
I 

A CONCEPT OF THE VORTEX LIFT OF 

SHARP-EDGE DELTA WINGS BASED O N  

A LEADING-EDGE-SUCTION ANALOGY 



TECH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALIBRARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKAFB, NM 

OL3042b 

NASA T N  D-3767 

A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS 

BASED ON A LEADING-EDGE-SUCTION ANALOGY 

By Edward C. Polhamus 

Langley Resea rch  Center  

Langley Station, Hampton, Va. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 

Springfield, Virginia 22151 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Price $1.00 



A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS 

BASED ON A LEADING-EDGE-SUCTION ANALOGY 

By Edward zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC .  Polhamus 

Langley Research Center 

SUMMARY 

A concept for  the calculation of the vortex lift of sharp-edge delta wings is pre

sented and compared with experimental data. The concept is based on an analogy between 

the vortex lift and the leading-edge suction associated with the potential flow about the 

leading edge. This concept, when combined with potential-flow theory modified to include 

the nonlinearities associated with the exact boundary condition and the loss of the lift 

component of the leading-edge suction, provides excellent prediction of the total lift for  

a wide range of delta wings up to angles of attack of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20° o r  greater.  

INTRODUCTION 

The aerodynamic characteristics of thin sharp-edge delta wings are of interest  for 

supersonic aircraft  and have been the subject of theoretical and experimental studies for 

many years  in both the subsonic and supersonic speed ranges. Of particular interest at 

subsonic speeds has been the formation and influence of the leading-edge separation vor

tex that occurs on wings having sharp, highly swept leading edges. In general, this vor

tex flow results in an increase in lift associated with the upper-surface pressures  induced 

by the vortex and an increase in drag resulting from the loss of leading-edge suction. 

Although, in general, it is desirable to avoid the formation of the separation vortex 

because of the high drag, it is sometimes considered as a means of counteracting, to  

some extent, the adverse effect of the low lift-curve slope of delta wings with regard to 

the landing attitude. 

In recent years,  the interest in the vortex flows associated with thin delta and delta-

related wings has increased considerably as a result of the supersonic commercial air 

transport programs that are underway both in this country and abroad. Even though sev

eral theoretical methods of predicting the effects of separation vortex flows on the lift of 

delta wings have been developed, there appears to be no completely satisfactory method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-
especially when angles of attack and aspect ratios of practical interest  are considered. 

The purpose of the present paper, therefore, is to present a concept with regard to vortex 

flow which appears to  circumvent the problems encountered in the previous methods, In 
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this concept, the pressures  required to maintain the flow about the leading-edge vortex 

are related to those required to maintain potential flow about the leading edge. 

SYMBOLS 

A wing aspect ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb2/S 

b wing span 

cDi theoretical induced-drag coefficient 

CL total lift coefficient, CL,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ CL,v 

cL,P 
lift coefficient determined by linearized potential-flow theory (present 

application does not include leading-edge- suction component) 

CL,V lift coefficient associated with leading- edge separation vortex 

cN,P 
normal-force coefficient determined by linearized potential-flow theory 

cN, v normal-force coefficient associated with leading-edge separation vortex 

cP 
upper -surf ace pres  sure  coefficient 

CS leading- edge suction coefficient (in plane of wing and perpendicular to 

leading edge) 

CT leading- edge thrust coefficient (in plane of wing and parallel to flight direction) 

Ki 
induced- drag parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 CDi/k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

KP 
constant of proportionality in  potential-flow l i f t  equation 

KV constant of proportionality in vortex lift equation 

L lift 

N normal force 

S wing area  

T thrust force (in plane of wing and parallel to flight direction) 

V velocity in flight direction 

wi average downwash velocity induced by trailing vortex sheet (perpendicular to 

wing chord) 
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(Y angle of attack 

r total effective circulation 

A leading-edge sweep angle 

P mass  density of air 

DISCUSSION AND RESULTS 

1 

Nonlinear Lift Characteristics 

Wind-tunnel studies of sharp-leading-edge delta wings have shown that even at rela

tively low angles of attack the flow separates from the leading edges and rolls up into two 

vortex sheets or cone-shaped cores  of rotating fluid, as illustrated in figure 1. Flow 

attachment lines have been observed inboard of the 

vortex sheets and indicate that air is drawn over 

the vortex sheets and accelerated downward. An &%zhment\..increase in lift at a given angle of attack results and y-
l ines  

it is this increase that is usually referred to as non- ::::i sheet  
linear or  vortex lift.  Many flow visualization photo 

graphs have been obtained by various researchers  Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.- I l lustrat ion of vortex flow.  

which substantiate the general nature of the flow  

illustrated by the sketch in figure 1. One such photograph, obtained from wind-tunnel  

tests (ref. l),is shown in figure 2(a) and illustrates, by means of smoke filaments, the  

spiral  vortex flow associated with a 60° delta wing at an angle of attack of 12O. This  

spiral  vortex flow has also been observed in flight, as illustrated by the photograph of a  

landing of the XB-70 airplane (fig. 2(b)). The flow was made visible by condensation due  

to  the humidity of the atmosphere.  

(a) Wind tunne l  (from ref. 1). (b) Flight. 

Figure 2.- Photographs i l lustrat ing spiral vortex flow. L-666-7621 
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The vortex flow not only increases the l i f t  but changes 

the distribution of lift rather drastically, as illustrated in fig

u re  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 where typical measured spanwise pressure distributions 

at one longitudinal station are compared with distributions 

calculated from potential-flow theory (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, for example). 

(Complete surface pressure distributions can be obtained from 

refs. 3, 4, and 5.) Because of the flow separation at the sharp 

leading edge, the pressure peaks at the leading edges pre

dieted by potential-flow theory are not developed, but peaks ? 

a r e  developed inboard of the leading edges due to the separated
Figure 3.- Theoretical and experi

mental pressure distributions. vortex sheets. 

Previous Methods 

Many methods have been developed for estimating the effect of the separated vortex 

sheets with varying degrees of success. For the purpose of this study, most of the pre

vious methods for delta wings can be separated into the two general approaches illustrated 

in figure 4. The first general approach follows the work of Bollay for rectangular wings 

(ref. 6) and assumes that the vorticity shed ahead of the trailing edge is displaced at an 

angle, relative to  the flight direction, equal to one-half the angle of attack. This displace

ment reduces the downwash induced at the wing surface and thereby requires additional 

circulation in order to maintain the boundary condition of tangential flow at the wing sur

face. The application to arbitrary planform wings has been carried out by Gersten 

(ref. 7) who replaced the wing with infinitesimal lifting elements, applied Bollay's mathe

matical model to each lifting element, and solved for the surface load distribution required 

to satisfy the boundary condition by using the method of Truckenbrodt (ref. 8). The second 

general approach replaces the two spiral vortex sheets with two concentrated line vortices 

above the wing and two feeding vortex sheets connecting the leading edge (source of the 

vorticity) and the line vortices. Several degrees of approximation to the shape of the real 

Gersten 

Figure 4.- Theoretical approaches to vortex-flow calculations. 
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spiral  vortex sheets within this general approach have been made. Brown and Michael 

(ref. 9), for example, use isolated vortices and planar feeding sheets. Mangler and 

Smith (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10) have improved on this model by a calculation of an approximate form of 

the vortex sheet between the wing leading edge and a point not too distant from the center 

of the spiral. 

The results obtained from the aforementioned methods are compared in  figure 5, 
where the total l i f t  coefficient fo r  an angle of attack of 15O is presented as a function of 

aspect ratio. In addition, the experimental values for sharp-leading-edge delta wings 

(obtained from refs. 4 and 11 to 14) are presented to assist in evaluating the various 

theoretical methods. It is, of course, recognized that several of the methods assume low 

angles of attack and are based on slender-body theory. However, inasmuch as this paper 

is concerned primarily with the prediction of the lift at the relatively high angles of attack 

encountered during the landing of supersonic vehicles, an angle of attack of 15' was 

selected for the comparisons. The correlation is presented as a function of aspect ratio 

in order to enable an evaluation in the not-so-slender-wing range of interest for vehicles 

designed to cruise at Mach numbers of 3.0 o r  less.  As might be expected, the theory of 

Gersten (solid-line curve) results in the best correlation with regard to the variation with 

aspect ratio since it is not limited to slender wings. However, Gersten's method predicts 

only about one-half the actual vortex lift for the conditions of interest in this study. The 

approach of Brown and Michael, although more representative of the actual vortex flow 

conditions than the Gersten approach, gives extremely high values of vortex lift even in 

the low-aspect-ratio range for which the slender-wing theory should be most applicable. 

A correction to the linear part to account for nonslender effects would result in only small 

improvements. The method of Mangler and 

Smith provides the most realistic flow model and 

results in considerable improvement over the 

method of Brown and Michael, particularly in the 

low-aspect-ratio range where the slender-body 

theory is most applicable. However, for aspect 

ratios above about 0.7, this method departs 

rather rapidly from the experimental values and 

is not appropriate for the present application. 

There have been several recent attempts 

to improve on these methods. Pershing 

(ref. 15) has attempted to account for the second

ary  vortex system by modifying the boundary 

conditions; however, this method departs radi

cally from experiment at low aspect ratios 

despite the fact that slender-body techniques are 

1.0  

Brown and //' /Mangler and 
Michael 

-v ,' Smi th  
.8 

.6 

CL 

0 .5 1.0 1.5 2.0 
A 

Figure 5.- Comparison of experiment w i th  resul ts 
determined by previous theories. a = 15'. 
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used. Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 describes some preliminary studies of a theoretical approach, 

requiring a high-speed computer, in which vortices shed from the leading edge a r e  

allowed to interact and roll up. This general approach might ultimately provide a method 

of predicting details of the flow; however, in the initial application described in refer

ence 16, this theory appears to depart from experiment to a degree similar to that of 

reference 10. 

Present Method 

The present approach assumes that if  flow reattachment occurs on the upper sur- B 

face the total l i f t  can be calculated as the sum of a potential-flow lift and a lift associated 

with the existence of the separated leading-edge spiral vortices. First, the potential-

flow l i f t  will be examined with regard to the effect of high angles of attack and modified 

leading-edge conditions. Then, the vortex lift will be determined by a method in which 

the vortex flow is assumed to be related to the potential flow about the leading edge. 

Potential lift.- Inasmuch as potential-flow theory is usually presented in a form 

applicable only for  wings at low angles of attack, the development of the theory in a form 

more applicable for the high angles of attack of interest  in the present study will be used. 

In addition, the potential-flow theory must be modified for application to the leading-edge 

separation condition for the sharp-edge delta wings considered in this paper, In order to 

account for the leading-edge separation, a Kutta type flow condition is assumed to exist 

at the sharp leading edge and, therefore, no leading-edge suction can be developed. It is 

further assumed, since the flow reattaches downstream of the separation vortex, that the 

potential-flow lift is diminished only by the loss of the lift component of the leading-edge 

suction. Although, logically, the loss of the l i f t  component of the leading-edge suction 

should be charged to the vortex-lift term, it is more convenient in the present concept to 

consider this loss as a modification to the potential-lift term. For the condition of zero 

leading-edge suction, the resultant force (neglecting friction drag) for the planar wings is 

perpendicular to the wing chord and is equal to the potential-flow normal force. The 

potential-flow lift coefficient for the zero-leading-edge- suction condition is given by 

The normal force can be determined by applying the Kutta-Joukowski theorem using the 

velocity component parallel to the wing chord; thus, 

N = pr’b(V COS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0;) 

where is a.total effective circulation. The distribution of circulation in the lifting 

system is determined by satisfying the boundary condition which requires that the veloc

ity normal to the chord plane induced by the total vortex system be equal to V sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! at 

points on the wing planform. The total effective circulation can then be written as 

6  
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r = K p zsv sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! (3) 

Since, for the wings of interest herein, departures of the potential-flow vortex system 

from the wing plane and its extension would be expected to  have negligible effect on r, 
it is assumed that Kp depends only on planform. Substituting equation (3) into equa

tion (2) and reducing the normal force to coefficient form results in  

CN,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Kp sin a! cos a! (4) 

f  
The potential-flow l i f t  coefficient for  the condition of zero leading-edge suction1 can now 

be determined by substituting the expression for  
CN , ~

(eq. (4)) into equation (1);thus, 

. c L , ~= K~ sin a! COS^^! (5) 

Since Kp depends only on planform and equation (5) reduces to C L , ~= Kpa! for small 

angles of attack, it is apparent that Kp 
is equal to the lift-curve slope given by small-

angle theory and can therefore be determined from any suitable lifting-surface theory. 

In this paper, Kp is determined by a modification' of the Multhopp lifting-surface theory 

of reference 17. The variation of Kp with aspect ratio is presented in figure 6.  

Vortex lift.- The major problem associated 

with the prediction of the l i f t  of sharp-edge delta 

wings is, of course, the calculation of the so-called 

vortex lift associated with the leading-edge

separation spiral vortex. This problem arises pri-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKp 

marily from the difficulty in determining with suffi- 2 

cient accuracy the strength, shape, and position of 

the spiral vortex sheet and it is in this a rea  that the 
1~

present method differs from previous approaches. 

In the present method an attempt to avoid the 

various problems associated with the calculation of 0 1 2 
I

3 4 
A

the strength, shape, and position of the spiral vor- Fiaure 6.-. Variation of $ with A for delta wings.~ 

'

tex sheet is made by relating the force required to  

maintain the equilibrium of the flow over the separated spiral vortex (provided that the  

flow reattaches on the upper surface) with the force associated with the theoretical  

leading-edge singularity for thin wings in potential flow. Figure 7 shows pictorial  
1  

sketches, in a plane normal to the leading edge, of the potential flow about a sharp leading 

edge and a round leading edge and the separated vortex flow about a sharp leading edge. 

1For full leading-edge suction, the nonlinear effects in potential-flow theory can be determined from L = p n ( V  - W i  sin o$, 
where r is obtained from equation (3) and wi sin a accounts for the reduction of the relative velocity in the flight direction due 

to the inclined vortex system. 

2The modifications to the Multhopp theory include the extension to higher order chordwise loading te rms  as developed by 

Van Spiegel and Wouters (ref. 18) and refinements in the numerical integration procedure developed by John E. Lamar of the 

Langley Research Center. 
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For the attached flow condition, the flow ahead of the lower-surface stagnation point 

flows forward and is accelerated around the leading edge to the top surface. The pres

sure  required to balance the centrifugal force created by the flow about the leading edge 

results, of course, in  the leading-edge suction force. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the leading-edge radius is 

increased, the potential-flow suction force remains essentially constant since the suction 

pressures  vary inversely as the leading-edge radius. (See ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.) As shown in  the 

sketch representing the separated flow about the sharp leading edge (fig. 7(c)), the flow 

ahead of the stagnation point flows forward but separates from the wing as it leaves the 

leading edge tangentially and rolls up into the previously discussed spiral  vortex sheet. 

(See fig. 1.) Air is drawn over this vortex sheet and accelerated downward to an upper-

surface flow attachment line. Since the flow over the vortex sheet reattaches, the basic 

assumption of the present method is that the total force on the wing associated with the 

pressures  required to maintain the equilibrium of the flow over the separated spiral  vor

tex sheet is essentially the same as the leading-edge suction force associated with the 

leading-edge pressures  required to maintain attached flow around a large leading-edge 

radius. The flow pattern in both cases would be somewhat similar, as indicated by com

paring figures 7(b) and 7(c); however, f o r  the sharp-leading-edge condition, the force 

acting on the wing will act primarily over the upper surface rather than on the leading 

edge. Therefore, a normal force occurs which is equal to the theoretical leading-edge 

suction force. (See fig. 7(c).) Since the theoretical leading-edge suction force is essen

tially independent of leading-edge radius, the normal force associated with the separated 

spiral  vortex sheet should be equivalent to the leading-edge suction force as predicted by 

an appropriate thin-wing lifting-surface theory. (It must be kept in  mind that this force 

is the resultant perpendicular to the leading edge and not that component parallel to the 

flight direction.) Both suction forces are in  the wing chord plane, and the component in 

the flight direction will be referred to as the leading-edge thrust coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT and the 

resultant suction force perpendicular to the leading edge will be referred to as the 

leading-edge suction coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACs. (See fig. 8.) 

(a) Potential flow 1(sharp edge). 

(b) Potential flow 
( round edge). 

I 

Attachment Spiral 

(c) Separated flow 
(sharp edge). 

Figure 8.- Relationship between 
Figure 7.- Leading-edge flow conditions. CT and Cs. 
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Based on the concept of this paper, the resultant suction force is rotated into a 

direction normal to the wing chord plane and therefore the normal-force coefficient 

associated with the leading-edge vortex is given by 

The l i f t  coefficient can then be given by 

cos CY 
cL,v = cN,v cos CY = cT 

The problem now reduces to the determination of the thrust coefficient associated with 

potential flow around the leading edge. By applying the Kutta-Joukowski theorem using 

velocity components normal to the wing chord plane, the leading-edge thrust is given by 

T = pr"b(V sin CY - Wi) (7) 

where wi  is an effective downwash velocity induced normal to the chord by the trailing 

vortex system. The magnitude of wi is that which will act on the total effective circula

tion r to produce the same induced drag as the actual distributed wake-induced velocity 

acting on the distributed lifting vortex system. The total effective circulation r is given 

by equation (3) and upon substitution into equation (7) yields, in coefficient form, 

wiCT = (1 -
V sin CY

kpsinza! 

Since wi is proportional to r, which in turn is proportional to V sin CY by virtue of 

the boundary condition, then it follows that wi/V sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo! is independent of angle of attack. 

Therefore, by use of the induced-drag relationships of small-angle theory, it can be shown 

that 

wi = KpKi (9)
V sin CY 

where Ki =-aCDi 

acL2' 

Substitution of equation (9) into equation (8) gives 

CT = (Kp - Kp2Ki)sin2a (10) 

and with the aid of equation (6) 

c ~ , ~  cos A sin%= ( K ~- K ~ ~ K ~ E  

The constant Ki can be determined from any reliable lifting-surface theory, and the 

modified Multhopp theory described ear l ier  will be used in  this  paper. 
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Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11) can be rewritten in  the form 

C L , ~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Kv cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! sin2a! 
(12) 

where 

~v = ( ~ p  1- K p 2 K i ) a  
(13) 

Values of Kv have been calculated for a ser ies  of delta wings by using the lifting-surface 

theory previously described and the results are presented in  figure 9. The value of Kv 

increases slightly from a value of 3.14 for an aspect ratio of 0 to a value of about 3.45 for  

an aspect ratio of 4. It should not be concluded from these results that this variation of 

Kv with aspect ratio is a general result. For example, if the leading-edge sweep is held 

constant and aspect ratio varied by changing the trailing-edge sweep (such as in arrow 

and diamond wings), larger  variations of Kv will be encountered. 

r 

1; 

KV 

0 1  2 3 

A 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.- Variation of Kv w i th  A f o r  

sharp-edge delta wings. 

L i f t  
coeff . 

V 

a 

4 

~ 

(14) 

where the constants Kp and Ki can be deter

mined from an appropriate lifting-surface theory. 

The total lift coefficient can also be determined 

from 

CL = Kp sin cy cos2a! + Kv cos cy sin2a! (15) 

where the constants Kp and Kv a re  obtained 

from figures 6 and 9, respectively. Figure 10 

illustrates the contribution of the various effects 

when leading-edge separation is involved. There 

is a reduction in l if t  when the trigonometric term 

in the linear theory is retained, an additional 

reduction due to the loss of the lift component of 

the leading-edge suction, and a large increase 

associated with the vortex induced lift.  

Total lift.- The total l i f t  coefficient for  

delta wings having sharp leading edges can now 

be obtained by the addition of the potential-lift 

term (eq. (5)) and the vortex-lift term (eq. (11)) 

as follows: 

CL = K~ sin a! cosaa! +kp- K~2K cos a!~ sin2a! ) 

Figure 10.- Contr ibut ion of var ious effects. 
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Comparison With Experiment 

In order to evaluate the accuracy of the present method, comparisons have been 

made with available experimental data for sharp-edge delta wings of various aspect 

ratios. The first comparison is presented in figure 11where the lift coefficient devel

oped at an angle of attack of 15O is presented as a function of aspect ratio. This figure 

is essentially the same as figure 5 except that the curve based on the present theory has 

been added. The present theory appears to provide adequate predictions of the l i f t  over 

the entire aspect-ratio range as indicated by the excellent agreement with the wind-tunnel 

measurements. 

1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-
Brown and 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .5 1.0 1.5 2.0 

A 

Figure 11.- Comparison of experiment w i th  resul ts determined 
by present and previous theories. a = 15O. 

In order to evaluate the applicability of the present method more fully, comparisons 

a r e  made as a function of angle of attack for delta wings of various aspect ratios in  fig

ure  12. The angle-of-attack range extends to 25O, which is well beyond the angle usually 

considered as the maximum permissible approach angle of attack; the aspect ratios cover 

the range from 0.5 to 2.0, which includes those delta wings of interest for both supersonic 

and hypersonic vehicles. Excellent agreement is obtained between the present theory and 

the experimental data for all angles of attack up to about 250 except for the aspect-ratio

2.0 wing, which shows some reduction in lift above an angle of attack of about 18O. This 

loss is probably associated with trailing-edge separation, which would be expected to be 

more severe for high aspect ratios because of steeper adverse pressure gradients asso

ciated with the larger  value of the theoretically available potential lift. In addition to the 
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1.4 

1.2  

1.0  

.8 

cL 

.6 

.8 .4 

.6 .2 

CL .4 0 

.2 1.4 
~ D l I I I i /  I lI I 

0 1.2 

1.0 --+---
il I i 1 1  I i I I I I i I I I I i I 1A = 1.0 

.8 
o Ref. 13A D Ref. 12 

cL 

.6  !I '  
1

1 
.4 

.2 

i i
i i
i i  

0 II 
0 5 10 15 20 25 0 5 lo 15 20 

a, deg 

Figure 12.- Comparison of theory with experimental data for sharp-edge delta wings. 
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predicted values of total l i f t  (shown by the solid lines), the potential-flow l i f t  t e rm with 

the l i f t  component of the leading-edge suction removed (eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5)) is presented (dashed 

lines) and it will be noted that at the higher aspect ratios the nonlinearity of this te rm 

becomes rather significant. 

CONCLUDING REMARKS 

From the preceding analysis it appears that the proposed equivalence between the 

vortex lift developed on thin sharp-edge delta wings and the leading-edge suction asso

ciated with the potential-flow leading-edge singularity provides a simple and accurate 

method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof predicting the vortex lift over a wide range of angles of attack and aspect 

ratios. In addition, the analysis indicates that if the nonlinearities in the linearized 

potential-flow theory associated with the exact boundary condition and the loss of the lift 

component of the leading-edge suction are included, the total lift can be estimated accu

rately as the sum of the potential- and vortex-lift estimates. 

This proposed analogy provides a simple method of including all interacting effects 

of such i tems as the wing and wake induced flows along the leading edge which have 

created difficulties in previous methods and should simplify the predictions for other 

planforms such as the double delta. It should be emphasized, however, that a rigorous 

theoretical proof of the concept has not, as yet, been established. Such proof o r  addi

tional experimental checks will be required before this concept can be confidently used 

to predict the lift for planforms other than the conventional delta wings considered in the 

present study. Application of the concept to  pitching moments will probably require 

modification of the chordwise distribution of the potential t e rm as well as an accurate 

prediction of the distribution of the vortex lift. Adequate estimation of the drag due to 

lift should be obtained from the product of the total lift coefficient and the tangent of the 

angle of attack. 

Although the present investigation was limited to low subsonic speeds, it is appar

ent that the leading-edge suction analogy, when applied at supersonic speeds, will pre

dict a reduction in vortex lift with increasing Mach number and a complete elimination 

of vortex l i f t  when the Mach line coincides with the leading edge. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 17, 1966, 

126-13-01-50-23. 
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