
A Conceptual Framework for Semantic Web
Services Development and Deployment

Claus Pahl

Dublin City University, School of Computing
Dublin 9, Ireland

Claus.Pahl@dcu.ie

Abstract. Several extensions of the Web Services Framework have been
proposed. The combination with Semantic Web technologies introduces
a notion of semantics, which can enhance scalability through automa-
tion of service development and deployment. Ontology technology – the
core of the Semantic Web – can be the central building block of this en-
deavour. We present a conceptual framework for ontology-based Web ser-
vice development and deployment. We show how ontologies can integrate
models, languages, infrastructure, and activities within this framework
to support reuse and composition of semantic Web services.

Keywords: Web Services, Semantic Web, ontology technology, conceptual
development and deployment framework.

1 Introduction

Opening the Web for software applications is the objective of the Web Services
Framework WSF [1]. Services are self-contained computational entities, used as
is by service requesters, and made available through the infrastructure provided
by a provider. The focus is on the boundaries of systems and on the interaction
between systems.

A number of shortcomings of the Web Services Framework WSF can be
identified [2–4, 1]. On the structural level, composing services is not part of the
WSF. The description of services is limited to syntactical and type aspects;
no support is provided for functional and non-functional semantical properties.
The combination with the Semantic Web [5], in particular ontology technology
[6, 7], can provide an essential step forward that introduces meaning to Web
services and that provides the foundations to enable a software component-style
composition of services [8, 9].

Previous work on the combination of the Semantic Web and Web Services
has often focussed on modelling and language aspects [2, 3]. More architecture-
oriented treatments have neglected the semantical aspects [1]. Here, our aim is to
identify the central aspects of a conceptual framework for semantic Web services
architectures [10]. We address models, languages, infrastructure, and stakeholder
activities – and illustrate the integrating role that ontology technology can play

in this endeavour. Such a framework can form the underlying foundation of a
methodology for semantic Web services development and deployment. It provides
a taxonomy for a Web services development and deployment platform. A major
aim of the framework is to link models, languages, infrastructure, and activities.
The conceptual framework results from an analysis of our own language-oriented
work [11, 12], but also related work on semantic Web services and Web services
infrastructures such as [13, 14, 2, 15–17, 3, 18–20, 4, 21–23, 10]. We aim to capture
these in a generic conceptual framework.

In our framework, particular models for services are essential and need to
be prescribed. This is a clear deviation from the WSF focus on interfaces and
interactions. Our notion of a Web services architecture is connected to a different
style of service development and deployment than anticipated by the WSF –
based on principles such as composition and reuse and a notion of services as
processes.

Automation of stakeholder activities in a shared and distributed environment,
such as the discovery and selection of suitable services for a requester, requires a
new distributed type of development and deployment methodology in the Web
services environment based on joint activities, sharing knowledge and artefacts,
and reuse – supported by a distributed architecture geared towards this purpose.

In Section 2, we outline the basics of Web services and introduce the ratio-
nale behind our conceptual framework. In Section 3, we investigate model and
language aspects of a conceptual framework for Web services. Infrastructure and
activity aspects of the framework are subject of Section 4. We end with some
conclusions.

2 Web Services

Our objective is to introduce a conceptual Web services framework support-
ing semantic service reuse and composition. We propose ontology technology as
a means to integrate successful techniques used in WSF extensions – domain
modelling [3] or design-by-contract [2] – into a coherent framework.

2.1 A Conceptual Framework for Service-oriented Architectures

The Web Services Architecture WSA [1] defines ”a Web service [as] a software
system identified by a URI, whose public interfaces are defined and described
using XML. Other systems may interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by Internet
protocols.” A wider scope of the service notion includes distributed object – or
Web-mediated – services, i.e. software agents providing the service functionality
that are not necessarily part of the Web environment themselves1.

Services in service-oriented architectures (SOA) are coherent collections of
operations described in an interface and provided to a user. Often a service is
1 This would allow us to see the WSF as a meta- or interoperability framework between

middleware platforms.

seen as an abstract notion that must be implemented by a concrete agent [1].
There are consequently two aspects of services:

– The internal view. Services provide functionality through operations. These
operations might encapsulate an internal state; their behaviour certainly
needs to be coherent in terms of the service they provide.

– The external view. Two different roles – those of requesters and providers –
are immediately apparent. The interaction between these – either humans
or software agents acting on their behalf – is a central aspect. For instance,
agreement on the service semantics and the mechanisms of message exchange
are vital.

Both the internal and external view need to be looked at in the context of ser-
vice development and deployment. A conceptual framework provides an abstract
model of the development and deployment context that integrates the various
aspects, including underlying conceptual models, languages, development and
deployment infrastructure, and activities of the stakeholders involved:

– Models and Languages. These provide the foundations necessary to model
services as coherent sets of operations. All service aspects relevant for a
potential user need to be captured in abstract descriptions. In public envi-
ronments, representing and sharing knowledge is central.

– Infrastructure and Activities. Specific interactions are required between re-
quester and provider – activities such as discovery of services, composition,
and invocation of service agents. These have to be supported by an adequate
infrastructure consisting of protocols and tools.

The service development and deployment aspects (model, language, infrastruc-
ture, and activity) form the different layers of our conceptual framework – see
Fig. 1.

Service-oriented architectures (SOA) are based on remote procedure calls
RPC, adding a publication and discovery infrastructure. Our framework suggests
an extension of SOAs towards a service-oriented development and deployment
architecture by adding further development infrastructure, e.g. semantics and
composition.

2.2 Semantic Web Services

Different development scenarios for services involving requester and provider can
be imagined: collaborative development of services or provider-based develop-
ment of services with human or automated discovery. In any case, the existence
of requester and provider makes sharing of knowledge about services and their
context necessary.

Often, the automation of development and deployment processes involving
Web services – from the discovery to the final invocation – is seen as the ultimate
goal [3]. The degree of automation in this context determines the scalability of the
framework. A cornerstone of such an endeavour is the support of semantics for

interaction processes
transport
messages

Activities

Infrastructure

Language

Models

external

internal

abstract infrastructure-oriented

transitional interaction processQoS

goals &
behaviour

interaction
patterns

QoS synchronisation &
invocation

lifecycle

ontology transport

composition & development
service

publication, discovery &
matching service

invocation & interaction
service

composition & development
activity

publication, discovery &
matching activity

invocation & interaction
activity

reasoning
semantics/sharing
interoperability

core

higher-level

Fig. 1. A Layered Conceptual Framework for Semantic Web Services

services [3, 2, 16, 19, 4, 22, 18, 23, 21, 14, 20, 13, 15]. The WSF focuses on message
format and message exhange mechanisms to provide and invoke services. In
addition, various semantical properties of services are relevant for a service user,
e.g. [24, 2, 11]:

– Transitions: the abstract behaviour is often represented in a transitional form
describing in/out-transitions.

– Dependencies: the interaction of a requestor with a service might be con-
strained, i.e. operations can only be invoked following an interaction pattern
or protocol.

– Interaction processes: the internal process and interaction structure, possibly
involving other services, that provide the functionality for the service. While
similar to the external interaction patterns, this needs to address data and
control flow and synchronisation more explicitly.

Semantical properties – including behaviour and dependencies – enable the reuse
of services and their independent composition, resulting in a different develop-
ment and deployment style for Web services. We will ignore quality-of-service
attributes [21] – which can range from software attributes such as maintainabil-
ity, security, and efficiency to aspects such as pricing.

2.3 Extending the Web Services Framework

In the WSF [1], a description language, WSDL (Web Services Description Lan-
guage), is used to describe syntactical and type aspects of services, in particular
message formats and message exchange details, and their binding to a commu-
nications protocol. A registry service, UDDI (Universal Description, Discovery,

and Integration), allows providers to publish service descriptions and service
requesters to search for services. A protocol, SOAP (Simple Object Access Pro-
tocol), is used to invoke services.

However, there is no support for semantical descriptions or the composition
of services, and (business) processes cannot be modelled. Some attempts have
already been made to rectify this [25, 2, 14, 13, 15]. For instance, BPEL4WS [14]
and WSFL [25] are Web service flow languages that allows Web services to be
composed (choreography and orchestration); DAML-S (now also known as OWL-
S) [2] is a Semantic Web-compliant ontology for Web service description, and
the Web Service Modelling Framework WSMF [3] is an ontology-based modelling
approach.

Taking the concepts of these approaches on board, we can identify essen-
tial aspects of Web services that should form core elements of a Web services
descriptions:

– external descriptions of the service in terms of its goal or purpose (assump-
tions and characterisation of the expected outcomes in terms of domain
concepts), the effect (how acceptable input is transformed into output), and
interaction protocols (ordering of operations) – these aspects often form the
contractual information,

– internal descriptions including data and control flow that coordinates inter-
actions between subservices,

– interaction infrastructure descriptions for services consisting of input/output
data formats and ports and the protocol binding to handle the message
exchange.

We can distinguish profile information (what a service requires and provides),
model information (how the service works), and binding information (how the
service is used).

We propose to follow the route taken by OWL-S and WSMF towards an
extended WSF and base our framework on ontology technology. Moreover, we
add a new aspect [8, 9, 26]. Component technology aims at modular composi-
tion of software systems from self-contained, reusable components described by
contract-based interfaces and explicit context dependencies. Looking at com-
ponent technology explains our motivation. WSDL descriptions do not make
dependencies on other services explicit; they do not state their infrastructure re-
quirements – which would, however, be a prerequisite for reuse and independent
composition.

The Web services architecture WSA [1] focuses on messages, i.e. sees the
description of message formats and their exchange at the core of the architec-
ture, rather than the effects that are caused by message exchange. We focus
on service semantics in the context of service choreography and orchestration
where dependencies have to be made explicit. The automation of activities such
as discovery is a central aim in both cases2. Whereas the aim of the WSA is not
2 We use the term ’activities’ here instead of ’processes’, which we will use later on in

a more technical sense

to prescribe particular development approaches, we will introduce here specific
models and techniques for construction, discovery, and choreography of services
– a consequence of chosing a specific (ontology-based) framework for service
semantics.

We will discuss the central framework aspects – model and language, infras-
tructure and activities – in the next two sections. The discussion will always
refer to Fig. 1. We refer to the literature to indicate the origin of and rationale
behind framework elements.

3 Models and Languages

The semantic description of a service in a shared knowledge representation for-
mat based on common domain and computation models is a central element
of a conceptual services framework. Knowledge engineering becomes therefore a
pivotal technology.

3.1 Ontology Technology

The Semantic Web initiative aims at making the Web more meaningful and
open to manipulation by software applications [5]. A logic-based approach based
on knowledge representation and reasoning forms the backbone. Annotations to
Web resources express meaning, which can be used by software agents to extract
semantical information about the resource. The requirement for this to work is
a precise, shared understanding of these annotations.

Ontologies provide a solution for this requirement. Ontologies define termi-
nologies and semantical properties. Essentially, ontologies are hierarchical defini-
tions of concepts of a domain and descriptions of the properties of these concepts.
Logics such as description logics [7] provide the reasoning support. Integrated
into a ontological Web framework based on OWL – the Web Ontology Language
– sharing of ontologies becomes possible [6].

Two types of knowledge relevant to the services context need to be repre-
sented ontologically. Domain knowledge captures entities from the application
domain and their properties – domain modelling is a widely accepted require-
ments engineering method. Software knowledge captures software artefacts and
their properties. Expressing semantics and reasoning about it is the central goal.
Software knowledge is often expressed by incorporating domain knowledge. De-
scription and reasoning facilities provided by ontologies are essential building
blocks of our conceptual framework.

3.2 Service Models

In particular computational aspects of service properties need to be based on
appropriate models that underlie semantical description and reasoning.

In previous sections we have outlined the types of information needed to
adequately represent service behaviour, including input/output behaviour, in-
teraction protocols, and service composition and communication. Three types of
computational models can address these aspects [14, 20]:

– Transitional model. An abstract view on services and in particular on ser-
vice operations is the transitional input-output behaviour. These descrip-
tions are often called contractual information; pre- and postcondition-based
techniques are usually used [27].

A suitable model that covers the contractual aspects of the service is a
state-transition model defining operations as transitions in a state space.

– Interaction model. An abstract view on a service’s interactions with a service
user. Often, only certain interaction patterns based on the offered operations
are possible. Constructors such as sequence, choice, and iteration can be used
to formulate these interaction protocols.

Again, a state-transition model, here with constructors to compose tran-
sitions, is suitable to model the interaction behaviour of a single service or
operation and to capture the service interaction patterns.

– Process model. A more detailed view on interactions between services is
needed, viewing services as interacting processes. The interaction between a
service and its user and also between the internal subservices used to pro-
vide the overall service needs to be addressed [12]. In both cases, the focus
is on sending and receiving messages, and on the synchronisation between
processes.

A classical process model, as formulated in process algebras, can form the
basis here to cover process synchronisation aspects for service invocations.

Quality-of-Service models complement the range of models [21]. Due to their
variety, we neglect a detailled description here.

We can classify the conceptual models (and the corresponding languages) into
two categories: abstract and infrastructure-based. Only the process model falls
into the latter category. The service model acts as a conceptual model, outlining
essential modelling requirements arising from the Web services context, but also
as a semantical model in which descriptions can be interpreted. The modelling
requirements expressed through these models have to be reflected in ontology
languages. For some of these aspects, extensions of a classical ontology language
might be required.

3.3 Abstract Service Description

We suggest an ontology language – at the core of a variety of semantic Web
services approaches such as [3, 2] – to introduce a description notation for ab-
stract Web service properties. We use a description logic here, which underlies a
language such as OWL [28]. Description logics are based on the idea of defining
a concept in terms of its properties in relation to other concepts.

Describing Services as Processes. Central to the modelling facet of the frame-
work is to understand services as processes [14, 20]. Service processes and service-
oriented composition have been identified as weaknesses in the current WSF. A
process view allows us to include process interaction. Moreover, it helps us to
formalise (and eventually automate) stakeholder activities. Consequently, on-
tologies describing service properties in their domain context need to focus on
processes as the central entities.

Description logic [7] knows two basic elements. Concepts are classes of objects
with the same properties. For instance, in an banking application, an Account is
a central concept. Roles are relations between concepts. Roles express properties
of concepts in relation to other concepts. An Account can be characterised by a
balance-property, which relates Account with a Numerical value concept.

Concept descriptions are constraints based on simple set-theoretic operators
and quantified expressions. Operators include >,⊥,¬,t,u and → with their
usual set-theoretic meaning. For instance, PrivateCustomer t CommercialCus-
tomer is the concept that describes the union of both customer classes. The
value restriction ∀R.C for a given concept C ′ restricts the values of role R (as a
relation) to elements that satisfy C; the existential quantification ∃R.C requires
the existence of a role value satisfying C. For instance, an Account could be
characterised by ∃balance.Numerical.

Different ways to model services have been suggested. In [2, 16, 22], services
are represented as concepts, with properties associated through roles. In [11,
12], services are modelled as roles, interpreted by accessibility relations between
states. Essential is to provide operators to compose services based on the idea
of services as interacting processes.

Goals and Behaviour. We can associate pre-state and post-state descriptions
with services. Properties of these states (in different formats) can be expressed
using roles.

– Goals are abstract specifications about service behaviour [3]. Assumptions
are pre-state properties that summarise basic concepts definitions relevant
to the service, such as account or balance. The goal itself is an expression of
the expected outcome of a service execution, usually involving the assumed
concepts. An example is the expectation that after lodging money into an
account, the balance will have increased.

– Contractual information about behaviour can be specified in terms of pre-
and postconditions [2]. These conditions are expressions relating to parame-
ters of the service operation signature, possibly involving domain concepts.
For a lodgment service, the sum transfered into an account plus the pre-state
balance yields the post-state balance. Contracts are refinements of goals [3].

Often, extensions of a classical ontology language [7] are necessary to enable
goal and in particular contractual specifications. In [11, 12], it is necessary to
introduce names into role expressions in order to express parameters. An example
is

∀.lodgment ◦ SumN ; postCond.equal(Bal, pre-Bal+Sum)

saying that a transitional role lodgment is applied to parameter name Sum,
and that after execution the balance Bal is increased by Sum (which is the
postcondition).

Interaction Protocols. Interaction protocols are pattern expressions constraining
the order in which operations of a service can be invoked. In order to facilitate
these expressions, we need introduce the operators, e.g. ; (sequence), + (choice),
! (iteration) to support the interaction model [12]. For instance,

open; !(lodge + transfer)

expresses that after opening an account, money can be repeatedly lodged or
transfered.

3.4 Infrastructure-based Service Descriptions

Service Synchronisation and Invocation. In order to deal with synchronisation
and actual interactions described in the process model, we need to take another
view on service operations [14, 20]. So far only considered as transitions in a
state-based systems, we need to consider both the requester and the provider
of these transitions [29, 30]. For instance, an automation of accesses to UDDI
repositories would require such a process communication view. A description
notation will build up on the ontology language for abstract service description
by adding process calculi elements.

– Ports. The operation names define ports that, if synchronised with another
port from another process, can form an interaction channel.

– Orientation. Each port carries additional information indicating whether it
is used for sending or receiving on the channel. We use op(a) for input (re-
ceiving) and op〈a〉 for output (sending) following [29] instead of an abstract
role expression such as op ◦ a that we have introduced in Section 3.3.

The expression

getBalance(bal); newBalance〈bal + ldg〉

based on the abstract expression

getBalance ◦ balN ;newBalance ◦ (balN +ldg
N

)

expresses that the specified service receives input from getBalance that it uses
internally and then returns the result bal+ ldg to the service client using port
newBalance.

Service Lifecycle. A notation to express service process interaction can be used
to formalise an activity-based lifecycle view on services – which leads us into
the infrastructure and activity aspects of our conceptual framework. Address-
ing the complete software lifecycle is an essential aspect of software engineering

methodologies [31]. A service lifecycle is determined by activities such as match-
ing, composition, and execution, and supported by infrastructure facilities such
as repositories, brokers, and protocols. The lifecycle can be expressed as a pro-
cess where different ports represent the infrastructure to support activities. A
service port actually facilitates several activities:

– Contract. Using contract ports, matching constraints guard the establish-
ment of an invocation infrastructure using the different type of invocation
ports.

– Invocation and Reply. Invocation ports allow a service to be invoked and
necessary parameters to be passed. Message type aspects constrain this in-
teraction. Often, a service reply is communicated on another channel.

A provider lifecycle based on these service port types could follow the pattern

Pro sC(sI); !(Exe sI(a, sR); Rep sR〈f(a)〉)

with annotations for providing Pro, executing Exe, and replying Rep for the
contract, invocation, and reply ports sC , sI , and sR, respectively [11]. The inter-
action pattern expresses that, after a contract match, a service can be invoked
and a reply can occur an arbitrary number of times. This would formalise the
UDDI-supported matching of WSDL descriptions of Web services and their in-
vocation using SOAP in the WSF [1].

4 Infrastructure and Activities

The core task of a SOA infrastructure is to facilitate service invocation, but it
also needs to support other stakeholder activities. The basic requirements for our
conceptual framework arises already from the architecture required for discovery
and invocation in the WSF. Semantic description and composition services can
be layered on top.

4.1 Infrastructure Services and Facilities

Infrastructure services and facilities can be divided into core and higher-level:

– Core infrastructure services are transport – the distribution technology –
i.e. the layered infrastructure model, and ontologies – the knowledge and
semantics technology – i.e. the layered ontology model.

– Higher-level services build up on core services. Publication, discovery, and
matching – based on transport and ontologies service – support discovery
based on semantics-enabled UDDI and WSDL. Development and composi-
tion – based on transport and ontologies service – support composition and
choreography based on semantics and interaction. Service invocation and in-
teraction – based on the tranport service – support interaction for service
invocation based on e.g. SOAP.

These services are usually provided through suitable APIs. Tools such as repos-
itories, brokers, composition engines, and protocols facilitate these services.

We will discuss the higher-level services supporting development and deploy-
ment activities now in more detail. Distribution is the a property of a Web
services architecture. Both development and deployment activities take place in
this distributed context.

The central activities of invocation and execution of Web services shall be
based on a layered infrastructure model for transport [32]. Starting at the bottom,
message types characterise the payload of messages. Transport bindings, e.g.
SOAP, define the message layout. Exchange-related aspects – protocol properties
such as resending rules – are covered. The essential aspect are the interaction
processes – defining the sequencing of send and receive operations.

4.2 Development and Deployment Activities

A Web services architecture needs to enable stakeholders (providers and re-
questers) to carry out development and deployment activities. Building up on
core infrastructure services (transport and ontologies) activities such as discov-
ery, composition, and invocation and interaction need to be facilitated. A simpli-
fied process based on discovery, matching and invocation/interaction activities
can be modelled through a lifecycle protocol; see Section 3.4.

Publication, Discovery, and Matching. Requesters need to find and compare
service providers for the services they need. The infrastructure that the WSF
provides is the UDDI registry. Providers can publish descriptions of their services
in these registries which can then be searched.

The central difficulty is matching [33], i.e. to find the service(s) that most
closely match the requirements of the requester. In an automated setting, a
software agent will use requirements formulated by the requester in a shared
ontology language to search repositories for matching services.

A notion of matching needs to capture the idea of satisfaction or refinement
[34]. A provided service needs to be at least as good as the requested one. In an
ontology language, a subsumption concept – the subclass relationship between
concepts or roles – captures this. A service matching notion needs to be com-
posite, as services themselves and also their descriptions are composite [22]. For
each of the individual aspects we need some kind of metric to decide matching.
Each of them is supported by an underlying conceptual model (Section 3.2).

– Goals and contractual information – based on a transitional model. For in-
stance, refinement-based notions of matching can be used; weakening the
precondition and strengthening the postcondition is a standard choice [35,
33, 34].

– Interaction protocols – based on an interaction model. A notion of simulation
can form the basis of matching [30].

– Processes – based on a process model. A notion of simulation can again form
the basis of matching here.

In all cases, the matching constructs can imply subsumption and can therefore
be integrated into an ontological framework, see [11, 12].

Subsumption allows us to capture widely used software development con-
cepts such as specialisation and refinement. An enhancement could be achieved
if another crucial relationship, the part-whole relationship, is addressed. For ex-
ample, the meronymy concept falls into this category. It addresses parts standing
for the whole – something that happens if a service operation is refered to, but
the whole service is actually meant.

Description and reasoning using ontology technology is the central contrib-
utor to discovery and matching activities. Reasoning can be facilitated through
the use of description logic-based inference tools [7] or through the use of tran-
sition system and automata-based approaches for verification [36].

Composition and Development. Composition can be both a development-time
and a run-time activity. Services can be composed to composite services. We can
distinguish client-side and provider-side composition of provider services, and
provider-side constraining of provider services followed by client-side composition
[8, 9]. The variants can be characterised by the degree of cooperation and the
degree of automation that is enabled. Automation is important for run-time
composition.

Invocation and Interaction. Internet protocols provide the basic infrastructure.
On top of these, service-specific protocols such as SOAP provide an RPC mecha-
nism. The ontology-based interaction patterns describe the interaction behaviour
of services.

In an automated approach, activities of the provider and the requester have
to be synchronised. We can define inference rules based on the ontology language
that govern these synchronisations at runtime. Important is here that different
communication channels are used for retrieval and matching on the one hand and
later service invocation interactions on the other – as expressed in the service
lifecycle example.

5 Conclusions

Semantic Web services are now an increasingly important topic. Several direc-
tions – including domain modelling and composition – are currently investigated.
However, two central problems remain. Firstly, a coherent, integrating concep-
tual framework is lacking. In particular, how to integrate the different aspects
models, language, infrastructure and activities, is not adequately addressed. Sec-
ondly, services as processes is a notion that is central to enhance the Web services
framework – and that needs to be made explicit in conceptual frameworks and
service architectures supporting these frameworks. Service choreography and or-
chestration are two terms that capture the idea of business and workflow process
definition based on service process composition.

A high degree of automation is a requirement for the future of the Web
services framework – scalability and, therefore, the success of the framework

depends on it. Automation requires shared semantics in a distributed, heterge-
neous environment for development and deployment. Ontology technology is a
solution to these problems3. Ontologies are reflected in all facets of our concep-
tual framework – models, languages, infrastructure, and activities. Ontologies
can capture the process-oriented view on services and provide the necessary
features to support the corresponding activities.

The proposed conceptual framework is the result of an investigation into
various approaches in the context, guided by our own work. It aims to act as
a taxonomy and through its linkage of models, languages, infrastructure, and
activities, it helps us to better understand the problems of Web services develop-
ment and deployment. It captures current developments such as the Web service
framework WSF, OWL-S, BPEL4WS, and others and places these in the wider
development context. The framework promotes the idea of a lifecycle-oriented
approach to Web services development.

Our analysis of a number of semantic Web services extensions indicates
progress towards a new methodology for service development and deployment –
to be supported by a generic conceptual and architectural framework. The Web
environment requires suitable workflow processes in particular for service devel-
opment. Our proposed services-oriented development and deployment framework
is different in many ways from the Web services framework WSF. Firstly, it ex-
hibits characteristics of a component framework. Secondly, it supports a different
style of development and deployment embracing composition and workflow pro-
cesses. It creates a space for composable, Web service-enabled components. Our
achievement is the introduction of a framework for these service components
that connects the facets model, language, infrastructure, and activity based by
coherent Web-based ontology and transport technologies.

One of the aspects that we neglected in our discussion are quality-of-service
issues. They include various aspects including performance and security. Security
in particular is of paramount importance. In [37], we have already explored
the extension of the WSF by security requirements descriptions. However, the
integration with infrastructure technologies requires more attention.

References

1. World Wide Web Consortium. Web Services Framework. http://www.w3.org/
2002/ws, 2003.

2. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

3. D. Fensel and C. Bussler. The Web Services Modeling Framework. Technical
report, Vrije Universiteit Amsterdam, 2002.

4. J. Peer. Bringing Together Semantic Web and Web Services. In I. Horrocks and
J. Hendler, editors, Proc. First International Semantic Web Conference ISWC
2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

3 The technical aspects of the ontology framework we have presented here are only
indicative of what is needed on the language and model side.

5. W3C Semantic Web Activity. Semantic Web Activity Statement, 2002.
http://www.w3.org/sw.

6. H. Kim. Predicting How Ontologies for the Semantic Web Will Evolve. Commu-
nications of the ACM, 45(2):48–54, Feb 2002.

7. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

8. C. Szyperski. Component Software: Beyond Object-Oriented Programming – 2nd
Ed. Addison-Wesley, 2002.

9. I. Crnkovic and M. Larsson, editors. Building Reliable Component-based Software
Systems. Artech House Publishers, 2002.

10. E. Motta, J. Dominigue, L. Cabral, and M. Gaspari. IRSII: A Framework and
Infrastructure for Semantic Web Services. In D. Fensel, K.P. Sycara, and J. My-
lopoulos, editors, Proc. International Semantic Web Conference ISWC’2003, pages
306–318. Springer-Verlag, LNCS 2870, 2003.

11. C. Pahl. An Ontology for Software Component Matching. In Proc. Fundamental
Approaches to Software Engineering FASE’2003. Springer-Verlag, LNCS Series,
2003.

12. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

13. P. Bouquet, L. Serafini, and S. Zanobini. Semantic Coordination: A New Ap-
proach and an Application. In D. Fensel, K.P. Sycara, and J. Mylopoulos, ed-
itors, Proc. International Semantic Web Conference ISWC’2003, pages 130–145.
Springer-Verlag, LNCS 2870, 2003.

14. D.J. Mandell and S.A. McIllraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 227–226. Springer-Verlag, LNCS 2870, 2003.

15. R. Zhang, I.B. Arpinar, and B. Aleman-Meza. Automatic Composition of Semantic
Web Services. In Proc. International Conference in Web Services ICWS’2003. 2003.

16. S. Narayanan and S.A. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services. In Proc. World-Wide Web Conference WWW’2002. 2002.

17. World-Wide Web Conference WWW’2003. Semantic Web Services Panel. ACM,
2003.

18. L. Chen, N. Chadbolt, C.A. Goble, F. Tao, S.J. Cox, C. Puleston, and P.R.
Smart. Towards a Knowledge-Based Approach to Semantic Service Composition.
In D. Fensel, K.P. Sycara, and J. Mylopoulos, editors, Proc. International Semantic
Web Conference ISWC’2003. Springer-Verlag, LNCS 2870, 2003.

19. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Semantic Configuration
Web Services in the CAWICOMS Project. In I. Horrocks and J. Hendler, editors,
Proc. First International Semantic Web Conference ISWC 2002, LNCS 2342, pages
279–291. Springer-Verlag, 2002.

20. J. Bitcheva, O. Perrin, and C. Godart. Cooperative Process Coordination. In Proc.
International Conference in Web Services ICWS’2003. 2003.

21. S. Ran. A Framework for Discovering Web Services with Desired Quality of Services
Attributes. In Proc. International Conference in Web Services ICWS’2003. 2003.

22. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of
Web Services Capabilities. In I. Horrocks and J. Hendler, editors, Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342, pages 279–291.
Springer-Verlag, 2002.

23. K. Sivashanmugan, K. Verma, A. Sheth, and J. Miller. Adding Semantics to Web
Services Standards. In Proc. International Conference in Web Services ICWS’2003.
2003.

24. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM
Transactions on Software Engineering, 28(11):1056–1075, 2002.

25. F. Leymann. Web Services Flow Language (WSFL 1.0), 2001. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

26. C. Szyperski. Component Technology - What, Where, and How? In Proc. 25th
International Conference on Software Engineering ICSE’03, pages 684–693. 2003.

27. Bertrand Meyer. Applying Design by Contract. Computer, pages 40–51, October
1992.

28. I. Horrocks, D. McGuiness, and C. Welty. Digital Libraries and Web-based In-
formation Systems. In F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider,
editors, The Description Logic Handbook. Cambridge University Press, 2003.

29. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

30. D. Sangiorgi and D. Walker. The π-calculus - A Theory of Mobile Processes.
Cambridge University Press, 2001.

31. I. Sommerville. Software Engineering - 6th Edition. Addison Wesley, 2001.
32. World Wide Web Consortium. Web Services Architecture Definition Document.

http://www.w3.org/2002/ws, 2003.
33. A. Moorman Zaremski and J.M. Wing. Specification Matching of Software Com-

ponents. ACM Trans. on Software Eng. and Meth., 6(4):333–369, 1997.
34. R.J.R. Back and J. von Wright. The Refinement Calculus: A Systematic Introduc-

tion. Springer-Verlag, 1998.
35. Bertrand Meyer. Eiffel: the Language. Prentice Hall, 1992.
36. Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Vol. B, pages 789–840. Elsevier, 1990.
37. C. Li and C. Pahl. Security in the Web Services Framework. In Proc. International

Symposium on Information and Communications Technologies ISICT’03. 2003.

