
Technical Report
CMU/SEI-92-TR-033
ESC-TR-92-033

A Conceptual Framework for
System Fault Tolerance

Walter L. Heimerdinger
Charles B. Weinstock

October 1992

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-92-TR-033

ESC-TR-92-033
October 1992

A Conceptual Framework for System Fault Tolerance

Walter L. Heimerdinger
Charles B. Weinstock

System Fault Tolerance

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1992 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1
1.1 What is a System? 1

2 Requirements 5
2.2.4 Fault Evasion 6

2.3 Dependability Specifications 6
2.3.1 Quantitative Goals 6
2.3.2 Qualitative Goals 6

3 Fault Tolerance Concepts With Examples 9
3.1 Introduction 9
3.2 Faults and Failures 9

3.2.1 Definitions 9
3.3 Dependency Relations 12

3.3.1 Definitions 12
3.3.2 Failure Regions 13

3.4 Fault Classes 15
3.4.1 Locality 15
3.4.2 Effects 17
3.4.3 Duration 17
3.4.4 Immediate Cause 17
3.4.5 Ultimate Cause 18

3.5 Other Fault Attributes 18
3.5.1 Observability 18
3.5.2 Propagation 20

4 Fault Tolerance Mechanisms 23
4.1 Characteristics Unique to Digital Computer Systems 23
4.2 Redundancy Management 23

4.2.1 Space Redundancy 25
4.2.2 Time Redundancy 25
4.2.3 Clocks 25
4.2.4 Fault Containment Regions 26
4.2.5 Common Mode Failures 27
4.2.6 Encoding 27

4.3 Acceptance Test Techniques 27
4.3.1 Fault Detection 27
4.3.2 Fault Diagnosis 27
4.3.3 Fault Containment 28
4.3.4 Fault Masking 28
4.3.5 Fault Compensation 28
CMU/SEI-92-TR-33 v

4.3.6 Fault Repair 28
4.4 Comparison Techniques 28

4.4.1 Fault Detection 28
4.4.2 Fault Diagnosis 29
4.4.3 Fault Containment 29
4.4.4 Fault Masking 30
4.4.5 Fault Compensation 30
4.4.6 Fault Repair 30

4.5 Diversity 30

5 Putting It All Together 33
vi CMU/SEI-92-TR-33

A Conceptual Framework for System Fault Tolerance

Abstract: A major problem in transitioning fault tolerance practices to the
practitioner community is a lack of a common view of what fault tolerance is,
and how it can help in the design of reliable computer systems. This document
takes a step towards making fault tolerance more understandable by proposing
a conceptual framework. The framework provides a consistent vocabulary for
fault tolerance concepts, discusses how systems fail, describes commonly
used mechanisms for making systems fault tolerant, and provides some rules
for developing fault tolerant systems.

1 Introduction

One of the major problems in transitioning fault tolerance practices to the practitioner commu-
nity is a lack of a common view of exactly what fault tolerance is, and how it can help in the
design of reliable systems. One step towards making fault tolerance more understandable is
to provide a conceptual framework. The purpose of this document is to propose such a frame-
work.

This document begins with a discussion of what constitutes a system. From there a standard
vocabulary of system fault tolerance is developed, using commonly accepted terminology
(e.g., [Laprie 92]) wherever possible. Vocabulary terms are illustrated with computer system
examples and an alternate set of examples from a radically different type of system, a bridge.
Next, the document discusses how systems fail, including fault classes. This is followed by a
summary of the existing approaches to implementing fault tolerance. The final section revisits
the key concepts of the paper and proposes some rules for fault tolerant system design.

1.1 What is a System?

In the software engineering arena, a system is often equated with software, or perhaps with
the combination of computer hardware and software. Here, we use the term system in its
broader sense. As shown in Figure 1-1, a system is the entire set of components, both com-
puter related, and non-computer related, that provides a service to a user. For instance, an
automobile is a system composed of many hundreds of components, some of which are likely
to be computer subsystems running software.

A system exists in an environment (e.g., a space probe in deep space), and has operators and
users (possibly the same). The system provides feedback to the operator and services to the
user. Operators are shown inside the system because operator procedures are usually a part
of the system design, and many system functions, including fault recovery, may involve oper-
ator action. Not shown in the figure, but of equal importance, are the system’s designers and
maintainers.
CMU/SEI-92-TR-33 1

Systems are developed to satisfy a set of requirements that meet a need. A requirement that
is important in some systems is that they be highly dependable. Fault tolerance is a means of
achieving dependability.

There are three levels at which fault tolerance can be applied. Traditionally, fault tolerance has
been used to compensate for faults in computing resources (hardware). By managing extra
hardware resources, the computer subsystem increases its ability to continue operation. Hard-
ware fault tolerance measures include redundant communications, replicated processors, ad-
ditional memory, and redundant power/energy supplies. Hardware fault tolerance was partic-
ularly important in the early days of computing, when the time between machine failures was
measured in minutes.

A second level of fault tolerance recognizes that a fault tolerant hardware platform does not,
in itself, guarantee high availability to the system user. It is still important to structure the com-
puter software to compensate for faults such as changes in program or data structures due to

Computer
Subsystem

System

User

Operator

Environment

Computer-based

(to system)

System services (to User)

Inputs

Computing
Resources
(Hardware)

Other System
Facilities
(Not Computer-Based)

services

Figure 1-1 System Relationships

Operator
feedback

Computer Subsystem/
System Interface
2 CMU/SEI-92-TR-33

transients or design errors. This is software fault tolerance. Mechanisms such as check-
point/restart, recovery blocks and multiple-version programs are often used at this level.

At a third level, the computer subsystem may provide functions that compensate for failures
in other system facilities that are not computer-based. This is system fault tolerance. For ex-
ample, software can detect and compensate for failures in sensors. Measures at this level are
usually application-specific. It is important that fault tolerance measures at all levels be com-
patible, hence the focus on system-level issues in this document.
CMU/SEI-92-TR-33 3

4 CMU/SEI-92-TR-33

2 Requirements

Many of the terms used in this section are defined in Section 3.

2.1 Dependable Systems

Hazards to systems are a fact of life. So are faults. Yet we want our systems to be dependable.
A system is dependable when it is trustworthy enough that reliance can be placed on the ser-
vice that it delivers [Carter 82]. For a system to be dependable, it must be available (e.g., ready
for use when we need it), reliable (e.g., able to provide continuity of service while we are using
it), safe (e.g., does not have a catastrophic consequence on the environment), and secure
(e.g., able to preserve confidentiality) [Laprie 92].

Although these system attributes can be considered in isolation, in fact they are interdepen-
dent. For instance, a system that is not reliable is also not available (at least when it is not op-
erating correctly). A secure system that doesn’t allow an authorized access is also not avail-
able. An unreliable system to control nuclear reactors is probably not a safe one either.

2.2 Approaches to Achieving Dependability

Achieving the goal of dependability requires effort at all phases of a system’s development.
Steps must be taken at design time, implementation time, and execution time, as well as dur-
ing maintenance and enhancement. At design time, we can increase the dependability of a
system through fault avoidance techniques. At implementation time, we can increase the de-
pendability of the system through fault removal techniques. At execution time, fault tolerance
and fault evasion techniques are required.

2.2.1 Fault Avoidance
Fault avoidance uses various tools and techniques to design the system in such a manner that
the introduction of faults is minimized. A fault avoided is one that does not have to be dealt
with at a later time. Techniques used include design methodologies, verification and validation
methodologies, modelling, and code inspections and walk-throughs.

2.2.2 Fault Removal
Fault removal uses verification and testing techniques to locate faults enabling the necessary
changes to be made to the system. The range of techniques used for fault removal includes
unit testing, integration testing, regression testing, and back-to-back testing. It is generally
much more expensive to remove a fault than to avoid a fault.

2.2.3 Fault Tolerance
In spite of the best efforts to avoid or remove them, there are bound to be faults in any oper-
ational system. A system built with fault tolerance capabilities will manage to keep operating,
CMU/SEI-92-TR-33 5

perhaps at a degraded level, in the presence of these faults. For a system to be fault tolerant,
it must be able to detect, diagnose, confine, mask, compensate and recover from faults. These
concepts will be discussed thoroughly in Section 4 of this paper.

2.2.4 Fault Evasion
It is possible to observe the behavior of a system and use this information to take action to
compensate for faults before they occur. Often, systems exhibit a characteristic or normal be-
havior. When a system deviates from its normal behavior, even if the behavior continues to
meet system specifications, it may be appropriate to reconfigure the system to reduce the
stress on a component with a high failure potential. We have coined the term fault evasion to
describe this practice. For example, a bridge that sways as traffic crosses may not be exceed-
ing specifications, but would warrant increased attention from a bridge inspector. Similarly, a
computer system that suddenly begins to respond sluggishly often prompts a prudent user to
backup any work in progress, even though overall system performance may be within speci-
fication.

2.3 Dependability Specifications

The degree of fault tolerance a system requires can be specified quantitatively or qualitatively.

2.3.1 Quantitative Goals
A quantitative reliability goal is usually expressed as the maximum allowed failure-rate. For ex-
ample, the reliability figure usually stated as a goal for computer systems in commercial air-
craft is less than 10-9 failures per hour. The problem with stating reliability requirements in this
manner is that it is difficult to know when it has been achieved. Butler has pointed out that stan-
dard statistical methods cannot be used to show such reliability with either standard or fault
tolerant software [Butler 91]. It is also clear that there is no way to achieve confidence that a
system meets such a reliability goal through random testing. Nevertheless, reliability goals are
often expressed in this manner.

2.3.2 Qualitative Goals
An alternative method of specifying a system’s reliability characteristics is to specify them
qualitatively. Typical specifications would include:

Fail-safe Design the system so that, when it sustains a specified number
of faults, it fails in a safe mode. For instance, railway signalling
systems are designed to fail so that all trains stop.

Fail-op Design the system so that, when it sustains a specified number
of faults, it still provides a subset of its specified behavior.
6 CMU/SEI-92-TR-33

No single point of failure
Design the system so that the failure of any single component
will not cause the system to fail. Such systems are often de-
signed so that the failed component can be replaced or repaired
before another failure occurs.

Consistency Design the system so that all information delivered by the sys-
tem is equivalent to the information that would be delivered by
an instance of a non-faulty system.
CMU/SEI-92-TR-33 7

8 CMU/SEI-92-TR-33

3 Fault Tolerance Concepts With Examples

3.1 Introduction

A major purpose of this document is to define system fault tolerance concepts in an under-
standable manner. To help the reader understand the concepts, each concept is illustrated by
a set of examples after it is defined. Where possible the same two examples are used through-
out the document.

It is often easier to understand a concept using an analogy. This avoids the problems associ-
ated with the unintentional overloading of the meaning of words that often occurs in a familiar
context. Thus one of the two examples that will appear throughout this document is a (simpli-
fied) highway bridge over a river. The other example will be in the probably more familiar world
of computers.

3.2 Faults and Failures

3.2.1 Definitions
The terms failure and fault are key to any understanding of system reliability. Yet they are often
misused. One describes the situation(s) to be avoided, while the other describes the prob-
lem(s) to be circumvented.

3.2.1.1 Concept Definition

Over time, failure has come to be defined in terms of specified service delivered by a system.
This avoids circular definitions involving essentially synonymous terms such as defect, etc.
This distinction appears to have been first proposed by Melliar-Smith [Melliar-Smith 75]. A sys-
tem is said to have a failure if the service it delivers to the user deviates from compliance with
the system specification for a specified period of time. While it may be difficult to arrive at an
unambiguous specification of the service to be delivered by any system, the concept of an
agreed-to specification is the most reasonable of the options for defining satisfactory service
and the absence of satisfactory service, failure.

The definition of failure as the deviation of the service delivered by a system from the system
specification essentially eliminates “specification” faults or errors. While this approach may ap-
pear to be avoiding the problem by defining it away, it is important to have some reference for
the definition of failure, and the specification is a logical choice. The specification can be con-
sidered as a boundary to the system’s region of concern, discussed later. It is important to rec-
ognize that every system has an explicit specification, which is written, and an implicit
specification that the system should at least behave as well as a reasonable person could ex-
pect based on experience with similar systems and with the world in general. Clearly, it is im-
portant to make as much of the specification as explicit as possible.
CMU/SEI-92-TR-33 9

It has become the practice to define faults in terms of failure(s). The concept closest to the
common understanding of the word fault is one that defines a fault as the adjudged cause of
a failure. This fits with a common application of the verb form of the word fault, which involves
determining cause or affixing blame. However, this requires an understanding of how failures
are caused. An alternate view of faults is to consider them failures in other systems that inter-
act with the system under consideration—either a subsystem internal to the system under con-
sideration, a component of the system under consideration, or an external system that
interacts with the system under consideration (the environment). In the first instance, the link
between faults and failures is cause; in the second case it is level of abstraction or location.

The advantages of defining faults as failures of component/interacting systems are: (1) one
can consider faults without the need to establish a direct connection with a failure, so we can
discuss faults that do not cause failures, i.e., the system is naturally fault tolerant, (2) the def-
inition of a fault is the same as the definition of a failure with only the boundary of the relevant
system or subsystem being different. This means that we can consider an obvious internal de-
fect to be a fault without having to establish a causal relationship between the defect and a
failure at the system boundary.

In light of the proceeding discussion, a fault will be defined as the failure of (1) a component
of the system, (2) a subsystem of the system, or (3) another system which has interacted or
is interacting with the considered system. Every fault is a failure from some point of view. A
fault can lead to other faults, or to a failure, or neither.

A system with faults may continue to provide its service, that is, not fail. Such a system is said
to be fault tolerant. Thus, an important motivation for differentiating between faults and failures
is the need to describe the fault tolerance of a system. An observer inspecting the internals of
the system would say that the faulty component had failed, because the observer’s viewpoint
is now at a lower level of detail.

The observable effect of a fault at the system boundary is called a symptom. The most ex-
treme symptom of a fault is a failure, but it might also be something as benign as a high read-
ing on a temperature gauge. Symptoms are discussed in greater detail later.

A Digression on Errors

The term error often is used in addition to the terms fault and failure, as in the article by Melliar-
Smith previously cited. Often, errors are defined to be the result of faults, leading to failures.
Informally, errors seem to be a passive concept associated with incorrect values in the system
state. However, it is extremely difficult to develop unambiguous criteria for differentiating be-
tween faults and errors. Many researchers refer to value faults, which are also clearly errone-
ous values. The connection between error and failure is even more difficult to describe.

As we have seen, differentiation between failures and faults is essential for fault tolerant sys-
tems. A third term, error, adds little to this distinction and can be a source of confusion. Con-
sequently, we substitute the term fault for the common uses of the term error. Generally,
10 CMU/SEI-92-TR-33

references to the term “error” in the literature can be fitted to the context of this document by
substituting the term “fault.”

3.2.1.2 Bridge Example

To help understand these definitions, consider the example of a highway bridge over a river.
Some time after developing this example, Alfred Spector has pointed out that a precedent for
using this as an example exists in an article comparing practices in bridge design with practic-
es in software design [Spector 86].

When designing the bridge the designer must consider a myriad of details regarding require-
ments, and the environment in which the bridge would operate. Suppose a 20 ton truck drives
onto the bridge and the bridge collapses. From the truck’s point of view, the bridge has failed.
But what is the fault that led to the failure? There are lots of possible answers to this:

1. The designer of the bridge did not allow for appropriate bridge loading. This
could be:

a. A specification fault if the highway department did not anticipate that
20 ton trucks would need to use the bridge, or

b. A design fault if the specification called for it being able to carry 20 ton
trucks.

c. An implementation fault if the fabricator didn’t correctly follow the
design.

2. The truck driver ignored a “Load Limit” sign. This would be a user fault.

3. A worker for the highway department posted an erroneous “Load Limit” sign.
This would be an operator fault.

4. The people preparing the documentation for the bridge mistakenly indicated
that the bridge would support 20 tons, when in fact it was only designed to
support 10 tons. The highway department erected a 20 ton “Load Limit” sign.
This would be a documentation fault, followed by an operator fault.

5. Previously a 30 ton truck crossed the bridge and sufficiently weakened the
structure so that the subsequent 20 ton truck caused the bridge to fail. This,
again, would be a user fault (the prior user).

6. Inadequate maintenance caused the bridge to develop structural flaws which
led to it being unable to support a 20 ton truck. This would be another operator
fault.

7. A barge on the river hit the bridge and knocked out a support. Or a 100 year
flood came along and washed the bridge out, or a meteor crashed through
the bridge. These would be environmental faults.

As an example of a fault which does not lead to a failure, consider the same bridge with a crack
in its concrete roadbed. There is no failure involved if the bridge continues to carry the loads
requested of it in spite of this fault. It may be the result of normal wear and tear on the roadbed.
However, a thorough inspection of the bridge might discover that the crack in the roadbed was
CMU/SEI-92-TR-33 11

a symptom of a faulty strut, only observable by x-raying the strut. From the point of view of the
bridge inspector, the strut would have failed. This component failure is an internal fault.

Scenarios like this can be generated ad infinitum. Note that a fault does not lead to a failure
unless the result is observable by the user, and leads to the bridge becoming unable to deliver
its specified service. This means that one person’s fault is another person’s failure. For in-
stance, in example 4 above, from the point of view of the highway department the erroneous
documentation was a fault that led to an operator failure. From the point of view of the user of
the bridge the erroneous documentation was a documentation fault that led to an operator fault
which led to a bridge failure.

3.2.1.3 Computer System Example

Consider a computer system running a program to control the temperature of a boiler by cal-
culating the firing rate of the burner for the boiler. If a bit in memory becomes stuck at one, that
is a fault. If the memory fault effects the operation of the program in such a way that the com-
puter system outputs cause the boiler temperature to rise out of the normal zone, that is a com-
puter system failure and a fault in the overall boiler system. If there is a gauge showing the
temperature of the boiler, and its needle moves into the “yellow” zone (abnormal, but accept-
able), that is a symptom of the system fault. On the other hand, if the boiler explodes because
of the faulty firing calculation, that is a (catastrophic) system failure.

The reasons for the memory fault could be manifold. The chip used might not have been man-
ufactured to specification (a manufacturing fault), the hardware design may have caused too
much power to be applied to the chip (a system design fault), the chip design may be prone to
such faults (a chip design fault), a field engineer may have inadvertently shorted two lines
while performing preventive maintenance (a maintenance fault), etc.

3.3 Dependency Relations

3.3.1 Definitions
A major concern in fault tolerant system design and verification is the identification of depen-
dencies. Dependencies may be static, remaining the same over the life of the system, or they
may change, either by design or because of the effects of faults.

3.3.1.1 Concept Definition

A component of a system is said to depend on another component if the correctness of the
first component’s behavior requires the correct operation of the second component. Tradition-
ally, the set of possible dependencies in a system are considered to form an acyclic graph.
The term fault tree analysis seems to imply this, among other things. Indeed, many systems
exhibit this behavior, in which one fault leads to another which leads to another until eventually
a failure occurs. It is possible, however, for a dependency relationship to cycle back upon it-
self. A dependency relationship is said to be acyclic if it forms part of a tree. A cyclic depen-
12 CMU/SEI-92-TR-33

dency relationship is one that cannot be described as part of a tree, but rather must be
described as part of a directed cyclic graph.

3.3.1.2 Bridge Example

In a bridge, the structural integrity of the roadbed depends, in part, on the structural integrity
of the bridge piers. In a suspension bridge, the structural integrity of each of the suspension
lines depends on each of the others.

A weakened strut may lead to another strut developing faults, which in turn could put more
load on the original strut causing it to weaken further. This would be a cyclic fault trajectory. If
the faults which developed in the second strut did not further trigger the fault in the first strut it
would be an acyclic fault trajectory.

3.3.1.3 Computer System Example

In a computer system, consider two cooperating sequential processes using semaphores to
synchronize. If either process fails to release the semaphore when it should, then the other
process will fail as well. Thus they are mutually dependent.

A piece of software with a bad bit set in one of its instructions could cause a bad value to be
calculated which could cause the program to take a different logical path. This different path
might cause the original piece of software to be re-executed which could lead to still other un-
expected behavior. This would be a cyclic fault trajectory. If the original fault did not ultimately
result in the fault being triggered again it would be an acyclic fault trajectory.

3.3.2 Failure Regions
Defining a failure region limits the consideration of faults and failures to a portion of a system
and its environment. This is necessary to insure that system specification, analysis and design
efforts are concentrated on the portions of a system that can be observed and controlled by
the designer and user. It helps to simplify an otherwise overwhelming task.

3.3.2.1 Concept Definition

A system is typically made up of lots of components parts. These components are, in turn,
made up of sub-components. This continues arbitrarily until an atomic component (a compo-
nent that is not divisible or that we choose not to divide into sub-components) is reached. Al-
though all components are theoretically capable of having faults, for any system there is a
level beyond which the faults are “not interesting”. This level is called the fault floor. Atomic
components lie at the fault floor. We are concerned with faults emerging from atomic compo-
nents, but not faults that lie within these components.

Similarly, as components are aggregated into a system, eventually the system is complete.
Everything else (e.g., the user, the environment, etc.) is not a part of the system. This is the
system boundary. Failures occur when faults reach the system boundary.

As illustrated in Figure 3-1, the span of concern begins at the boundaries between the system
and the user and between the system and the environment, and ends at the fault floor. Faults
CMU/SEI-92-TR-33 13

below the fault floor are indistinguishable, either because they are not fully understood, or be-
cause they are too numerous. Informally, the span of concern is the area within which faults
are of interest.

3.3.2.2 Bridge Example

Bridges are designed with the assumption that the structural members used (beams, braces,
fasteners) have known load bearing, deformation, and fracture characteristics, which are pre-
dicted from knowledge of the composition of the materials, the process used to produce the
materials, and from statistical sampling of the materials. Thus the structural members form the
fault floor for most bridges. Faults at the molecular level are generally below the level of con-
sideration. The design process for a typical bridge design begins with specification of a certain
grade of steel and employs standard structural shapes. The combination of known materials,
known shapes, and standard procedures for summing loads and forces is used to predict the
failure modes of the overall structure.

3.3.2.3 Computer System Example

In a computer example, a repair person may not care to localize a “problem” to the component
level, but instead be satisfied to localize it to the circuit board level. The circuit board repre-
sents a fault floor for the repair person. This fault floor is often referred to as a Field Replacable
Unit (FRU) or Line Replaceable Unit (LRU). The selection of FRUs and LRUs is an important
part of the maintenance strategy for any computer system. The selection is based on consid-
erations such as replacement cost, diagnosis facilities, and skill levels in the field and at repair
depots. Notice, however, that when the board is shipped back to the repair depot, they may
indeed care about localizing the “problem” down to the component level. In this case the fault
floor has changed.

System Boundary

Fault Floor

Faults

Failures

Span of Concern

User

Substrate

Figure 3-1 The Failure Region
14 CMU/SEI-92-TR-33

3.4 Fault Classes

No system can be made to tolerate all possible faults, so it is essential that the faults be con-
sidered throughout the requirements definition and system design process. However, it is im-
practical to enumerate all of the faults to be tolerated; faults must be aggregated into
manageable fault classes.

Faults may be classified based on Locality (atomic component, composite component, sys-
tem, operator, environment), on Effect (timing, data), or on Cause (design, damage). Other
possible classification criteria include Duration (transient, persistent) and Effect on System
State (crash, amnesia, partial amnesia, etc.).

Since the location of a fault is so important, fault location is a logical starting point for classify-
ing faults.

3.4.1 Locality

3.4.1.1 Atomic Component Faults

Concept Definition

A atomic component fault is a fault at the fault floor, that is, in a component that cannot be
subdivided for analysis purposes.

Bridge Example

A fault in an individual structural member in a bridge may be considered a atomic component
fault. If the bridge design properly distributes the load among the various structural members
(resources) of the bridge, then the load is transferred to other structural members, no failure
occurs, and the fault is masked. The fault may be detected by observation of cracks or defor-
mation, or it may remain latent.

Computer System Example

In a computer system, substrate faults can appear in diverse forms. For instance, a fault in a
memory bit is not an atomic component fault if the details of the memory are below the current
span of concern. Such a fault may or may not appear as a memory fault, depending upon the
memory’s ability to mask bit faults.

3.4.1.2 Composite Component Faults

Concept Definition

A composite component fault is one that arises within an aggregation of atomic components
rather than in an atomic component. It may be the result of one or more atomic component
faults.

Bridge Example

A pier failure would be an example of a composite component failure for a bridge.
CMU/SEI-92-TR-33 15

Computer System Example

A disk drive failure in a computer system is an example of a composite component failure. If
the individual bits of memory are considered to be in the span of concern, a failure of one of
those would be a component failure as well.

3.4.1.3 System Level Faults

Concept Definition

A system level fault is one that arises in the structure of a system rather than in the system’s
components. Such faults are usually interaction or integration faults, that is, they occur be-
cause of the way the system is assembled rather than because of the integrity of any individual
component. Note that an inconsistency in the operating rules for a system may lead to a sys-
tem level fault. System level faults also include operator faults, in which an operator does not
correctly perform his or her role in system operation. Systems that distribute objects or infor-
mation are prone to a special kind of system fault: replication faults. Replication faults occur
when replicated information in a system becomes inconsistent, either because replicates that
are supposed to provide identical results no longer do so, or because the aggregate of the
data from the various replicates is no longer consistent with system specifications. Replication
faults can be caused by malicious faults, in which components such as processors “lie” by pro-
viding conflicting versions of the same information to other components in the system. Mali-
cious faults are sometimes called Byzantine faults after an early formulation of the problem in
terms of Byzantine generals trying to reach a consensus on attacking when one of the gener-
als is a traitor [Lamport 82].

Bridge Example

A bridge failure resulting from insufficient allowance for thermal expansion in the overall struc-
ture could be considered a system failure: individual structural members behave as specified,
but faulty assembly causes failures when they interact. Operator faults have been discussed
in the example in Section 3.2.1.

Computer System Example

Consider the computer systems in an automobile. Suppose the airbag deployment computer
and the anti-lock brake computer are both known to work properly and yet fail in operation be-
cause one computer interferes with the other when they are both present. This would be a sys-
tem fault.

3.4.1.4 External Faults

External faults arise from outside the system boundary, the environment, or the user. Environ-
mental faults include phenomena that directly affect the operation of the system, such as tem-
perature, vibration, or nuclear or electromagnetic radiation or that affect the inputs provided to
the system. User faults are created by the user in employing the system. Note that the roles
of user and operator are considered separately; the user is considered to be external to the
system while the operator is considered to be a part of the system.
16 CMU/SEI-92-TR-33

3.4.2 Effects
Faults may also be classified according to their effect on the user of the system or service.
Since computer system components interact by exchanging data values in a specified time
and/or sequence, fault effects can be cleanly separated into timing faults and value faults.
Timing faults occur when a value is delivered before or after the specified time. Value faults
occur when the data differs in value from the specification.

3.4.2.1 Value Faults

Computer systems communicate by providing values. A value fault occurs when a computa-
tion returns a result that does not meet the system’s specification. Value faults are usually de-
tected using knowledge of the allowable values of the data, possibly determined at run time.

3.4.2.2 Timing Faults

A timing fault occurs when a process or service is not delivered or completed within the spec-
ified time interval. Timing faults cannot occur if there is no explicit or implicit specification of a
deadline. Timing faults can be detected by observing the time at which a required interaction
takes place; no knowledge of the data involved is usually needed.

Since time increases monotonically, it is possible to further classify timing faults into early, late,
or “never” (omission) faults. Since it is practically impossible to determine if “never” occurs,
omission faults are really late timing faults that exceed an arbitrary limit. Systems that never
produce value faults, but only fail by omission are called fail-silent systems. If all failures re-
quire system restart, the system is a fail-stop system.

3.4.3 Duration
Persistent faults remain active for a significant period of time. These faults are sometimes
termed hard faults. Persistent faults usually are the easiest to detect and diagnose, but may
be difficult to contain and mask unless redundant hardware is available. Persistent faults can
be effectively detected by test routines that are interleaved with normal processing. Transient
faults remain active for a short period of time. A transient fault that becomes active periodically
is a periodic fault (sometimes referred to as an intermittent fault). Because of their short dura-
tion, transient faults are often detected through the faults that result from their propagation.

3.4.4 Immediate Cause
Faults can be classified according to the operational condition that causes them. These in-
clude resource depletion, logic faults, or physical faults.

Resource depletion faults occur when a portion of the system is unable to obtain the resources
required to perform its task. Resources may include time on a processing or communications
device, storage, power, logical structures such as a data structure, or a physical item such as
a processor.
CMU/SEI-92-TR-33 17

Logic faults occur when adequate resources are available, but the system does not behave
according to specification. Logic faults may be the result of improper design or implementa-
tion, as discussed in the next section. Logic faults may occur in hardware or software.

Physical faults occur when hardware breaks or a mutation occurs in executable software. Most
common fault tolerance mechanisms deal with hardware faults.

3.4.5 Ultimate Cause
Faults can also be classified as to their ultimate cause. Ultimate causes are the things that
must be fixed to eliminate a fault. These faults occur during the development process and are
most effectively dealt with using fault avoidance and fault removal techniques.

A common ultimate cause of a fault is an improper requirements specification which leads to
a specification fault. Technically this is not a fault, since a fault is defined to be the failure of a
component/interacting systems and a failure is the deviation of the system from specification.
However, it can be the reason a system deviates from the behavior expected by the user. An
especially insidious instance of this arises when the requirements ignore aspects of the envi-
ronment in which the system operates. For instance, radiation causing a bit to flip in a memory
location would be a value fault which would be considered an external fault (Section 3.4.1.4).
However, if the fault propagates inside the system boundary the ultimate cause is a specifica-
tion fault because the system specification did not foresee the problem.

Flowing down the waterfall, a design fault results when the system design does not correctly
match the requirements, and an implementation fault arises when the system implementation
does not adequately implement the design. The validation process is specifically designed to
detect these faults. Finally, a documentation fault occurs when the documented system does
not match the real system.

3.5 Other Fault Attributes

3.5.1 Observability
Faults originate in a system component or subsystem, in the system’s environment, or in an
interaction between the system and a user, operator, or another subsystem. A fault may ulti-
mately have one of several effects:

1. It may disappear with no perceptible effect

2. It may remain in place with no perceptible effect

3. It may lead to a sequence of additional faults that result in a failure in the
system’s delivered service (propagation to failure)

4. It may lead to a sequence of additional faults with no perceptible effect on the
system (undetected propagation)
18 CMU/SEI-92-TR-33

5. It may lead to a sequence of additional faults that have a perceptible effect on
the system but do not result in a failure in the system’s delivered service
(detected propagation without failure)

Fault detection is usually the first step in fault tolerance. Even if other elements of a system
prevent a failure by compensating for a fault, it is important to detect and remove faults to avoid
the exhaustion of a systems fault tolerance resources.

3.5.1.1 Concept Definition

A fault is observable if there is information about its existence available at the system inter-
face. The information that indicates the existence of a fault is a symptom. A symptom may be
a directly observed fault or failure, or it may be a change in system behavior such that the sys-
tem still meets its specifications. A fault that a fault tolerance mechanism of a system has
found is said to be detected. Otherwise it is latent, whether it is observable or not. The defini-
tion of detected is independent of whether or not the fault tolerance mechanism is able to suc-
cessfully deal with the fault condition. For a fault to be detected, it is sufficient that it be known
about.

3.5.1.2 Bridge Example

Fault detection in a bridge usually relies on the principle that stress in a structural member re-
sults in deformation of the member, which can usually be observed by looking for cracks in the
surface or changes in the alignment of the bridge. Note that the fault is not observed directly;
rather, its effects are observed. Other faults, such as metal fatigue, can only be predicted by
knowing the history of the loads imposed on the member.

A flaw in a structural member of the bridge is a latent fault. If a bridge inspector x-rays the
member and discovers the flaw, or observes a crack that is a logical consequence of the flaw,
it is a detected fault.

3.5.1.3 Computer System Example

To provide failure-free outputs in a computer-based fault tolerant system, the system must de-
tect faults, a process that requires redundant information (that is, information in addition to the
minimum information needed to perform a prescribed function). Redundant information may
be combined with a value or it may be stored separately. Such information may include at-
tributes of a value, such as an abstract type; encoded information, such as error correcting
code words; and independently calculated reference values. Attribute information is used to
verify that the value is being used in the correct context. Codeword information is used to de-
termine if one or a few of the bits in the value have been changed since the value was created.
Independently calculated values may be static (for example, a predefined invariant or limit) or
they may be dynamically calculated by a reference process. The reference process may be a
redundant copy of the primary process, or it may be a diverse implementation that uses a dif-
ferent approach to produce the value being tested. Either time redundancy (retry) or space re-
dundancy (a concurrently executing process) may be used. For instance, a flipped bit in a
program is a latent fault. If a checksum is taken, and it does not match a previously computed
CMU/SEI-92-TR-33 19

value, the fault becomes detected, although, in this case, it may only be possible to tell that a
fault exists, and not exactly where it is.

Timing faults may be detected by recognizing the passage of an allotted time interval or by
serializing outputs to detect missing outputs. The passage of time may be monitored directly
using values from hardware clocks or it may be inferred by noting the completion of one or
more processes that complete within a known time interval under normal circumstances.

3.5.2 Propagation

3.5.2.1 Concept Definition

A fault that propagates to other faults or failures is said to be active. A non-propagating fault
is said to be dormant. When a previously dormant fault becomes active it is said to be trig-
gered. An active fault may again become dormant, awaiting a new trigger. The sequence of
faults, each successive one triggered by the preceding one and possibly ending in a failure, is
known as a fault trajectory. (Because of the ways faults trigger successive faults, a fault tra-
jectory could be viewed as a chain reaction.)

Figure 3-2 shows the relationship between detected, latent, dormant, and active faults.

Dormant Active

Latent

Detected

Undiscovered
and not
propagating

Undiscovered
and
propagating

Discovered
and not
propagating

Discovered
and
propagating

f1

f2
f3

f4

f6

f7

f8

Fa

Fb

f1, f3, f4 f2, f5, f6

f7 f8

Examples: Examples:

Examples: Examples:

f5

system boundary
fault - fn
failure - Fx

fault trajectory

Propagation

O
bs

er
va

bi
lit

y

detected fault -

Figure 3-2 Fault Attributes
20 CMU/SEI-92-TR-33

3.5.2.2 Bridge Example

Suppose the example bridge was designed to carry 10 ton vehicles over it, but the highway
department erects a “load limit 40 tons” sign on the approach. The sign is a dormant fault. It
becomes active when a 38 ton truck triggers it by attempting to drive over the bridge and caus-
es the bridge to fall (a failure) or perhaps a structural member to weaken (another fault). The
original fault (the sign) becomes dormant again, until another over weight truck drives onto the
bridge. The sequence “overweight truck drives over bridge”, “structural member weakens” is
the fault trajectory.

3.5.2.3 Computer System Example

As another example, consider a computer program loaded in memory, but with a bad bit in one
of its instructions. Until that instruction is executed, the fault is dormant. Once it is executed it
becomes active and perhaps results in a crash (failure) or a wrong value in a computation
(fault). If the value computed was the altitude of an aircraft, and the resulting faulty information
led to the plane flying into a mountain, that would be another fault in the fault trajectory (actu-
ally a failure in this case).
CMU/SEI-92-TR-33 21

22 CMU/SEI-92-TR-33

4 Fault Tolerance Mechanisms

4.1 Characteristics Unique to Digital Computer Systems

Digital computer systems have special characteristics that determine how these systems fail
and what fault tolerance mechanisms are appropriate. First, digital systems are discrete sys-
tems. Unlike continuous systems, such as analog control systems, they operate in discontin-
uous steps. Second, digital systems encode information. Unlike continuous systems, values
are represented by a series of encoded symbols. Third, digital systems can modify their be-
havior based on the information they process.

Since digital systems are discrete systems, results may be tested or compared before they are
released to the outside world. While analog systems must continuously apply redundant or
limiting values, a digital system may substitute an alternative result before sending an output
value. While it is possible to build digital computers that operate asynchronously (without a
master clock to sequence internal operations), in practice all digital computers are sequenced
from a clock signal. This dependency on a clock makes an accurate clock source as important
as a source of power, but it also means that identical sequences of instructions take essen-
tially the same amount of time. One of the most common fault tolerance mechanisms, the
time-out, uses this property to measure program activity (or lack of activity).

The fact that digital systems encode information is extremely important. The most important
implication of information encoding is that digital systems can accurately store information for
a long period of time, a capability not available in analog systems, which are subject to value
drift. This also means that digital systems can store identical copies of information and expect
the stored copies to still be identical after a substantial period of time. This makes the compar-
ison techniques discussed in Section 4.4 possible.

Information encoding in digital systems may be redundant, with several codes representing
the same value. Redundant encoding is the most powerful tool available to ensure that infor-
mation in a digital system has not been changed during storage or transmission. Redundant
encoding may be implemented at several levels in a digital system. At the lowest levels, care-
fully designed code patterns attached to blocks of digital information can allow special-pur-
pose hardware to correct for a number of different communication or storage faults, including
changes to single bits or changes to several adjacent bits. Parity for random access memory
is a common example of this use of encoding. Since a single bit of information can have sig-
nificant consequences at the higher levels, a programmer may encode sensitive information,
such as indicators for critical modes, as special symbols unlikely to be created by a single-bit
error.

4.2 Redundancy Management

Fault tolerance is sometimes called redundancy management. For our purposes, redundancy
is the provision of functional capabilities that would be unnecessary in a fault-free environ-
CMU/SEI-92-TR-33 23

ment. Redundancy is necessary, but not sufficient for fault tolerance. For example, a computer
system may provide redundant functions or outputs such that at least one result is correct in
the presence of a fault, but if the user must somehow examine the results and select the cor-
rect one, then the only fault tolerance is being performed by the user. However, if the computer
system correctly selects the correct redundant result for the user, then the computer system
is not only redundant, but also fault tolerant. Redundancy management marshals the non-
faulty resources to provide the correct result.

Redundancy management or fault tolerance involves the following actions:

Fault Detection The process of determining that a fault has occurred.

Fault Diagnosis The process of determining what caused the fault, or exactly
which subsystem or component is faulty.

Fault Containment The process that prevents the propagation of faults from their
origin at one point in a system to a point where it can have an
effect on the service to the user.

Fault Masking The process of insuring that only correct values get passed to
the system boundary in spite of a failed component.

Fault Compensation If a fault occurs and is confined to a subsystem, it may be nec-
essary for the system to provide a response to compensate for
output of the faulty subsystem.

Fault Repair The process in which faults are removed from a system. In well-
designed fault tolerant systems, faults are contained before they
propagate to the extent that the delivery of system service is af-
fected. This leaves a portion of the system unusable because of
residual faults. If subsequent faults occur, the system may be
unable to cope because of this loss of resources, unless these
resources are reclaimed through a recovery process which in-
sures that no faults remain in system resources or in the system
state.

The measure of success of redundancy management or fault tolerance is coverage. Informal-
ly, coverage is the probability of a system failure given that a fault occurs. Simplistic estimates
of coverage merely measure redundancy by accounting for the number of redundant success
paths in a system. More sophisticated estimates of coverage account for the fact that each
fault potentially alters a systems ability to resist further faults. The usual model is a Markov
process in which each fault or repair action transitions the system into a new state, some of
which are failure states. Because a distinct state is generated for each stage in each possible
24 CMU/SEI-92-TR-33

failure and repair process, Markov models for even simple systems can consist of thousands
of states. Sophisticated analysis tools are available to analyze these models and to create the
Markov models from more compact system descriptions such as Petri Nets.

The implementation of the actions described above depend upon the form of redundancy em-
ployed such as space redundancy or time redundancy.

4.2.1 Space Redundancy
Space redundancy provides separate physical copies of a resource, function, or data item.
Since it has been relatively easy to predict and detect faults in individual hardware units, such
as processors, memories, and communications links, space redundancy is the approach most
commonly associated with fault tolerance. It is effective when dealing with persistent faults,
such as permanent component failures. Space redundancy is also the approach of choice
when fault masking is required, since the redundant results are available simultaneously. The
major concern in managing space redundancy is the elimination of failures caused by a fault
to a function or resource that is common to all of the space-redundant units. This is discussed
in more detail in Section 4.2.5.

4.2.2 Time Redundancy
As mentioned before, digital systems have two unique advantages over other types of sys-
tems, including analog electrical systems. First, they can shift functions in time by storing in-
formation and programs for manipulating information. This means that if the expected faults
are transient, a function can be rerun with a stored copy of the input data at a time sufficiently
removed from the first execution of the function that a transient fault would not affect both.
Second, since digital systems encode information as symbols, they can include redundancy
in the coding scheme for the symbols. This means that information shifted in time can be
checked for unwanted changes, and in many cases, the information can be corrected to its
original value. Figure 4-1 illustrates the relationship between time and space redundancy. The
two sets of resources represent space redundancy and the sequential computations represent
time redundancy. In the figure, time redundancy is not capable of tolerating the permanent
fault in the top processing resource, but is adequate to tolerate the transient fault in the lower
resource. In this simple example, there is still the problem of recognizing the correct output:
this is discussed in more detail in Sections 4.3 and 4.4.

4.2.3 Clocks
Many fault tolerance mechanisms, employing either space redundancy or time redundancy,
rely on an accurate source of time. Probably no hardware feature has a greater effect on fault
tolerance mechanisms than a clock. An early decision in the development of a fault tolerant
system should be the decision to provide a reliable time service throughout the system. Such
a service can be used as a foundation for fault detection and repair protocols. If the time ser-
vice is not fault tolerant, then additional interval timers must be added or complex asynchro-
nous protocols must be implemented that rely on the progress of certain computations to
CMU/SEI-92-TR-33 25

provide an estimate of time. Multiple-processor system designers must decide to provide a
fault tolerant global clock service that maintains a consistent source of time throughout the
system, or to resolve time conflicts on an ad-hoc basis [Lamport 85].

4.2.4 Fault Containment Regions
Although it is possible to tailor fault containment policies to individual faults, it is common to
divide a system into fault containment regions with few or no common dependencies between
regions.

Fault containment regions attempt to prevent the propagation of data faults by limiting the
amount of communication between regions to carefully monitored messages and the propa-
gation of resource faults by eliminating shared resources. In some ultra-dependable designs,
each fault containment region contains one or more physically and electrically isolated proces-
sors, memories, power supplies, clocks, and communication links. The only resources that are
tightly coordinated in such architectures are clocks, and extensive precautions are taken to in-
sure that clock synchronization mechanisms do not allow faults to propagate between regions.
Data fault propagation is inhibited by locating redundant copies of critical programs in different
fault containment regions and by accepting data from other copies only if multiple copies in-
dependently produce the same result.

Resources
Computation

TimeToutTin

Input(s)

Output(s)

Space

Transient Fault

Permanent Fault

Success

Figure 4-1 Time and Space Redundancy

Resources

Computation

Computation Computation Output(s)Failure
26 CMU/SEI-92-TR-33

4.2.5 Common Mode Failures
System failures occur when faults propagate to the outer boundary of the system. The goal of
fault tolerance is to intercept the propagation of faults so that failure does not occur, usually
by substituting redundant functions for functions affected by a particular fault. Occasionally, a
fault may affect enough redundant functions that it is not possible to reliably select a non-faulty
result, and the system will sustain a common-mode failure. A common-mode failure results
from a single fault (or fault set). Computer systems are vulnerable to common-mode resource
failures if they rely on a single source of power, cooling, or I/O. A more insidious source of
common-mode failures is a design fault that causes redundant copies of the same software
process to fail under identical conditions.

4.2.6 Encoding
Encoding is the primary weapon in the fault tolerance arsenal. Low-level encoding decisions
are made by memory and processor designers when they select the error detection and cor-
rection mechanisms for memories and data buses. Communications protocols provide a vari-
ety of detection and correction options, including the encoding of large blocks of data to
withstand multiple contiguous faults and provisions for multiple retries in case error correcting
facilities cannot cope with faults. Long-haul communication facilities even provide for a nego-
tiated fall-back in transmission speed to cope with noisy environments. These facilities should
be supplemented with high-level encoding techniques that record critical system values using
unique patterns that are unlikely to be randomly created.

4.3 Acceptance Test Techniques

The fault detection mechanism used influences the remainder of the fault tolerance activities
(diagnosis, containment, masking, compensation, and recovery). The two common mecha-
nisms for fault detection are acceptance tests and comparison.

4.3.1 Fault Detection
Acceptance tests are the more general fault detection mechanism in that they can be used
even if the system is composed of a single (non-redundant) processor. The program or sub-
program is executed and the result is subjected to a test. If the result passes the test, execu-
tion continues normally. A failed acceptance test is a symptom of a fault. An acceptance test
is most effective if it is based on criteria that can be derived independently of the function being
tested and can be calculated more simply that the function being tested (e.g., multiplication of
a result by itself to verify the result of a square root function).

4.3.2 Fault Diagnosis
An acceptance test cannot generally be used to determine what has gone wrong. It can only
tell that something has gone wrong.
CMU/SEI-92-TR-33 27

4.3.3 Fault Containment
An acceptance test provides a barrier to the continued propagation of a fault. Further execu-
tion of the program being tested is not allowed until some form of retry successfully passes the
acceptance test. If no alternatives pass the acceptance test, the subsystem fails, preferably
silently. The silent failure of faulty components allows the rest of the system to continue in op-
eration (where possible) without having to worry about erroneous output from the faulty com-
ponent [Schlichting 83].

4.3.4 Fault Masking
An acceptance test successfully masks a bad value if a retry or alternate results in a new, cor-
rect result within the time limit set for declaring failure.

4.3.5 Fault Compensation
A program that fails an acceptance test can be replaced by an alternate, as described in the
next section. If the alternate passes the acceptance test, its result may be used to compensate
for the original result. Notice that the alternate program run during a retry may be a very simple
one that just outputs a “safe” value to compensate for the faulty subsystem. A common ap-
proach in control systems is to “coast” the result by providing the value calculated from the last
known good cycle.

4.3.6 Fault Repair
Acceptance tests are usually used in a construct known as a recovery block. A recovery block
provides backward fault recovery by rolling program execution back to the state before the
faulty function was executed. This repairs the faulty state and the result. When a result fails
an acceptance test, the program can be executed again before leaving the recovery block. If
the new result passes the acceptance test, it can be assumed that the fault originally detected
was transient. If the software is suspect, an alternative can be executed in place of the original
program fragment. If a single processor is used, the state of the processor must be reset to
the beginning of the function in question. A mechanism called the recovery cache has been
proposed to accomplish this [Anderson 76]. A recovery cache records the state of the proces-
sor at the entrance to each recovery block. Although a recovery cache is best implemented in
hardware, implementations to date have been limited to experimental software. Where multi-
ple processors are available, the retry may take the form of starting the program on a backup
processor and shutting down the failed processor. Recovery blocks can be cascaded so that
multiple alternatives can be tried when an alternate result also fails the acceptance test.

4.4 Comparison Techniques

4.4.1 Fault Detection
Comparison is an alternative to acceptance tests for detecting faults. If the principal fault
source is processor hardware, then multiple processors are used to execute the same pro-
28 CMU/SEI-92-TR-33

gram. As results are calculated, they are compared across processors. A mismatch indicates
the presence of a fault. This comparison can be pair-wise, or it may involve three or more pro-
cessors simultaneously. In the latter case the mechanism used is generally referred to as vot-
ing. If software design faults are a major consideration, then a comparison is made between
the results from multiple versions of the software in question, a mechanism known as n-ver-
sion programming [Chen 78]. This is discussed more in the Section 4.5.

4.4.2 Fault Diagnosis
Fault diagnosis with comparison is dependent upon whether pair-wise or voting comparison is
used:

pair-wise When a mismatch occurs for a pair it is impossible to tell which
of the processors has failed. The entire pair must be declared
faulty.

voting When three or more processors are running the same program,
the processor whose values do not match the others is easily di-
agnosed as the faulty one.

4.4.2.1 Voting Issues

Voting may be centralized or decentralized. Centralized voting is easy to mechanize, either in
software or hardware, but results in a single point of failure, a violation of many qualitative re-
quirements specifications. It is possible to compensate for total voter failure using a master-
slave approach that replaces a silent voter with a standby voter, as in the pair and spare ap-
proach. Decentralized voting avoids the single point of failure, but requires a consensus
among multiple voting agents, either hardware or software in order to avoid replication faults
mentioned in Section 3.4.1.3. In order to reach consensus, the distributed voters must syn-
chronize to exchange several rounds of messages. In the worst case, where up to f faulty pro-
cessors are allowed to send misleading results to other processors participating in the
consensus process, 3f+1 distributed voters must be provided to reach a state known as inter-
active consistency [Pease 80]. Interactive consistency requires that each non-faulty processor
provides a value, that all non-faulty processors agree on the same set of values, and that the
values are correct for each of the non-faulty processors. Similar processes are required to
maintain a consensus as to the number of members remaining in a group of distributed pro-
cessors [Cristian 88].

4.4.3 Fault Containment
When pair-wise comparison is used, containment is achieved by stopping all activity in the
mismatching pair. Any other pairs in operation can continue executing the application, undis-
turbed. They detect the failure of the miscomparing pair through time-outs.

When voting is used, containment is achieved by ignoring the failed processor and reconfig-
uring it out of the system.
CMU/SEI-92-TR-33 29

4.4.4 Fault Masking
In a comparison based system, fault masking is achievable in two ways. When voting is used
the voter only allows the correct value to pass on. If hardware voters are used, this usually
occurs quickly enough to meet any response deadlines. If the voting is done by software vot-
ers that must reach a consensus, adequate time may not be available.

Pair-wise comparison requires the existence of multiple pairs of processors to mask faults. In
this case the faulty pair of processors is halted, and values are obtained from the functional,
good pairs.

4.4.5 Fault Compensation
The value provided by a voter may be the majority value, the median value, a plurality value,
or some other predetermined satisfactory value. While this choice is application dependent,
the most common choice is the median value. This guarantees that the value selected was
calculated by at least one of the participating processors and that it is not an extreme value.

4.4.6 Fault Repair
In a comparison-based system with a single pair of processors, there is no recovery from a
fault. With multiple pairs of pairs, recovery consists of using the values from the “good” pair.
Some systems provide mechanisms to restart the miscomparing pair with data from a “good”
pair. If the miscomparing pair subsequently produces results that compare for an adequate pe-
riod of time, it may be configured back into the system.

When voting is used, recovery from a failed processor is accomplished by utilizing the “good”
values from the other processors. A processor that is outvoted may be allowed to continue ex-
ecution and may be configured back into the system if it successfully matches in a specified
number of subsequent votes.

4.5 Diversity

The only fault tolerance approach for combating common-mode design errors is design diver-
sity—the implementation of more than one variant of the function to be performed [Avizienis
84]. For computer-based applications, it is generally accepted that it is more effective to vary
a design at higher levels of abstraction (i.e., by varying the algorithm or physical principles
used to obtain a result) than to vary implementation details of a design (i.e. by using different
programming languages or low level coding techniques). Since diverse designs must imple-
ment a common system specification, the possibility for dependencies always arises in the
process of refining the specification to reflect difficulties uncovered in the implementation pro-
cess. Truly diverse designs would eliminate dependencies on common design teams, design
philosophies, software tools and languages, and even test philosophies. Many approaches at-
tempt to achieve the necessary independence through randomness, by creating separate de-
30 CMU/SEI-92-TR-33

sign teams that remain physically separate throughout the design, implementation, and test
process. Recently, some projects have attempted to create diversity by enforcing differing de-
sign rules for the multiple teams.
CMU/SEI-92-TR-33 31

32 CMU/SEI-92-TR-33

5 Putting It All Together

This document has attempted to present a conceptual framework of system fault tolerance.
The previous discussion has been centered around definitions and examples. This section dis-
cusses how to use the information in the prior sections.

A system is said to have a failure if the service it delivers to the user deviates from compliance
with the system specification. A fault is the adjudged cause of a failure. The significance of this
is that, in the absence of precise requirements, it is impossible to tell whether a system has
failed, and therefore whether a fault has occurred.

Rule 1: Know precisely what the system is supposed to do. Part of this process should
be determining how long a system can be allowed to deviate from its specification be-
fore the deviation is declared a failure.

However, it is not sufficient to know what the system is supposed to do under normal circum-
stances. It is also necessary to know what abnormal conditions the system must accommo-
date. It is virtually impossible to enumerate the set of all possible faults that a system might
encounter. It is much more manageable to deal with classes of faults.

Rule 2 : Look at what can go wrong, and try to group the causes into classes for easier
manageability. This involves defining a fault floor based on your ability to diagnose and
repair faults.

The goal of fault tolerance is to prevent faults from propagating to the system boundary, where
it becomes observable and, hence, a failure. In general, the further a fault has propagated, the
harder it is to deal with. Since fault tolerance is redundancy management, however, it be-
comes a matter of the degree of redundancy desired. For instance, it is almost certainly cheap-
er to deal with memory faults by using error correcting memory (that is, redundant bits in a
memory location) than by providing a “shadow” memory. Note, however, that dealing with
faults earlier rather than later may go counter to the advice given above regarding dealing with
classes of faults rather than individual faults.

Rule 3 : Study your application and determine appropriate fault containment regions
and the earliest feasible time to deal with potential faults.

In general, the price paid for a fault tolerant system is additional resources, both in terms of
time, and in terms of space. As with most things these two can be traded off against each oth-
er. In some applications (e.g., flight control), timing is everything, even at the cost of extra pro-
cessors. In general, the comparison approach to fault detection works best in these situations.
In other applications (e.g., a space probe), weight and power consumption is an overriding is-
sue—arguing for a higher reliance on time redundancy and suggesting the use of acceptance
tests.
CMU/SEI-92-TR-33 33

Rule 4 : Completely understand the requirements of your application and use them to
make appropriate time/space trade-offs.

Protecting a system from every conceivable fault can exhaust another resource—money. This
is true even if a rational set of fault classes is defined. The trade-off here is fault coverage ver-
sus the cost of that coverage. In all systems, it is possible to classify faults by the likelihood of
occurrence.

Rule 5 : Whenever possible, concentrate on the credible faults and ignore those less
likely to occur unless they can be dealt with at little or no additional cost.

Time is an essential element in any digital computer system, even in systems that do not claim
to be real-time. It is important to define the minimum period of time a system can fail to provide
its defined service before a failure is declared. Unnecessarily short failure margins force the
system designer to resort to expensive fault tolerance mechanisms, such as real-time fault
masking.

Rule 6 : Carefully determine application failure margins and use the information to bal-
ance the degree of fault tolerance needed with the cost of implementation.
34 CMU/SEI-92-TR-33

References

[Anderson 76] Anderson, T., and R. Kerr, “Recovery Blocks in Action: A System Supporting
High Reliability”, Proceedings of the Second International Conference on Soft-
ware Engineering, 1976, 447-457.

[Avizienis 84] Avizienis, A. and J.P.J. Kelly, “Fault Tolerance by Design Diversity: Concepts
and Experiments”, IEEE Computer, vol. 17 no. 8, August 1984, 67-80.

[Butler 91] Butler, Ricky W., and George B. Finelli, “The Infeasibility of Experimental
Quantification of Life-Critical Software Reliability”, Proceedings of the ACM
SIGSOFT ’91 Conference on Software for Critical Systems, December 1991,
66-75.

[Carter 82] Carter, W.C., “A Time for Reflection”, Proceedings of the 12th IEEE Internation-
al Symposium on Fault Tolerant Computing, June 1992, 41.

[Chen 78] Chen, L. and A. Avizienis, “N-version Programming: a Fault Tolerant Approach
to Reliability of Software Operations.”, Digest of Papers, FTCS-8, Toulouse,
France, 1978, 3-9.

[Cristian 88] Cristian, F., “Agreeing on Who is Present and Who is Absent in a Synchronous
Distributed System”, Proceedings of the Eighteenth International Conference
on Fault-Tolerant Computing, June 1988, 206-211.

[Cristian 91] Cristian, F., “Understanding Fault-Tolerant Distributed Systems.”, Communica-
tions of the ACM, vol. 34 no. 2, Feb 1991, 56-78.

[Lamport 82] Lamport, L.; R. Shostak; and M. Pease, “The Byzantine Generals Problem.”,
ACM Transactions on Programming Languages and Systems, vol. 4 no. 3, Au-
gust 1982, 382-401.

[Lamport 85] Lamport, L. and P. M. Melliar-Smith, “Synchronizing Clocks in the Presence of
Faults.”, Journal of the ACM, vol. 32 no. 1, Jan, 1985, 52-78.

[Laprie 92] Laprie, J. C. (ed.), Dependability: Basic Concepts and Terminology, Vienna,
Springer-Verlag, 1992.

[Melliar-Smith 91] Melliar-Smith, P. M. “A Project to Investigate Data-base Reliability”, Report,
Computing Lab., University of Newcastle-upon-Tyne, England, 1975.

[Pease 80] Pease, M.; Shostak, R.; and Lamport, L., “Reaching Agreement in the Pres-
ence of Faults”, Journal of the Association for Computing Machinery, vol. 27,
no. 2, April 1980, 228-234.
CMU/SEI-92-TR-33 35

[Schlichting 83] Schlichting, R. D. and F. B. Schneider, “Failstop Processors: An Approach to
Designing Fault-Tolerant Computing Systems”, ACM Transactions on Comput-
er Systems, vol. 1 no. 3, Aug 1983, 222-238.

[Spector 86] Spector, Alfred and David Gifford, “A Computer Science Perspective of Bridge
Design”, Communications of the ACM, 29(4), April 1986, 268-283.
36 CMU/SEI-92-TR-33

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESC/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63752F N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-92-TR-33 ESC-TR-92-033

A Conceptual Framework for System Fault Tolerance

November 1992 36 pp.

dependability fault tolerance vocabulary
fault tolerance system fault tolerance
fault tolerance concepts
fault tolerance framework

Walter L. Heimerdinger and Charles B. Weinstock
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Abstract: A major problem in transitioning fault tolerance practices to the practitioner community is a lack of a
common view of what fault tolerance is, and how it can help in the design of reliable computer systems. This
document takes a step towards making fault tolerance more understandable by proposing a conceptual frame-
work. The framework provides a consistent vocabulary for fault tolerance concepts, discusses how systems
fail, describes commonly used mechanisms for making systems fault tolerant, and provides some rules for
developing fault tolerant systems.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/AVS (SEI JPO)

22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7630

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

(please turn over)

ABSTRACT —continued from page one, block 19

	1 Introduction
	1.1 What is a System?

	2 Requirements
	2.2.4 Fault Evasion
	2.3 Dependability Specifications
	2.3.1 Quantitative Goals
	2.3.2 Qualitative Goals

	3 Fault Tolerance Concepts With Examples
	3.1 Introduction
	3.2 Faults and Failures
	3.2.1 Definitions
	3.2.1.1 Concept Definition
	A Digression on Errors

	3.2.1.2 Bridge Example
	3.2.1.3 Computer System Example

	3.3 Dependency Relations
	3.3.1 Definitions
	3.3.1.1 Concept Definition
	3.3.1.2 Bridge Example
	3.3.1.3 Computer System Example

	3.3.2 Failure Regions
	3.3.2.1 Concept Definition
	3.3.2.2 Bridge Example
	3.3.2.3 Computer System Example

	3.4 Fault Classes
	3.4.1 Locality
	3.4.1.1 Atomic Component Faults
	Concept Definition
	Bridge Example
	Computer System Example

	3.4.1.2 Composite Component Faults
	Concept Definition
	Bridge Example
	Computer System Example

	3.4.1.3 System Level Faults
	Concept Definition
	Bridge Example
	Computer System Example

	3.4.1.4 External Faults

	3.4.2 Effects
	3.4.2.1 Value Faults
	3.4.2.2 Timing Faults

	3.4.3 Duration
	3.4.4 Immediate Cause
	3.4.5 Ultimate Cause

	3.5 Other Fault Attributes
	3.5.1 Observability
	3.5.1.1 Concept Definition
	3.5.1.2 Bridge Example
	3.5.1.3 Computer System Example

	3.5.2 Propagation
	3.5.2.1 Concept Definition
	3.5.2.2 Bridge Example
	3.5.2.3 Computer System Example

	4 Fault Tolerance Mechanisms
	4.1 Characteristics Unique to Digital Computer Sys...
	4.2 Redundancy Management
	4.2.1 Space Redundancy
	4.2.2 Time Redundancy
	4.2.3 Clocks
	4.2.4 Fault Containment Regions
	4.2.5 Common Mode Failures
	4.2.6 Encoding

	4.3 Acceptance Test Techniques
	4.3.1 Fault Detection
	4.3.2 Fault Diagnosis
	4.3.3 Fault Containment
	4.3.4 Fault Masking
	4.3.5 Fault Compensation
	4.3.6 Fault Repair

	4.4 Comparison Techniques
	4.4.1 Fault Detection
	4.4.2 Fault Diagnosis
	4.4.2.1 Voting Issues

	4.4.3 Fault Containment
	4.4.4 Fault Masking
	4.4.5 Fault Compensation
	4.4.6 Fault Repair

	4.5 Diversity

	5 Putting It All Together
	References

