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This study introduces a concept of a new method of forecasting air passenger flows on a 

global level using socio-economic scenarios. The method has two steps: forecasting the 

topology of origin-destination demand network and predicting the number of passengers on 

existing and new connections. Network theory is applied to simulate demand connections 

between cities utilizing weighted similarity based algorithms. The number of passengers on a 

connection is defined using quantitative analogies. Preliminary calculations show promising 

results. This concept of the global passenger demand prediction will be applied in a modular 

environment modeling the future air transport system. 

I. Introduction 

ir transport system (ATS) is a multi-disciplinary complex system with various interactions between 

stakeholders within the system and its environment. The “atomic model” of the ATS in Fig.1, introduced by 

Ghosh
1
, outlines the core stakeholders in the system, united by the aircraft as the major connecting element and 

external elements. Changes in any element of this complex interconnected system may cause changes in the whole 

system.  

The ATS growth has a clear correlation to world economy growth. The number of worldwide passengers within 

the ATS has increased from 1.5 to 3 billion from 2002 to 2013 (based on the ADI database
§
). Such growth has 

undoubtedly an increasing affect on the environment. Airline schedules, network and fleet decisions are based on a 

number of drivers, but arguably the most important is the available origin destination city-pair passenger demand. It 

is likely that there will be a number of cities with significant air traffic connections that have no air traffic 

connections today. This is particularly true for countries such as China. By not including air traffic to these growing 

cities, global growth in air traffic and emissions would be underestimated, resulting in the corresponding 

underestimate of the climate impacts associated with aviation. Therefore, there is the particular importance to 

capture the full environmental impact of future growth in the aviation sector. As shown by Lee
2
, air transport 

contributes 2-3% of global CO2 emissions and 3.5-4.9% of global radiative forcing, if non-CO2 effects are included. 

Today, the impacts of CO2 emissions on the environment are closely studied. However, non-CO2 effects have not 

been subject to the same level of study. Accordingly, a more robust scientific understanding of the effects of non-

CO2 emissions is still needed
3
. The non-CO2 emissions have different impacts on the environment in different 

regions of the world. For example, NOx has been shown to induce short-lived greenhouse gas ozone. The gas 

produced at the equator has a higher radiative forcing than the same amount of emissions in northern regions. This 

implies that geographical information of a flight route, such as location of departure and destination airports, as well 

as flight path, is essential for assessing the impact of non-CO2 emissions. Accordingly, to assess the non-CO2 

impact, the number of flights and type of aircraft operated on routes must be known so as to quantify the amount of 

such emissions on a global scale. To obtain this information the number of passengers on these routes must be 

estimated. Finally, to make such estimations, air passenger demand between origin-destination has to be determined.  
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This assessment approach of non-CO2 emissions takes into account different layers of the ATS starting from 

origin-destination air passenger demand to trajectories of an aircraft. Thus, there is a need for a methodology that is 

capable to describe the interactions between elements and changes in the ATS. The German Aerospace Center 

(DLR) project known as “WeCare”
**

 studies the potential of climate efficient flight by using forecast weather 

information on a global scale up to a 2050 time horizon, in the context of the ATS. One of the WeCare project’s aim 

is to assess the impact of non-CO2 emissions on a global scale. Within this project, DLR Air Transportation 

Systems is developing a modular environment known as “AIRCAST”
4
 (air travel forecast), which aims to forecast 

future development of the ATS based on socio-economic scenarios. AIRCAST allows DLR to simulate a range of 

possible outcomes for the future development of the ATS and assess, for example, the impact of new technology on 

the number of demand passengers or the size and number of aircraft on particular routes. From this, a chain of 

models for the future ATS has been developed (Fig.2). The demand forecast model of ‘origin-destination air travel 

passenger demand between city-pairs’  called “D-CAST”,  based on socio-economic scenario,  is the first layer in a 

 

 
                                                           
** WeCare - utilizing weather information for climate efficient and eco efficient future aviation. 

 

Figure 1:  ATS model 
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Figure 2: 4-layers approach  
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chain of models within “AIRCAST”. Since one of the WeCare project’s aim is to assess the impact of non-CO2 

there is a high importance of geographical information of flights. The demand forecast model has to take into 

account not only the number of air passengers, but also the possibility of changes to the number origin-destination 

demand pairs. These pairs are formed by passengers traveling by air between an origin and a destination, regardless 

of any intermediate stops. To meet these requirements, the model has to include cities where at least one airport is 

present. The model must take into account these worldwide cities and simulate air passenger demand connections 

between them and the number of passengers on these connections within the forecast period.  

This paper is organized as follows. Section 2 introduces the assumptions and definitions used in the study. 

Section 3 provides an overview of related studies in this area. Section 4 describes the data sources utilized for the 

study. Section 5 presents the concept for forecasting air passenger demand. Section 6 presents the preliminary 

results of the study. Section 7 summarizes the progress of the study to date and gives an outline of the future 

research. 

II. Demand terminology 

Given the complexity and the novelty of this study, it is important that the assumptions and terminology used are 

clearly defined at the outset. The first assumption is that every person in the world has a latent demand to travel by 

air. The second assumption is that a particular set of individual conditions is required to give rise to a decision of a 

person to travel by air. In other words, if these certain personal conditions are met, a person will choose to travel by 

air. Such conditions could include socio-economic indicators (e.g. GDP, population, oil price, etc.) as well as ATS 

specific indicators (e.g. travel time, frequency, number of transfers, airfare, etc.). Based on these assumptions two 

categories can be defined: people whose conditions to travel by air are met constitute the realized demand; all other 

people whose conditions to travel by air are not met constitute the unrealized demand. Accordingly, the sum of 

realized and unrealized demand will make up the total demand for air travel. In other words, the sum of realized and 

unrealized demand is equal to the latent demand. According to the first assumption, the latent demand is the world 

population. For example, unrealized demand implies that a person does not travel by air due to various combinations 

of reasons (e.g. high ticket price, long journey time, etc.). In opposite, realized demand implies that a person does 

travel by air because individual and ATS-specific requirements of the person (e.g. ticket price, journey time, 

itinerary, etc.) are satisfied.  

In addition, directed air passenger demand is the demand in direction from point A to point B, but does not 

include the demand in direction from point B to A. The sum of directed air passenger demand on directions A-B and 

B-A represent the undirected air passenger demand between points A and B. In other words, undirected demand is 

the total air passenger demand between two points regardless of directions. 

III. Literature review 

Forecast of air passenger demand is an important basis for planning in the constantly changing aviation 

transportation system. The aircraft industry, and researchers, study air passenger demand and develop forecast 

models using various techniques and levels of aggregation.  

A. Industry forecasts 

 As discussed in Doucet et al. paper
5
, an origin destination air passenger demand model is an important part in the 

Airbus Global Market Forecast (GMF)
6
 methodology. The GMF methodology for forecasting future ATS contains 

three basic steps: traffic forecast to the next 20 years, the network forecast
††

 and a forecast of the number of required 

aircraft. Air passenger demand forecast in the GMF is a part of the second step. For the network forecast, initially, a 

traffic forecast between countries is disaggregated to a set of city pairs. Next, flight segments are modeled between 

any two cities in the set. The obtained flight segments network includes existing routes as well as future possible 

routes. Utilizing a market share model, a percentage of air passengers is assigned to each flight segment. Finally, the 

number of passengers is defined as the percentage of passengers on each flight multiplied by the origin-destination 

demand between cities. The origin-destination air passenger demand model utilizes a modified gravity model to 

forecast the number of passengers between 279 cities around the world. The modified gravity model takes into 

account a spatial dependence between origin and destination. In other words, the model takes into account the 

impact to air passengers flow between cities by utilizing characteristics at proximal cities. From the perspective of 

the present study, and its categorization of realized and unrealized demand, the air passenger demand model 

discussed in Ref. 4, is dealing with realized directed air passenger demand. 

                                                           
†† Here „network forecast“ implies a forecast of routes between cities 
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 The United Kingdom Department for Transport’s UK Aviation Forecasts 2013
7
 includes the National Air 

Passenger Demand Model. This model uses a combination of a set of time series econometric models of past UK air 

passenger demand including projections of key driving variables and assumptions about how the relationship 

between UK air travel and its key drivers will change into the future. The model provides forecasts for domestic 

destinations within the UK, international regions of origin for flights into to the UK and international passengers 

connecting through UK airports.  

 Other industry forecasts are mainly predicting Revenue Passengers Kilometers (RPK). These forecasts do not 

present a separate air passengers demand model. The Boeing Current Market Outlook 2013-2032
8
 forecast uses an 

empirical equation where RPK growth between regions is equal to sum of GDP growth and a time-varying function. 

The function is not directly associated with GDP growth. This component of growth derives from the value travelers 

place on the speed and convenience that only air travel can offer. In the Worldwide Market Forecast for Commercial 

Air Transport
9
 the Marketing Japan Aircraft Development Corporation developed a traffic forecast that predicts 

RPK between 11 world regions. The relationship between past RPK, GDP and “Yield” is analyzed by each region to 

obtain their regression equation, however the equation is not provided in their publication.  

B. Academic studies 

The Aviation Integrated Modelling (AIM)
10,11

 project was initiated by the University of Cambridge, UK. The 

aim of this project is to develop a tool to assess different current and future policies in aviation
12

. The AIM project 

contains a set of connected modules that were created to fulfill the policy assessment goals of the project. These 

modules are Aircraft Technology & Cost Module, Air Transport Demand Module, Airport Activity Model, Aircraft 

Movement Module, Global Climate Module, Local Air Quality & Noise Module, and Regional Economic Module. 

The Air Transport Demand Module deals with true origin-destination (OD) air passenger and freight demand. 

Currently, this module contains a simple model on city level which considers realized undirected air passenger 

demand. The model is represented as a gravity model with OD connections between 700 cities around the world. 

The main variables in the gravity equation are: average local per capita income, greater metropolitan area or 

equivalent population and generalized cost to a passenger of air travel between cities. The gravity equation has been 

adapted to short-haul, medium-haul and long-haul as well as for different regions. The equation has been calibrated 

on current and historical data.  

Suryani et al.
13

 model air passenger demand and passenger terminal capacity expansion using a systems 

dynamics approach. The study concentrates on single airport level. Their model predicts when an airport should 

expand runway capacity, passenger terminal capacity and to determine the total airport area needed to meet future 

demand. Alam and Karim
14

 address the present condition of the air transportation system in Bangladesh. They 

analyze the operation and level of service of the system, realized undirected demand and supply structure and the 

network configuration. A stepwise multiple linear regression analysis, using a time series collected for five years, 

was utilized to calculate total passenger trips per week along existing routes. Grosche et al.
15

 present gravity models 

for the estimation of air passenger volume between city-pairs. The estimation is based on socio-economic and 

geographic factors for the fixed number of city-pairs. Thus, this approach did not take into account the possibility of 

new city-pairs within the air transport system. 

C. Discussion 

The studies mentioned above have utilized a range of techniques and considered various levels of aggregation. 

Industry forecasts and academic studies show various methods to calculate the demand in particular airports
11

, on 

particular routes
12, 13

, on regional level
6
 or on city level with fixed number of connections between cities

9, 10
. Mostly, 

the aforementioned forecasts deal with realized undirected air passenger demand using gravity models. Gravity 

models have to be calibrated for different types of city-pairs (e.g. short-haul, medium-haul, long-haul, international, 

regional, local, etc.). However, when dealing with larger numbers of city pairs, the complexity of the calibration 

requirements of these models increases. Moreover, these studies do not include a method of forecasting an evolution 

of air passenger demand between cities at a global level. They fail to take into account the potential for changes in 

the number of airport-connected cities when forecasting demand within an air transport system. 

IV. Data 

In AIRCAST, 2012 has been adopted as the base year. For the base year, required data have been obtained from 

Sabre Airport Data Intelligence (ADI) database: origin-destination city pairs worldwide, air passenger demand and 

average airfare between these cities. Additionally, data for GDP, population and geographical coordinates of the 

cities have been obtained from various databases (see below).  
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The ADI database contains booking information from the Global Distribution System (GDS), its primary data 

source, and other external data sources
16

. In the ADI database it is possible to obtain information of passenger 

numbers between origin and destination airports as well as average airfare at OD level. The ADI database presents 

the realized demand for air travel. Due to the assumption that air passenger demand is generated on city level and 

not on airport level, the OD air passenger demand data from ADI has been aggregated to the city level. Thus, 4435 

cities and 533170 connections between them have been obtained. In addition, for each city the GDP (utilizing UN
17

 

and World Bank
18

 data), population (UN
19

 and MaxMind
20

 data) and geographical coordinates (OurAirports
21

 and 

OpenFlights
22

 data) have been retrieved. The final database for the base year 2012 includes OD city pairs, socio-

economic indicators (city GDP, city population), geographical coordinates, great circle distances between OD cities 

and average airfare between these cities. Various socio-economic scenarios could be used as alternative inputs for 

forecasting air passenger demand. These scenarios contain annual data for GDP, population on city level and oil 

price in a given period of time. 

V. Method 

This paper presents a concept to forecast the evolution of the air travel passenger demand between cities based 

on socio-economic scenarios, taking into consideration the probability of changes to the number of the origin-

destination demand connections within the ATS over time. In other words, the proposed concept forecasts passenger 

demand as well as topology changes of the ‘air passenger demand network’, within the forecast period. The method 

computes air passenger demand at any given point of time within the forecast period. Within this study the demand 

forecasting model considers realized undirected air passenger demand.  

The method has two steps: forecasting the topology of the origin-destination demand network and calculating 

demand on existing and new connections. The first step of the method, determines whether the demand connection 

between a given city pair exists or not. This is done by implementing a weighted similarity-based algorithm. The 

weight is represented by a combination of socio-economic information of cities in pairs, and the distance between 

them. The second step of the method, based on the existence of air passenger demand between cities, seeks to 

forecast the realized air passenger demand between these cities.  

 
 

The method computes realized air passenger demand using a quantitative analogies method that takes into 

account the socio-economic indicators of cities, the airfare information and geographical characteristics of given 

city-pairs, at a given forecast period and for the base year (where all the required information about cities and the 

connections is known). Next, the obtained number of passengers is calibrated by feedback information from routes, 

aircraft movements and trajectory levels (see Fig. 3).  

Figure 3: Set of models for forecasting the future ATS 
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For defining air passenger demand between cities in the demand network for one discrete "slice" of a socio-

economic scenario, a two-stage method has been proposed: city-pairs definition and air passenger demand on city-

pairs definition.  

A. Topology forecast 

 The socio-economic characteristics of the cities change throughout the duration of the scenario. Therefore, the 

original demand network topology transforms as a result of new air passenger demand connections appearing and 

disappearing. These changes to the network topology must be taken into account when determining the air passenger 

demand between cities. Furthermore, the number of cities with airports will change throughout the duration of the 

scenario. A city is added (eliminated) to (from) the demand network when an airport in a city is appearing 

(disappearing) which did not have an airport before.  A city is eliminated from the demand network when an airport 

in a city is disappearing so that it has no airport anymore. The basic structure of the topology forecast is shown at 

Fig. 4. 

 

 
Air passenger demand could be described as a network where cities are represented as nodes and city pairs as 

edges. Thus, the problem of forecasting the potential of OD demand between city-pairs turns to link prediction 

between nodes in a given year of a socio-economic scenario. Many studies of network theory have been dedicated to 

link prediction, and these methods can be applied to model the evolution of the network.  Commonly used methods 

to predict links are similarity-based algorithms
23

 (e.g. Adamic-Adar similarity based algorithm
24

, resource allocation 

similarity-based algorithms
25

, etc.).  Within these algorithms a score is assigned to each pair of nodes. The score is 

directly defined as the similarity between these nodes
‡‡

. Links are ordered in descending order by their scores. The 

probability of link existence is high when the score is at the top of the ranking list. There are two groups of 

similarities: structural similarity and node attribute similarity. Structural similarity takes into account only network 

structure, while nodes similarity is based only on nodes attributes. Although, most algorithms have been developed 

for structural similarities because of a lack of node attributes. Using external information as the node attributes, the 

performance of these algorithms can be enhanced
21

. In addition, as shown by Zheleva et al
26

, the combination of 

network structure, node attributes, and node community features improve link prediction performance. Based on the 

above, the similarity based algorithms assign scores to all non-observed links utilizing node attributes and rank these 

scores within communities and between community pairs. In addition, it is important to take into account the 

possibility of links disappearing from the network. It is assumed that ranked existing links with a lower score, in a 

given year, are eliminated from the network. 

In the case of OD city-pairs, the topology of the network and the attributes including city GDP, population, 

distance and average airfare between them are known for the base year 2012. Thus, for predicting new links in the 

OD network it is possible to utilize a weighted similarity based algorithm
27

. Such an approach takes into account not 

                                                           
‡‡ Similarity theorem,  introduced by Lin in “An Information-Theoretic Definition of Similarity” (1998), states: the similarity between A and B is 

measured by the ratio between the amount of information needed to state the commonality of A and B and the information needed to fully 
describe what A and B are. In other words, two objects are similar to each other if they have many features in common.  

 

Figure 4: Topology forecast structure 
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only network topology configuration, but the weights of links. These weights could be defined utilizing node 

attributes. To incorporate communities, set of cities are divided to groups with similar socio-economic indicators.  

Thus, for calculating OD air passenger demand network topology, nodes (cities), edges (OD city-pairs), weights 

(set of socio-economic indicators) and city communities are considered. For each year of the forecast new links are 

consistently added to the network and old links are eliminated from the network based on the given scenario. Thus, 

network evolution forecast is a sequential stepwise approach from the base year to the forecast horizon. Based on 

city attributes, network configuration and communities of the cities, the presented method allows forecasting of air 

passenger demand network topology according to a socio-economic scenario within the forecast period.  

B. Passenger forecast  

The forecast of origin-destination air passenger demand between global city pairs consists of a sequential set of 

discrete "slices" at the time scale up to the forecast horizon. When demand network topology is determined for the 

forecast period, the number of air passengers on city pairs has to be defined. Based on the assumptions in the study, 

the passenger number on a given city pair in the base year is determined by the set of socio-economic indicators of 

these cities and by ATS-specific information (e.g. travel time, aircraft movements). Thus, estimation of the number 

of air travel passengers on city-pairs has two steps: first, the defining of the number of passengers based on socio-

economic indicators and, second, the recalculation of the number of passengers, based on ATS-specific feedback 

information (Fig. 6). 

 

 
In the first step, it is possible to obtain the number of passengers on a given city pair in a given year by searching 

for the closest set of conditions of a city pair in the base year. In other words, the number of passengers is defined 

using quantitative analogies (QA) between cross sectional data of a given year and the base year. The mathematical 

interpretation of calculating the shortest distance between city pairs in a forecast year and city-pairs in the base year 

is presented as follows:  

 

min1≤𝑦≤𝑚 𝑑 (𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ +(𝑥𝑛 − 𝑦𝑛)2  (1) 

 

Where 𝑥𝑛 represents the condition n of city pair x in a given year within the forecast period, 𝑦𝑛 represents condition 

n of city pair y in the base year, and m is the number of connections in the base year. Next, these passenger numbers 

are passed onto the next model in the chain (routes, aircraft movements and trajectories forecasting). Feedback 

information from these models (e.g. number of transfers between origin-destination cities) is then taken into account 

to recalculate the number of passengers on OD city pairs. Using this method, the number of passengers is obtained 

on every demand connection within a forecast period.  

VI. Preliminary results 

For preliminary calculations Randers socio-economic scenario
28

 from 2012 to 2050, with time slices every 5 

years since 2015, is used. Based on cities obtained from the ADI database for the base year 2012, this scenario is 

decomposed from region level to city level. The obtained datasets contain information of realized undirected 

demand at city level. The number of cities is constant within the forecast period and contains 4,435 cities from the 

base year. The conditions taken into account in the study are socio-economic indicators (city GDP, population, oil 

price, etc.) as well as ATS specific indicators (average air fare, travel time, frequency and number of stops for 

example). All economic indicators within the study are adjusted to 2005 USD dollars.  

The first step is to investigate communities of cities in the set of cities from the base year. Due to this need, 

clustering of these cities is made to allocate them into groups by similar characteristics. Thus, for the base year, 

using the normal mixture approach, a clusterization to nine clusters by city populations, city GDP and GDP per 

 

Figure 6: Two step iterative process on estimation number of passengers on a city pairs  
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capita has been conducted. Nine clusters cover ‘small’, ‘middle’ and ‘big’ cities by populations and ‘poor’, ‘middle 

class’ and ‘rich’ cities by GDP. Tab. 1 reflects the number of cities in each cluster and cluster means (cluster 

centers). For the purposes of the study, cluster names derived from cluster means (of population and per capita 

GDP) were adopted. 

 

 
Over the forecast period, the socio-economic indicators of the cities change. These changes affect the probability 

of membership of a given city to a certain clusters. This process reveals the changes over time of city distributions 

within the clusters. It is assumed that during the forecast period, cluster centers remain fixed as in the base year and 

do not change. Thus, this study introduces ‘cluster dynamics’. Cluster dynamics is a method of calculating the 

probability that a given element (city) will appear within a given cluster at a given point in time. This method is how 

the cities are allocated to the various clusters in any given forecast year based on socio-economic indicators of cities. 

Utilizing the Randers scenario, the number of cities in each cluster within the forecast period from 2015 to 2050 

have been obtained (see Fig. 5).  

 

 
For connection predictions within the preliminary calculation, only city attributes have thus far been considered. 

Based on the obtained data, city attributes are: GDP, population, geographical coordinates. The data for forecasting 

GDP and population were obtained from Randers scenario. The geographical coordinates are used from the obtained 

database of the base year (see chapter 3). For the average airfare between cities, a simplified model has been 

  Cluster mean 
  

Cluster Count Proportion Population GDP, $ GDP p/c, $ Size Wealth 

1 1453 0.32191 8,519 3.07E+08 37,134 Very small  Rich 

2 1055 0.22774 47,009 3.79E+08 7,728 Small Poor 

3 108 0.02487 824,546 2.71E+10 33,219 Big Rich 

4 417 0.09684 307,440 3.74E+09 12,066 Middle  Middle 

5 76 0.01748 5,394,129 7.74E+10 19,767 Megacities  

6 565 0.13312 82,789 2.97E+09 37,009 Small Rich 

7 238 0.05451 1,493,548 1.16E+10 8,032 Big Poor 

8 207 0.04738 278,644 9.73E+09 35,546 Middle  Rich 

9 316 0.07615 369,339 1.1E+09 2,743 Middle  Poor  

Table 1: Clusters centers and cities distribution among clusters. GDP and GDP per capita indicated 

here in constant 2005 US dollars. 

 

 
 Figure 5: Cluster dynamics based on Randers scenario 



 

 

American Institute of Aeronautics and Astronautics 
 

 

9 

adopted, as shown by Ghosh
4
. The model utilizes parameters as oil price from a scenario

§§
 and great circle distance 

between cities based on their geographical coordinates.  

For connection predictions Newton’s gravity model has been adopted to define attractiveness between cities in 

pairs. Equation (2) presents dependence between two masses reduced by distance between them. 

 

𝐹𝑖𝑗 =
𝑚𝑖∗𝑚𝑗

𝑟𝑖𝑗
2 ∗ 𝐺 (2) 

 

Where 𝐹𝑖𝑗 represents force between masses i and j; 𝑚𝑖  and  𝑚𝑗  represent masses of i and j consequently; 𝑟𝑖𝑗  

represents distance between i and j. 𝐺 is the gravitational constant. In case of city pairs within the preliminary 

calculation, this gravitational constant assumed to be 1 for every city pair. Based on Eq. (2), attractiveness between 

cities is presented through the adapted gravity model (see Eq.3). 

 

𝐴𝑖𝑗 =
𝐺𝐷𝑃𝑖∗𝑃𝑜𝑝𝑖∗𝐺𝐷𝑃𝑗∗𝑃𝑜𝑝𝑗

(𝑑𝑖𝑗∗𝐴𝑖𝑟𝐹𝑎𝑟𝑒𝑖𝑗)2   (3) 

 

Masses of cities i and j are presented as a ratio of multiplication of their GDP and population and are then 

divided by square of great circle distance between them weighed by average air fare on this connection. This simple 

model provides a score for every connection within the cluster pairs. For every time slice in the study, scores for all 

possible connections (9,832,395 connections in one slice) have been obtained. These connections have been 

allocated in descending order within 45 cluster pairs, based on city memberships within the clusters. As a boundary 

condition assumptions within this preliminary calculation, a quantile of 0.975 has been adopted. In other words, 

2.5% new connections with the highest scores are adding to the network. The quantile of 0.975 has been retrieved 

from the base year and seems reasonable for preliminary calculations. However, additional research on boundaries 

must be conducted.  

 For every cluster pair, quantiles have been obtained from the ordered score lists of each cluster pair in the base 

year 2012. Thus, for all periods of the forecast, each cluster pair has fixed boundary conditions.  

 

 
Preliminary topology forecasting has been made for each 5-year time slice. The number of connections is shown 

in Fig. 6. Between 2012 and 2015, a rapid growth in connection numbers can be observed. The reason for this jump 

can be explained as follows. Firstly, here, the network topology has not yet been considered. Connections were 

predicted based solely on city attributes and their attractiveness, and the weighed similarity algorithm has not been 

applied. Secondly, the minimum distance between cities has not yet been set. This causes the appearance of 

connections between geographically proximate cities. Finally, this preliminary algorithm did not take into account 

the possibility of eliminating links from the network. The topology forecasting results will be refined in the future 

taken into account above reasons. However, despite these, the trend of forecasted connections is close to the 

historical data. 

                                                           
§§

 Randers forecast does not include future oil prices. The Randers forecast in terms of population and GDP is the closest to the “security first” 

scenario by Hughes and Hillebrand described in their book “Exploring and Shaping International Futures” (2006). This scenario includes future 
oil prices. Thus, in preliminary calculations oil prices from the “security first” scenario have been used.  

Figure 6: Number of connections in the air passenger demand network based on Randers scenario 
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 For calculating the number of passengers on obtained connections, the quantitative analogies approach has been 

used. Within preliminary calculations, a reliability analysis of the approach has been made. For this analysis, data 

from the base 2012 are used. The dataset has been divided into the main and test sets. Among 535,134 city-pairs, 50 

connections have been extracted as the test set. As discussed above, a QA approach searches for the minimum 

distance for a given connection in the forecasted year, and all known connections in the base year. For calculating 

this distance Eq. (1) has been adapted to: 

 

𝑑(𝑥, 𝑦) = √(𝐺𝐷𝑃𝑖𝑥 − 𝐺𝐷𝑃𝑚𝑦)
2
+(𝐺𝐷𝑃𝑗𝑥 − 𝐺𝐷𝑃𝑛𝑦)

2
+ (𝑃𝑜𝑝𝑖𝑥 − 𝑃𝑜𝑝𝑚𝑦)

2
+ (𝑃𝑜𝑝𝑗𝑥 − 𝑃𝑜𝑝𝑛𝑦)2 + (𝐴𝐹𝑥 − 𝐴𝐹𝑦)2+(𝐺𝐶𝐷𝑥 − 𝐺𝐶𝐷𝑦)2  (4)  

 

Where i and j are cities in the forecasted year in city pair x; m and n are cities in the base year of city pair y; GDP 

is gross domestic product of a city; Pop is population of a city; AF is average airfare on city pair; GCD is great circle 

distance between cities in pairs.  

The method has been checked versus existing connections, but did not take into account passenger number 

calculations on new, previously non-existing, connections. Within the preliminary calculations it is assumed that the 

number of passengers on a city-pair in a forecast year has to be in an interval +/- the number of passengers in the 

previous year on the same connection. Based on these assumptions, this examination showed R
2
 of 0.87 (see Fig. 7). 

Although imposed boundaries are narrow and require additional study, the method will be pursued for forecasting 

the number of passengers. 

  

 

VII. Conclusion 

The introduced concept of forecasting origin-destination air travel passenger demand is unique among other 

forecast models. The concept presented above introduces new categorizations that distinguish realized and 

unrealized air passenger demand. The proposed method to forecast topology changes utilizing a stepwise approach, 

from the base year to the forecast horizon, combines two groups of link prediction: one based on nodes attributes 

and one on topology configuration. In addition, communities of nodes have been investigated using clusterization 

based on socio-economic indicators. For passenger calculations on the predicted connections a quantitative 

analogies approach has been introduced. Preliminary calculations have yielded promising results.  

The method requires further development. Topology forecasting requires additional research and the application 

of weighted similarity-based algorithms. Currently, few such algorithms exist and it is necessary to determine which 

one is appropriate for air passenger demand network topology forecasting. In addition, criteria for adding and 

eliminating connections from/to the network require further study. For passenger forecasting, passenger numbers on 

 
Figure 7: Number of connections in the air passenger demand network based on Randers scenario 
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previously non-existing connections must be taken into account. Boundary conditions for passenger number 

calculations require further investigation. 

This concept is a valuable resource for air transportation system research. Within the modular environment 

AIRCAST, the concept aims to provide a valuable foundation for those wishing to perform a wide range of systems 

analyses e.g. market development, technology assessment and the behavior of air transportation system itself. 
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