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Nutrients and food-derived bioactive molecules must transit complex metabolic
pathways, and these pathways vary between people. Metabolic heterogeneity is caused
by genetic variation, epigenetic variation, differences in microbiome composition and
function, lifestyle differences and by variation in environmental exposures. This review
discusses a number of these sources of metabolic heterogeneity and presents some
of the research investments that will be needed to make applications of precision
nutrition practical.
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INTRODUCTION

Nutrients and food-derived bioactive molecules must transit complex metabolic pathways before
their ultimate use as sources of energy, catalysts for reactions, structural components, ligands
for receptors or as modulators of organ function. Some of these metabolic pathways may not be
human, but rather are microbial pathways. It makes sense that, between individuals, variations
in the function of these complex metabolic pathways result in metabolic heterogeneity that
causes differences between people in how they respond to a nutrient or bioactive molecule.
Some metabolic inefficiencies will be in critical metabolic pathways, and people with these
inefficiencies will develop health problems. If scientists understand the sources of this nutrition-
relevant metabolic heterogeneity, they can, through computational and mathematical modeling
of the underlying complex biological systems, predict these variations in responses and design
interventions accordingly. In people in whom metabolic inefficiencies are predicted, clinicians
could recommend diets, supplements, medical foods or pharmaceutical interventions designed to
bypass or overcome these differences so as to optimize organ function and enhance health. This
is the goal of the new discipline called Precision Nutrition. Precision nutrition will require that
the underlying science and modeling be translated and presented so that clinicians understand
the many inputs that contribute to metabolic heterogeneity-associated health problems and then
recognize the appropriate precision nutrition interventions and deliver them to people with such
health problems. Policy makers also will need to understand the underlying science and modeling
tools, so that they can better implement precision nutrition principles in the development of policy
recommendations and public health interventions.

To develop this understanding, there is a pressing need for developing enhanced methods for
assessing many of these factors that contribute to metabolic heterogeneity, for better computational
and informatic tools that can be used to model the complex interactions between the sources of
metabolic heterogeneity in people, and for better tools to translate the science and models into
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tests and interventions that health professionals can implement.
The ability to accomplish these precision nutrition goals will take
significant investments of intellect, money and time (Table 1).

Obviously, we do not yet know enough about the many of the
sources of metabolic heterogeneity in any individual, and much
less is known about how to integrate these effects across the many
sources. As always, perfection is the enemy of implementation of
any approach to better health. The field is ready to implement
version 1.0 of precision nutrition based on an understanding
of genetic variation and nutrition and of microbiome-related
variation. These first versions of precision nutrition will be
imperfect but better versions will develop as the understanding of
the contributions of the harder-to-measure sources of metabolic
heterogeneity increases and as computational and mathematical
modeling of the underlying complex biological systems advances,
Gene-based prediction of metabolic heterogeneity is already in
use in pharmacogenetics, an emerging area of medicine that
refines drug dosing so as to match the rate that an individual
metabolizes the drug (Ji et al., 2016; Pratt et al., 2018; Shukla et al.,
2018; Swen et al., 2018). The enzymes involved in the metabolism
of drugs (a form of bioactive molecule) did not evolve because
people were exposed to these drugs, but rather evolved because
people were exposed to (and needed to metabolize) components
of their diets and molecules formed by their intestinal flora or
by their organs. Thus, pharmacogenetics is a good guide to the
first steps in developing the larger field of precision nutrition.
Implementing what is already known about genetic variation and
nutrition-relevant metabolic heterogeneity is the obvious next
step in this process (see later discussion), but there are many steps
that must follow before the full promise of precision nutrition
can be achieved.

SOURCES OF THIS
NUTRITION-RELEVANT METABOLIC
HETEROGENEITY

There are a broad set of factors that contribute to metabolic
heterogeneity in people. Genetic variation, epigenetic variation,
microbiome-related variation, lifestyle variations (e.g., physical
activity, feeding behavior differences), and variation in chemical
and other exposures present in a person’s environment are just a
few of these factors (Figure 1). Some of these factors are better
understood than others, and this review focuses on those.

GENETIC VARIATION AS A SOURCE OF
NUTRITION-RELEVANT METABOLIC
HETEROGENEITY

Metabolism involves the function of many metabolic pathways,
each step in these pathways is mediated by proteins that are
coded for by genes. Codons within exons of genes determine
the amino acid sequence of the protein products. In addition,
the genetic code in promoter regions (usually nearby to these
exons) contains response element sequences that can bind to
external signals that determine whether a gene is switched on

or off by regulatory enhancers such as hormones, antioxidants,
calcium, metals, etc. (Resseguie et al., 2011; Hou et al., 2012).
Finally, some regions of DNA do not encode for protein products,
but rather for non-coding RNAs that regulate whether genes are
transcribed or whether the resulting mRNA is translated into a
protein (Mirra et al., 2018).

People have millions of variations in the “spelling” of their
genetic code (any individual person has about 50,000 of these
single nucleotide polymorphisms (SNPs) (Overbeek et al., 2005;
Sabeti et al., 2007). These genetic variations are inherited from
ancient ancestors, and therefore differ among people depending

TABLE 1 | Investments that are needed to advance precision nutrition.

Diet Assessment

1. Development of better biomarkers for assessment of diet intake
2. Development of better instruments for measuring diet intake

Genetic Variation

1. Development of a larger catalog of functional genetic variants
2. More studies that collect genetic, diet intake and health outcome data
3. Development of metabolomic and informatic tools for validating genetic
variants that perturb metabolism in people
4. Better informatic approaches for integrating data across patterns of genetic
variants

Epigenetic Variation

1. Development of methods for assessing epigenetic modifications in tissues
that are not readily accessible in people
2. Enhanced understanding of the critical events and timing that lead to
epigenetic changes that alter human metabolism.
3. Development of a larger catalog of functional epigenetic changes (that alter
human metabolism)

Microbiome Variation

1. Development of better methods for identification of the function of microbiota
in terms of effects on human metabolism
2. Inclusion of better diet intake assessment in design of microbiota studies
3. Development of better understanding of the effects of diet and exposome on
microbiota populations and function

Exposure Variation

1. Development of better methods for identification of the exposome in people
(the environmental molecules that humans are exposed to)
2. Identification of functional components of the exposome (that alter human
metabolism)

Lifestyle Variation

1. Development of better biomarkers for assessment of lifestyle (especially
physical activity)
2. Development of better instruments for measuring lifestyle (especially physical
activity)
3. Development of a larger catalog of functional lifestyle variants (especially
physical activity) in terms of effects on human metabolism.

Systems Biology

1. Development of better understanding of the interactions between all the
above sources of metabolic variation
2. Development of better informatic tools for integrating data from all the above
in terms of variants that perturb human metabolism

Translation to Practice

1. Development of better training programs for health professionals and public
in precision nutrition
2. Development of precision nutrition-guided interventions for people with
metabolic perturbations that cause health problems.
3. Development of informatics that can use the data defined above to identify
appropriate nutrition and dietary interventions in people with metabolic
perturbations that cause health problems
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FIGURE 1 | Sources of metabolic heterogeneity. Precision Nutrition is based on understanding the underlying sources of metabolic variation. These include genetic,
epigenetic, microbiome, life-style and exposure-based differences among people. Some of these variations create inefficiencies (bottlenecks) in metabolism that are
associated with adverse health outcomes in people who are challenged by their diets. Computational and mathematical modeling of the underlying complex
biological systems that are involved, and the use of these models to develop individualized interventions are the bases for the practice of precision nutrition.

on their heritage (Overbeek et al., 2005; Sabeti et al., 2007).
Some of these SNPs result in codon substitutions in critical genes
of metabolism that change their expression, function, or half-
life. Thus, variations in a person’s genetic code can affect how
much of a critical metabolic enzyme (or transporter, or receptor)
is available (by changing the rates of the protein’s synthesis
or by changing amino acid residues that affect the half-life of
the protein) and/or genetic variations can alter how well the
protein works (by changing amino acid residues that affect how
an enzyme binds to its substrate or that affect how the protein
catalyzes the reactions involving that substrate). Such functional
SNPs are one source of metabolic heterogeneity and can cause
differences between people in how they respond to a nutrient or
bioactive molecule.

An example of a significant metabolic difference caused by
a single functional SNP is seen in women during pregnancy.
Choline is an important nutrient that is needed to form a
normal fetus and infant; inadequate supplies of choline lead to
abnormal brain development and to birth defects (Zeisel and
Blusztajn, 1994; Shaw et al., 2004, 2006; Wang et al., 2016).
In addition, during pregnancy higher choline diets improve
placental function (Kwan et al., 2017) and protect the mother
from preeclampsia (Jiang et al., 2013). Adult men and women
deprived of choline develop liver or muscle damage that resolves

when choline is added to their diets (Fischer et al., 2007).
In most men and post-menopausal women, choline must be
ingested in the diet or they get sick, but more than half of
premenopausal women can eat very low choline diets and not
develop liver or muscle dysfunction (Fischer et al., 2007). Why
are some premenopausal women resistant to choline deficiency?
In some of these women, significant amounts of choline (in the
form of phosphatidylcholine) can be formed endogenously by
a reaction catalyzed by the enzyme phosphatidylethanolamine-
N-methyltransferase (PEMT), thereby reducing these women’s
dietary requirement for choline (Fischer et al., 2007). The
gene PEMT has several estrogen response elements in its
promoter region and the gene is induced by estrogen (Resseguie
et al., 2007). Men and post-menopausal women don’t have
enough estrogen to induce the gene’s expression, while some
premenopausal women do. A very common SNP in PEMT
(rs12325817 G > C substitution) decreases PEMT responsivity
to estrogen thereby increasing the dietary choline requirement
in premenopausal women with this SNP (Fischer et al., 2010;
Resseguie et al., 2011). More than 70% of women of European
heritage and of African Maasai heritage (where traditional dietary
intake of choline is high) have at least one variant allele (C) of
PEMT, while this variant is less common in women of West
African descent (where traditional dietary intake of choline is
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low) (da Costa et al., 2006; Fischer et al., 2007, 2010; Resseguie
et al., 2007; Silver et al., 2015). Premenopausal women with this
PEMT SNP cannot make endogenous phosphatidylcholine but
can bypass their metabolic inefficiency by eating more choline in
their diet, so adverse effects on fetal outcome will only be detected
when the SNP is combined with eating diets low in choline. It is
interesting that, in the United States, intake of choline in women
of pregnancy potential is significantly lower than recommended
(Wallace and Fulgoni, 2016), probably because the foods that
contain choline (e.g., eggs, fatty meats) often are being avoided
due to dietary restriction of cholesterol intake (Zeisel et al., 2003).

There are many other examples of single gene polymorphisms
that have large effects and therefore are readily apparent in
studies of relatively few people. The predisposition to gain weight
on a high saturated fat diet was most apparent (approximately
10% higher BMI) in people with the CC genotype of the
APOA2 rs5082 (–265T > C) polymorphism and was not
seen in the TT genotype (Corella et al., 2009, 2011). Another
example of a significant metabolic difference caused by individual
functional SNPs is seen for SNPS that influence the rates
of metabolism of caffeine. Cytochrome P450 1A2 (CYP1A2)
is responsible for approximately 95% of caffeine metabolism
(Rasmussen et al., 2002). A functional SNP in CYP1A2 (rs762551
A > C substitution) decreases enzyme inducibility, resulting in
slower caffeine metabolism (Sachse et al., 1999) and explains
the wide interindividual variability in caffeine concentrations
after a caffeine dose. Similarly, individual functional SNPs in
in the aryl-hydrocarbon receptor (AHR) for caffeine (rs6968865
and rs4410790) influence the wide interindividual variability in
brain’s response to caffeine ingestion (the caffeine “buzz”) (Josse
et al., 2012). To date, there are hundreds of functional SNPs that
have been identified that exert a large enough effects so that they
can be seen as metabolic heterogeneity (de Toro-Martin et al.,
2017). Most of precision nutrition to date has focused on such
single gene effects on nutrient metabolism.

The future of precision nutrition lies in understanding more
complex patterns of genetic variation that modify metabolism.
It is likely that multiple “hits” (due to functional genetic
variants) in a pathway will add up to a greater perturbation of
the metabolic pathway; hits in metabolically related pathways
could further add to this perturbation. For example, functional
SNPs in genes of folate metabolism increase the demand for
methyl-donors derived from choline metabolism (Kohlmeier
et al., 2005). In addition, many phenotypes are polygenic,
apparent only when pathways involving multiple genes are
perturbed. SNPs are not the only genetic variants that need to
be considered; for example, gene copy number variation can
cause functionally important perturbations in metabolism (Reiter
et al., 2016; Sharma et al., 2016). For these reasons, studies
advancing precision nutrition need to focus on developing
computational and mathematical modeling of the underlying
complex genetics and then develop algorithms for calculating the
integrated effects of multiple genetic contributions that together
predict metabolic inefficiencies. These algorithm-based scores
can be the basis for recommending diets designed to bypass or
overcome these differences so as to optimize organ function and
enhance health. An example of an algorithm-based approach

to precision nutrition is seen in studies of dietary choline and
risk for developing fatty liver. Most men and post-menopausal
women, when deprived of dietary choline develop fatty liver (da
Costa et al., 2006; Fischer et al., 2007, 2010; Resseguie et al.,
2007; Silver et al., 2015). This is because choline is needed
to produce phosphatidylcholine needed for very-low-density-
lipoprotein (VLDL) secretion from liver (Yao and Vance, 1988;
Yao and Vance, 1989). People who are inefficient at exporting
VLDL from liver, are prone to accumulate triacylglycerol within
hepatocytes (fatty liver). There are multiple metabolic steps, each
dependent on a different gene, that influence to the amount of
phosphatidylcholine available to make the phospholipid envelope
of VLDL. These include: transport of choline into the liver,
phosphorylation of choline and the other steps involved in the
Kennedy pathway for phosphatidylcholine synthesis (Kennedy
and Weiss, 1956), the PEMT pathway for phosphatidylcholine
synthesis (Vance et al., 1997), hydrolysis of phosphatidylcholine
(Corbin et al., 2013), transport of phosphatidylcholine into bile
(Davit-Spraul et al., 2010), and oxidation of choline to make
metabolites that can donate methyl-groups (Corbin et al., 2013).
SNPs in each of these pathways are relatively common, and an
algorithm-based score that integrates the combination of effects
of genetic variant-derived metabolic inefficiencies across multiple
pathways accurately predicts which people will develop fatty liver
as their body mass index (BMI) increases (Corbin et al., 2013).

Why haven’t genome-wide association studies identified more
gene variants that are associated with metabolic inefficiencies?
As discussed earlier, people can prevent the effects of metabolic
inefficiencies by eating diets that are either high in content of
the nutrient (for example, women who have inefficiencies in
producing choline can make up for this by eating diets high in
choline content), or by eating diets that provide the downstream
molecules whose production is limited by the metabolic
bottleneck created by the inefficiency [for example, people who
have metabolic inefficiencies in producing betaine from choline
can bypass this problem by ingesting betaine (Johnson et al., 2010,
2012)]. Sometimes the metabolic inefficiencies associated with
a SNP are overcome by eating less. In the fatty liver pathways
discussed above, SNPs cause diminished capacity for flux through
the hepatic fat export pathway but this decrease does not become
a problem until this capacity becomes rate limiting. When diets
are low in calories and low in substrates needed for hepatic
lipogenesis (lean people), genetic variants that slow the export
of fat from the liver do not become rate limiting; slower export
of fat from liver can still meet the slower rates of fat production
(Corbin et al., 2013). It is only when people eat diets high in
calories that hepatic lipogenesis exceeds the rate at which fat can
be exported by liver, resulting in fat accumulation within liver;
in such people the effects of the genetic variants are unmasked
(Corbin et al., 2013). Thus, a functional SNP may only be
revealed in people eating diets that challenge the SNP-induced
metabolic inefficiency.

Finally, the ability to identify gene variations has outpaced
the ability to functionally characterize them. The integration of
genomic and metabolomic methods could rectify this gap by
confirming that gene variants are associated with perturbations
of specific metabolites in the pathway that the gene is relevant
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to. As discussed earlier, dietary intake must be considered in
such metabolomic analyses, as gene variation may only have
a functional effect under specific diet conditions. There are
relatively few genetic studies that also contain good information
on dietary intake and this limits the development of diet x gene
interactions that can inform precision nutrition. Fortunately,
the NHANES studies by the US Centers for Disease Control
now collect phenotypic, genetic and dietary data (Wallace and
Fulgoni, 2016). Such data sets are very valuable. It is a problem
that the assessment of dietary intake is much more variable than
is assessment of gene sequence (Shim et al., 2014). Computer-
assisted diet intake assessment is developing nicely (Schap et al.,
2014), but still, there is a pressing need for enhanced methods
for assessing dietary intake. It is possible that, through measuring
biomarkers, diet intake can be imputed and that this will provide
a solution for improving assessment of diet intake. Studies using
metabolomics to measure metabolite patterns associated with
dietary patterns have promise (Menni et al., 2013; Kinross et al.,
2014; Beger et al., 2016; Pallister et al., 2016; Guasch-Ferre et al.,
2018). However, metabolic heterogeneity is likely to affect levels
of these biomarkers, sometimes independently of dietary intake,
introducing variability in the relationships between these markers
and diet intake. Whatever enhanced methods become available,
dietary intake data needs to be included in the big data analyses of
factors that influence metabolic heterogeneity. There is a pressing
need for investment in this research area.

Because a person’s genetic code stays relatively constant over
the lifespan, the power of such gene-variant-based predictions
is that they are measurable at any time in life, unlike most
other risk factors. Excellent molecular tools are available for
assessing gene sequence and genetic polymorphisms. For this
reason, nutrigenetics/nutrigenomics has advanced more rapidly
in making contributions to precision nutrition. However, genetic
variation is only one contributor to metabolic heterogeneity.

EPIGENETIC DIFFERENCES AS A
SOURCE OF METABOLIC
HETEROGENEITY

The genetic code alone is not enough to predict phenotype.
Cells in the body have highly diverse functions in different
tissues and organs despite containing almost identical genetic
code. These differences are due to epigenetic regulation of the
genome (Ideraabdullah and Zeisel, 2018). Epigenetic regulation
involves the placement of chemical marks on DNA or histones
by enzymes known as writers, these marks must be recognized
by specific regulator enzymes called readers that then suppress
or activate gene transcription or suppress mRNA translation
into protein, and ultimately the effects of these marks must
be ended by enzymes called erasers that remove the epigenetic
marks. To date there are two types of epigenetic marks in people:
covalent modifications to DNA and covalent modifications to
histone proteins.

DNA methylation is the most widely studied epigenetic mark.
DNA becomes methylated by the addition of a methyl-group
to cytosine to generate 5-methylcytosine (5mC). In people,

5mC occurs primarily at palindromic CG dinucleotides (Szyf,
2005). The presence of 5mC at a locus is associated with either
gene repression or activation depending on location within
the gene (Jones, 2012). For example, while 5mC at promoter
regions is often associated with gene repression, 5mC in the
gene body (introns and exons) is often associated with gene
activation (Ideraabdullah and Zeisel, 2018). 5mC often does
not initiate gene silencing but rather acts as a mechanism of
maintaining the silenced state of a gene (Jones, 2012). DNA
methylation induces metabolic heterogeneity, but conversely
diet and metabolic heterogeneity influences DNA methylation
(Jones, 2012). The methyl-groups used to mark DNA are
derived from S-adenosylmethionine, which is derived from
dietary methionine, 5-methyltetrahydrofolate, and betaine (from
choline) and DNA methylation is directly modulated by dietary
intake (Wolff et al., 1998; Szyf, 2005; Dolinoy et al., 2006;
Waterland et al., 2006, 2007; Mehedint et al., 2010; Jones, 2012;
Dominguez-Salas et al., 2014; Ideraabdullah and Zeisel, 2018).
Methods for assessing DNA methylation have recently been
reviewed (Shen and Waterland, 2007).

The nucleosome consists of eight histone proteins, two
copies each of four core histones: H2A, H2B, H3, and H4,
around which 147 bp of DNA is wrapped (Lai and Pugh,
2017). Histones modulate active (open) versus inactive (closed)
chromatin configuration. This function is regulated by post-
translational histone modifications made to the amino-terminal
“tails” of histones (Strahl and Allis, 2000). These marks
include methylation, acetylation, biotinylation, propionylation,
succinylation, citrullination, butyrylation, glutathionylation,
malonylation, formylation, crotonylation as well as ADP-
ribosylation, GlcNAcylation, phosphorylation, hydroxylation
and oxidation (Zhao and Garcia, 2015). Not only do histone
modifications modulate genes of nutrient metabolism, many
of the above marks on histones are directly derived from
metabolism of nutrients and are sensitive to dietary intake
(Ideraabdullah and Zeisel, 2018). For example, many histone
demethylases are α-ketoglutarate-dependent dioxygenases that
derive this substrate from nutrient metabolism; activity of these
enzymes is also iron dependent (Kaelin and McKnight, 2013).
This may explain why manipulating diet fat intake alters histone
methylation (Inoue et al., 2015; Leung et al., 2016). Similar to
DNA methylation, histone methylation is dependent on the
availability of methyl-groups produced from dietary methyl-
group donors (Strahl and Allis, 2000; Shen and Waterland,
2007; Davison et al., 2009; Mehedint et al., 2010; Jiang et al.,
2012; Kaelin and McKnight, 2013; Dominguez-Salas et al., 2014;
Inoue et al., 2015; Zhao and Garcia, 2015; Leung et al., 2016; Lai
and Pugh, 2017). Histone acetylation is also nutrient sensitive,
multiple components of the diet (such as butyrate) inhibit histone
deacetylases (Rajendran et al., 2011). Some of these components
are generated by gut microbiota-dependent mechanisms.

Though epigenetic marks are the most studied forms
of epigenetic variation, there are also non-coding RNAs
that contribute an important mechanism of epigenetic
regulation of the genome (Deveson et al., 2017) and can
interact with DNA, RNA, or protein to regulate gene expression,
transcription and post-transcriptional activity, respectively
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(Holoch and Moazed, 2015). The best characterized, in terms of
epigenetic function is microRNA (miR). These short non-coding
RNA bind complementary mRNA targets and mark them for
cleavage, degradation, or translational repression depending
on the degree of base pair matching (Saetrom et al., 2007).
MiR expression is sensitive to diet intake. For example, DNA
methylation of miR 1451-5p inhibits its expression (Du et al.,
2016). Dietary restriction of maternal choline intake results in
the overexpression of miRs in fetal brain (Trujillo-Gonzalez
et al., 2018). One of these overexpressed miRs is miR129-5p;
this miR prevents the formation of the epidermal growth factor
receptor (EGFR) (Wang et al., 2016). Because an EGF signal
is required for normal neural progenitor cell proliferation and
differentiation, the low choline -induced overexpression of
miR129-5p results in abnormal brain development (Trujillo-
Gonzalez et al., 2018). Interestingly, many miRs are regulated at
the transcriptional level by DNA methylation (Sengupta et al.,
2016). As discussed earlier, DNA methylation is sensitive to
dietary intake (Ideraabdullah and Zeisel, 2018). Diets high in
methyl-group donors (methionine, B12, folate and choline)
can increase DNA methylation of specific genes that result
in a permanent change in phenotype (e.g., coat color in the
Agouti mouse) (Waterland, 2006). DNA methylation, histone
modifications and non-coding RNA are known to work together
through separate but collaborative functions (Strahl and Allis,
2000) to modulate metabolic function.

Unlike the DNA sequence, epigenetic marks and non-coding
RNAs are changeable during the lifespan, especially during early
life, and these changes mediate the retuning of metabolism to
adjust to the realities of nutrient availability and environment
(Ideraabdullah and Zeisel, 2018). Thus, the timing of data
collection is important. This adds a layer of complexity that will
have to be dealt with as the science of precision nutrition is
refined. Not only is nutrient metabolism modified by epigenetic
differences, but these differences themselves are influenced by
dietary intake and environment (Ideraabdullah and Zeisel, 2018).

New technology makes assessing DNA methylation and
assessing epigenetic marks on histones reasonably easy (Strahl
and Allis, 2000; Waterland, 2006; Saetrom et al., 2007; Shen
and Waterland, 2007; Davison et al., 2009; Rajendran et al.,
2011; Jiang et al., 2012; Kaelin and McKnight, 2013; Holoch and
Moazed, 2015; Inoue et al., 2015; Zhao and Garcia, 2015; Du et al.,
2016; Leung et al., 2016; Sengupta et al., 2016; Deveson et al.,
2017; Lai and Pugh, 2017; Trujillo-Gonzalez et al., 2018). The
challenge for use of epigenetics to refine precision nutrition is
that there are still methodologic issues that must be overcome
before scientists can effectively assess epigenetic contributions
to metabolic heterogeneity. First, epigenetic marks and non-
coding RNAs are usually tissue specific. As discussed earlier,
these epigenetic differences direct genes to perform tissue-specific
functions. Therefore, epigenetic analyses of lymphocytes usually
will not provide accurate information about epigenetic marks
in the target tissues that are important for metabolism (e.g.,
liver, muscle, brain, etc.). It is necessary to obtain a sample
from the target tissue in order to obtain epigenetic analyses
that reflect epigenetic regulation of that specific tissue’s gene
expression, for the most part not a practical endeavor in studies

of nutrition in people. At this time, there is no obvious solution
to this problem. Perhaps, using imaging techniques such as
in vivo fluorescent labeling (Beckman et al., 2018) will permit the
development of non-invasive methods for the study epigenetic
marks in tissues; it may be possible to use circulating cell-free
DNA that is released from tissues to assess epigenetic marks
within those tissues (Oussalah et al., 2018), but a great deal of
research must be completed before we understand enough to use
such an approach.

MICROBIOME AS A SOURCE OF
METABOLIC HETEROGENEITY

The gastrointestinal tract is the main route whereby people
access nutrients; it is colonized by trillions of microbes (Qin
et al., 2010). These microbes evolved over time to thrive in the
human gastrointestinal tract, together, their genomes are ten
times larger than the human genome, and they can metabolize
almost any substrate that is presented to them (Goodman and
Gordon, 2010). Often, these microbes access these nutrients
before they are available to the people they colonize and the
microbes metabolize foods and make small molecules that people
then absorb (Manor et al., 2014; Hall and Versalovic, 2018).
This can modulate how much energy people derive from foods
(Scheithauer et al., 2016), provide people with essential vitamins
[like vitamin K (Ramakrishna, 2013)], create regulator molecules
such as short chain fatty acids (Ramakrishna, 2013), and modify
the availability of other essential nutrients [such as choline
(Zeisel and Warrier, 2017)]. People vary greatly in the microbes
that they harbor (Eckburg et al., 2005), thus, the microbes
populating our intestines are an important source of metabolic
heterogeneity between people.

The composition of the gut microbiome is shaped
predominantly by environmental factors such as diet and
host genetics have a lesser role in determining microbiome
composition (heritability of gut microbiome taxa is <2%).
Changes in the microbiome can occur rapidly after changes
in diet (David et al., 2014). The inherent complexity of the
microbiome ecosystem makes assessing its contributions to
metabolic heterogeneity challenging (Manor et al., 2014). The
tools that are currently available for studying the microbiome
are still not as well developed as the tools available for studying
genetic variation. These tools have been best at telling us the
names of the bacteria that are present in the microbiome [there
are more than 1000 operational taxonomic units (Yatsunenko
et al., 2012)]; note that current methodology still has difficulty
identifying fungi in the microbiome, but better methods are
being refined that can functionally characterize the microbiota in
terms of metabolism. Adding up the contributions of individual
species of bacteria does not accurately predict metabolism in the
microbiome because of the complex web of interactions between
the microbes and the human gut (Manor et al., 2014). Significant
progress is being made on developing in silico network-based
models of metabolism by the microbiome (Levy and Borenstein,
2013) but they are not yet refined enough to use to predict effects
on human nutritional requirements and responses. Despite this,
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currently available microbiome data significantly improve the
prediction accuracy for some outcomes relevant to precision
nutrition compared to models that use only host genetic and
environmental data (Wu et al., 2011; Yatsunenko et al., 2012;
Levy and Borenstein, 2013; David et al., 2014; Korem et al.,
2017; Rothschild et al., 2018). An interesting study used an
algorithm that integrated blood metabolite measures, dietary
habits, anthropometrics, physical activity and gut microbiota
data to accurately predict variation in post-prandial glycemic
response to meals between individuals (Zeevi et al., 2015).

There is a growing catalog of microbiome-related differences
that modify host metabolic function. The end products of
polysaccharide fermentation by gut bacteria are short-chain fatty
acids (including propionate, butyrate, and acetate) and these
provide an energy source for colonocytes. This contribution
can represent up to 10% of daily caloric requirements (den
Besten et al., 2013). Variation in microbiome composition is
associated with several metabolic diseases such as obesity (Ley
et al., 2005). Destruction by gut bacteria of essential nutrients can
increase dietary requirements for these nutrients. For example,
the presence of choline-consuming gut bacteria is associated with
lower serum concentrations of choline in the host (Romano et al.,
2017). Such studies suggest that, in terms of human metabolic
heterogeneity, variation in the microbiome exerts a large effect,
and microbiome data need to be included in the computational
and mathematical modeling of the underlying complex biological
systems that are developed to advance precision nutrition.

There are inherent challenges in the design of many
microbiome studies. Often, the diet of the person being studied
is not controlled when the microbiome is characterized (or else
fasting is the only dietary condition studied). It is important that
scientists develop better methods because organisms with the
same name often do not express or activate the same metabolic
pathways as this is dependent on the substrates they are growing
in. Meta-omic methods are maturing, sequencing of the RNA
in the microbes of the gastrointestinal tract will tell us which
genes they have expressed (Hor et al., 2018), proteomics may
tell us which proteins they are making (Jin et al., 2017), and
metabolomic methods can tell us what metabolites they are
producing (Lamichhane et al., 2018). The integration of these
types of data with data on metabolic heterogeneity of people will
eventually generate useful catalogs of microbiome-related causes
of human metabolic heterogeneity. This is an important area for
investment in research.

ENVIRONMENTAL EXPOSURE
VARIATION

Some of the genes and proteins important for both human
and microbial metabolism are sensitive to metabolites of
environmental chemicals that people are exposed to. Hormones
and growth factors control metabolic pathways related to energy
balance, nutrient absorption, glucose metabolism (insulin,
glucagon), and lipid metabolism. The discovery of obesogenic
environmental chemicals (Baillie-Hamilton, 2002) that include
endocrine disrupter chemicals makes it apparent that human

metabolic heterogeneity can arise because of differential exposure
to environmental chemicals that modify hormonal signaling
(Heindel et al., 2017). Estrogen is involved in the regulation of
metabolism because this hormone modulates of food intake,
body weight, glucose/insulin balance, body fat distribution,
lipogenesis and lipolysis, and energy consumption. Estrogen
targets POMC neurons and represses the synthesis of NPY
and AgRP and thereby inhibits food intake (Asarian and
Geary, 2006; Clegg, 2012; Heindel et al., 2017). Leptin interacts
with estrogen to regulate energy metabolism (Roepke, 2009;
Clegg, 2012). Bisphenol A (BPA), a well-studied endocrine
disrupter chemical, increases weight gain and body fat after
developmental exposure (Yang et al., 2016; Stojanoska et al.,
2017; Amin et al., 2019) and induces insulin resistance (Heindel
et al., 2017). Approximately 1000 endocrine disrupter chemicals
have been described (Heindel et al., 2017), and exposure to
them can result in adverse health outcomes (Heindel et al.,
2015). Phthalate metabolites (used in the manufacture of
plastics) activate peroxisome proliferator-activated receptors
(PPAR) and thereby modify PPAR-modulated pathways in
carbohydrate and lipid metabolism (Kim and Park, 2014).
Finally, it is not only exposure to chemicals that needs to
be considered, but exposure to environmental light as well
(Versteeg et al., 2016). Most people in developed countries
live in areas where the night sky is illuminated above the
threshold for light pollution. Human metabolic pathways
increase and decrease in activity with circadian rhythms
that are modulated by light exposure. Activity/feeding and
resting/fasting periods and energy expenditure are regulated
by light-sensitive molecular mechanisms in the central
clock that is located in the suprachiasmatic nuclei of the
hypothalamus (Versteeg et al., 2016). In healthy humans,
blood glucose concentrations and glucose tolerance possesses
a diurnal variation, with lower glucose tolerance in the
afternoon compared with the morning; insulin sensitivity
of peripheral tissues and insulin secretion are both further
reduced in the evening (Jarrett et al., 1972). Exposure to
light pollution therefore, modifies metabolism of nutrients
and changes the timing when biomarkers of metabolism
need to be assessed.

Investments in understanding the interactions between
environmental exposures and nutrient metabolism are needed in
order to generate the data to be included in the computational
and mathematical modeling of the underlying complex biological
systems that describe and inform precision nutrition.

METHOD LIMITATIONS AND
CHALLENGES

The methods for measuring the effects of genetic variation on
nutritional phenotype (nutrition-related changes in phenotype,
especially health outcomes related to diet intake) are relatively
mature. The major limitations derive from two sources:
(1) methods for assessing diet intake are prone to errors
much greater than are methods for measuring genotype or
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nutritional phenotype, and (2) not enough data sets exist where
diet intake, genetics and nutritional phenotype are measured
at the same time.

The methods for measuring the effects of epigenetic
variation on nutritional phenotype are not yet refined
enough for most applications in precision nutrition. There
are excellent methods for measuring epigenetic variation in
accessible tissues, but often these tissues are not the targets
of interest relative to the changes observed in nutritional
phenotype. There are very few data sets exist where diet
intake, epigenetics and nutritional phenotype are measured
at the same time.

The methods for measuring the effects of microbiome
variation on nutritional phenotype are also limited because of
difficulties in characterizing the complete microbiome (including
fungi) and the metabolic functions of each of the component
microbiota. These methods are developing rapidly. There
are very few data sets exist where diet intake, functional
characterization of microbiota and nutritional phenotype are
measured at the same time.

The methods for measuring the effects of environmental
variation on nutritional phenotype are available for common
environmental exposures, but are limited because so few data sets
exist that measure where diet intake, environmental exposures
and nutritional phenotype at the same time.

Once it is possible to accurately measure all of the above,
and once data sets are available from studies that measure all
the above variables, the final barrier to developing precision
nutrition is the understanding of the systems biology governing
the interactions between all of these complex variables. To
do this, mathematical models will need to be developed
based on data sets that derive from experiments where diet
intake, genetic, epigenetic, microbiome, environmental exposure
and nutritional phenotype measures are made in the same
people. Though rough approximation of such data sets can
be achieved by combining studies that measure only some of
the variables of interest, ultimately it will be important for
funding organizations to invest in some studies that collect

all the needed data so that these systems biology models
can be validated.

TRANSLATION TO PRACTICE

Precision Nutrition uses an understanding of metabolic
heterogeneity and its sources in order to refine the prediction
of requirements and responses to nutrients in individuals.
It promises to explain why some people are responders or
non-responders in diet intervention clinical trials. It will be
used to refine dietary recommendations for large segments of
the population, as haplotypes, diet intakes, and microbiome
composition tend to be distributed similarly in large chunks of the
population that share similar ancestry and lifestyles. Clinicians
will be able to use precision nutrition science to provide
individualized dietary recommendations, but before this can start
tools will have to be created that can convert complex modeling of
the systems biology of precision nutrition into recommendations
for diet, diet supplement, behavioral and pharmaceutical
interventions that can be offered by health professionals.
Precision Nutrition is essentially a big data problem, as metabolic
heterogeneity involves very complex interactions between
thousands of genes, thousands of microbe taxonomic units and
many different diets and environmental exposures.
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