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ABSTRACT 
Developing complex engineering systems requires the 

consolidation of models from a variety of domains such as 

economics, mechanics and software engineering. These models 

are typically created using differing formalisms and by 

stakeholders that have varying views on the same problem 

statement. The challenging question is: what is needed to make 

sure that all of these different models remain consistent during 

the design process? A review of the related literature reveals 

that this is still an open challenge and has not yet been 

investigated at a fundamental level within the context of 

Model-Based Systems Engineering (MBSE). Therefore, this 

paper specifically focuses on examining the fundamentals of 

consistency management. We show that some inconsistencies 

cannot be detected and come to the conclusion that it is 

impossible to say whether or not a system is fully consistent. In 

this paper, we first introduce a mathematical foundation to 

define consistency in a formal manner. A decision-based 

approach to design is then studied and applied to the 

development of a real-world example. The research reveals 

several distinct types of inconsistencies that can occur during 

the design and development of a system. We show that these 

inconsistencies can be further classified into two groups: 

internal and external consistency. From these insights, the 

ontology of inconsistencies is constructed. Finally, 

requirements for possible tool support and methods to identify 

and manage specific types of consistency issues are proposed. 

1 INTRODUCTION 
Engineering systems have become increasingly complex 

due to a variety of stakeholders from different disciplines being 

involved in the design process. These stakeholders have 

different interests: some may only be concerned with structural 

aspects, while others are more interested in the behavior, cost or 

requirements. Such aspects of a system are expressed using 

differing formalisms. Structural aspects, for instance, are 

commonly represented as three-dimensional Computer Aided 

Design (CAD) models in tools such as SolidEdge [1],  

dynamics are represented in Modelica [2] and requirements in 

Rational DOORS [3]. 

Managing the large amount of information that is typically 

part of a specification is by no means a trivial task. Systems 

engineering is a field of engineering that focuses on this topic. 

It is a multidisciplinary approach towards developing and 

realizing balanced system solutions in response to diverse 

stakeholder needs and includes the application of both 

management and technical processes [4]. These include 

planning the technical effort, monitoring technical performance, 

managing risk, and specifying, designing and verifying the 

system to be built. Traditionally, a variety of documents that 

make up the specification are created. One of the major 

challenges is to ensure that this system specification does not 

contain any contradicting information. For example: if one part 

of the system specification reflects the use of English units, no 

other dependent part should be based on the use of the 
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International System of Units (SI units). Such contradictions 

can occur when the relations within and between documents are 

not clearly defined. They are the result of a lack of formal 

integration of the information. If no such contradictions are 

present, the specification of the system is said to be consistent.  

The idea of only using computer-interpretable models to 

specify a system and thereby introducing a higher degree of 

formalism reflects the key principles behind Model-Based 

Systems Engineering (MBSE) as defined by the International 

Council on Systems Engineering (INCOSE) [4-5]. Using a 

repository to store these models enables relations to be drawn 

between these models more explicitly and formally. 

Theoretically, this increases traceability of model-related 

information across the system specification [4]. Ensuring that 

these models are consistent increases the chance of mission 

success, thereby decreasing risk. However, ensuring that all 

models within the repository are consistent, or consistency 

management, is still an unsolved and challenging problem. 

To date the results of research within the field of 

consistency management mainly include ad-hoc solutions for 

detecting specific types of inconsistencies between specific 

types of models (e.g. [6-10]). Some work from the domain of 

software engineering focuses on developing methods that have 

a formal, mathematical foundation [11-17]. To the best of 

knowledge of the authors, consistency management in MBSE 

has, to the date of writing this paper, not yet been studied at a 

fundamental level. The primary scientific contribution of this 

paper is to provide a definition and ontology for consistency 

related to using models for the process of designing and 

developing systems. Additionally, a guideline (conceptual 

framework) on how and to what extent inconsistencies can be 

detected and managed is outlined. This topic of consistency 

management is discussed in sections 4 to 6. In section 3, the 

model-based design of a robot is discussed to illustrate the 

different types of inconsistencies that are identified in section 2. 

At the end of this paper, more specifically in section 7, the 

presented work is related to the status quo of consistency 

management. After a short summary of the most important 

aspects of the presented work, the conclusions that can be 

drawn from the research are outlined in section 8. 

2 FUNDAMENTALS OF CONSISTENCY 
Consistency implies an absence of contradictions. But what 

exactly are these contradictions? And how do they come about 

in the first place? To help answer these questions, it is 

imperative to study the theory behind constructing models and 

how these models can be integrated into a specification for a 

system in a formal manner. Understanding these fundamentals 

enables us to not only identify the different kinds of 

inconsistencies, but also to manage them. 

 
2.1 Mathematical Foundation 

Before looking more closely at consistency management in 

the context of MBSE, it is important to understand the 

underlying mathematical fundamentals. Similar to program 

code corresponding to a programming language, models are 

created using modeling languages. Such languages are part of 

formal systems. 

A formal system consists of a formal language L and a set 

of inference rules R which are used to derive expressions from 

one or more premises that may either be axioms
1
 ψi or 

previously derived statements, so called theorems [18-19]. A 

formal language is defined as a set containing words
2
 wi. These 

words are assembled using terminal symbols from an alphabet 

Σ. A grammar G uses such an alphabet, the mentioned inference 

rules and the axioms to define how words are constructed. 

Additionally, a finite set of nonterminal symbols N (disjoint 

from Σ) and a distinguished start symbol S ∈ N are required. 

Nonterminal symbols are used to specify the production rules 

of a grammar. To generate words one begins with a word 

consisting only of a special nonterminal symbol: the start 

symbol. The start symbol therefore acts as an entry point for the 

production of a word. In summary, a grammar is defined as a 4-

tupel G = (N, Σ, R, S) [18]. Elements within the set of all words 

that can be produced by a given grammar are considered to be 

well-formed and define the language. All axioms are part of this 

set and are therefore also well-formed words. 

To verify whether or not a given statement is compatible 

with a specific formal system, it must be a theorem of it, i.e., 

there must be a way to derive the word using a formal proof. 

Formal proofs are sequences of well-formed words and are 

carried out by sequentially applying inference rules to previous 

well-formed words in the proof sequence. Axioms act as a 

starting point for these sequences [18]. 

Grammatical rules reflect two important properties of 

languages: syntax and semantics. The set of all syntactically 

correct words is the set of well-formed words. A formal system 

is consistent if all statements are theorems and therefore follow 

a valid syntax. The semantics of a language give the utterances 

of a language a specific meaning. 

To elaborate on the concepts presented so far, an example 

formal system (borrowed from [20]) will be constructed in the 

following. This formal system is called the MIU-system. It is 

based on one axiom, five production rules and an alphabet with 

three terminal symbols: 

 

Ψ1 = MI 

ΣMIU = { M, I, U } 

NMIU = { SMIU, x, y } 

RMIU = { “MxIy is a theorem”, 

                “If xI is a theorem then so is xIM”, 

                “If Mx is a theorem then so is Mxx”, 

                “If MxIIIy is a theorem then so is MxUy”, 

                “If MxUUy is a theorem then so is Mxy”} 

 

The above terminals, nonterminals and inference rules are 

then used to construct the grammar GMIU = (NMIU, ΣMIU, 

RMIU, SMIU). SMIU is used as an entry point to build words, i.e. it 

                                                           
1 Axioms are propositions that are not proved but are considered to be 

self-evident [18] 
2 In the related literature, words are sometimes also referred to as strings, 

formulas, statements, sentences or algorithms 
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produces at least the axiom Ψ1. By sequentially applying the 

inference rules in RMIU one can construct the set of all words. 

The resulting language is then LMIU = {MI, MII, MIU, MIUIU, 

MIIII, MIIIIU, …}. Using an appropriate algorithm, one can 

now decide whether the word MU, for instance, is part of the 

language and therefore a theorem. 

Another, more complex example of a formal system, is a 

logical system, in which truth values are assigned to words. 

Other than the example system above, the logic system also 

includes a form of semantics that gives well-formed words a 

specific interpretable meaning. 

 

2.2 Modeling Languages 
So far we have only discussed languages that produce 

words or formulas consisting of symbols – but how does this 

relate to modeling languages? Analogous to the definition of 

languages in section 2.1, modeling languages have a formal 

grammar. The grammar is represented by a so-called meta-

model (see e.g. [22]). A meta-model is a model itself and 

specifies the way utterances of the modeling language (i.e. 

models) may be constructed. Well-formed models are the 

equivalent to statements that can be expressed using the syntax 

of a formal modeling language. The syntax itself can have an 

abstract or a concrete form. Concrete syntax is used for easier 

user manipulation of the model. It contains non-essential 

information such as the graphical representation of the model 

on diagrams to enable a designer to manipulate a model more 

intuitively. The abstract syntax, on the other hand, contains only 

the essential information for the model to be interpreted by a 

digital computer. The transformation between the abstract and 

concrete syntax is done using a model-transformation. This 

model transformation defines how the meta-models of the 

abstract and the concrete syntax relate to each other. Well-

formed models may also be given a semantic meaning. This is 

done by mapping these to a semantic domain, which is again 

done through the use of model transformations. Refer to Figure 

1 for more details. New models that stakeholders wish to 

integrate into a system can be checked for consistency by using 

such a language definition. As previously, this is achieved 

through a formal proof, i.e. by checking whether the models are 

theorems of the given modeling language. 

Rules of modeling languages must satisfy logical 

constraints and reflect the proper use of language constructs. 

Inheritance relationships, for example, should not be used in a 

looping fashion and must therefore possess transitive qualities: 

if Apple is a specialization of Fruit, Fruit cannot be a 

specialization of Apple at the same time. Such a circular 

inheritance relationship would lead to a logical contradiction. 

While most of these rules can be expressed using the meta-

model alone, it is not always possible or practical to do so. 

Constraints may also be expressed using formal description 

logic. 

Inconsistencies related to the construction of models result 

from incomplete models or models that are constructed using 

informally defined modeling languages. Not following a given 

formal grammar can lead to logical contradictions within the 

model. Hence we refer to this class of consistency problems as 

logical inconsistencies. 

 

2.3 Types of Inconsistencies Related To Models 
When using a formal modeling language to construct 

models, the question whether or not a given model is consistent 

with the formal system becomes a decidable problem through 

syntactical verification. It is therefore a logical inconsistency 

problem. However, whether or not a model is correct, i.e. 

whether it makes sense and therefore has value is not implied 

by the syntax alone. In order to give models a meaning, a 

semantic mapping from the model to a reality has to exist. It is 

only by using such a mapping that one can decide whether the 

model is compatible and therefore consistent with the given 

reality. For software, this reality takes on the form of the 

execution environment, which is typically based on a (virtually 

deterministic) logic system. A compiler performs a semantic 

mapping from the input (such as a model or a program) to the 

logic of the digital machine. The result is an isomorphism, that 

is, at least in theory, a bidirectional mapping between the 

software models and the execution environment.  

Physical systems, on the other hand, are not bound to a 

reality in which the processes are well understood and 

relatively deterministic. The real world, or more precisely, 

reality as we conceive it, goes far beyond that. In order for us to 

say that a specification is truly consistent requires a 

corresponding formal system to contain sufficient information 

to form an isomorphism with nature. However, it is impossible 

to construct such a formal system for physical systems. The 

main reason is that we lack perfect knowledge about the 

processes and the phenomena in nature. For example, current 

production techniques do not allow for perfect precision in 

manufacturing. Models are used to approximate processes such 

as these, i.e. they are abstractions of reality and are therefore 

connected to uncertainty. The logical conclusion is that 

uncertainties must be taken into account when modeling a 

system. To accomplish this, one must include concepts from 

mathematics that go beyond logic systems. To consider the laws 

of probability, for instance, the model must adhere and be 

Concrete Syntax

Abstract Syntax

Semantic Domain

Meta-Model

Transformation 

Models

model of

model of

model of

model of

model of

model of

transformation

 

Figure 1:   The structure of a modeling language (adapted from [21]) 
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compatible with Kolmogorov’s axioms of probability. Failure 

to do so leads to an inconsistency with the laws of mathematics. 

We therefore call this class of consistency problems 

mathematical inconsistencies. 

Models are, as we have already established, abstractions of 

reality. More precisely, models are, in fact, abstractions of our 

beliefs. Beliefs are reinforced by scientific data, in other words: 

by our observations of nature. These beliefs must be rational 

and consistent with the given scientific data. For this scientific 

data to be useful in the sense that one can derive adequate 

models of nature, the scientific data itself must be consistent. 

However, this is, as we have already mentioned, impossible 

since we lack perfect knowledge about nature. It is practical to 

differentiate the resulting class of belief inconsistencies from 

those related to mathematical inconsistencies and from those 

related to the consistency with respect to nature. 

We conclude this section by introducing the notion of 

internal and external consistency (see Figure 2). Internal 

consistency problems relate to axiomatic systems that are well 

understood (e.g. logic systems and mathematics). Based on 

these systems we construct modeling languages. Models that 

are internally consistent do not violate the axioms and rules of 

the underlying formal system – they are theorems of the 

system. External consistency imposes an additional constraint, 

namely, that the model be true to reality. Grouping consistency 

issues into these two groups allows us to differentiate between 

inconsistencies that can occur within the bounds of well-

understood systems and those that are not. 

To elaborate on this notion of internal and external 

consistency, let us consider a simple example: a fair coin toss. 

If we were to assume that the probability of heads is 0.5 and 

that of tails is 0.6, we are in contradiction with Kolmogorov’s 

axioms, since the combined probability is greater than 1. Our 

model is therefore internally inconsistent with the laws of 

mathematics. If we assume, on the other hand, that the 

probability of heads is 0.3 and that of tails 0.7, the model is 

internally consistent but externally inconsistent. This is due to 

our assumption of us observing a fair coin toss - the experiment 

is not compatible with the observations we make in the physical 

world (given that we are not using any controlled conditions). 

This example also shows the difference between designing a 

software system and a system with physical character: it is 

possible to write a computer program that determines the 

outcomes of experiments using any possible set of probabilities. 

The only rules that the program must adhere to are the laws of 

probability (i.e. Kolmogorov’s axioms). 

 

2.4 Forming Consistent Concepts in Decision-Based 
Engineering Design 

Systems engineering can be thought of as a decision 

making process [23]. The decisions can be represented in the 

form of models, but these models need to reflect certain 

qualities. For one, models need to satisfy rationality constraints. 

Models also need to satisfy constraints on the expression of 

beliefs and preferences of the designer to make sure these 

expressions match observations of nature [24]. 

Over the past decade, many new approaches to engineering 

design have been proposed. Prominent examples include 

Design for Six Sigma [25], Taguchi’s theory of robust design 

[26], concurrent engineering and design for manufacture [27]. 

Most of these methods are ad-hoc approaches that are not 

rooted in any fundamental theory, nor do they provide a basis 

for engineering design as a discipline. 

Recently, design has come to be thought of as a decision-

making process [23, 28]. A design theory that builds up on this 

foundation is Rational Design Theory (RDT) [24, 28]. The key 

idea is that a designer should act rationally, i.e., in a fashion that 

is consistent with his beliefs and preferences.  The theory builds 

on probability theory and von Neumann-Morgenstern expected 

utility theory [29-30].  As part as their work on RDT, 

Thompson and Paredis introduce a conceptual model for design 

in which design concepts, concept predictions and decision 

criteria are defined.  This conceptual model will be summarized 

here. For further details, refer to [24]. 

In the conceptual model for design, both concept 

specifications and concept predictions are defined in terms of 

properties. As illustrated in Figure 3, a property is a mapping 

from the set of all possible artifacts
3
, S’, to a range, Yi. There 

are potentially an infinite number of properties that could 

describe a system. 

The Cartesian product of all property ranges is called the 

property space P. When specifying a system, developers select 

a finite number of properties that are considered relevant and 

are therefore included in the specification. This finite 

dimensional space is referred to as the property projection P’. 

In the context of robot design, this space could include 

properties such as “Cost”, “Degrees of Freedom” or “Motor 

Torque”.  Other properties such as “Color” or “Number of 10N 

Thrusters” may not be relevant in the robot context and are 

therefore left completely open. This does not imply, however, 

that these properties may not become relevant at later stages of 

the design process, and can then be added as additional 

dimensions to the property projection. 

                                                           
3 An artifact is anything produced through human intelligence or effort, 

including all human-produced physical objects and processes [24]. 

External 

Consistency

Internal 

Consistency

Object in 

Physical World

Well-Formed Model

Axioms & 

Inference Rules

Is Model Theorem?

 

Figure 2:   Internal and external consistency 
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 P’ is the basis for defining concepts Ci. A concept is a 

(partial) specification of an artifact. Typically, a concept is 

developed through a process of iterative refinement. In each 

refinement step, additional constraints are imposed, restricting 

properties to specific values. Refinement often begins with a 

functional specification, proceeds to behavior specification and 

ends with a structural specification. This sequence is, however, 

only a guideline and not a fixed order. For instance, when 

developing a physical system such as a robot, an initial decision 

may be that the movement should be restricted to a planar 2D-

space. This decision could either result from an initial analysis 

of the environment in which the robot will perform its function 

or from a system-level requirement. Assume that this decision 

leads to a concept C1 as shown in Figure 3: concept C1 is the 

subset of P’ containing only robots that work in a 2D-planar 

space. Assume that the next decision we make relates to 

choosing the number of degrees of freedom of the robot. 

Through analysis it may have been determined that values 

between two and three are feasible, thereby giving us two new 

sub-concepts C2 and C3, restricting the concepts to two or three 

degrees of freedom, respectively.  Both sub-concepts are 

subsets of C1, meaning that both represent robots that move in a 

planar 2D-space. 

Once several alternative concepts have been defined, a 

decision must be made to determine which one of the 

alternative sub-concepts to consider for further refinement. 

According to decision theory one should choose the alternative 

that leads to the most preferred outcome. The challenge is that 

the outcomes are uncertain and therefore need to be predicted 

by the decision maker.  A concept prediction X is a 

mathematical characterization of the designer’s beliefs about 

the properties of the artifact that will be realized when the 

concept Ci is used as a specification, i.e., is given to a 

manufacturer to be produced. Keeping in mind that a concept is 

only partially specified (i.e., many properties are left 

completely open), a concept represents a potentially very large 

set of alternative artifacts that a manufacturer could produce as 

a result of the interpretation of the specification. This 

introduces additional uncertainty. 

Finally, based on the predictions, a concept decision 

criterion Ei is formulated for every concept Ci. This criterion is 

a measure of the desirability of a concept and is, 

mathematically speaking, defined by an evaluation function 

that maps probability measures onto the real axis, as illustrated 

in Figure 4. By mapping onto the real axis, a complete 

(transitive) ordering of the concepts is guaranteed, so that the 

decision maker avoids internal preference inconsistencies.  An 

example of a preference inconsistency would be the expression 

of intransitive preferences: the situation, for example, where 

one prefers apples over strawberries, strawberries over oranges 

and oranges over apples. This would lead to irrational behavior. 

Both the concept predictions and concept decision criterion 

must also satisfy external consistency rules, namely, they must 

be accurate reflections of the beliefs and preferences of the 

decision maker.  By adhering to all the consistency rules, one 

can be assured to arrive at a rational decision. 

According to RDT, a design process should end when no 

additional design actions lead to an increase of the expected 

utility (including both the value of the artifact and the cost of 

the design actions). We call the concept specification that is the 

ideal end result of the refinement process the optimal concept 

C* (see Figure 5). Given that there always exist artifacts that 

are an improvement of the current state, C* is not the empty 

set. Therefore, if the concept at our current stage of refinement, 

Cc, contains C* as a subset, we call the concept simply 

consistent. Consistency in this sense thus implies that through 

further refinement, we can still reach the optimal concept C*.  

Should Cc equal C*, the design process should stop because 

any further design action will lead to a less preferred outcome. 

All other cases (intersection, disjunction) lead to either over-

specification or to concepts that are inconsistent with the 

designer’s beliefs and preferences. The current concept Cc is 

P′

P

C1

C2

C3

1
( ) : [0,1]X C →F

3( ) : [0,1]X C →F

2( ) : [0,1]X C →F

�

1E

2E

3
E

 

Figure 3:   Principle of the concept selection criteria [24] 
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Figure 4:   The property space and the mapping of properties from 

artifacts to concepts [24] 
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then called inconsistent because C* can only be reached by 

loosening some constraints in its specifications. Note however, 

that C* is unknown (and generally unknowable). Hence, we 

again arrive at the conclusion that assuring (external) 

consistency is impossible.  Instead, we will have to settle for 

the lesser goal of eliminating certain types of inconsistencies - 

but not all inconsistencies.   We will come back to the different 

types of inconsistencies after introducing an illustrative 

example to show more clearly at what point in the design 

process inconsistencies can occur. 

 3 DESIGN AND DEVELOPMENT OF A ROBOT 
In line with the ideas presented so far, this section aims at 

exemplifying the different kinds of consistency issues that can 

occur during an actual system design. In the following we 

attempt to answer the question how models are used to make 

decisions and hence how a particular concept is selected from a 

set of alternatives. As already mentioned in section 1, a robot 

was chosen as an example system. The multidisciplinary 

domain of mechatronics was chosen as an example domain due 

to it being a discipline in which models from a variety of 

domains (mechanics, electronics, control theory, and computer 

science) are used synergistically within product design and 

manufacturing to form a specification for a system. The robot 

was developed using the MBSE methodology outlined in [4], in 

which a system model is created using the Systems Modeling 

Language as defined by the Object Management Group (OMG 

SysML
™

) [31]. Components were refined using several 

domain-specific models. 

Using OMG SysML
™

 has the advantage of being able to 

include multiple views within the same model. Furthermore, 

the resulting model can contain parts from multiple domains. 

Other modeling languages that were chosen to further refine the 

concept and to aid in the decision making process were 

MATLAB
®
/Simulink

®
 [32] and Solid Edge [1]. 

The first step that was taken in the process of designing the 

robot was to specify an initial set of requirements to reflect the 

preferences of the stakeholders. To do so, an OMG SysML
™

 

requirements diagram was created. Figure 6 shows an excerpt 

containing two top-level requirements: the constraint that the 

workspace is limited to 1 square meter and a functional 

requirement specifying that the robot should move within a 

planar space. 

The decision to include these two requirements was made 

based on an informal analysis of the environment in which the 

robot would eventually be placed and are therefore a result of 

the robot problem definition. Further requirements are modeled 

based on the result of a discussion between different domain 

experts. In line with engineering design principles, the 

designers then create functional views that are based on the 

requirements (see Use Case Diagrams in Figure 7). 

In order to satisfy these functions, a structure for the robot 

is chosen. In agreement with design principles by Tjalve [33], 

an initial discussion with domain experts provided a number of 

possible basic structures, followed by a selection of two 

quantified structures, which satisfy the requirements. Within the 

context of our example, the quantified structures differ in terms 

of the length of both arms: one uses an equal length for both 

arms; the other uses a combination of a long and a short arm. 

Both the alternatives were modeled as a tradeoff study in a 

weighted decision matrix (not shown here). The basic 

properties that were considered for this are reliability, 

manufacturing cost and controllability. Figure 8 shows an 

excerpt from the block definition diagram showing the basic 

structure of the mechanical assembly of the robot. 

Workspace RequirementsRobot Requirements[Package] req [  ]

Id = "6"

Text = "The robot should be 

able to move in a planar 

workspace"

«functionalRequirement»

Move

Id = "1"

Text = "The robot should 

have a workspace of 1 

square meter"

«requirement»

Workspace

«block»

Mechanical Assembly

«satisfy»

 
Figure 6:   An excerpt from the requirements diagram 

Interaction  Of Rob ot Op eratorUse Ca se s[Packag e] uc  [  ]

« syste m»

Robot

Operate A utomatica lly

Ope rate M anua lly Navi ga te  

Work space

Av oid Obstac le

C ontrolle r

Opera tor

«include »

 
Figure 7:   Functional view of the robot 

Mechanical AssemblyRobot Structure[Package] bdd [  ]

values

LinkLength : m{unit = metre}
LinkWeight : kg{unit = kilogram}

«block»

Arm

values

Resolution : rad{unit = radian}

«block»

PositionEncoder

 : Usage_of_Measure

references

 : Robot

«block»

Mechanical Assembly

PositionB : Usage_of_Measure
DriveA : Drive_Impl

DriveB : Drive_Impl PositionA : Usage_of_Measure

PowerIn

values

JointType : String
Range : rad{unit = radian}

«block»

Joint DriveIn

values

GearRatio : Integer
Power : W{unit = watt}
Type : String

«block»

MotorPower DriveOut

 : Drive_Impl

2

Figure 8:   Basic structure of the robot with two arms 
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The reliability of the robot is predicted based on the 

reliability of each degree of freedom, which is a product of the 

reliability of the individual components: the arm, joint, motor, 

and position encoder. The motor and sensor are typically off-

the-shelf components, of which reliability figures already exist. 

In the case of the arm and the joint, which, for the sake of this 

example, are manufactured, reliability test (stress and strain) 

can be performed to ultimately select a confidence level above 

99%. However, for this simple example, it can be observed that 

the motor and the sensor are the most critical components per 

degree of freedom. For example: the failure of one motor not 

only leads to a malfunction in one degree of freedom, but also 

to the entire robot becoming unusable for further operations. 

When specifying characteristics such as the reliability, 

consistency with the axioms of Kolmogorov must be ensured. 

If one were to conclude, for example, that the probability of the 

robot not failing within the first year is 99.999% but the 

probability of it being unable to fulfill its function within the 

same time frame is 10% then clearly an inconsistency is 

present. 

 During the design activity, the quantified structure 

consisting of a long and a short arm was disregarded due to an 

uneven load balance. Hence the principle solution consists of a 

robot with two arms of equal length, driven by an actuator each. 

Figure 9 illustrates the chosen quantified structure by means of 

an internal block diagram. 

As stated in the beginning of this section, one of the 

motivating factors to use OMG SysML
™

 is that different 

structural and behavioral aspects (see Figure 10) of the robot 

system can be expressed using the same modeling language. 

The multiple views inside the system model of the robot should 

be consistent with each other. This implies that the 

requirements should be consistent with the functions, the 

functions with the structure, the structure with the behavior and 

the behavior with the requirements. 

In order to design the embodiments, a mechanical CAD 

model providing a mechanical view was created using Solid 

Edge (see Figure 11). Furthermore, a MATLAB
®
/Simulink

®
 

model providing an analysis and controller design view was 

constructed. These different domain-specific models contain 

dependencies: the controllability is dependent upon the 

mechanical properties while the workspace is dependent upon 

the physical structure. A mechanical design can result in 

satisfying the workspace requirements of a robot possessing a 

bad controllability. A controller design can result in satisfying 

the controller requirements, but with a need to change the 

mechanical structure. In order for the design and development 

process to result in a consistent specification, the dependencies 

across different domain-specific views need to be identified and 

managed. This requires ensuring consistency not only within a 

particular model, but also in between different models that 

together affect a particular system property. 

4 CHALLENGES IN DETECTING INCONSISTENCIES 
The design and development process of the robot 

exemplified that inconsistencies can occur throughout the 

development process and detecting them is by no means a 

trivial process.  

The challenge begins with modeling languages: as we have 

already established, models that are created using a formally 

defined modeling language can be checked for internal 

inconsistencies by means of syntactical verification. Two 

prominent modeling languages that are actively being used in 

the community today to construct system models are the 

Unified Modeling Language as defined by the Object 

Management Group (OMG UML
™

) [34] and SysML
™

. For 

historic reasons, both of these languages merely have semi-

formal definitions [17]. The lack of formalism leads to 

supporting tools not being able to impose well-formedness and 

hence not all logical inconsistencies can be detected. 

While the system model represents only one view on the 

system, there are many other models that are explicitly part of 

the system specification. These models represent the individual 

views on the system from the viewpoints of various 

Mechanical Assembly Mechanical Assembly[Block] ibd [  ] DriveA : Drive_Impl

DriveB : Drive_Impl

PositionA : Usage_of_Measure

PositionB : Usage_of_Measure

PowerIn

uPosEnc : PositionEncoder

 : Usage_of_Measure

lPosEnc : PositionEncoder

 : Usage_of_Measure

upperMotor : Motor

DriveOut

 : Drive_Impl

Power

lowerMotor : Motor

 : Drive_Impl

DriveOut

Power

lowerJoint : Joint

DriveIn

upperJoint : Joint

DriveIn

upperArm : Arm

lowerArm : Arm

Figure 9:   Selected alternative from the possible quantified structures 

Robot Main Behavior Robot Main Behavior[State Machine] stm [  ]

diagnosing

shutting down

operatinginitializing

idle

State in which 

manual/automatic 

movement takes 

place

Robot moves to 

home position

Power is 

switched on

when (r == true)

when (initialization OK)
System not OK
 / Display errors

to operator

Shutdown Result (r)

Shut Down
when (r == false)

Turn Off

when (not initialization OK)System OK

after (60s) / Display
Timed Out Status

Startup

Figure 10:   Excerpt from the robot behavior specification 

 

Figure 11:   Mechanical view of the robot 
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stakeholders. Most of these models share common properties 

and attributes. Therefore, not only the models themselves need 

to be consistent, but also the information across the different 

kinds of models. When working with informal or semi-formal 

languages this leads to yet another challenge: the dependencies 

between the models may not be clearly definable. Ultimately, 

this leads to the intricacy that changes made to one model may 

have an impact on another, but the magnitude of the impact 

may not be quantifiable or obvious. To state an example: if 

software is developed in parallel to a corresponding circuit 

board and the software requires more memory than provided 

for, the models become inconsistent. 

While these challenges are related to logical 

inconsistencies that can be detected through the use of an 

appropriate formal system, there are also other inconsistencies 

that are more difficult, in some cases even impossible to check 

for. Checking whether a given system is consistent with the 

processes of nature and not just with the observations thereof is 

impossible. While a designer has beliefs about these laws and 

expresses these using models and while these may represent the 

observed behavior of, e.g., physics fairly well, there is always a 

degree of uncertainty as to their validity. 

Further inconsistencies related to beliefs occur when 

making decisions. All concept decision criteria are based on 

uncertainty, which, first and foremost, require adherence to 

Kolmogorov’s axioms. Unfortunately this is still not enough to 

protect from inconsistencies occurring. It is still possible to be 

“dutch-booked”, whereby a situation similar to the 

phenomenon of a money-pump may occur [23]. This is usually 

the result of an absence of transitive qualities in the preference 

ordering of the decision maker. If, for instance, A is preferred 

over B, B is preferred over C and C is preferred over A, one 

would end up with an irrational preference ordering. It is 

mathematically impossible to construct an objective function 

from this, hence optimization is also impossible. An individual 

could now, for instance, sell A for B plus a small amount ε, B 

for C plus ε and C for A plus ε. At the end of the trade, the 

individual possesses more than what he started off with. This is 

a result of the intransitive preference ordering of the buyer – his 

decisions were therefore irrational, i.e. inconsistent with 

rationality. Detecting such inconsistencies may not always be 

possible, since not all decisions in real-world scenarios are 

based on the definition of a mathematical model that can be 

checked for rationality. 

As we have already established, formal systems are based 

on a set of axioms and inference rules that allow us to decide 

whether or not a given model is a theorem of the modeling 

language. However, Gödel has proven that, in mathematics, 

some true statements cannot be derived from the axioms of a 

given formal system. In the derivation of his first 

incompleteness theorem, he has shown this to be true for 

arithmetic [20]. Since our approach relies on using mathematics 

as a fundamental theory for modeling languages, we arrive at 

the conclusion that it is not possible to say with certainty 

whether or not a set of models is consistent. Instead, we can 

only detect specific types of inconsistencies within the bounds 

of a formal system. 

5 ONTOLOGY OF INCONSISTENCIES 
In the previous sections several types of inconsistencies 

were identified and elaborated on in detail. The question that 

remains to be answered is how these inconsistencies relate to 

one another. 

As shown at the beginning of this paper, inconsistencies 

occur whenever contradictory information is present. When 

designing and developing systems using only models, such 

contradictions originate from modeling languages, the relations 

between different models, the beliefs and preferences of the 

decision maker and between nature and the observations of it. 

Figure 12 illustrates the ontology of inconsistencies that was 

identified as part of this research effort. 

Apart from identifying different types of inconsistencies, a 

distinction between internal and external consistencies was 

made. Internal inconsistencies are those that occur if a model is 

not compatible with some feasible world, i.e. a world that is 

based on the axiomatic systems of logic and mathematics. 

Models
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Figure 12:   Ontology of consistency issues 



 

 9 Copyright © 2011 by ASME 

External inconsistencies are present if the model is not 

consistent with reality. 

6 REQUIREMENTS FOR CONSISTENCY 
MANAGEMENT AND TOOL SUPPORT 

Now that the different types of inconsistencies have been 

identified and classified, we can determine requirements for 

consistency management methods and tools. 

First and foremost, to verify the syntax of models, it is 

imperative to use only formal modeling languages. Without a 

formal language foundation, tools cannot check whether an 

individual model is well-formed. Therefore, commonly used 

modeling languages such as OMG UML
™

 and OMG SysML
™

 

should be improved by removing any existing ambiguities (e.g., 

semantic variation points). This is already partially being 

fulfilled through a variety of research efforts such as those 

described in [12-13, 35-37]. 

Secondly, all models should be part of a formal system. 

This formal system should be based on the axiomatic systems 

of logic and mathematics and should have the form of a central 

repository. Within this repository, all models should ideally 

have a neutral, common data representation to make it easier 

for relations and dependencies between different models to be 

identified and satisfied. 

Detecting inconsistencies outside the scope of logic and 

mathematics requires additional information to be present in the 

system. Therefore, additional, computer-interpretable rules 

must be defined in the form of, e.g., description logic or meta-

models. These must include domain- or application-specific 

rules such as “there must be at least one actuator per degree of 

freedom”. More rules may be necessary to define the 

relationship between two or more models affecting application 

or domain-specific properties. If, for instance, the amount of 

memory that is available to the controller software of a robot is 

smaller than the amount that is required, an inconsistency 

would be present between two distinct parameters from two 

domains (“available memory” from an electrical schematic and 

“memory required by the software” from the specification of 

the software). Relating this to the rational design theory, one 

could say that, if such an inconsistency occurs, the decision 

making process has lead to a specification that no longer 

contains a mapping to a realizable artifact, hence the optimal 

solution can no longer be reached unless the specification for 

the amount of available memory is increased. A common data 

representation, a system model showing the relationships 

between system components and ontologies of domain-specific 

concepts all aid in realizing a generally applicable mechanism 

to get rid of the possibility of such (internal) inconsistencies 

occurring during the design process. 

7 RELATION TO PREVIOUS WORK 
With the requirements for consistency management and the 

different types of inconsistencies having been identified, we 

now relate this work to the related literature. Most of the work 

that was analyzed originates from the domain of software 

engineering. Consistency management for systems with 

physical characteristics has mostly been dealt with in research 

projects from the domain of mechatronics, where the use of 

different domain-specific models for the purpose of specifying 

a system is common practice. The types of consistency issues 

that have been dealt with can be split up into two distinct 

categories: consistency of individual models that were created 

using a single modeling language and consistency across 

different, domain-specific models. Most of these papers present 

ad-hoc approaches, some, however, introduce concepts rooted 

in a fundamental theory. 

The need to formalize OMG UML
™

 has been identified in 

several works, e.g. [15-16]. Unfortunately none of the research 

activities are complete as of yet. The formalization is done by 

using description logic or the derivation of a context-free 

grammar to satisfy the dependencies between different model 

elements contained in separate diagrams. 

How two different modeling languages can be related to 

one another is treated in [7]. The authors use an approach where 

the meta-models of the individual languages are used to 

determine the dependencies of language utterances at the meta-

level. Dependent parts are then connected using a meta-class 

that is used to perform a bidirectional transformation. Using 

this method, the authors were able to successfully build models 

in a CAD tool and synchronize the changes with a system 

model built using OMG UML
™

. Other approaches use Triple 

Graph Grammar (TGG) approaches to dynamically define the 

dependencies between a system model and several distinct 

domain-specific models that are used for refinement [10]. In 

this specific research effort, a modified version of OMG UML
™

 

called Mechatronic UML is proposed by the authors to support 

the development of a system model that the authors refer to as 

the principle solution. A transition to embodiment and detailed 

design phase is supported by automated model transformations 

from the principle solution to several domain-specific models. 

The authors propose that consistency between domain-specific 

models and the principle solution can be maintained by use of 

TGG rules. Unfortunately, they were unable to offer a solution 

for the problem of potential inconsistencies occurring when 

modifying or deleting individual components. 

Other approaches for checking the internal consistency of 

system models are discussed by Hehenberger at al. in [6]. The 

authors identify that processing the entire model at once may 

take hours to complete. They present an instant consistency 

checking method that is based on the Model/Analyzer 

approach. The Model/Analyzer observes changes to a system 

model performed by a user, and triggers a consistency checker 

that evaluates a relevant consistency rule for the performed 

changes. The authors also suggest utilizing a mechatronic 

ontology, letting the designer describe different design concepts 

and their structure. Later, consistency rules can be defined on 

top of an ontology model. The authors argue that this approach 

provides support for maintaining consistency between models 

developed and used across different domains during different 

design phases, especially in the conceptual design phase. 

Among the works reviewed, there are some promising 

approaches that could potentially solve a subset of the 
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consistency issues identified in this paper. Unfortunately most 

of the current work does not scale and is still incomplete. 

8 CONCLUSIONS 
The aim of the research presented in this paper is to 

explore the fundamentals of consistency and relate these to 

modeling and engineering design. In the process, several 

distinct types of inconsistencies were identified, classified and 

related to one another. We conclude that there are two major 

categories for inconsistencies: internal and external consistency 

issues. Internal consistency issues are inconsistencies with 

respect to some feasible reality that we can define using a 

formal system. This formal system is based on axioms and 

inference rules which map to a fundamental theory from 

mathematics (e.g. logic). External consistency applies to the 

reality in which the specified system will ultimately exist in, 

e.g. the real world in the case of technical systems with 

physical characteristics. Checking for external consistency 

issues is impossible to achieve, since it would require perfect 

knowledge about the processes occurring in nature. All  one can 

do is express rational beliefs about such processes by 

constructing models that are based on scientific data. These 

models are, by definition, abstractions of reality and therefore 

introduce uncertainty. Therefore, they cannot guarantee 

consistency with reality. 

Some types of inconsistencies can be managed. In order to 

detect internal inconsistencies, the modeling language that is 

being used to construct a given model needs to be part of a 

formal system, i.e. it needs to be based on a set of axioms and 

inference rules. Otherwise it is impossible to formally prove 

that a given model is consistent, i.e., well-formed and therefore 

a valid utterance of the language it is based on. 

Inconsistencies related to the beliefs and preferences of the 

decision maker are not always detectable. Only rational 

preferences lead to consistent decisions. Detecting 

inconsistencies in the process of decision making requires all 

information that is being applied to be explicitly present. This 

is, however, not always the case. 

Research efforts mentioned in the related literature discuss 

several methods to check for and potentially resolve 

inconsistencies that can occur within and across models from 

different domains. Unfortunately, most of the current work is 

incomplete and only considers specific types of inconsistencies. 

Many of the approaches are also ad-hoc solutions and are not 

rooted to any fundamental theory. This is one of the reasons 

why some of them do not scale. 

In summary, it is only within a formally defined system, 

i.e., a system based on a set of axioms and inference rules that 

inconsistencies can be identified in. Even then it is not 

guaranteed that all syntactically correct models can be 

identified as such. Gödel has proved with his first 

incompleteness theorem that not all systems based on axioms 

are able to produce all possible valid utterances of its formal 

language, i.e. the system cannot assure well-formedness [20]. 

In his work, Gödel has shown this for arithmetic. Because of 

this and external consistency issues, we must conclude that it is 

impossible to say whether or not a system is consistent. It is 

only possible to detect inconsistencies of models within the 

bounds of an axiomatic system. A consequence of this is also 

that any attempt to try and fully validate models is 

fundamentally flawed. 
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