH-
based method, some procedures have to be defined and some parameters chosen. In particular,
we need:

• a procedure G(), which generates a random starting point;
• a procedure P(x), which generates a perturbed solution in a prescribed neighbourhood of the

current point x;
• a procedure L(f , X , x), which, starting from a point x, produces a local minimum of the objective

function f over the feasible set X .

Among the parameters to be chosen, most relevant are the number N of Multistart trials to be
performed and the number MNI of iterations without improvement after which the current MBH
run is stopped. A simplified scheme for Multistart/MBH is the following:

(1) let fbest := ∞
(2) for i = 1, . . . , N // N Multistart runs
(3) let x := G() // a random starting point
(4) let x� := L(x, X , f ) // a local optimum
(5) let k := 0
(6) while (k < MNI) do: // start of MBH
(7) let y := P(x�) // perturbation
(8) let y� := L(y, X , f ) // local optimization
(9) if f (y�) < f (x�) then // improvement

(10) let x� := y�

(11) let k := 0
(12) else // no improvement
(13) let k := k + 1
(14) end if
(15) end while // end of an MBH run
(16) if f (x�) < fbest then
(17) let fbest := f (x�)

(18) let xbest := x�

(19) end if
(20) end for

The choice of the perturbation procedure P is one of the keys for the success of MBH; in fact,
choosing too small a neighbourhood makes MBH get stuck at a local optimum, wasting local
searches. On the other hand, choosing too large a neighbourhood makes MBH behaves like pure
Multistart, thus loosing efficiency.

The most frequently used perturbation consists in choosing a radius r and uniformly generating
the perturbed point y in a ball of radius r centred at x�. In this case, it is crucial to choose
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Optimization Methods & Software 11

a radius r which is neither too small nor too large, the ideal being somewhat larger than the
radius (i.e. half the diameter) of the region of attraction of the current local optimum x�. This
strategy, with many different choices for the radius r, has been attempted for the concave portfolio
optimization problem, but only with very limited success. A possible explanation might be that
the local optima obtained through the Frank–Wolfe procedure belong to quite a large basin of
attraction which includes large portions of the boundary of the feasible region; thus, usually, a
new local optimization from a nearby point will most likely lead to the same local optimum. More
refined generation procedures might be tried, exploiting the fact that perturbed points should be
preferably located on the boundary but not too close to the current one. In this paper, however,
we preferred a more combinatorial perturbation mechanism which turned out to be quite efficient
for the problem under consideration. At each iteration, we choose to ‘swap’ the values of some
variables of the current solution x� which are nonzero, with other variables which are currently
null. This way we performed a perturbation, in some sense, in a space more closely related to the
zero-norm. In the experiments, we choose to swap min{20, 0.5‖x�‖0} pairs.

For what concerns the other procedures, we choose as L the FW1-RD procedure described
before. Finally, some care had to be taken also for the initial random generation G. In fact, the
feasible set is the intersection of a simplex with an ellipsoid and with an half-space: generating a
uniform point in such a set might not be a trivial task. In our experiments, we choose to uniformly
generate a point in the unit simplex surface by means of a standard procedure which consists
in the uniform generation of n − 1 points in the interval [0, 1]: the vector composed of the n
lengths of the partition of the unit interval induced by these points turns out to be a uniform point
in the n-dimensional simplex surface. After this, feasibility with respect to the other constraints
was checked and the whole procedure repeated until a feasible point was eventually produced.
Thus, the generation tool was a mix of a rigorous generator in the unit simplex coupled with an
acceptance/rejection method for the remaining constraints. Apart from pathological cases, this
procedure turned out to be quite efficient.

It might be observed that in the generation phase we choose to generate feasible points (and this
is motivated from some experiments which showed a significant improvement obtained thanks to
feasible point initialization). However, in the perturbation phase, we usually obtain an unfeasible
starting point (which, in any case, satisfies the unit simplex constraints). This was considered not
to be too harmful as, after a perturbation, usually the local optimization algorithm was able to
restore feasibility by moving in the neighbourhood of the current point.

For what concerns other algorithmic choices, we choose a relatively small value for the MNI
parameter (equal to 10) and ran Multistart until either 500 calls to the FW1-RD procedure have
been made, or until 1 h of CPU time has passed.

5. Numerical results

The aims of the experiments are the following:

(a) to evaluate the efficiency of the proposed algorithm (called MBH/FW1-RD algorithm) in
terms of global optimization and of computational time; to this aim, we use a state-of-the-art
solver which is able to produce a certificate of optimality;

(b) to assess, on out-of-sample data, the performance of the portfolios obtained from our model
and to compare them with classical Markowitz model (1).

The results concerning point (a) will be presented in Section 5.2, while those regarding point (b)
will be shown in Section 5.3.
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12 D. Di Lorenzo et al.

As a concluding remark, we highlight that the original problem (3) can be easily formulated as
a mixed-integer quadratically constrained programming problem (MIQCP), which can be solved
exactly by a number of solvers. Let us consider the following formulation:

min
x∈Rn ,y∈{0,1}n

n∑
i=1

yi

s.t. μTx = β

xTQx ≤ α

eTx = 1

yi ≥ xi ∀i

x ≥ 0.

(24)

It can be easily shown that problem (3) is equivalent to problem (24).

5.1 Implementation details and test problems

We considered formulation (23) with the logarithmic concave function, namely the problem

min
x∈Rn

n∑
i=1

log(ε + xi)

s.t. μTx = β

xTQx ≤ α

eTx = 1

x ≥ 0,

(25)

with ε = 10−6.
We employed CPLEX 12.0 to solve the subproblem defined at each iteration of the Frank–Wolfe

method.
In the computational experiments, we used seven publicly available data sets [7,11] for

mean–variance portfolio optimization. These test problems refer to the following capital market
indexes:

• 6FF [11] (n = 6): six Fama and French (1992) portfolios of firms sorted by size and book-to-
market;

• 10IND [11] (n = 10): 10 industry portfolios representing the US stock market;
• 25FF [11] (n = 25): 25 Fama and French (1992) portfolios of firms sorted by size and book-

to-market;
• 48IND [11] (n = 48): 48 industry portfolios representing the US stock market;
• FTSE 100 [7] (n = 79): it is a share index published since 1984 of the 100 most highly

capitalized UK companies listed on the London stock exchange;
• S&P 500 [7] (n = 476): it is a free-float capitalization-weighted index published since 1957 of

the prices of 500 large-cap common stocks actively traded in the USA;
• NASDAQ [7] (n = 2196): it is a stock market index published since 1971 of all of the

common stocks and similar securities listed on the NASDAQ stock market (about 3000
components).
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Optimization Methods & Software 13

For each test problem, we have

• expected returns;
• covariance matrix.

For the three biggest problems, we also have

• name list of stocks;
• weekly stock price data from March 2003 to March 2008;
• weekly stock return data from March 2003 to March 2008.

Note that, expected returns and covariance matrices for problems FTSE 100, S&P 500 and NAS-
DAQ are calculated using the stock data from March 2003 to March 2007. The remaining data, for
the period April 2007–March 2008, are used as out-of-sample data to evaluate the performance
of the portfolios obtained with our method (see below for further details).

For each problem, we generated different instances by varying the parameters α and β as
follows. For what concerns parameter β, following [7], we define an interval [βmin, βmax] and then
select Nβ values equally spaced in the interval, there including the extreme values. The following
table reports, for each problem, the values βmin, βmax, and Nβ .

Data set βmin βmax Nβ

6FF 1.0425 1.5693 100
10IND 0.9254 1.1574 100
25FF 1.0466 1.6805 100
48IND 0.9217 1.4463 100
FTSE 3.4691 × 10−3 1.6146 × 10−2 245
S&P 2.4970 × 10−3 1.6721 × 10−2 314
NASDAQ 2.4970 × 10−3 3.7239 × 10−3 22

As regards the choice of parameter α, for each value of β, we select the corresponding value of α

as the solution of problem (2), where we fix K = 2 for data set 6FF, K = 3 for data sets 10IND
and 25FF, K = 8 for data set 8IND. In this way, 100 instances were generated for each of these
data sets.

For the remaining three problems FTSE 100, S&P 500, and NASDAQ, used also to evaluate
the out-of-sample performance, for each value of β we select five equally spaced values of α in
the interval [αmin

β , αmax
β ] where

• αmin
β is the minimum risk value, according to the classical Markowitz model, when the expected

return is equal to β;
• αmax

β is the solution reported in [7] when the expected return is equal to β and K = 10, that is
a value that allows to obtain solutions with no more than 10 active assets.

This choice seems reasonable since, on the one hand, we are interested in sparse portfolios with
a limited risk (as near as possible to the Markowitz lower bound) and, on the other hand, we are
interested in comparing the sparsity of our solutions to that of the Markowitz ones. Summarizing,
for each of portfolio optimization problems FTSE 100, S&P 500, and NASDAQ, a grid of 5Nβ

(α, β) pairs was used to generate the test instances of the experimentation.
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14 D. Di Lorenzo et al.

5.2 Global optimization results and comparison with MIQC formulation

In this section, we compare our method, in term of optimal solution value and of computational
time, with a state-of-the-art exact solver for MIQCP problems, that is, CPLEX 12.0.

First, we solved the small-dimensional portfolio problems described in [11] and compared the
solutions obtained by algorithm MBH/FW1-RD with those obtained by means of the MIQCP
solver CPLEX.

Comparing the results, it turned out that the algorithm was generally able to find the global
optima. More specifically,

• for three problems over four (namely 6FF, 10IND, and 48IND), we obtained the certified
optimal solution in all the instances;

• for problem 25FF, we obtained the certified optimal solution in 80% of the instances, and a
slightly less sparse solution than the one found by CPLEX in all the other cases.

These results confirm the good ability of our method in finding the sparsest portfolio. The computa-
tional time spent for solving these small problems was very low both for algorithm MBH/FW1-RD
and for CPLEX.

Then we considered the difficult portfolio problems described in [7]. For each of the three test
problems, we attempted to solve all the instances of (24) obtained with the values of parameters
α and β as described in Section 5.1.

CPLEX was able to exactly solve in a reasonable amount of time only the instances of FTSE
problem. We have verified that in all instances of FTSE problem, the solutions found by CPLEX
and MBH/FW1-RD algorithm were the same. This behaviour was also quite robust, as only 4.2%
of the local minimizations in the Multistart framework returned a solution with a zero-norm value
worse than the optimal one.

In order to evaluate the efficiency of our solver, we choose to compare the time our algorithm
needs to compute the solution with the time spent by CPLEX to solve problem (24). However,
a straightforward comparison would not produce meaningful results, as CPLEX is designed to
prove the optimality of the solution, a task which is computationally very expensive and which
our algorithm is unable to perform. In order to overcome such difficulty, we adopted the following
procedure. For every chosen value of α and β, we execute the algorithm described in Section 4, and
we record the best solution x∗

α,β found and the time spent to find it. Then, we execute the CPLEX
solver on the same problem using the formulation described in (24). However, we terminate the
programme execution as soon as the current objective function value becomes equal or less than
‖x∗

α,β‖0, and we record again the time spent by the algorithm to find such objective function value.
We execute this procedure on the FTSE, S&P, and NASDAQ problems. At the end of such runs,
we obtain the time needed by both algorithms in order to find the same objective function value
‖x∗

α,β‖0 on the same problems. Then, we can finally compare the average time spent by the two
algorithms which are displayed, in seconds, on the following table.

Data set Dimension MBH/FW1-RD CPLEX integer formulation
FTSE 79 0.24 6.1
S&P 476 80.1 >1 day
NASDAQ 2196 2860 >1 day

Clearly, MBH/FW1-RD algorithm outperforms CPLEX in terms of computational time. We
did not have any exact time for integer formulation on the S&P and NASDAQ problems as, for
every tested value of α and β, after 1 day of execution CPLEX was not able to reach the same
Kα,β found by MBH/FW1-RD, so we decided to interrupt its execution. For S&P and NASDAQ
problems, we also tried to warm-start CPLEX by supplying it with the best solution found by our
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Optimization Methods & Software 15

method; however, it turns out that this technique does not help CPLEX in solving the problem to
global optimality.

5.3 Result validation on out-of-sample data

In this section, we evaluate the out-of-sample performance of the sparse portfolios obtained by
using the proposed concave programming strategy. Moreover, we compare these solutions with
reference to portfolio solutions obtained by using the classical Markowitz model.

First, let us briefly recall how the historical data have been used in the experimentation. For a
given set of assets, available historical data refer to a period of 264 weeks extending from March
2003 to March 2008. The covariance matrix Q and the vector of expected returns μ are computed
by using the first 212 weeks of the data (the training period), thus leaving out 52 weeks (from
April 2007 to March 2008, the so-called out-of-sample data that we reference to as the testing
period) that we use for testing. In particular, the out-of-sample data are used to evaluate the
obtained sparse portfolios and to compare them against other reasonable ones (e.g. the Markowitz
solutions). We assess the quality of a portfolio solution by means of a one-parameter performance
measure. More specifically, let 1, . . . , P be the weeks of the testing period, and let μT

1 x, . . . , μT
Px

be the actual returns obtained by portfolio x. We indicate by μ̂ the average of the returns of the
testing period, i.e.

μ̂(x) = 1

P

P∑
k=1

μT
k x,

and by σ the standard deviation, i.e.

σ(x) =
√

1

P − 1

P∑
k=1

(μT
k x − μ̂)2.

Then, to evaluate investment x, we employ the Sharpe ratio (SR)

SR(x) = μ̂(x)

σ (x)
,

which yields a measure of the performance of the portfolio compared to the risk taken (i.e.
the higher the Sharpe ratio, the better the performance and the greater the profits for taking on
additional risk).

Let us denote, for a given value of β such that (1) is feasible, by xβ the solution of problem (1),
i.e. the classical Markowitz problem. Furthermore, for given values of the parameters α and β

defining the risk and return constraints, respectively, let us denote by x∗
α,β the approximate solution

of problem (4) determined by the proposed method. In the following, we make a comparison
between the solutions xβ of the Markowitz problem for varying values of parameter β and our
corresponding sparse solutions x∗

α,β for varying values of the risk parameter α.
In Figure 1, for each data set and for each ‖xβ‖0, we report by a squared marker the Markowitz

solution which yields the highest SR on the testing period. Similarly, in Figure 1 we report, for
each data set and for each value of ‖x∗

α,β‖0 obtained by our method, the solution which yields the
highest SR on the testing period. The figures show that for small and medium size data sets, i.e.
data sets FTSE and S&P, our solutions and those provided by the Markowitz model are comparable
in terms of the number of active assets. As for the quality of the solutions, measured by the Sharpe
ratio, we note that our solutions are comparable with the Markowitz ones on the small data set
but perform better on the medium one. On the large data set considered, NASDAQ, our solutions
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Figure 1. Out-of-sample comparison on the data sets (top to bottom) FTSE, S&P, and NASDAQ between our solutions,
denoted by dotted markers, and those provided by the classical Markowitz model, denoted by squared markers.

clearly outperform the Markowitz ones both in terms of achieved sparsity and of portfolio quality
as measured by the SR coefficient.

The computational results show that the proposed approach provides sparse and efficient port-
folios for suitable values of the expected return and allowable risk. Therefore, it may be a useful
tool for financial experts, who are responsible for selecting appropriate values of β and α to obtain
a sparse portfolio yielding good performance on out-of-sample data.

6. Concluding remarks

In this paper, we have shown how to design a novel algorithm to solve, in a quite efficient way, the
problem of choosing the sparsest portfolio which guarantees prefixed expected return and risk.
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From the point of view of optimization algorithms, the proposed approach can be seen as a general
method to deal with sparse optimization, not necessarily related to portfolio optimization. Starting
from a continuous equivalent formulation of the original discrete problem, the tools employed
are Frank–Wolfe method as a local optimizer and iterated local search as a global method. It
has been shown that an efficient algorithm can be defined by exploiting a concave formulation.
Applying this computational scheme to the sparsest portfolio problem, it has been shown that the
achieved computational efficiency is orders of magnitude higher than the one obtained by using a
state-of-the-art solver for an equivalent mixed-integer formulation. So the first result in this paper
is a new optimization technique whose efficiency is significant for the class of sparse optimization
problems over the intersection of a polytope with an ellipsoid is introduced. Moreover, it has been
shown that, when applied to optimal portfolio problems, this approach is capable of producing
high-quality portfolios, achieving a very good Sharpe ratio, in particular when applied to data sets
consisting of a large number of assets.

Thus, it can be safely affirmed that an efficient method capable of producing sparse solutions for
the minimum asset portfolio problem has been proposed. Since the method is an heuristic, there
is no theoretical guarantee that it can find solutions of good quality and it also does not provide
a lower bound for the problem. Anyway, the numerical experimentation on small to medium size
problems evidenced that the method is able to find the same optimal solutions found by CPLEX.
Future research directions might include the application of sparse optimization tools in different
contexts, like, for example, that of image restoration. Further research directions are also possible
for portfolio problems in order to deal with more general models.
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