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A Concave Security Market Line

Abstract

We provide theoretical and empirical arguments in favor of a diminishing marginal

premium for market risk. In capital market equilibrium with binding portfolio re-

strictions, investors with different risk aversion levels generally hold different sets of

risky securities. Whereas the traditional linear relation breaks down, equilibrium

can be approximated by a concave relation between expected return and market

beta, and a concave relationship between market alpha and market beta. An em-

pirical analysis of U.S. stock market data confirms the existence of a significant

concave cross-sectional relation between average return and estimated market beta.

We estimate that the market risk premium is at least four to six percent per annum,

substantially above traditional estimates. A practical implication for active portfolio

managers is that the alpha of “betting against beta” strategies seems dominated by

the medium-minus-high-beta spread rather than the low-minus-medium-beta spread.

The success of such strategies thus largely depends on the underweighting or short

selling of high-beta stocks.
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Introduction

The Capital Asset Pricing Model predicts a linear relation between the expected return and

the market beta of securities - the Security Market Line. This linear relation also arises as

a special case in the Arbitrage Pricing Theory if one assumes that security returns obey the

“market-model”. A wealth of empirical research suggests that linearity should be rejected.

For example, Fama and French (1992) show that small-cap stocks carry a return premium

that is unrelated to market beta and that the empirical return-risk relation appears flat

after controlling for market capitalization.

It is well documented that the CAPM generally breaks down in case of binding in-

vestment restrictions. Black (1972) analyzes market equilibrium with restrictions on bor-

rowing. In this case, the SML remains linear, although the intercept increases and the

slope decreases compared with the CAPM predictions. Linearity generally breaks down if

investors also face restrictions on the risky securities, such as short selling constraints and

position limits. Ross (1977) and Sharpe (1991) stressed this important point before, but

they stopped short of deriving an alternative shape for the SML. The present study ex-

tends Black (1972), Ross (1977) and Sharpe (1991) by providing theoretical and empirical

arguments in favor of a concave shape for the SML, or a diminishing marginal premium

for market risk in the general case of binding portfolio constraints. A general formulation

is obtained by treating the most extreme feasible portfolios of individual securities (or the

vertices of the portfolio possibilities set) as base assets.

Linearity is a necessary and sufficient condition for mean-variance efficiency of the

market portfolio. However, deviations from linearity are not always good measures of

deviations from efficiency, and vice versa. It is well-known that a relatively small (large)

reduction in expected return or increase in standard deviation of the market index can
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sometimes lead to relatively large (small) deviations from the classical SML. This study

focuses on the cross-sectional mean-beta relation rather than evaluating market portfolio

efficiency. Portfolio efficiency tests require an explicit specification of the relevant set

of investment restrictions, whereas we eye results that apply more generally for every

set of restrictions. In addition, we are interested in characterizing equilibrium with an

inefficient market portfolio, or specifying the “alternative hypothesis” rather than the

“null hypothesis” of efficiency tests.

Our theoretical analysis in Section I develops an extension of the CAPM with invest-

ment restrictions in the spirit of Sharpe (1991). In our model, different investors generally

include different sets of risky securities in their portfolios (and thus deviate from the market

portfolio). Despite the differences in their composition, the individual portfolios generally

will be positively correlated and share a common exposure to systematic risk. The general

equilibrium conditions appear difficult to test empirically without detailed information

about the composition of the individual portfolios and the distribution of risk tolerance

and wealth, a common problem for heterogeneous-investor models. However, due to the

investors’ common exposure to systematic risk, equilibrium can be approximated by an

increasing and concave relation between expected return and the traditional market beta

- a concave security market line (CSML). This relation is a generalization of the general

linear SML derived by Black (1972). The concave SML becomes linear if no investor faces

binding restrictions for the risky securities, and the CAPM arises if riskless borrowing is

also allowed.

Our empirical analysis in Section II applies the two-pass regression methodology of

Fama and MacBeth (1973) to U.S. stock market data. Following the original study, we

use the squared market beta as a natural measure of SML concavity. Whereas we find no
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significant linear cross-sectional relation between average returns and past beta estimates,

we do find a significant and robust concave relation, consistent with our hypothesis. The

inclusion of beta-squared in the regression yields an estimated market-risk premium of

at least four to six percent per annum for the average stock, substantially higher than

conventional estimates. In addition, beta-squared has a significantly negative coefficient,

implying that the risk premium increases at a diminishing rate. Encouragingly, the concave

pattern is robust to the inclusion of other stock characteristics and the selection of the

cross-section and sample period. Concavity arises both in the analysis of individual stocks

and for aggregated stock portfolios with stable size and beta properties, reducing possible

concerns about estimation error and time-variation of stock-level betas.

Section III evaluates several active investment strategies that “bet against beta” by

overweighting low-beta stocks and/or underweighting high-beta stocks. Confirming the

results of Frazzini and Pedersen (2014), we find a large and robust alpha spread between

low-beta and high-beta stocks. Interestingly, this low-minus-high-beta spread is domi-

nated by the medium-minus-high-beta spread and the low-minus-medium-beta spread is

materially smaller. The success of “betting against beta” thus seems to largely depend on

underweighting or short selling high-beta stocks. These findings seem consistent with, and

supportive of, our theoretical model, because a concave SML implies a concave relation

between market alpha and market beta, so that the spread between medium-beta stocks

and high-beta stocks is indeed predicted to exceed the spread between low-beta stocks and

medium-beta stocks.
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I Theory

A Preliminaries

We will first introduce and motivate our assumptions. We build on the earlier work of

Sharpe (1991). It is not our objective to develop the most general asset pricing model, but

rather to explore the effect of binding investment restrictions while maintaining a set of

simplifying assumptions that support a linear SML in the absence of binding restrictions.

Assumption 1 (Securities). The investment universe consists of N + 1 base assets, as-

sociated with returns r ∈ RN+1. Throughout the text, we will use the index set I =

{1, . . . , N + 1} to denote the different securities. The returns have mean E [r] = µ and

variance-covariance matrix E
[
(r− µ) (r− µ)T

]
= Ω. Security N + 1 is risk-free and

yields a sure return of rF .

Assumption 2 (Investors). There are K investors. Investor k’s wealth expressed as a

proportion of the total wealth of all investors is wk > 0. Investors may diversify between

the securities, and we will use λk ∈ RN+1 for the vector of optimal portfolio weights of

investor k. We will use the index set K = {1, . . . , K} to denote all investors. Investors

possess mean-variance preferences, that is, the expected utility of wealth associated with a

portfolio λ ∈ RN+1 is

Uζk(λ) = µT λ− 1

2 ζk
λT Ωλ,

where ζk > 0 is investor k’s risk tolerance. The limiting cases with ζk →∞ and ζk → 0 are

risk neutrality and extreme risk aversion, respectively. We will use µλ and σ2
λ to denote

the expected return and variance, respectively, of portfolio λ ∈ RN+1.

Mean-variance preferences can equivalently be represented by a quadratic utility func-

tion. Levy and Markowitz (1979) convincingly show that this specification generally gives
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an accurate second-order Taylor series approximation for many well-behaved utility func-

tions on the typical return interval for stock portfolios. In some cases, the more general

criteria of stochastic dominance are more appropriate. In this more general case, our argu-

ments seem even more relevant, because differences in the general shape of the investors’

utility functions will represent an additional source of non-linearity and market portfolio

inefficiency.

Assumption 3 (Portfolios). The portfolio possibilities are represented by the simplex

Λ = {λ ∈ RN+1 : λ ≥ 0N+1, 1TN+1 λ = 1},

where 0N+1 and 1N+1 are the zero and unity vectors, respectively, with dimension N + 1.

We use Aλ = {i : λi > 0, i ∈ I} for the “active set” of portfolio λ, or all securities that

are included in the portfolio with a strictly positive weight.

The simplex Λ is the convex hull of the base assets and covers the standard case without

short selling and borrowing if the base assets are individual traded securities. However,

the analysis also covers the general case where the portfolio possibilities are a general

polytope. The Minkowski-Weyl Theorem says that any polytope can be represented as

the convex hull of its vertices. Therefore, the base asset should be seen in general as

the most extreme feasible portfolios, which may include long-short combinations of the

individual securities.

For the sake of simplicity, we assume that all investors face the same set of investment

restrictions. In the more general case with heterogenous restrictions, our arguments appear

even more relevant, as differences in the efficient sets between investors would represent

an additional source of non-linearity and market portfolio inefficiency. Although we use a

single set of restrictions, investors with different levels of risk tolerance will generally have
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different sets of binding constraints.

Assumption 4 (Market portfolio). The markets for the risky securities clear, so that all

risky securities are held by the K investors in the economy. We will use τ ∈ RN+1

for the vector of portfolio weights of the market portfolio of risky assets, where τi =∑
k∈K wk λi,k/(1−λN+1,k) for i = 1, . . . , N and τN+1 = 0. The market portfolio is feasible,

or τ ∈ Λ, and all risky securities have a strictly positive market capitalization, or τi > 0

for all i = 1, . . . , N .

B General Security Market Line (GSML)

The above assumptions allow us to define portfolio optimality and mean-variance efficiency

and to derive and analyze equilibrium conditions. A given portfolio λ ∈ Λ is optimal for

an investor with risk tolerance ζ > 0 if and only if it maximizes expected utility:

(1) λ = arg max
κ∈Λ

Uζ(κ).

Following Sharpe (1991, Equation 12), we will make use of the Karush-Kuhn-Tucker

(KKT) conditions for this optimization problem:

µi =
1

ζ
Cov

(
ri, r

T λ
)

+ θλ + αi,λ, i ∈ I(2)

αi,λ ≤ 0, ∀i ∈ I(3)

αi,λ λi = 0, ∀i ∈ I(4)

1TN λ = 1, λi ≥ 0, ∀i ∈ I.(5)

In these conditions, θλ ∈ R and αλ = (α1,λ, . . . , αN+1,λ)T ∈ RN+1 are Lagrange

multipliers that measure the shadow prices of the budget constraint and the negative

shadow prices of the no-short-selling/no-borrowing constraints, respectively.
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The complementary slackness condition (4) implies that the active securities (i ∈ Aλ)

must have a zero shadow price for the associated short-sales restriction (αi,λ = 0), whereas

strictly positive shadow prices are allowed for inactive securities (αi,λ ≤ 0 for i /∈ Aλ).

Each of the active securities must therefore have the same marginal utility. The common

value of marginal utility for the active securities is the shadow price θλ, or the investor’s

marginal utility of wealth. The inactive securities must have a marginal utility less than

or equal to of the active securities, and αλ measures their shortfall.

The availability of the riskless security implies rF = θλ + αN+1,λ, and therefore, the

shadow price of the budget constraint cannot fall below the risk-free rate: θλ ≥ rF . If the

borrowing restriction is not binding for portfolio λ, the complementary slackness condition

(4) implies that αN+1,λ = 0 and thus θλ = rF .

For a risky portfolio λ, that is, σ2
λ > 0, the optimality condition (2) can be expressed

in terms of the exposure coefficient, or “beta”, of security i with respect to portfolio λ:

(6) µi =

(
1

ζ
σ2
λ

)
βi,λ + θλ + αi,λ,

where

(7) βi,λ =
Cov

(
ri, r

T λ
)

σ2
λ

.

The optimality conditions (2) and (4) imply the following relation between an optimal

portfolio’s expected return µλ, its standard deviation σλ, the shadow price of the budget

constraint θλ and the risk tolerance parameter ζ:

(8)
1

ζ
σ2
λ = µλ − θλ.

If the borrowing restriction is not binding for portfolio λ, the right-hand side of Equa-

tion (8) is the risk premium µλ − rF of portfolio λ.
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For cases in which investors’ risk tolerance and/or optimal portfolios are not specified,

it is useful to consider the mean-variance efficient set, or all portfolios that are optimal for

at least some risk tolerance level:

(9) E = {λ ∈ Λ : λ = arg max
κ∈Λ

Uζ(κ), ζ > 0}.

Under the above assumptions, the efficient set generally is not convex. Combining

multiple efficient portfolios with different sets of binding restrictions generally produces an

inefficient combined portfolio. The efficient set contains convex neighborhoods of efficient

portfolios with the same sets of binding restrictions, but combining elements from these

efficient subsets generally yields inefficient portfolios.

The aggregate market portfolio is a weighted average of the portfolios of all individ-

ual investors. Without convexity of the efficient set, optimizing behavior by individual

investors does not guarantee that the market portfolio is optimal for a representative in-

vestor. To the contrary, given that different investors generally hold different portfolios

with different sets of binding restrictions, the market portfolio generally is predicted to be

inefficient.

Following Sharpe (1991, Equations 13-14), we can obtain the the following general

relation between securities’ expected returns and their market betas by taking a wealth-

weighted average of the investors’ KKT conditions:

Theorem 1 (Generalized Security Market Line). For all i ∈ I

(10) µi =

(
1

ζ̄
σ2
τ

)
βi,τ + θ̄ + ᾱi

where ζ̄ =
∑

k∈K wk ζk/(1−λN+1,k) is the societal risk tolerance, θ̄ = (1/ζ̄)
∑

k∈K wk ζk θλk/(1−

λN+1,k) are weighted averages of the shadow prices of the borrowing restrictions and ᾱi =
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(1/ζ̄)
∑

k∈K wk ζk αi,λk/(1 − λN+1,k) are weighted averages of the negative shadow prices

the short-sales restrictions.

The market portfolio is efficient if the constraints for the risky securities are not binding

for all investors. In this case, all relevant shadow prices are zero (αi,λk = 0) and we obtain

the classical linear relation between securities’ expected returns and their market betas

(SML), that is,

(11) µi =

(
1

ζ̄
σ2
τ

)
βi,τ + θ̄.

The intercept θ̄ and the slope ζ̄ depend on the restrictions that are imposed on the

risk-free security. If the borrowing restriction is not binding for any investor, then the

intercept equals the risk-free rate (θ = rF ) and the slope equals the market-risk premium

((1/ζ̄)σ2
τ = µτ − rF ; see Equation (8)). If borrowing is binding for some investors, then

the intercept should be greater than or equal to the risk-free rate (θ ≥ rF ) and the slope

should be smaller than or equal to the market-risk premium ((1/ζ̄)σ2
τ = µτ −θ ≤ µτ −rF ;

see Equation (8)), as in Black’s (1972) model.

The general non-linear GSML appears difficult to test without detailed information

about individual portfolios (λk) and the distribution of wealth (wk) and risk tolerance

(ζk), a common problem faced in heterogeneous investor models. Nevertheless, as we will

show next, the GSML can be approximated by an increasing and concave function as a

result of the investors’ joint exposure to systematic risk.

C Concave Security Market Line (CSML)

Investors generally hold only a subset of the available securities and deviate from market

weights. Nevertheless, the individual portfolios can be strongly correlated with the market
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portfolio, due to a common exposure to systematic risk. As a case in point, we created two

monthly-rebalanced, non-overlapping stock portfolios of approximately equal market value

from the stocks included our empirical analysis (see Section II): a value-weighted portfolio

of stocks with below-median market betas and a value-weighted portfolio of stocks with

above-median betas. Although the two portfolios each represent only half of the total

market, the correlation of monthly returns with the stock market index is 96 percent for

the low-beta portfolio and 98 percent for the high-beta portfolio.

If the portfolios are indeed strongly correlated, the correlation of an individual security

with a given optimal portfolio (ρi,λk) will tend to be closely related to its correlation with

the market portfolio (ρi,τ ). To capture this pattern, we will use the following correlation

ratio:

(12) ξi,λk,τ =
ρi,λk
ρi,τ

.

It seems natural to assume that this correlation ratio shows relatively small differences

between the active assets in a given optimal portfolio and that the ratio tends to be larger

for active assets than for inactive assets. For example, a conservative investor is more

likely to invest in large-cap low-beta stocks and an adventurous investor is more likely to

invest in small-cap high-beta stocks. We formalize this assumption in the following way:

Assumption 5 (Correlation ratios). For all k ∈ K, there exists ξλk,τ ≥ 0 such that

ξi,λk,τ = ξλk,τ for all i ∈ Aλk , and(13)

ξi,λk,τ ≤ ξλk,τ for all i /∈ Aλk .(14)

This correlation structure arises for several relevant special cases. It is straightforward

to see that the correlation applies in the case of the CAPM with a single optimal risky
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portfolio (λk = ck τ ). A more general sufficient condition based on a general risk factor

model will be discussed in Subsection D.

An analysis of the correlation coefficients of individual stocks relative to the low-beta

portfolio, high-beta portfolio and market portfolio in our running example supports As-

sumption 6. Notably, the average low-beta stock has a higher correlation ratio relative

to the low-beta portfolio than the average high-beta stock (0.92 vs. 0.87) but a lower

correlation ratio relative to the high-beta portfolio (1.04 vs. 1.06).

Under Assumption 5, we can derive an interesting special case of the GSML:

Theorem 2 (Concave Security Market Line). Under Assumption 5 the following increas-

ing and concave relation between expected return µi and market beta βi,τ holds for all

i = 1, . . . , N :

(15) µi = µ̂i = min
k∈K

[(
1

ζk
σλk στ ξλk,τ

)
βi,τ + θλk

]
.

The CSML is a piecewise-linear function of market beta. Every linear line segment

reflects an individual investor’s portfolio optimization problem; the intercept (θλk) is the

investor’s shadow price of the budget constraint and the slope ((1/ζk) ξλk,τ σλk στ ) reflects

her risk tolerance level and the covariance between her portfolio and the market portfolio.

Every individual line connects the investor’s active securities and supports her inactive

securities from above. Minimizing across these individual, increasing and linear functions

yields an overall increasing and concave, piecewise linear shape.

For example, assume that K = 3, and(
θλ1 ,

1

ζ1

σλ1στ ξλ1,τ

)
= (0.055, 0.07);(

θλ2 ,
1

ζ2

σλ2στ ξλ2,τ

)
= (0.02, 0.11) ;(

θλ3 ,
1

ζ3

σλ3στ ξλ3,τ

)
= (0.04, 0.10).
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In this case, the CSML relation amounts to the following three-piece function:

µi =



0.02 + 0.11βi,τ βi,τ ≤ 2
3

0.04 + 0.10βi,τ
2
3
< βi,τ ≤ 3

2

0.055 + 0.07βi,τ
3
2
< βi,τ

.

In general, the number of line segments increases with the number of different investors

with different active sets and the function can approximate a smooth curve in case of a

continuum of investors with different risk-tolerance levels.

The concavity of the SML follows from the mathematical result that the pointwise

infimum of multiple concave functions preserves the concavity property. In economic

terms, the relationship is concave, because the price of a unit of risk is relatively high (low)

for low-beta (high-beta) securities that enter in the portfolio of conservative (adventurous)

investors but not in the portfolio of adventurous (conservative) investors. Subsection E

gives a full-blown numerical example.

The empirical analysis in Section II captures the concavity, or non-linearity, of the

SML with the squared market beta, first introduced in empirical asset pricing by Fama

and MacBeth (1973). This approach can be interpreted as providing a second-order Taylor

series approximation to a smoothed version of the piece-wise linear CSML.

The non-linear shape of the CSML is reminiscent of asset pricing models that assign a

role to higher-order and lower-partial co-moments with the market portfolio (for example,

Bawa and Lindenberg 1977). However, our model exhibits a non-linear price of market

beta rather than a price for non-linear market-risk exposure, and there are important

differences between these two approaches.

First, the theoretical motivation is very different. The role of non-linear market-risk

exposure follows from deviations from a normal return distribution and mean-variance
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risk preferences, whereas our non-linearity stems from differences between investors’ risk

tolerance and binding restrictions, an explanation that is perfectly consistent with mean-

variance analysis. Second, the return distribution in typical applications seems sufficiently

close to a normal distribution to apply the Levy and Markowitz (1979) argument for

mean-variance analysis. Indeed, Dittmar (2002, Section IIID) and Post (2003, Section IV)

show in a convincing way that higher-order and lower-partial co-moments with the market

portfolio cannot rationalize market portfolio inefficiency. By contrast, the effect of binding

restrictions occurs also under a normal distribution, as our model shows.

Our model allows the market portfolio to be mean-variance inefficient. In case of

market portfolio inefficiency, market beta still plays a role, because the individual optimal

portfolios have a strong joint exposure to market risk. However, we do not intend to

measure the economic magnitude of deviations from market portfolio efficiency.

Ever since Roll (1977) and more recently Lustig, Van Nieuwerburgh, and Verdelhan

(2013), the asset pricing literature has recognized that stock market indices are only a

proxy for the latent market portfolio. In Roll and Ross (1994) and Kandel and Stam-

baugh (1995), divergence from the market portfolio (benchmark error) causes (spurious)

violations of linearity. Unfortunately, stronger (weaker) non-linearities generally do not

imply that the market portfolio is further from (closer to) the efficient frontier.

In our model, (true) violations of linearity arise from binding investment restrictions,

as in Ross (1977) and Sharpe (1991). As in the case of benchmark error, larger (smaller)

non-linearities generally do not mean that the market portfolio is further from (closer to)

the frontier. In addition, a large distance from the frontier generally is not “economically

worse” than a small distance, because the distance is not measured using the investor’s

(latent) optimal portfolio, but using the “nearest efficient portfolio”.
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One interesting implication of the CSML theorem is that the pricing errors of the

CAPM (market alphas) will tend to display a concave pattern:

Corollary 1 (Concave Alpha-Beta Relationship). Let

α(βi,τ ) = ᾱi = µi − [rF + βi,τ (µτ − rF )]

be market alpha as a function of market beta βi,τ . Under Assumption 5, α is a concave

function of βi,τ and

(16) α(βi,τ )− α(βi,τ + βj,τ ) > α(βi,τ − βj,τ )− α(βi,τ ).

In our model, the market alphas are not pricing errors or deviations from equilibrium.

Rather, they represent the negative shadow prices of binding investment restrictions to

investors who deviate from the inefficient market portfolio. Clearly, an investor who would

hold the market portfolio could improve her portfolio by over-weighting (under-weighting)

the assets with positive (negative) market alphas in our model. However, in equilibrium,

investors do not hold the market portfolio and the alphas relative to their personal optimal

portfolios simply reflect the negative shadow price of binding restrictions. Clearly, if the

set of restrictions were relaxed, for example, by means of financial engineering, investors

may benefit by increasing (decreasing) their allocation to assets with positive (negative)

alphas (relative to their personal portfolios). Section III will demonstrate that the market

alpha of active investment portfolios indeed appears a concave function of the market beta.

The CSML (15) is intended as an approximation to the complex GSML (10) that

is implied by the diverse optimality conditions of investors with different levels of risk

tolerance and different active sets. Our model is not intended to describe the individual

optimal portfolios. In fact, if the CSML gives a perfect fit, then the portfolios of different

investors are predicted to show minimal overlap. Specifically, every pair of two different
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linear line segments in mean-beta space can share at most one mean-beta combination.

Hence, the portfolios of two different investors (with different intercepts and slopes) will

overlap only for more than one security if the overlapping securities have the same market

beta. Clearly, this prediction seems equally unrealistic as the CAPM prediction that all

investors hold all securities and use market capitalization weights. The general GSML

does allow for general overlapping portfolios and the restrictions on portfolio overlap arise

from considering the limiting case of neutral optimal non-market loadings.

Deviations from the correlation structure in Assumption 5 yield the following deviations

of the CSML (15) from the general GSML (10):

Theorem 3 (CSML Errors in Expected Returns). Assume that ξi,λk,τ ≥ 0 for all k ∈ K

and i = 1, . . . , N . Then

(17) |µ̂i − µi| ≤ |µλ? − rf |
στ
σλ?

βi,τ max
k : i∈Aλk

|ξλk,τ − ξi,λk,τ | .

where λ? = arg maxκ∈E

(
µκ−θκ
σκ

)
is the mean-variance tangency portfolio.

For a given security i, the error is bounded by its correlation ratios in portfolios that

include the security, or, ξi,λk,τ for k such that i ∈ Aλk . In turn, these correlation ratios

will be bounded if the optimal portfolios are well-diversified and have limited non-market

risk exposure, as will be shown in the next subsection.

D Refinements Using a Risk Model

We will now derive additional results by introducing a general risk factor model:

Assumption 6 (Return generating process). The returns of the risky securities obey the

following general risk factor model

(18) ri = ai +
L∑
l=1

bi,l fl + εi ∀i = 1, . . . N,
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where fl, l = 1, . . . , L are systematic risk factors with E [(fl − E [fl])
2] = σ2

fl
, bi,l are the

factor loadings of security i, ai = µi −
∑L

l=1 bi,l E [fl], εi is an idiosyncratic random factor

for security i, with E [εi] = 0, E [fl εi] = 0 for all l and E [εi εi′ ] = 0 for all i 6= i′. Without

loss of generality, we assume that the factors are orthogonal, or E [fl fp] = 0, and the

market return is the first factor, or f1 = rTτ . We use bl = (b1,l, . . . , bN,l)
T for the vector

of factor loadings, ρi,l for the correlation between security i and factor l, R2
i =

∑L
l=1 ρ

2
i,l

for the percentage explained variance, and zi,l = ρi,l/Ri for a standardized correlation

coefficient that yields
∑L

l=1 z
2
i,l = 1.

A common specification is to use the single-factor “market model”(L = 1). This

specification is particularly relevant in the context of analyzing and testing efficiency and

linearity. For example, the classical Gibbons, Ross, and Shanken (1989) test for market

portfolio efficiency without portfolio restrictions assumes the market model. The market

model is also of interest because it implies the classical linear SML as a special case in

APT.

Empirically, it appears that the market return explains the bulk of the joint variation of

stock returns, and additional risk factors, such as Fama and French’ (1993) hedge portfolio

returns, explain much smaller (but sometimes significant) amounts. This finding is not

surprising given that the market portfolio by construction is extremely diversified and

therefore will be highly correlated with the first principal component of security returns,

irrespective of the nature of the underlying risk factor model.

Despite the arguments for the market model, our analysis allows securities to have a

joint exposure to non-market factors. A factor model is used here to describe the mutual

correlation of asset returns. In turn, the correlation structure plays an important role for

analyzing the goodness of the CSML approximation in this study. The use of a factor
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model should not be confused with using the APT to explain the cross-section of expected

returns. Since our analysis allows for binding investment constraints, we cannot fix the

intercepts ai, i = 1, ..., N , using the APT , which is based on free portfolio formation.

Theorem 4 (Sufficient condition). The correlation structure (13)-(14) applies when opti-

mal portfolios λk, k ∈ K, have neutral non-market factor loadings, that is, bTl λk = 0 for

all l = 2, . . . , L, and are well diversified, that is, λi,k σ
2(εi)→ 0 for all i ∈ Aλk . Moreover,

we have

(19) ξλk,τ =
1

ρλk,τ
.

The condition of neutral non-market loadings is more general and more plausible than

the market model because it applies to optimal portfolios rather than individual assets.

Diversified portfolios tend to have relatively small non-market loadings compared with

market betas. Risk reduction through diversification encourages the investor to combine

stocks with high and low non-market loadings, moving the portfolio’s non-market loadings

towards zero. In addition, extreme loadings to known non-market risk factors (such as

Fama and French’ SMB and HML factors) are mostly concentrated in the micro-cap mar-

ket segment and therefore a broadly diversified portfolio generally has small non-market

loadings.

We do not challenge the explanatory power of non-market factors for individual stocks

or for benchmark portfolios formed to have maximal exposure to non-market risk factors.

We merely say that optimal portfolios are likely to have limited exposure to non-market

risk. As a case in point, the market model explains 91.5 (95.8) percent of the return vari-

ation of the above-mentioned low-beta (high-beta) portfolio and the Fama-French three-

factor model explains only 0.8 (0.3) percent more, and the SMB and HML loadings of
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these two portfolios are not significant.1

Theorem 5 (Errors in Correlation Ratios). Under Assumption 6 we find

(20) |ξλk,τ − ξi,λk,τ | ≤
√

1

z2
i,τ

− 1

√√√√ L∑
l=2

ρ2
λk,l

+ λi,k
σ2(εi)

σi σλk
.

where

ξλk,τ =
1

ρλk,τ
−

L∑
l=2

(
ρλk,l
ρλk,τ

)
ρλk,l −

1

ρλk,τ

I∑
i=1

λ2
i,k

σ2(εi)

σ2
λk

.

Clearly, these errors go to zero if the non-market factor loadings go to zero and the

portfolio is well-diversified. For example, assume that equilibrium is described by two

optimal portfolios equal to the above-mentioned low-beta portfolio and high-beta portfolio

and assume further that the Fama-French three-factor model captures all relevant risk

factors. For the low-beta portfolio, the market model yields an R-squared of 91.5 percent

and the three-factor model explains 92.3 percent. This implies that the first right-hand-

side term of (20) equals
√

(0.923/0.915)− 1
√

0.923− 0.915 = 0.008. The portfolio is

well-diversified and we can ignore the second right-hand side term. Similarly, the high-

beta portfolio involves R-squared values of 95.8 and 96.1 percent and the absolute error

in (20) is bounded by
√

(0.961/0.958)− 1
√

0.961− 0.958 = 0.003. The error bounds will

be even smaller if the two optimal portfolios overlap.

E Numerical example

We will now illustrate the CSML approximation and the associated alpha-beta relationship

with a numerical example using a small number of assets and investors. We use the single-

factor model ri = ai + bi f + εi for ten base assets (N = 10), where f is a systematic risk

factor with standard deviation σf , bi are the factor loadings and εi are idiosyncratic random

factors with residual standard deviations σεi . The assets are assumed to have identical

1The SMB and HML factors are not orthogonal to the market return, contrary to our Assumption 6.
The significance of these factors is therefore established by comparing the explanatory power of the market
model and the three-factor model rather than analyzing their explanatory power in isolation.
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market values, and hence the market portfolio is simply the equal-weighted average of the

ten assets. To use realistic parameter values, we calibrated the model parameters to the

historical data set of size-neutral “beta decile stock portfolios” that is used in our empirical

analysis in Section II. The risk factor is the first principal component of the returns to

these ten portfolios.

Table I describes our procedure to calibrate the factor model and reports factor load-

ings, residual standard deviations, R-squared coefficients, and other relevant information.

We consider a simple case of our heterogeneous-investor model with one conservative

investor and one adventurous investor. Both investors are assumed to make combinations

of the ten base assets and a riskless Treasury bill without riskless borrowing and short

selling. Both investors are assumed to have the same wealth level (w1 = w2 = 0.5), and

the market portfolio therefore is equal to the equal-weighted average of the portfolios of

the two investors. We chose the slopes ((1/ζ)σλ) and intercepts (θλ) of the investors’

optimality conditions (see Equation 6) to satisfy the following market equilibrium: (i) the

conservative investor optimally combines the five low-beta assets (P1), (ii) the adventurous

investor optimally combines the five high-beta assets (P2), (iii) the two portfolios aggregate

to the market portfolio. Table I shows the resulting expected returns of the individual

assets and portfolios P1 and P2.

[Table I about here.]

Panel A of Figure 1 shows a mean-variance diagram with the expected returns and

standard deviations of the base assets and the risk-free asset, together with the entire

portfolio possibilities set and the efficient frontier for the case without riskless borrowing

and short sales. We also report the portfolios of the conservative and adventurous investors

(P1 and P2), together with the market portfolio.
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The correlation between all possible portfolios is very high. For example, the corre-

lation between the low-beta portfolio P1 and the high-beta portfolio P2 is higher than

98%, despite the two portfolios having no overlapping positions. Therefore, diversification

between the base assets does not reduce variance in a material way, and, absent riskless

borrowing and short selling, the investor adjusts the risk level of her portfolio by either

combining low-beta assets and the risk-free asset and excluding high-beta assets (in the

case of low risk tolerance) or combining high-beta assets and excluding low-beta assets

and the risk-free asset (high risk tolerance). Paradoxically, diversifying across the optimal

portfolios P1 and P2 produces inefficient portfolios. Most notably, the market portfolio, a

weighted average of the two optimal portfolios, is mean-variance dominated by medium-

beta assets. Clearly, the efficient set is not convex in this example.

Panel B and C illustrate the portfolio optimality conditions (2) to (5) for the two

investors. For optimal portfolios, the included assets exhibit a linear relation between the

expected return and the beta relative to the optimal portfolio; the excluded assets will

lie below the line. For example, the conservative investor’s portfolio (P1) is characterized

by a linear relation for the low-beta assets, the steep slope reflecting the investor’s low

risk tolerance. The expected return of the high-beta assets, which are excluded from

P1, is lower than predicted by this relation. This deviation does not reflect that P1 is

inefficient, but rather the positive shadow price of the restriction on short-selling high-

beta assets. Panel D shows that the betas relative to P2 are nearly proportional to the

betas relative to P1, reflecting the very high correlation between the two portfolios. This

near-proportionality explains why Panel C shows a very similar, kinked shape as Panel B;

the two panels are nearly identical, apart from a scalar multiplication of the betas (and a

different active set).
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Panel E shows the expected returns and market betas for the ten base assets. By

construction, these values obey the GSML relation (see Theorem 1), because the individual

portfolios obey the optimality conditions and the market clears in this example. Since

portfolios P1 and P2 are highly correlated with the market portfolio, the pattern is similar

to that in Panel B and C. The dashed, straight line represents Black’s (1972) general

linear SML, or, in this case, the average of the two straight lines in Panel B and C.

Clearly, the market portfolio does not obey the mean-variance optimality conditions. It

includes all assets and therefore efficiency requires a linear relation. However, the expected

return to medium-beta assets is substantially higher than what is obtained through linear

interpolation of the expected returns of low-beta assets and high-beta assets. The solid,

kinked line represents our CSML approximation (see Theorem 3), which combines the two

sets of optimality conditions under the assumption that P1 and P2 have zero non-market

factor loadings (see Theorem 2).

Panel F shows the concave relation between market betas and market alphas. The solid,

kinked line represents again the CSML approximation (15) of this relation. Whereas the

alphas of the low-beta assets show a linear increasing pattern, the high-beta alphas show

a linear decreasing pattern, resulting in an overall concave shape. The two-piece linear

shape in Panel E and F reflects the use of only two investors in this example; a more

general piece-wise linear shape arises if we introduce additional investors with different

risk tolerance levels.

[Figure 1 about here.]
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II Empirical Analysis

Empirical tests of the CAPM broadly fall into two categories: (i) structural tests of mean-

variance efficiency of the market portfolio and (ii) regression analysis of the linear cross-

sectional relationship between expected return and market beta (SML). Most empirical

tests in the first category focus on the intercepts in time-series regressions of asset returns

on the market index in the spirit of Black, Jensen, and Scholes (1972). Tests in the second

category build on the classic two-pass regression procedure of Fama and MacBeth (1973).

Shanken (1992), Jagannathan and Wang (1998) and Shanken and Zhou (2007) provide

important discussions of the statistical properties and performance of this approach.

For several reasons, this section emphasizes the two-pass regression method. This

approach has more flexibility to analyze and test the functional form of the SML. The

efficiency tests use the null hypothesis that the market portfolio is efficient, or, equivalently,

the SML is linear. By contrast, our null hypothesis is that different individual investors

hold different efficient portfolios that are dominated by market risk and that combine to

yield a concave SML. Portfolio efficiency tests can test this null only if we specify the

relevant set of portfolio restrictions, the composition of the individual portfolios and the

distribution of wealth. In addition, the two-pass regression method has the flexibility to

control for the effect of empirically relevant co-variates (that do not enter in structural

models), such as a stock’s non-systematic risk and market capitalization.

This section applies the regression method to a set of 100 stock portfolios that are

based on the market capitalization and market beta of individual stocks, as well as to the

entire cross-section of individual stocks (Section IID).
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A Data

We obtain daily and monthly stock returns from the Center for Research in Security Prices

(CRSP) and annual balance sheet data from Compustat. Monthly market excess returns

(MKTRF) are from Kenneth French’s data library.

Our main analysis is based on the period from January 1927 to December 2016. This

long sample period seems particularly useful, because it includes the bear markets of the

1930s, 1970s, and 2000s which seems important to avoid the ‘Peso problem’ for study-

ing the return-risk relation. Following the convention, our analysis focuses on ordinary

common U.S. stocks listed on the New York Stock Exchange (NYSE), American Stock Ex-

change (AMEX) and Nasdaq markets, excluding ADRs, REITs, closed-end-funds, units

of beneficial interest, and foreign stocks. A stock is excluded from the analysis if price

information is no longer available. In that case, the delisting return or partial monthly

return provided by CRSP is used as the last return observation. We require stocks to have

at least 24 observations available in the past 60 months.

Market betas are estimated using Ordinary least Squares (OLS) regression in a rolling

window of 60 months. In order to avoid the well-known sorting bias, or clustering of

negative (positive) estimation errors in beta estimates for low-beta (high-beta) portfolios,

we use a Bayesian shrinkage method. Following Vasicek (1973) and Elton et al. (2014),

we shrink the 60-month beta estimate (β̂i,ts) toward the cross-sectional mean (β̂avg) as

follows:

(21) β̂i = wi β̂i,ts + (1− wi) β̂avg

The Vasicek (1973) shrinkage factor is given by wi = 1− σ̂2
i,ts/(σ̂

2
i,ts + σ̂2

avg) where σ̂2
i,ts
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is the variance of the estimated beta for stock i, and σ̂2
avg is the cross-sectional variance of

stock betas. This ex-ante beta estimate places more weight on the historical time-series

estimate when it has a lower variance or when there is a large dispersion in the cross-section

of betas. Correcting for the sorting bias is particularly relevant for the cross-sectional

regressions. Using the (biased) historical time-series betas would artificially flatten the

estimated cross-sectional risk-return relationship.

Empirical research on stock returns has identified several other relevant stock char-

acteristics in addition to market beta; see, for example, Basu (1977,1983), Banz (1981),

De Bondt and Thaler (1985), Jegadeesh (1990), Jegadeesh and Titman (1993), Acharya

and Pedersen (2005) and Ang, Hodrick, Xing, and Zhang (2006). Our analysis will include

popular corrections for book-to-market equity ratio (BtM), market capitalization of eq-

uity (ME), short-term reversal (R1), momentum (R12−2) and long-term reversal (R60−13),

illiquidity (Illiq), and idiosyncratic volatility (σ̂′(ε)).

Following Fama and French (1992, 1993), we define size as the market capitalization in

billions of dollars. We define the book-to-market equity ratio for the twelve month period

starting at the end of June of year t as the ratio of the book value of equity at the end of the

fiscal year ending in calendar year t−1, to the market capitalization of the stock at the end

of December of year t− 1. For observations where the book value of equity is negative, we

set book-to-market ratio to be missing. Following Brennan, Chordia, and Subrahmanyam

(1998), the past return variables R1, R12−2 and R60−13 are appropriately lagged relative

to the test month and are all set equal to the logarithms of cumulative past gross returns.

Illiq the prior 12-month moving average of monthly Amihud’s 2002 illiquidity ratio, where

dollar trading volume is defined in billions of dollars. The idiosyncratic volatility is defined

as the residual standard deviation, scaled by the standard deviation of the excess market
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return over the same time period.

Two additional control variables are based on the growing literature of the low-beta

anomaly. A stock’s sensitivity to funding constraints is motivated by the evidence provided

in Frazzini and Pedersen (2014). We measure a stock’s exposure to funding liquidity as

the slope coefficient from a regression of the stock’s excess returns on the T-bill rate over

the prior 60-month period. Following Bali and Cakici (2008), we measure a stock’s lottery

demand as the average of the five highest daily returns during the prior month (max).

Table II presents summary statistics for the sample of stocks that satisfy our data

requirements.

[Table II about here.]

The market betas of individual stocks can be difficult to estimate with high accuracy,

due to relatively high stock-specific risk, and possible structural and cyclical changes over

time. These problems can be mitigated by forming portfolios of stocks and periodically re-

balancing these portfolios, a tradition that goes back to Blume (1970). It is particularly

useful to form “beta portfolios” based on the past market beta estimates of individual

stocks, as in, for example, Fama and MacBeth (1973). This approach yields relatively

accurate and stable market beta estimates and a wide spread of the betas, increasing the

statistical power of the analysis. Furthermore, a stable market beta avoids the possible

bias that arises if market beta is correlated over time with the market-risk premium, and

the associated need to use a conditional model specification; see, for example, Jagannathan

and Wang (1996) for a discussion of this problem.

Small-cap stocks appear to carry a return premium that is uncorrelated with their

market betas. To disentangle the effects of size and betas, we apply a double-sorting

routine based on market capitalization and market beta, following Fama and French (1992).
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At the end of each month, all stocks which fulfill the data requirements are assigned to

portfolios based on decile breakpoints for the market capitalization of NYSE stocks, and

independently based on decile breakpoints for the past 60-month beta estimates for the

entire cross-section. The result is 100 test portfolios with independent variation in market

capitalization and market beta. The portfolio formation starts in December 1931.

For each test portfolio, 60-month formation period and test-month portfolio returns are

computed as equal-weighted averages of the individual stocks’ returns. Our rationale for

using equal-weighted averages is they appear to reduce the noise level in a more effective

way than value-weighted averages. A value-weighted portfolio can be easily dominated by

the return and idiosyncratic risk of a few large stocks. However, very similar results are

obtained using value-weighted portfolio returns.

We estimate portfolio level beta, idiosyncratic volatility and past return variables the

same way as individual stock betas. Portfolio-level BtM is an aggregate ratio: sum

of stock-level book values divided by sum of stock-level market values. The remaining

variables (ME, Illiq) are aggregated to the portfolio level by taking the median of the

stock-level values.

B Methodology

We employ the two-pass regression methodology of Fama and MacBeth (1973). The

analysis is built around the following (second-pass) cross-sectional regression equation:

(22) rp,t − rF,t = γ0t + γ1t β̂p,t−1 + γ2t (β̂p,t−1 − β̄t−1)2 + εp,t.

In this equation, β̂p,t−1 is the estimated market beta for portfolio p and β̄t−1 is the

cross-sectional average of the betas. The regressors are lagged by one month relative to
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the test month.

The use of squared beta was proposed in Fama and Macbeth (1973). The use of

the square of the centered beta is a common reparameterization to mitigate the effect of

multicollinearity in a polynomial regression.

The regression equation can be seen as a quadratic approximation to the CSML Equa-

tion (15). The theoretical model predicts a general concave, piece-wise linear relation with

a different linear line segment for every investor. It is difficult to implement this functional

form in practice, because it requires the specification of the relevant number of linear pieces

and the associated return intervals. However, the piece-wise linear relation between ex-

pected return and market beta approximates a real analytical function E [rp − rF ] = µ(βp)

in case of a continuum of investors with different risk tolerance levels.

A Taylor series expansion around β = β̄ gives

(23) µ(βp) = γ0 + γ1βp + γ2(βp − β̄)2 +R2(βp),

where γ0 = µ(β̄) − µ′(β̄) β̄, γ1 = µ′(β̄), γ2 = 1
2
µ′′(β̄), and R2(βp) is the remainder term.

Given that the typical range for betas is limited (say βp ∈ [0, 2]), the remainder term

R2(βp) is expected to be small and the second-degree Taylor polynomial is expected to be

accurate, using Taylor’s theorem.

Another possible specification is a four-piece linear function with kinks at the first,

second and third quartile of the cross-sectional beta distribution. Alternative approaches

are the inclusion of higher-order powers of beta to provide a higher-order Taylor series

approximation and the use of a non-parametric kernel regression. Interestingly, these

approaches yield results that are very similar to those based on beta-squared.

The parameters in the quadratic regression model (22) can be further restricted. Specif-

ically, if it is assumed that the risk-free asset and the market portfolio obey the quadratic
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mean-beta relation, or R2(0) = 0 and R2(1) = 0, then the following two parameter restric-

tions are obtained:

γ0 = −γ2 β̄
2;(24)

γ1 = (µτ − rF ) + γ2

(
2β − 1

)
.(25)

Imposing these parameter restrictions, the quadratic relation (22) reduces to

(26) rp,t − rF,t = (µ̂τ ,t−1 − rF,t) β̂p,t−1 + γ2t

(
β̂2
p,t−1 − β̂p,t−1

)
+ εp,t.

Here, µ̂τ ,t−1 is an estimate for the expected market return.

The cross-sectional regression is estimated every month using OLS regression analysis

to generate a time series of monthly coefficient estimates. The time-series averages and

standard deviations of the coefficient estimates are used for testing hypotheses regarding

the unknown parameters γ0t, γ1t and γ2t.

The monthly coefficient estimates may show patterns of positive or negative autocorre-

lation that can cause the original Fama-McBeth standard errors to be biased. This study

corrects for autocorrelation by using a Newey and West (1987) correction with 12 monthly

lags.

Our results are robust to explicit corrections for cross-serial correlation and heteroskedas-

ticity. Notably, we find similar results for beta and beta-squared with the cluster-robust

method that is analyzed by Petersen (2009) or a full-fledged mixed model of fixed-random

effects panel method. We therefore report only the standard Fama-McBeth results (with

a Newey-West correction) in this study.

The methodological robustness of the results is perhaps unsurprising given that our

data set fulfills the conditions that Petersen (2009) identified as favorable for the Fama-

MacBeth method, namely a sample in which the autoregressive pattern dies off fast and
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the time series is long.

Apart from the individual regression coefficients, we also analyze the “average beta

premium” (ABP ), or the predicted return premium for bearing a market beta of one

rather than zero:

ABPt =
(
γ0t + γ1t (1) + γ2,t (1− β̄t)2

)
−
(
γ0t + γ1t (0) + γ2,t (0− β̄t)2

)
= γ1t+γ2t (1−2 β̄t).

Given that the market portfolio has a market beta of one, the value of the ABP is expected

to be close to the historical excess return to the market portfolio. ABP is also relevant to

address possible concerns about multi-collinearity between beta and beta-squared; it is a

single parameter that captures the joint effect of beta and beta-squared.

A logarithmic transformation is applied for several regressors (ME, BtM , Illiq) in

order to allow for a diminishing effect and/or to mitigate the effect of outliers. These

considerations are particularly relevant when analyzing individual stocks (rather than

stock portfolios), given the relatively wide sample range and high noise level in this case.

A logarithmic transformation for market beta is however unusual, as the standard theory

explicitly predicts a linear SML. Although our theory predicts a concave SML, we do not

consider a logarithmic specification suitable for our analysis. First, it is desirable to use a

specification that includes the linear SML as a special case, in order to test the hypothesis

of linearity. Second, the logarithmic specification allows for the risk premium to decrease

with the beta, but it also assumes that the effect is strongest for low-beta stocks, while

the data suggest otherwise. Indeed, if log beta is used instead of beta in our regressions,

the empirical fit improves, but log-beta-squared remains significant.

For the sake of brevity, we do not report estimation results for the squared terms

of regressors other than market beta. Neither our theoretical analysis nor the empirical
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literature assigns a role to, for instance, squared residual risk or squared market capital-

ization; in fact, these regressors are deliberately defined as concave transformations of an

underlying variable (the logarithm of market capitalization and the square root of residual

variance, for instance). Indeed, none of the additional squared terms has a significant

effect or changes the results for beta-squared in a material way in our analysis.

C Portfolio-Level Results

Table III summarizes our results for the entire cross-section of 100 size-beta portfolios and

the full time-series of monthly portfolio returns from January 1932 to December 2016.

The beta-only regression does not yield a significant market risk premium. Nevertheless,

the average Adjusted R-squared is about 20 percent, suggesting that market beta does

play a signifcant role in the individual months. The difference between the two statistical

goodness measures partly reflects time-variation in the coefficient value: the coefficient

takes substantially different, but significant, values in different months. In addition, the

R-squared is inflated by the cross-sectional correlation and heteroskedasticity of the SML

error terms, whereas the Fama-MacBeth t-statistic avoides the use of cross-sectional stan-

dard errors.

The conclusions change considerably if we add beta-squared to the regression. The

center panel reveals a significant and concave relationship between return and beta. The

“average beta premium” (ABP ) is estimated to be 45.8 basis points per month, or 5.5

percent per annum, and significant (t-statistic: 2.69). Consistent with our hypothesis, the

coefficient estimate for beta-squared is significantly negative (t-statistic: -3.68), and the

risk premium increases at a diminishing rate. Interestingly, the cross-sectional R-squared

improves only marginally to 22 percent compared with the linear specification, reflecting

that it does not penalize excessive time-series variation and low average values of the
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estimated beta risk premium.

Including ME and BtM has no material effect on the concave relation and the esti-

mated ABP . Adding the other stock characteristics also does not materially change the

results and conclusions about beta and beta squared. Consistent with what is documented

elsewhere in the empirical literature, we find negative premiums for ME, R1, R60−13 and

max, and positive premiums for BtM , R12−2 and Illiq.

[Table III about here.]

The bottom panel adds residual risk as an additional regressor. In the first regression,

the coefficient of residual risk is estimated to be 68.3 basis points per month, or about 8.2

percent per annum. Residual risk appears to have significant explanatory power, but it

does not materially affect the results and conclusions about beta and beta-squared; the

return-beta relation remains significantly concave and the estimatedABP even increases to

54 basis points per month. In addition, the inclusion of other control variables significantly

diminishes the role of residual risk. ABP , on the other hand, varies from 4.4 to 6.2 percent

per annum, similar in magnitude to the historical equity premium of about 6 percent in

this period. These results are supportive of our model, which builds on systematic risk

and does not assign a role to residual risk.

The weak role of residual risk may reflect that we analyze size-beta portfolios rather

than individual stocks, and that the estimated betas of these portfolios are more accurate

and stable than the estimated betas of individual stocks. These results confirm the con-

clusion of Bali and Cakici (2008) that there exists no robust, significant relation between

average stock returns and residual risk.

In addition to analyzing the full cross section and time series, we also ran the cross-

sectional regressions after excluding the pre-1963 period and/or stocks with share prices
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below $5. The concave mean-beta relation appears very robust and the estimated level of

ABP and t-statistic even increase slightly in every subsmaple.

Finally, we ran the restricted regression (26), which imposes the coefficient restrictions

(24) and (25). The results again confirm the prediction that the inclusion of beta-squared

improves the cross-sectional fit. Starting from the “full house” specification (the last row of

Panel C), imposing the coefficient restrictions (24) and (25), and excluding beta-squared,

reduces the R-squared from 41.4% to 35.1%. Including beta-squared (but retaining the

coefficient restrictions) increases the R-squared to 37.9% and yields a t-statistic of -7.24

(!) for the quadratic term.

D Stock-Level Results

A possible concern about the portfolio-level results is that the sorting of stocks and the

formation of portfolios affects the statistical size and power of the analysis. Sorting stocks

based on ME and beta can produce artificially high sample variation for the portfolio values

of those characteristics and artificially low sample variation for others. To address this

concern, this section analyzes the cross-section of individual stocks rather than portfolios.

Table IV summarizes our results for the full time-series of monthly excess returns

from January 1932 to December 2016. Similar to the results in Table III for size-beta

portfolios, the mean-beta relation appears significantly concave and the estimated ABP is

economically and statistically significant, hovering around four to six percent per annum.

[Table IV about here.]

Again, the results are robust to changes in the cross section and time series. Excluding

the pre-1963 period and/or stocks with share prices below $5 has limited effect on the

estimated ABP and its t-statistic.

33



III Active Portfolio Construction

A concave mean-beta relation has important implications for active investment strategies

that select stocks based on past market-beta estimates. Frazzini and Pedersen (2014)

convincingly show that overweighting low-beta stocks and/or underweighting high-beta

stocks generates large positive abnormal returns or alphas.

Our model predicts that the alpha is a concave function of market beta (Corollary 1).

Therefore, we would expect that the abnormal return of active bets against beta is driven

primarily by the high-beta stocks. In our model, these stocks are held by the most ad-

venturous investors (highest risk tolerance) and have the lowest marginal risk premium.

To examine this prediction, we evaluate the performance of ten “size-neutral beta-decile

portfolios”, and various long-short combinations of these portfolios, using time-series re-

gression analysis. Our beta-decile portfolios are constructed from size-dependent beta sort

portfolios and by averaging across the ten size segments. This aggregation method helps

to control for the confounding effect of market capitalization and also to reduce the noise

level.

Our analysis is based on the single-factor market model, the Fama and French three-

factor and the Carhart four-factor model. The market model corrects excess returns only

for market risk exposure (MKTRF); the three-factor model also corrects for exposures to

small-cap stocks (SMB) and value-stocks (HML). Given that our benchmark portfolios

are size-neutral, these corrections can be expected to have less effect here than in some

other applications. The Carhart model accounts also for medium-term momentum (UMD)

exposure, which seems relevant for our purposes, because the stock-level market betas

are estimated from the previous 60 monthly returns and the estimates can therefore be

confounded with the levels of past return.
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We analyze the alphas of the ten beta deciles (BD1 to BD10) and four hedge portfolios

formed from the deciles: (i) long decile 1 and short an equal dollar amount in decile 10

(“BD1-10”), (ii) long decile 1 and short decile 5 (“BD1-5”), (iii) long decile 6 and short

decile 10 (“BD6-10”), and (iv) long deciles 5 and 6, and short deciles 1 and 10 (“BD5,6-

1,10”). The first portfolio, BD1-10, is a pure bet against beta that is consistent with

the zero-beta model. To discriminate between the zero-beta model and the CSML, we

compare the “low-minus-medium-beta portfolio” BD1-5 with the “medium-minus-high-

beta portfolio” BD6-10. Corollary 1 predicts that BD6-10 will have a larger alpha than

BD1-5. The “CSML portfolio” BD56-110 takes a long position in medium-beta stocks and

a short position in both high-beta stocks and low-beta stocks. Our theory predicts that

this portfolio will have a positive alpha, while the zero-beta model predicts that it will

have a zero alpha.

In contrast to the cross-sectional regressions in Section IIB, the performance evaluation

in this section does not require a Bayesian shrinkage method. The alphas and factor

loadings are estimated using the full-sample time-series regressions of the portfolio’s post-

formation returns, a method that does not suffer from a sorting bias. The estimated factor

loadings are therefore not shrunk to the average.

Table V summarizes our estimation results for the base case of equal-weighted portfolios

constructed from the entire cross-section of stocks that fulfill our data requirements (see

Section II) and the full time-series from January 1932 to December 2016. The first column

shows that the four-factor-model alphas display the concave pattern that is predicted by

the CSML. For the lowest-beta stocks (BD1), the alpha is 2.1 percent per annum. The

alpha first increases with market beta to about 2.2 percent per annum for medium-beta

stocks, and then decreases sharply to negative values for higher beta levels. Most notably,
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the highest-beta portfolio (BD10) has an alpha of negative 3.2 percent per annum. The

portfolio BD1-10 yields a combined alpha of 5.3 percent per annum (corresponding 3-

factor and 1-factor alphas are about 9.2 and 8.4 percent per annum and highly statistically

significant).

This pattern confirms the profitability of betting against beta that is documented in

Frazzini and Pedersen (2014). The concave pattern of the alpha implies that the BD1-

10 alpha stems mostly from the high-beta stocks. Indeed, the low-minus-medium-beta

portfolio BD1-5 generates an alpha of negative 0.1 percent , while the medium-minus-

high-beta portfolio BD6-10 generates 4.5 percent abnormal return. The “CSML portfolio”

BD5,6-1,10, which longs medium-beta stocks and shorts high- and low-beta stocks, yields

a large positive alpha of 4.6 percent per annum (t-stat: 2.84).

Our objective here is not to horse race the CSML portfolio (BD5,6-1,10) against the

pure bet-against-beta (BD1-10), but to show that the profitability of both portfolios stems

from the alpha spread in the high-beta market segment (BD6-10) rather than the low-beta

segment (BD1-5). The success of betting-against-beta strategies thus seems to largely

depend on the underweighting or short selling of high-beta stocks.

Due to the use of size-neutral portfolios, the differences in the non-market factor

loadings between the ten portfolios are modest. Still, the non-market exposures have

a non-trivial effect and the alpha spread widens if we use either the market model or the

three-factor model, as shown in the last two columns of Table V. The concave pattern is

apparent for these two model specifications as well.

[Table V about here.]

Figure 2 plots the estimated four-factor-model alphas against the estimated market

betas and clearly illustrates the predicted concave pattern. Apart from the full-sample
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time-series regression estimates of the market betas, the figure also includes the time-

series average of the 60-month Bayesian estimates (used in Section IIA). The two sets of

estimates are remarkably similar, which further illustrates robustness of our results.

[Figure 2 about here.]

As the cross-sectional regressions, the time-series regressions are robust to the exclusion

of the early sample period. Our results are also robust to using the market model or three-

factor model and excluding stocks with share price below $5. In every sample, we see

that the medium-minus-high-beta spread (BD6-10) significantly exceeds the low-minus-

medium-beta spread (BD1-5).

As a final step in our analysis, we attempt to include the non-linearity in the factor

models using Non-linear Least Squares (NLS). We model the intercept of the regressions as

a quadratic function of the market beta, and jointly solve the alpha estimation problem for

the 10 beta-decile portfolios. In line with our earlier arguments and findings, the resulting

alphas are economically and statistically insignificant.

Overall, these findings seem to be consistent with, and supportive of, the conclusions

from our theoretical model (Section I) and cross-sectional regression analysis (Section II).

These results also illustrate the possible practical relevance of our analysis for active portfo-

lio managers who select stocks based on past market betas. Whether a portfolio manager

can benefit from bets against beta in practice will of course depend on the investment

restrictions and transactions costs that she faces.

IV Conclusions

Binding investment restrictions generally distort the classical linear relation between ex-

pected return and market beta (SML) in a systematic way. In this case, the expected
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return to a given risky security will reflect the relative risk tolerance of investors who in-

clude the security in their optimal portfolios and the covariance of the security with those

portfolios. To the extend that the optimal portfolios are correlated and share a common

exposure to market risk, expected return will tend to be a concave function of the mar-

ket beta (rather than the traditional linear function). Indeed, a high positive correlation

and substantial joint exposure to market risk is typical for the portfolios of many mutual

funds and institutional investors, even if their portfolio composition shows large differ-

ences. The concave relation arises in the framework of Sharpe (1991) with mean-variance

preferences and without short-selling and borrowing, but also for more general preferences

and restrictions (see the discussion in Section IA).

Sharpe (1991) concludes that advances in financial technology and knowledge relax in-

vestment constraints and will move markets closer the assumptions of the CAPM. However,

closeness to the assumptions is not sufficient for closeness to the equilibrium conditions.

Restrictions tend to make the individual portfolios more similar and relaxations introduce

more possibilities for differences between individual portfolios. In addition, relaxations

generally will not affect all investors in the same way. Many institutional investors and

mutual funds face legal or contractual constraints on borrowing and short selling that

cannot be relaxed by means of clever financial engineering. In such situations, finan-

cial innovation may in effect increase differences between investors’ active sets. For these

reasons, it is not obvious that financial innovation moves the market closer to a linear

SML.

The pattern of expected returns ultimately seems an empirical issue. Our empirical

analysis reveals a significant and robust, concave relation between average return and

estimated market beta for stocks, consistent with our hypothesis. The inclusion of beta-
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squared in the regression yields a beta-risk premium of at least four to six percent for the

average stock (with a market beta of one), substantially higher than conventional estimates

and statistically highly significant. In addition, beta-squared has a significantly negative

coefficient, implying that the risk premium increases at a diminishing rate. Encouragingly,

the role of concavity is robust to the inclusion of other stock characteristics and the

selection of the cross-section and sample period. Concavity appears not only in the analysis

of individual stocks but also for aggregated size-beta portfolios, which reduces concerns

about estimation error and time-variation of stock-level betas. Similar results are found

when using alternative functional forms and using a variety of regression methods.

A similar relation can however not be expected for sets of portfolios which have a limited

beta spread or dynamic betas. An unreported analysis replicates our results using double-

sorted portfolios formed on market capitalization and one of three other characteristics:

BtM, Operating Profitability and Investments.

All three sets of portfolios show limited cross-sectional variation of the market betas

and high cyclical variation of the betas (as in Lettau and Ludvigson (2001)). It is therefore

not surprising that the estimated betas and their squares in these data sets have limited

explanatory power for the cross-sectional variation of the average returns.

These empirical findings confirm our theoretical analysis and contrast with the em-

pirical results of Fama and MacBeth (1973), who conclude that beta-squared plays no

significant role and that the SML appears linear. A closer look at the original results of

Fama and MacBeth (1973, p. 623, Table 3D) reveals that the coefficient of beta-squared is

actually significantly negative in the only sub-period that shows a significant role for mar-

ket beta (1946-1955). However, beta-squared is not significant in their full sample period,

1935-1968, which is comparable to our early sub-period, 1932-1963. A further analysis
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reveals that the different results and conclusions can be explained by differences in the

portfolio construction procedure. The original study uses twenty beta-portfolios, without

controlling for market capitalization, making it difficult to disentangle the competing ef-

fects of market beta and market capitalization. Most notably, (single-sorted) high-beta

portfolios tend to include a disproportional number of micro-cap and small-cap stocks,

and these portfolios benefit from the return premium that these stocks earn (independent

of their risk levels), obscuring the underlying mean-beta relationship. Analyzing size-beta

portfolios or individual stocks introduces more independent variation in market beta and

market capitalization and allows for disentangling the two competing effects.

Consistent with our regression results, the alpha spread of active ‘bets against beta’

is dominated by the medium-minus-high-beta spread rather than the low-minus-medium-

beta spread. The success of such strategies thus largely depends on the underweighting

or short selling of high-beta stocks. Whether an active manager can benefit from bets

against beta will of course depend on the investment restrictions and transactions costs

that she faces in practice.
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A Proofs

A Proof of Theorem 1

Multiplying the optimality condition (2) for investor k by ζk implies

(27) ζk µi = Cov
(
ri, r

T λk
)

+ ζk θλk + ζk αi,λk

for all i ∈ I and all k ∈ K. Aggregating (27) across investors k ∈ K using wealth shares

wk/(1 + λN+1,k) invested in the risk securities yields

∑
k∈K

(wk/(1 + λN+1,k)) ζk µi =
∑
k∈K

(wk/(1 + λN+1,k))
(
Cov

(
ri, r

T λk
)

+ ζk θλk + ζk αi,λk
)

which is equivalent to

(28) ζ̄ µi = Cov
(
ri, r

T τ
)

+ ζ̄ θ̄ + ζ̄ ᾱi.

Replacing Cov
(
ri, r

T τ
)

with βi,τ σ
2
τ and dividing by ζ implies (10).

B Proof of Theorem 2

The optimality conditions (2)-(5) imply the following set of inequalities and equalities

(29)


µi ≤

(
1
ζk
σ2
λk

)
βi,λk + θλk ∀i ∈ I and k ∈ K such that i /∈ Aλk ,

µi =
(

1
ζk
σ2
λk

)
βi,λk + θλk ∀i ∈ I and k ∈ K such that i ∈ Aλk .

The portfolio beta

βi,λ =
Cov(ri, x

T λ)

σ2
λ

= ρi,λ
σi
σλ

relative to risky portfolio λ ∈ Λ can be rewritten in terms of the market beta:

(30) βi,λk =
στ
σλk

ρi,λk
ρi,τ

βi,τ =
στ
σλk

ξi,λk,τ βi,τ ∀i = 1, . . . , N, k ∈ K.

Under Assumption 5, ξi,λk,τ = ξλk,τ for all i ∈ Aλk and ξi,λk,τ ≤ ξλk,τ for all i /∈ Aλk ,

and, therefore, (29) can be written as

(31)


µi ≤

(
1
ζk
σλk στ ξλk,τ

)
βi,τ + θλk ∀i = 1, . . . , N and k ∈ K such that i /∈ Aλk ,

µi =
(

1
ζk
σλk στ ξλk,τ

)
βi,τ + θλk ∀i = 1, . . . , N and k ∈ K such that i ∈ Aλk .
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In equilibrium any risky security i = 1, . . . , N is included in at least some portfolio,

that is, i ∈ Aλk , for some k ∈ K. Therefore, aggregating (31) across investors k ∈ K yields

µi = min
k∈K

[(
1

ζk
σλk στ ξλk,τ

)
βi,τ + θλk

]
.

The slope of the relation between µi and βi,τ is positive since ξλk,τ ≥ 0. The minimum

over increasing linear functions is always an increasing and concave function.

C Proof of Theorem 3

The CSML (15) can be written as

µ̂i = min
k : i∈Aλk

[(
1

ζk
σλk στ ξλk,τ

)
βi,τ + θλk

]
.

Moreover, inspection of the proof of Theorem 2 shows that the GSML (10) is equivalent

to

µi = min
k : i∈Aλk

[(
1

ζk
σλk στ ξi,λk,τ

)
βi,τ + θλk

]
.

It follows that

µ̂i − µi = min
k : i∈Aλk

[(
1

ζk
σλk στ ξλk,τ

)
βi,τ + θλk

]
− min

k : i∈Aλk

[(
1

ζk
σλk στ ξi,λk,τ

)
βi,τ + θλk

]
and therefore

|µ̂i − µi| ≤ max
k : i∈Aλk

∣∣∣∣( 1

ζk
σλk στ

)
(ξλk,τ − ξi,λk,τ ) βi,τ

∣∣∣∣
= max

k : i∈Aλk

∣∣∣∣(µλk − θλkσλk
στ

)
(ξλk,τ − ξi,λk,τ ) βi,τ

∣∣∣∣
≤ στ max

k : i∈Aλk

∣∣∣∣µλk − rfσλk

∣∣∣∣ max
k : i∈Aλk

∣∣(ξλk,τ − ξi,λk,τ) βi,τ ∣∣
≤ στ

∣∣∣∣µλ? − rfσλ?

∣∣∣∣ βi,τ max
k : i∈Aλk

|ξλk,τ − ξi,λk,τ |

= |µλ? − rf |
στ
σλ?

βi,τ max
k : i∈Aλk

|ξλk,τ − ξi,λk,τ | .

The last two inequalities use µλk − θλk ≤ µλk − rf and maxk∈K

∣∣∣µλk−rfσλk

∣∣∣ ≤ ∣∣∣µλ?−rfσλ?

∣∣∣,
respectively.
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D Proof of Theorem 4

Under Assumption 6, we find:

(32) ξi,λk,τ = ρλk,τ +
L∑
l=2

(
ρi,l
ρi,τ

)
ρλk,l + λi,k

σ2(εi)

σi σλk
.

Using

1

ρλk,τ
= ρλk,τ +

1− ρ2
λk,τ

ρλk,τ
.

and

1 = ρλk,λk = ρ2
λk,τ

+
L∑
l=2

ρ2
λk,l

+
I∑
i=1

λ2
i,k

σ2(εi)

σ2
λk

we obtain

1

ρλk,τ
= ρλk,τ +

L∑
l=2

(
ρλk,l
ρλk,τ

)
ρλk,l +

1

ρλk,τ

I∑
i=1

λ2
i,k

σ2(εi)

σ2
λk

.

It follows that

ρλk,τ =
1

ρλk,τ
−

L∑
l=2

(
ρλk,l
ρλk,τ

)
ρλk,l −

1

ρλk,τ

I∑
i=1

λ2
i,k

σ2(εi)

σ2
λk

.

Placing this equation in (32) gives

ξi,λk,τ = ξλk,τ +
L∑
l=2

(
ρi,l
ρi,τ

)
ρλk,l + λi,k

σ2(εi)

σi σλk
(33)

where

ξλk,τ =
1

ρλk,τ
−

L∑
l=2

(
ρλk,l
ρλk,τ

)
ρλk,l −

1

ρλk,τ

I∑
i=1

λ2
i,k

σ2(εi)

σ2
λk

.

Finally, using ρλk,l = bTl λk σfl/σλk = 0 for all l = 2, . . . , L and λi,k σ
2(εi) → 0 for all

i ∈ Aλk and λi,k = 0 for all i /∈ Aλk , Equation (33) implies

ξi,λk,τ = ξλk,τ

for all i = 1, . . . , N and

ξλk,τ =
1

ρλk,τ
.
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E Proof of Theorem 5

Inspection of the proof of Theorem 4 (see Equation (33)) shows that

|ξλk,τ − ξi,λk,τ | =

∣∣∣∣∣
L∑
l=2

(
ρi,l
ρi,τ

)
ρλk,l + λi,k

σ2(εi)

σi σλk

∣∣∣∣∣ ≤
∣∣∣∣∣
L∑
l=2

(
ρi,l
ρi,τ

)
ρλk,l

∣∣∣∣∣+ λi,k
σ2(εi)

σi σλk
.

We have

L∑
l=2

(
ρi,l
ρi,τ

)
ρλk,l =

L∑
l=2

(
zi,l
zi,τ

)
ρλk,l =

L∑
l=2

mi,l ρλk,l = f(mi,2, . . . ,mi,L)

where mi,l = zi,l/zi,τ for l = 2, . . . , L. Using z2
i,τ +

∑L
l=2 z

2
i,l = 1 we obtain

∑L
l=2m

2
i,l =

1/z2
i,τ − 1.

We now maximize f(mi,2, . . . ,mi,L) overmi,2, . . . ,mi,L under the constraint
∑L

l=2 m
2
i,l =

1/z2
i,τ − 1. The Lagrange function is

L(m2,l, . . . ,mi,L, η) =
L∑
l=2

mi,l ρλk,l − η

(
L∑
l=2

m2
i,l − 1/z2

i,τ + 1

)

and the first order conditions are

ρλl,fl − 2 η mi,l = 0(34)

L∑
l=2

m2
i,l − 1/z2

i,τ + 1 = 0.(35)

Equation (34) implies

m?
i,l =

ρλl,l
2 η

.

We insert this latter expression in (35) and obtain

1

2 η
= ±

√
1
z2i,τ
− 1√∑L

l=2 ρ
2
λk,l

and thus

m?
i,l = ±

√
1
z2i,τ
− 1√∑L

l=2 ρ
2
λk,l

ρλk,l.
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It follows ∣∣∣∣∣
L∑
l=2

mi,l ρλk,l

∣∣∣∣∣ ≤
L∑
l=2

∣∣m?
i,l

∣∣ ρλk,l =

√
1

z2
i,τ

− 1

√√√√ L∑
l=2

ρ2
λk,l

.

Therefore

|ξλk,τ − ξi,λk,τ | ≤
√

1

z2
i,τ

− 1

√√√√ L∑
l=2

ρ2
λk,l

+ λi,k
σ2(εi)

σi σλk
.
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Table II: Descriptive statistics. This table reports summary statistics over the sample period from Januray
1932 to December 2016. The sample contains all ordinary U.S. shares (share codes 10 and 11) that are listed on
the NYSE, AMEX and Nasdaq. Panel A presents the time-series averages of cross-sectional means and standard
deviations of firm characteristics, whereas Panel B reports the time-series averages of cross-sectional correlation
coefficients. The variables reported are monthly excess return in percent per month (ret), market beta (β̂),
centered beta squared ((β̂ − β̄)2), standardized residual risk (σ̂′(ε)), log market capitalization (ME), log book-
to-market ratio (BtM), one-month lagged one-month return (R1), one-month lagged 11-month return (R12−2),
12-month lagged 48-month return (R60−13) (all three past return measures are defined as log cumulative past
returns), log illiquidity (Illiq), lottery demand in percent per month (max) and Treasury Bill sensitivity (β̂RF ).

Panel A: Time-series averages of cross-sectional means and standard deviations.

ret β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF

mean 1.05 1.13 0.21 2.45 -2.85 -0.23 0.00 0.04 0.23 -2.44 3.51 7.67
std 11.12 0.45 0.29 1.25 1.80 0.85 0.11 0.35 0.69 2.42 2.55 17.37

Panel B: Time-series averages of cross-sectional correlation coefficients.

ret β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF

ret 1 -0.02 0.00 -0.03 0.00 0.02 -0.06 0.04 0.00 0.00 -0.05 0.01

β̂ -0.02 1 0.06 0.42 -0.06 0.02 -0.02 -0.04 -0.04 -0.01 0.29 -0.14

(β̂ − β̄)2 0.00 0.06 1 -0.02 -0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.03
σ̂′(ε) -0.03 0.42 -0.02 1 -0.53 0.05 -0.04 -0.08 -0.19 0.40 0.48 -0.15
ME 0.00 -0.06 -0.01 -0.53 1 -0.32 0.08 0.20 0.32 -0.82 -0.34 0.11
BtM 0.02 0.02 0.00 0.05 -0.32 1 0.02 0.02 -0.37 0.29 0.11 0.01
R1 -0.06 -0.02 0.00 -0.04 0.08 0.02 1 0.02 0.01 -0.05 0.34 0.03
R12−2 0.04 -0.04 -0.01 -0.08 0.20 0.02 0.02 1 0.02 -0.21 -0.15 0.07
R60−13 0.00 -0.04 -0.01 -0.19 0.32 -0.37 0.01 0.02 1 -0.28 -0.22 0.01
Illiq 0.00 -0.01 0.00 0.40 -0.82 0.29 -0.05 -0.21 -0.28 1 0.31 -0.09
max -0.05 0.29 -0.01 0.48 -0.34 0.11 0.34 -0.15 -0.22 0.31 1 -0.05

β̂RF 0.01 -0.14 0.03 -0.15 0.11 0.01 0.03 0.07 0.01 -0.09 -0.05 1
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Table III: Cross-sectional regressions for stock portfolios. We compute cross-sectional Fama-MacBeth
regressions of monthly excess returns on stock characteristics for 100 bivariate independent-sort size-beta stock
portfolios. We require individual stocks to have at least 24 valid return observations available in the past 60
months to be included in a given portfolio. Regressions are run each month from January 1932 to December
2016. The characteristics include past 60-month market beta (β̂), centered beta squared ((β̂−β̄)2), standardized
residual risk (σ̂′(ε)), log market capitalization (ME), log book-to-market ratio (BtM), one-month lagged one-
month return (R1), one-month lagged 11-month return (R12−2), 12-month lagged 48-month return (R60−13) (all
three past return measures are defined as log cumulative past returns), log illiquidity (Illiq), lottery demand
(max), and Treasury Bill sensitivity (β̂RF ). The reported coefficients are time-series averages of the monthly
regression slopes (γ̄). The Newey-West corrected t-statistics of these averages are shown in parentheses. We also
report adjusted R-squares (Adj.R2) for the regressions, and the average beta premium (ABP = γ1+γ2 (1−2 β̄)).

Panel A: Beta-only.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.931 0.138 0.204 0.138
(6.42) (0.98) (0.98)

γ̄ 0.799 0.106 -0.146 0.283 0.106
(5.13) (0.77) (-3.50) (0.77)

γ̄ 0.857 0.107 -0.059 0.444 0.303 0.107
(5.80) (0.85) (-1.91) (5.54) (0.85)

γ̄ 0.718 0.195 -0.057 0.334 -4.994 1.265 -0.194 0.358 0.195
(4.53) (1.40) (-2.05) (4.44) (-6.91) (5.96) (-2.13) (1.40)

γ̄ 0.938 0.244 -0.007 0.280 -6.416 1.194 -0.180 0.062 0.376 0.244
(5.17) (1.69) (-0.30) (3.93) (-8.95) (5.71) (-2.18) (2.22) (1.69)

γ̄ 0.997 0.203 -0.026 0.264 -6.422 1.177 -0.153 0.042 -0.031 0.388 0.203
(6.21) (1.63) (-1.07) (3.91) (-8.66) (5.93) (-1.90) (1.77) (-0.77) (1.63)

γ̄ 0.795 0.065 -0.024 0.241 -6.529 1.192 -0.178 0.034 -0.026 -0.036 0.395 0.065
(5.02) (0.50) (-1.00) (3.60) (-8.78) (5.41) (-2.16) (1.51) (-0.65) (-2.32) (0.50)

Panel B: Beta and beta-squared.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.957 0.166 -0.247 0.221 0.458
(6.50) (1.21) (-3.68) (2.69)

γ̄ 0.848 0.140 -0.303 -0.156 0.300 0.510
(5.35) (1.04) (-4.29) (-3.69) (2.86)

γ̄ 0.906 0.115 -0.246 -0.069 0.413 0.320 0.407
(5.94) (0.93) (-3.49) (-2.24) (5.17) (2.49)

γ̄ 0.744 0.196 -0.207 -0.065 0.306 -5.471 1.233 -0.167 0.371 0.438
(4.54) (1.39) (-3.01) (-2.34) (4.16) (-7.69) (5.84) (-1.79) (2.42)

γ̄ 0.986 0.248 -0.228 -0.016 0.247 -6.953 1.139 -0.153 0.060 0.389 0.522
(5.01) (1.66) (-3.13) (-0.68) (3.59) (-9.88) (5.47) (-1.78) (2.04) (2.60)

γ̄ 1.044 0.211 -0.236 -0.034 0.229 -6.918 1.135 -0.127 0.041 -0.030 0.399 0.501
(6.10) (1.64) (-3.37) (-1.42) (3.50) (-9.45) (5.67) (-1.52) (1.66) (-0.78) (2.75)

γ̄ 0.888 0.118 -0.203 -0.029 0.216 -6.904 1.162 -0.145 0.039 -0.024 -0.024 0.404 0.349
(5.44) (0.87) (-2.77) (-1.17) (3.32) (-9.33) (5.32) (-1.69) (1.63) (-0.64) (-1.58) (1.78)

Panel C: The full house.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.791 -0.084 -0.464 0.683 0.280 0.516
(5.56) (-0.73) (-5.14) (3.28) (2.89)

γ̄ 0.809 0.055 -0.371 0.243 -0.119 0.321 0.515
(4.98) (0.44) (-4.83) (1.87) (-3.22) (2.84)

γ̄ 0.858 0.065 -0.296 0.146 -0.052 0.374 0.338 0.418
(5.45) (0.54) (-4.16) (1.26) (-1.72) (5.10) (2.50)

γ̄ 0.749 0.142 -0.253 0.152 -0.050 0.268 -5.762 1.215 -0.210 0.384 0.448
(4.54) (1.03) (-3.46) (1.25) (-1.72) (3.90) (-8.15) (5.72) (-2.11) (2.45)

γ̄ 1.014 0.196 -0.263 0.101 -0.012 0.220 -7.168 1.127 -0.195 0.052 0.401 0.514
(5.21) (1.37) (-3.50) (0.85) (-0.42) (3.40) (-10.30) (5.36) (-2.17) (1.83) (2.56)

γ̄ 1.092 0.193 -0.263 0.096 -0.026 0.207 -6.913 1.130 -0.172 0.044 -0.042 0.409 0.519
(6.18) (1.53) (-3.57) (0.89) (-0.90) (3.33) (-9.36) (5.54) (-1.98) (1.74) (-1.16) (2.81)

γ̄ 0.934 0.094 -0.235 0.113 -0.020 0.198 -6.894 1.166 -0.190 0.040 -0.037 -0.029 0.414 0.367
(5.48) (0.70) (-3.06) (1.05) (-0.65) (3.18) (-9.26) (5.22) (-2.13) (1.68) (-1.00) (-1.85) (1.84)
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Table IV: Cross-sectional regressions for individual stocks. We compute cross-sectional Fama-MacBeth
regressions of monthly excess returns on stock characteristics for individual stocks. We require stocks to have
at least 24 valid return observations available in the past 60 months. Regressions are run each month from
January 1932 to December 2016. The characteristics include past 60-month market beta (β̂), centered beta
squared ((β̂ − β̄)2), standardized residual risk (σ̂′(ε)), log market capitalization (ME), log book-to-market
ratio (BtM), one-month lagged one-month return (R1), one-month lagged 11-month return (R12−2), 12-month
lagged 48-month return (R60−13) (all three past return measures are defined as log cumulative past returns),
log illiquidity (Illiq), lottery demand (max), and Treasury Bill sensitivity (β̂RF ). The reported coefficients are
time-series averages of the monthly regression slopes (gamma). The Newey-West corrected t-statistics of these
averages are shown in parentheses. We also report adjusted R-squares (Adj.R2) for the regressions, and the
average beta premium (ABP = γ1 + γ2 (1− 2 β̄)).

Panel A: Beta-only.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.842 0.160 0.031 0.160
(6.02) (0.98) (0.98)

γ̄ 0.418 0.065 -0.115 0.050 0.065
(2.53) (0.43) (-2.64) (0.43)

γ̄ 0.583 0.091 -0.078 0.270 0.057 0.091
(3.77) (0.66) (-1.98) (5.16) (0.66)

γ̄ 0.591 0.057 -0.061 0.212 -8.061 0.878 -0.137 0.088 0.057
(4.28) (0.43) (-2.03) (4.16) (-16.64) (6.05) (-1.89) (0.43)

γ̄ 0.492 0.025 -0.102 0.219 -7.982 0.921 -0.119 -0.033 0.091 0.025
(2.61) (0.19) (-3.20) (4.30) (-15.89) (6.50) (-1.75) (-1.79) (0.19)

γ̄ 0.644 0.146 -0.145 0.191 -6.947 0.874 -0.159 -0.037 -0.137 0.096 0.146
(3.54) (1.23) (-5.10) (3.91) (-12.40) (6.12) (-2.48) (-2.07) (-7.40) (1.23)

γ̄ 0.597 0.110 -0.143 0.190 -6.884 0.906 -0.169 -0.036 -0.137 -0.002 0.097 0.110
(3.29) (0.93) (-5.13) (3.89) (-12.43) (6.16) (-2.60) (-2.01) (-7.54) (-0.35) (0.93)

Panel B: Beta and beta-squared.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.873 0.158 -0.176 0.033 0.390
(6.05) (0.97) (-2.48) (1.89)

γ̄ 0.454 0.061 -0.213 -0.115 0.051 0.345
(2.77) (0.41) (-2.86) (-2.63) (1.76)

γ̄ 0.617 0.088 -0.206 -0.078 0.269 0.058 0.364
(3.99) (0.64) (-2.66) (-1.96) (5.17) (1.90)

γ̄ 0.616 0.063 -0.205 -0.062 0.214 -8.071 0.871 -0.131 0.089 0.346
(4.38) (0.48) (-2.62) (-2.03) (4.19) (-16.68) (5.98) (-1.83) (1.93)

γ̄ 0.516 0.034 -0.208 -0.102 0.221 -7.987 0.916 -0.115 -0.033 0.092 0.319
(2.67) (0.26) (-2.55) (-3.21) (4.34) (-15.94) (6.44) (-1.70) (-1.77) (1.71)

γ̄ 0.671 0.157 -0.221 -0.146 0.193 -6.943 0.869 -0.154 -0.037 -0.138 0.097 0.460
(3.60) (1.31) (-2.71) (-5.11) (3.95) (-12.39) (6.08) (-2.43) (-2.04) (-7.45) (2.61)

γ̄ 0.636 0.123 -0.199 -0.144 0.192 -6.885 0.904 -0.166 -0.036 -0.138 -0.001 0.099 0.395
(3.40) (1.02) (-2.42) (-5.14) (3.93) (-12.43) (6.17) (-2.57) (-1.97) (-7.56) (-0.22) (2.23)

Panel C: The full house.

const β̂ (β̂ − β̄)2 σ̂′(ε) ME BtM R1 R12−2 R60−13 Illiq max β̂RF Adj.R2 ABP

γ̄ 0.996 0.212 -0.257 0.018 0.051 0.540
(6.77) (1.80) (-3.42) (0.22) (3.36)

γ̄ 0.593 0.338 -0.319 -0.237 -0.199 0.060 0.738
(3.48) (2.71) (-4.15) (-5.05) (-5.15) (4.29)

γ̄ 0.712 0.304 -0.300 -0.232 -0.163 0.197 0.066 0.682
(4.43) (2.55) (-3.74) (-5.06) (-4.56) (4.05) (3.87)

γ̄ 0.734 0.223 -0.269 -0.182 -0.125 0.147 -8.189 0.903 -0.150 0.095 0.573
(5.06) (1.91) (-3.30) (-3.71) (-4.76) (3.09) (-16.79) (6.26) (-2.12) (3.41)

γ̄ 0.631 0.206 -0.266 -0.205 -0.173 0.155 -8.128 0.956 -0.132 -0.035 0.098 0.551
(3.23) (1.77) (-3.16) (-4.22) (-6.38) (3.21) (-16.05) (6.73) (-1.99) (-1.90) (3.15)

γ̄ 0.728 0.248 -0.258 -0.133 -0.187 0.150 -7.161 0.904 -0.167 -0.037 -0.120 0.101 0.589
(3.86) (2.20) (-3.10) (-2.95) (-7.00) (3.18) (-12.93) (6.32) (-2.62) (-2.05) (-8.04) (3.43)

γ̄ 0.686 0.205 -0.231 -0.130 -0.183 0.150 -7.098 0.941 -0.179 -0.036 -0.120 -0.003 0.103 0.510
(3.62) (1.80) (-2.75) (-2.94) (-6.93) (3.19) (-13.00) (6.43) (-2.75) (-1.97) (-8.11) (-0.78) (2.93)
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Table V: Time-series regressions. We perform time-series regressions of portfolio excess returns on factor
returns. For each of the ten equal-weighted, size-neutral beta-decile portfolios (BD1 to BD10), we run a single
time-series regression over the full sample period from January 1932 to December 2016. Shown are (annualized)
estimates of four-factor-model alphas (4f-α̂) and factor loadings (β̂mkt, β̂smb, β̂hml and β̂umd), as well as three-
factor-model and market-model alphas (3f-α̂ and 1f-α̂). Newey-West corrected t-statistics are presented in
parentheses. The table also reports results for four hedge portfolios constructed from the ten decile portfolios:
(i) long decile 1 and short decile 10 “BD1-10”), (ii) long decile 1 and short decile 5 (“BD1-5”), (iii) long decile
6 and short decile 10 (“BD6-10”), and (iv) long deciles 5 and 6, and short deciles 1 and 10 (“BD5,6-1,10”).

Portolio 4f-α̂ β̂mkt β̂smb β̂hml β̂umd 3f-α̂ 1f-α̂

BD1 2.083 0.560 0.617 0.199 0.022 2.332 3.894
(2.39) (25.21) (6.81) (4.15) (0.70) (2.67) (3.39)

BD2 2.701 0.692 0.657 0.326 -0.042 2.234 4.486
(3.77) (42.65) (6.93) (7.30) (-1.30) (3.29) (4.22)

BD3 2.892 0.794 0.635 0.333 -0.066 2.155 4.456
(4.22) (54.37) (12.54) (10.47) (-2.32) (3.25) (3.95)

BD4 2.044 0.884 0.691 0.353 -0.083 1.117 3.604
(3.63) (54.43) (12.02) (10.14) (-3.06) (1.93) (3.05)

BD5 2.183 0.953 0.774 0.363 -0.096 1.112 3.767
(3.89) (62.93) (14.58) (11.42) (-3.97) (1.93) (3.08)

BD6 1.312 1.013 0.814 0.340 -0.138 -0.236 2.460
(2.31) (73.60) (17.44) (10.86) (-5.74) (-0.44) (1.99)

BD7 0.494 1.106 0.883 0.316 -0.152 -1.204 1.504
(0.61) (40.30) (19.92) (7.47) (-4.21) (-1.76) (1.10)

BD8 -0.562 1.180 0.939 0.271 -0.201 -2.816 -0.125
(-0.70) (64.87) (25.94) (7.03) (-5.78) (-4.13) (-0.09)

BD9 -1.916 1.257 1.009 0.231 -0.251 -4.729 -2.018
(-1.69) (55.15) (16.42) (3.60) (-4.83) (-4.90) (-1.29)

BD10 -3.222 1.382 1.177 0.049 -0.329 -6.908 -4.579
(-1.84) (45.93) (13.83) (0.47) (-3.48) (-5.09) (-2.35)

BD1-10 5.305 -0.821 -0.560 0.149 0.352 9.240 8.473
(2.52) (-19.71) (-3.43) (1.15) (3.28) (5.12) (4.31)

BD1-5 -0.099 -0.393 -0.157 -0.164 0.118 1.220 0.128
(-0.12) (-16.09) (-2.37) (-4.00) (4.29) (1.48) (0.15)

BD6-10 4.533 -0.369 -0.363 0.291 0.191 6.672 7.038
(2.84) (-12.21) (-3.19) (2.62) (2.01) (4.99) (4.74)

BD5,6-1,10 4.633 0.024 -0.206 0.455 0.073 5.452 6.910
(2.84) (0.66) (-1.83) (3.89) (0.74) (3.85) (4.30)
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A: Mean-variance diagram
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B: Conservative portfolio
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C: Adventurous portfolio
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D: Two sets of betas
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E: Security Market Line
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F: Beta-alpha relation
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Figure 1: Numerical example. The figure illustrates the 11-asset, two-investor equilibrium described in
Table II. Panel A shows the full portfolio possibilities set (or all convex combinations of the 11 base assets)
and adds the optimal portfolios (P1 and P2) of the two investors, together with the market portfolio (Mkt).
Panel B plots the expected returns against the betas relative to the conservative investor’s portfolio (P1). The
solid line represents the portfolio optimality condition; the line connects the conservative investor’s active assets
and envelops her inactive assets. Panel C shows a similar plot for the adventurous investor and her portfolio
P2. Panel D shows that the betas relative to P1 are nearly proportional to the betas relative to P2, reflecting
the very high correlation between the two portfolios. Panel E shows the relation between expected return and
market beta. The dashed, straight line represents represents the classical SML, or average of the two lines shown
in Panel B and C. The solid, kinked line represents our CSML approximation (15), which combines the two sets
of optimality conditions under the assumption that P1 and P2 have zero non-market factor loadings. Panel F
shows the relation between market beta and market alpha. The solid, kinked line represents again the CSML
approximation of this relation.
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Figure 2: Alpha versus beta. The figure plots the estimated four-factor alphas ver-
sus estimated market betas (clear squares) for our ten size-neutral beta stock portfolios.
Time-series regressions for each of the ten portfolios are run once from January 1932 to
December 2016 using ex-post equal-weighted monthly returns. Also shown are the time
series averages of the 60-month Bayesian shrinkage estimates of the market betas (filled
circles).
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