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Abstract  

 
Most cities under traditional operation mode, which does not use modern communication technologies, are facing urban 
issues such as energy crisis. To ensure the quality of living in cities, many governments and organizations are coming 
with different innovative ideas. Recently, the concept of a sustainable smart city has been introduced. Studies have 
indicated that facility management is the key to achieving sustainability; however, it is challenging to integrate 
heterogeneous data. The traditional computing tools are inefficient to process big data, and the operating platform for 
facility management is mostly two dimensional. This research introduces the framework based on GIS-BIM-AI to solve 
those problems. The framework is applied to energy demand management in the small part of the real city, its prototype 
is developed, and performance is evaluated where the most important achievement is the development of a smart city 
operating platform that has single 3D data repository, efficient AI-based urban analytics tools, and powerful 3D 
visualization with a control centre to visualize, operate and manage facilities. All these features improve the quality of 
services and citizen’s satisfaction, saves resources, time and cost, enhances transparency,and promote public participation 
in decision making, which are the core principles for sustainability. 
Keywords: Facility Management (FM); Sustainable Smart City; Geographic Information System (GIS); Building 
Information Modelling (BIM); and Artificial Intelligence (AI). 
Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

INTRODUCTION 
A Facility management (FM) system can 

improve the quality of services, provides safety, and 
enhances the health and comfort of occupants through 
fast and efficient documentation and management of 
facilities or infrastructures. The outcome of facility 
management is lower operating costs by efficient 
utilization of facilities, detecting risk, and failure that 
helps in preventing costly repair, and rehabilitation 
work; thus, it lowers life cycle cost [1]. It also improves 
communication among stakeholders in transparent 
decision making for reliability, efficiency, and 
sustainability. Studies have indicated that facility 
management is the key to achieving sustainability in a 
smart city [2, 3]. Costin and Eastman [4] define a 
sustainable smart urban system as "an application or 
system that utilizes modern information communication 
technologies to establish a physical-virtual feedback 
loop for enabling human-machine-ecological 
interactions needed to enhance the overall wellbeing of 
human inhabitants, support the needs of efficient 

infrastructure systems, optimize the ecological 
environment, and maintain sustainability goals, all 
while having the capability to learn user behavior to 
optimize and improve the system" [4]. The 
effectiveness of facility management has a significant 
impact on cost and resource wastages in a smart city; 
however, most facility managers lack the necessary 
skills, take time to implement agendas, and often 
isolated from decision making process that has made 
their profession undervalued and underappreciated [5,6]. 
Also, most of the facility management visualization 
dashboard has a two-dimensional (2D) screen as long as 
100 meters. One of the problems with this approach is 
that it is very difficult to integrate all real-time 
information within a short time to prevent the failure of 
a system. Besides, the information generated is mostly 
2D in the form of maps, graphs, images that are difficult 
to interpret by stakeholders involved in city planning, 
operation, and management [7]. Only experts or 
professionals can decipher, so it raises a question on 
participatory approach and transparency. Furthermore, 
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the initial investment, operation, and maintenance costs 
are high for the 2D dashboard; thus, it cannot be 
considered sustainable, and there is an increasing 
concern for the need of three dimensional (3D) 
visualization tool that can virtually replicate the real 
world, collects information from city archives, IoT and 
sensors, performs urban simulation, and quantify the 
urban analysis qualitatively for the decision makers of 
the city.  

 
Facility management in a smart city involves 

multiple stakeholders from top to bottom in the 
hierarchy. The major actors are government, citizens, 
institutions, and service providers such as transportation, 
electricity, internet, and other utility service providers. 
With so many stakeholders, it can be challenging and 
complex to coordinate each stakeholder's involvement; 
therefore, this paper aims to propose a conceptual 
framework to manage a facility in a smart city i.e. to 
bring most of the information in a single platform for 
decision making to attain sustainable development. 
Chaturvedi et al. [8] highlight the smart district data 
infrastructure (SDDI) concept that can integrate sensors 
& IoT devices, simulations tools, and 3D city models 
within a common operational framework; however, 
there has not been any discussion on urban data analysis. 
Therefore, this study proposes a GIS-BIM-AI 
framework of FM in smart cities to enhance 
sustainability. The facility management has been 
extensively applied for asset management, energy 
demand management, Mechanical, Electrical, and 
Plumbing (MEP) system, security, and to detect 
anomalies in a system such as fire hazards, repair, and 
maintenance; however, current research is limited to the 
demonstration of Facility Information Management 
System (FMIS), and Energy Demand Management. 
This research also evaluates and validates the GIS, BIM 
& AI framework in a small part of a real city. The 
major research question identified for the development 
of a conceptual framework for the vision of sustainable 
smart city development with AI for facility 
management are: 

 How to integrate the GIS, BIM, AI & IoTs in a 
single platform for facility management? 

 Is the 3D visualization integrated with IoT and 
AI promotes transparency and communication 
in decision making? 

 

LITERATURE REVIEW  
Sustainable Smart City 

Several relevant and recent researches in a 
smart city has been reviewed. Xue et al. and Liu et al. 
[9, 10] developed a model to evaluate the path for a 
sustainable smart city. Their research concluded that 
there are five paths to build a smart city: an effective 
path to solving “big city disease”, encourage open data 
and information sharing, technological innovation, 
investment in R&D, an urban cloud platform for 
integrated database, and information law to secure 
information. Agrawal [11] and Michalec et al. [12] 

investigates the concept of a sustainable city in the case 
of securing pedestrian safety and climate change 
respectively. They concluded that the best policies that 
improve technology, economy, social, and 
environmental factors ensure a smart and sustainable 
city. Silva et al. [12] and Costin and Eastman [4] tried 
to identify the features of a smart city for sustainability 
and quality of life. In their case study, network facilities 
and information-sharing technology have been found as 
the most influential factors in smart city growth.  
 

Urban Data Integration and Data Visualization 

Facility managers still use a 2D operating 
platform to acquire basic information; however, the 
information generated contains several symbols, maps, 
images, and graphs that only experts can interpret, thus 
there is difficulty in interpretation by stakeholders 
involved in facility management and raises the concern 
on transparency [7]. Many researchers are currently 
proposing and seeking to incorporate Building 
Information Modeling (BIM) for Facility Management 
(FM). Wang et al. [14] and Gupta et al. [15] developed 
a model for urban data integration and successfully 
demonstrated in a 2D framework; however, their work 
needs to be extended to a 3D framework for successful 
implementation of a smart city. The application of 3D 
visualization based on GIS and BIM has been studied 
by several researchers. Ma and Ren [16] studied 41 
researches on Planning and Design, construction, 
operation and maintenance, and demolition; however, 
integrated application for the whole life cycle and its 
validation is still lacking in practice. Correa [24] 
highlights the need for upgrading BIM tools with Big 
Data Analytics. 
 

Application of AI in Facility Management 

Several scholars [17,18,19,20] found that 
machine learning (ML) algorithms such as Artificial 
Neural Network (ANN), and Random Forest (RF) have 
both computational efficiency and accuracy in 
predicting energy consumption, stock market, anomaly 
detection, cyber-attack, predictive maintenance, and 
facility management. Baird et al. [21] studies the cost-
effectiveness of ML/AI in an underground water supply 
distribution network and found that if AI/ML would 
have used then there will be 4 miles less replacement in 
a network having 847 miles pipelines and would have 
saved $4M. Goulden and Spence and Curtis et al. 
studied the role of Facility Managers, and they 
suggested adopting tools to strengthen the ability of 
facility managers [5, 6]. Cao et al. and Carvalho et al. 
[22,23] studied the application of AI in facility 
management; however, many assumptions were done 
and relied on qualitative factors rather than on rich data.  
 

Research Gap 

Although, many kinds of research have been 
done in smart city solutions, transforming it into the real 
world is very tedious and complicated; therefore, a 
more systematic approach for transparency and public 
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participation is needed for a sustainable smart city. 
Moreover, despite these studies, there still exists a gap 
to integrate heterogeneous data with efficient analysis 
tools for early warning and decision making. Correa 
[Error! Reference source not found.] highlights the 
need for upgrading BIM tools with AI to innovate a 
smart city development in the 4th industrial revolution. 
Chaturvedi and Kolbe [25] recommended extending the 
3D model with time-dependent data from IoT, sensors, 
etc. Since the efficiency of AI depends on the quality of 
data, Carvalho et al. [26] recommended integrating ML 
with the latest sensors for improved data, unnecessary 
replacement, safety, efficiency, and economy. Recent 
researchers have highlighted the importance of the 
Digital Twin (DT) platform for sustainable smart city 
development; however, questions that need to be 
answered include the role of DT or virtual city in the 

built environment, type of sensing technologies to 
precisely capture the data, type of models to process the 
big data collected through a project’s lifecycle, and 
seamless interoperability among heterogeneous 
applications [27, 28].  
 

METHODOLOGY 
The set up for the current study as shown in 

Figure 1 has been hypothesized by previous researchers 
[27,28], which has the characteristics or requirements of 
digital twin based sustainable smart city i.e., a reflection 
of physical space in virtual space with real-time 
monitoring, scenario modeling, simulation and analytics 
with powerful visualization platform. The research is 
designed into three parts: development of a prototype, 
it's validation, and evaluation. 

 

 
Fig-1: Research Methodology 

 

Development of Prototype for Facility Management 

with AI in Smart City 

 The smart city operating platform, for instance, 
for facility management will be constructed by using 
network technology, database technology, GIS 

technology, BIM technology, and urban analytical tools 
based on AI technology. The proposed digital twin-
based prototype, as shown in Figure 2 has four layers 
that resemble the real smart city.  
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Fig-2: Framework for development of Prototype for Facility Management in Smart City (GIS-BIM-AI Framework) 

 
Physical Layer  

 The physical layer is a prerequisite for a smart 
city project that virtually represents the physical 
infrastructures of a real city. To develop a physical 
layer, the first step is data acquisition. The spatial data 
such as points, lines, and polygons can be obtained by 
various sources such as direct engineering survey, 
satellite images, remote seasoning, GIS maps, and so on. 
It will be used to understand and especially model the 
outdoor environment of a smart city. The GIS (2D) 
information is exported to the BIM-based 3D platform. 
In the 3D platform, all the physical & functional 
characteristics of facilities and its components are 
modeled. The BIM can extend the scope of the GIS and 
process the micro-level data. The BIM data are mostly 
facility information such as dimensions, material, type, 
and interior details in case of buildings. The whole 
procedure is called GIS-BIM integration. Here, a 2D 
GIS data is integrated with facilities properties to 
develop a 3D virtual city model that digitizes the 
information.  
 
Sensing Layer 

 The second layer consists of a sensing layer 
that collects data from multi-dimensional sources. ICT 
& IoT connects city administrators and facility 
managers to directly interact with the public, 
community and the city infrastructure to monitor what 
is happening in a city, how a city is evolving, and how 
to enable a better quality of life. The data are collected 
from citizens and devices using sensors integrated with 
a real-time monitoring system and then processed for 
analysis. The data, for instance, is collected from local 
weather and climate stations, regional weather radar, 
and smart meters for energy, gas, and water 
consumption, video cameras, and traffic sensors. 
Similarly, other information includes historical data and 
data released from different organizations such as social, 
economic, financial, and other management information. 
The GIS-BIM model integrated with the real-time 
database and historical database visually, digitally 
represents graphical and non-graphical information in a 
single platform, and systematically organize the 
information flow. Now, the 3D virtual city model 
perceives how a city is operating.  

Urban Analytics Layer  
 The third layer is the urban analytics layer and 

used for data analysis, forecasting, and prediction of 
complex phenomena; however, the heterogeneity and 
the uncertainty of data require a considerable amount of 
computational time, making traditional analytical tools 
unsuitable for real-time applications. The traditional 
computational programming such as spreadsheet is 
inefficient and unreliable for accurate urban data 
analysis to solve urban problems, and to provide a well-
informed intelligent decision, so, the urban analytics 
layer is designed to use AI/ML tools that can learn 
patterns and relationships of data from a historical 
database, adapt, innovate, and thereby respond more 
effectively and promptly to changing circumstances by 
improving the intelligence of facility. The artificial 
intelligence not only makes more efficient use of 
physical infrastructure/ facilities, and other resources 
but also uses data analytics to support multi-
dimensional information for robust economic, social, 
and cultural development through prediction, 
automation, and decision support. The prediction from 
AI is also useful to evaluate the real-time data from a 
sensor in case of an emergency to prevent losses. The 
proposed urban analytics tools can evaluate the urban 
issues, creates a scenario (what-if), determines the 
impacts of scenarios, for example, estimate the energy 
demands or potentials of solar energy production for all 
buildings, simulate road traffic and pedestrian flows, or 
perform noise propagation or flooding simulations, and 
sends feedback to stakeholders for decision making. 
The impacts of interaction or communication are 
integrated with the virtual city model and can be 
visualized qualitatively and quantitatively that allows 
users to interact with the various components in a city.  
 

Control & Communication Layer  
 The Control and Communication layer is 

designed to evaluate the feedback derived from the 
physical layer, sensing layer, and quantitative impact 
modeling from the urban analytics layer. It uses 
technology and prepares appropriate visualizations for 
multidimensional stakeholders as input for decision 
making. It develops an interactive 3D virtual model of 
the city integrated with real-time data and urban 
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analytics toolkits for well- informed decision making, 
and an early impact assessment. This layer is developed 
by integrating the 3D model developed from GIS-BIM 
with dynamic and static data, and urban analytical tools. 
The whole procedure constitutes GIS-BIM-AI 
integration. The visualization tools can quantify the 
result of the urban analytics layer interactively. The 
control & communication layer is divided into three 
parts: 

(1) Rule-Based Modelling: In rule-based modeling, 
logical are used to design filters on the data, or 
to build queries. In this research, the concept is 
demonstrated to filter the building by floor 
area, heights, and occupancy type, for example, 
the height of building> 15 m. The impact of 
communication or command is virtually 
displayed in the 3D city model. The 
information generated is usually in the simpler 
form such as colors, images, and notification 
that can be useful not only for the city officials 
but also for the service providers and citizens 
for well-informed decision making in 
managing the facilities.  

(2) Impact Modelling: The impacts of data 
analysis and scenario analysis done in the 
urban analytical layer are virtually 
demonstrated in the 3D city model, then the 
stakeholders discuss whether the impact meets 
their requirements for decision making. The 
impact analysis generally is a predictive model 
from the urban analytical layer, and it is useful 
to identify problems, and creating a scenario of 
the event for well-informed decision making.  

(3) Dynamic Modelling: It consists of both 
empirical-statistical elements and rule-based 
modeling aspects. It is designed to 
automatically detect anomalies or outliers from 
the data set and send command or information 
to prevent the failure of the system. The 
commands may include information sharing, 
alerts, and beep for uninterrupted services. For 
example, 

 If predicted Energy Consumption (from urban 
analytic layer)-Ep 

 Actual Energy Consumption (from sensors, i.e 
dynamic data)-Ea 

 If Ea ≠ Ep and falls outside the confidence 
interval or crosses the threshold value, then the 
system detects an anomaly and sends 
information to stakeholders to prevent failure 
of the system. 

 

CASE STUDY & VALIDATION 
In this section, the proposed methodology i.e. 

Integration of GIS-BIM-AI is validated. The concept is 
applied in the small part of the real city, its prototype is 
developed by the proposed framework and the 
performance is measured with standard parameters. 
This section consists of a selection of the study area, the 
scope of the research, and the process of data collection, 
analysis, and interpretation. The GIS-BIM-AI is 
validated on the Facility Information Management 
System (FMIS), and energy demand management.  
 

Study Area 

The model city for demonstration is Singh 
Durbar, which is the Integrated Governmental Building 
Complex in Kathmandu, the capital city of Nepal. It is 
geographically located around 27°41′53.77″N and 
85°19′30.91″E with an area of 42 ha. All the ministries 
of the Government of Nepal are on the premises of 
Singh Durbar. After the successful implementation in 
the model city, it can be extended and scalable to the 
city level. 
 

Data Collection 

The heterogeneous data as per the availability 
and the scope of work are collected from various 
sources, and some of the outliers are removed. The 
types and sources of data collected are as follows:  

 

Geospatial Data: The 2D Geospatial data is 
collected from the Open Street Map and Master plan. 
The building footprints of 188 buildings acquired from 
Open Street Map is only considered for this study, and 
some adjustment is made according to Master Plan.  

 
Building Information: This data set consists of 

all details of government buildings in the model city. 
The properties of buildings are collected from 2D 
drawings provided by the Ministry of Urban 
Development, Nepal. The attributes for building 
inventory are presented in Table 1.  

 

Table-1: Attributes for Building 

Parameters Description 

Building Information Name of Building, Type & Location 
Overall Height Height of building(m) from basement to roof level 
Total Floor Area  Total floor of building (m2) including basement area 
Wall Area Total surface area of building (m2) 
Roof Area Roof area (m2) both accessible & non-accessible 
Wall Thickness External wall thickness (m) 
Opening Area Total glazed area of the building (m2) 
U-Value: Ur & Uw Thermal transmittance value (W/m2.K) for roof and wall    
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Sensor Data: To demonstrate the concept of 
real-time data integration in the 3D model, the 
following information is assumed to be from real-time 
observation from sensors. 

  

Sensor 1: Monthly Energy Consumption 
(KWh): The data for monthly energy consumption 
(electricity) is collected from the energy meter of seven 
buildings. The data is provided by the Nepal Electricity 
Authority. 

  

Sensor 2: Weather Data: The weather data is 
extracted from the Report on Solar Resource and 
Photovoltaic Potential of Nepal, published from the 
World Bank (https://datacatalog.worldbank.org), and 
the attributes are enlisted in Table 2. Figure 3 and Table 

3 show data distribution and sample datasets 
respectively. 
 

Tools 

The software application used for data collection 
and analysis are as follows: 

 Geo-Spatial: Open Street Map & QGIS 
 3D Modelling & Visualization: Sketch Up ver. 

2018.  
 Urban Data Analytics: Machine Learning 

Software  
o Visual Gene Developer 1.9: Artificial 

Neural Network 
o Weka 3.8: Random Forest 

 Visualization, communication & control 
Dashboard: SketchUp User Interference  

 

Table-2: Attributes for Weather 
Parameters Description 

GHI Global horizontal irradiance (W/m²) from thermopile pyranometer 
Air Temperature Air temperature (°C) at 2 m height 
Relative Humidity Relative humidity (%) at 2 m height 
Wind Speed Wind speed (m/s) at 10 m height 
Wind Direction Wind direction in degrees north, counted clockwise 
Barometric Pressure Ambient air pressure in hPa 
Rain Liquid precipitation in mm 

 

 
Fig-3: Monthly Energy Consumption 

 

Table-3: Sample Dataset 
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Prototype Development for Facility Management 

The simplified workflow for the GIS-BIM-AI 
framework for facility management in a smart city 
developed by the proposed methodology is illustrated in 
Figure 4. The prototype has four layers. 
 

Physical Layer Development for Facility 

Management 
In this layer, the Geospatial Data, the 2D 

building footprint from the Open Street Map (GIS map) 

is extruded by its height in the BIM platform i.e., 
SketchUp that is shown in Figure 5. The SketchUp is 
integrated with Ruby script, which is user friendly and 
easy to work where the users can develop 3D with the 
desired level of details (LOD) and adds information to 
the 3D model in a short time. In this study, the 
buildings are modeled as objects in LOD1 due to the 
limitation of data and time. The GIS-BIM integration 
develops a virtual 3D city model, and this interactive 
platform is the prerequisite for FM in a smart city.  

 

 
Fig-4: Framework for Facility Management in Smart City 

 

Sensing Layer for Facility Management 
This layer adds historical graphical & non-

graphical data and other real-time or dynamic data from 
IoT & sensors to Physical Layer or 3D city model by 
Ruby script. The components used for the 
demonstration are: 

(1) Facility Information: It consists of information 
about building attributes. 

(2) Sensor Observation 1: Energy Meter for 
Electricity Consumption, the assumption is 
made that it retrieves real-time observation 
from smart energy meter installed in buildings. 

(3) Sensor Observation 2: It allows the users to 
retrieve a real-time observation from a weather 
station located in the Institute of Engineering.  

(4) Historical Data: It consists of historical records 
of Electricity Consumption & Weather.  

 

 
Fig-5: GIS-BIM Integration 
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The Ruby code used for the demonstration of 

the facility management information system (FIMS) 
and Energy Demand Management is included in Annex. 
When the users click any 3D model of the buildings 

then the virtual building model will interact by 
displaying the information incorporated into it as 
demonstrated in Figure 6.  

 

 
Fig-6: Facility Information System (A single 3D virtual city repository) 

 

Urban Analytics Layer for Facility Management 
In this study, the applications of two machine 

learning algorithms: Artificial Neural Network and 
Random Forest are studied to develop the predictive 
model for energy consumption since several researchers 
have demonstrated the application of ANN and RF in 
energy prediction [17, 19, 20]. The purpose of data 
analysis in this study is to demonstrate the process in 
the proposed framework rather than rigorous data 
analysis and interpretation; however, efforts have been 
made to achieve accurate and reliable data analysis. 
Figure 7 illustrates the process of model building into 
three major stages: Optimization, Training, and 
Validation. Finally, a performance evaluation is done 
for reliability. 

 

 
Fig-7: Flow chart for Urban Analytics 
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Stage 1: Optimization of the Algorithm: The 
algorithm is optimized until the training error and 
testing error is minimized. The parameters having the 
minimum training error and testing error are selected as 
the optimum configuration to develop a predictive 
model. As far as possible, the default value is 
considered as optimum. 

 
Table-4: Summary of Optimization for ANN 

Parameter Value 

Cycle 2500 
No. of Neuron 10 

No. of Hidden Layer 3 
Transfer Function Hyperbolic Tangent 

Moment Coefficient 0.5 
Learning Rate 0.01 

 
Table-5: Summary of Optimization for RF 

Parameter Value 

Cycle 100 
Depth 0 
No. of Features 7 

 

Stage 2: Training the Model: In this study, the 
ML algorithm is trained to learn from the historical 
dataset of Energy Consumption of seven buildings to 
predict the future scenario in the city. The ANN and RF 
are trained with the parameters shown in Table 4, and 
Table 5 respectively, and the performance is evaluated. 
Figure 8 compares the performance of the training 
model between ANN and RF.  

 

 
Fig-8: Performance of Training Model (ANN vs RF) 

 
Stage 3: Validation: Figure 9 compares the 

performance of ANN and RF models in predicting the 
energy consumption on the test dataset. Table 6 
summarizes the performance of the model. The results 
are consistent with previous studies [17, 19, 20]. In this 
case study, both RF and ANN have demonstrated them 
as valuable machine learning tools to predict building’s 

energy consumption; however, Random Forest was 
found to be easy in optimization and shows higher 
accuracy in both training and testing for a given dataset 
with computing time is less than 1s and the speed of 
1353 data/sec. This technique has the potential to 
outperform the previous computing methods such as 
spreadsheets for heterogeneous urban data. 

 

 
Fig-9: Performance of Test Model (ANN vs RF) 
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Table-6: Performance Evaluation 

Evaluation Parameter ANN (Train.) RF (Train.) ANN(Test) RF (Test) 

Mean Absolute Error  1155.53 KWh 167.61 KWh 1263.61 KWh 49.96 KWh 
Root Mean Square Error  1658.81 KWh 735.89 KWh 1423.79 KWh 455.52 KWh 
Relative Absolute Error  12.80% 1.86% 13.40% 3.18% 
Relative Square Error  3.22% 0.05% 2.28% 0.12% 
R2 0.561 0.993 - - 
Time 14.00s 0.09s - - 
Speed 96 data/sec 1353 data/sec - - 
 
Figure 10 shows the predictive model for 

energy consumption for ANN and RF respectively. 
Figure 11 shows that the most significant variables for 
energy consumption in the modal city as per the 
available data are building components: wall thickness, 
Uw, Ur, and total floor area. A significant negative 
correlation is found between the wall thickness and the 
energy consumption of the buildings. The energy 
consumption is also strongly dependent on the thermal 
transmittance of the wall and roof. The AI-based 
analysis easily provides performance of insulation 
materials, walls, roof and so on in relation with other 
variables such as weather that helps facility managers to 
understand how the building is consuming the energy in 
relation with other factors such as environmental and 
material properties and what can be done to save energy. 
Secondly, the urban analytics result also shows that the 
total floor area also has a moderate influence on energy 
consumption, so this suggests that there must be 

optimum use of spaces for energy-efficient buildings. 
These are some of the immediate fields where the 
facility manager can retrofit to make an energy-efficient 
city. Surprisingly, the negative correlation of solar 
radiation and air temperature could be explained by a 
decrease in solar radiation or temperature could 
increase the heating demand. Facility managers need to 
consider the several variables in a specific time in a 
building and make appropriate decisions in energy 
management; however, machine learning effectively 
looks at when should we be aware of load increases on 
a building and how should we act and be proactive 
ahead of these load increases, for example, if the 
ambient temperature lowers in the case of Kathmandu, 
then the system assumes that heating load is increasing. 
AI helps the facility manager to anticipate the situation 
and helps to respond quickly and efficiently that save 
money, time, and control the buildings to enhance the 
safety and comfort of occupants. 

 

 

 
Fig-10: Predictive Model for Energy Consumption by ANN and RF 
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Fig-11: Importance Factor of Variables 

 
In recent years, optimization of construction 

and building energy usage has been received 
considerable attention, as this sector is known as the 
main contributor to air pollution and fossil energy 
consumption; however, the traditional modeling of 
building energy using software and statistical 
approaches does not satisfy the demand for fast and 
accurate forecasting, which is essential for decision-
making systems. ML models through these case studies 
have shown great potential as an alternative solution for 
the energy modeling and assessment for the energy use 
of buildings. AI develops a true cognitive that will be 
constantly learning about the building's behavior and 
performance to understand and predict energy use for 
each building and define the relationships between 
variables. But most importantly, AI can provide 
information to the people who use the buildings daily 
and help to make them more productive, whatever their 
job in a very short time. The evidence from this study 
has highlighted the significant roles played by AI in 
making well-informed decisions by facility managers 
and stakeholders such as building owners and service 
providers for a smart and sustainable city.  
 
 

Control & Communication Layer for Facility 

Management 
The Control and Communication layer is 

developed by integrating the GIS-BIM model with AI 
in SketchUp 2018 user interface. For, the purpose of the 
demonstration, the concept is applied in the Facility 
Information Management System (FMIS) and energy 
demand management, and the effectiveness of 
visualization is discussed. The Control & 
Communication layer is divided into three parts: 

(1) Rule-Based Modelling: Ruby Console is used 
for data management and analysis in the 
SketchUp, Figure 12 shows the result of rule-
based modeling, which pinpoints the exact 
location of the building having a maximum 
height in red color and building having a 
minimum height in yellow color in the built-up 
environment. This operating platform provides 
visual information to the facility managers and 
stakeholders on how their city is evolving in 
the simpler form within a short time. The 
simplicity and clarity of the information 
generated from this platform encourage 
stakeholder participation and promote 
transparency for well-informed decision 
making.  

 

 
Fig-12: Visualization of Buildings by Height 
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(2) Impact Modelling: The data for impact 

analysis is acquired from the 3D city single 
repository that is developed by integrating the 
physical layer and sensing layer. The Ruby 
script for the visualization of the current 
energy consumption of buildings is the same 
as visualization of the building by height. In 
this research, the impact of weather and 
building properties on the energy consumption 
i.e. the problem is virtually demonstrated in 
the virtual city model as shown in Figure 13. 
The impact or interaction, which is usually in a 
complex quantitative form, is transformed into 
a qualitative form that is represented by the 
color. The four types of energy consumption 
conditions of the facility are used for 
interpretation: Low, Medium, High, and Very 
High, and the types of colors are green, slate 

blue, gold, and dark red respectively. Facility 
managers and other stakeholders having 
different background can easily interpret the 
result and understands how their city is 
consuming energy. Figure 14 shows the 
integration of AI tools into the 3D city model. 
The integration is done with the help of Ruby 
script. To illustrate the application of AI in the 
3D city model, let's consider the situation 
what-if the stakeholders want to know the 
energy consumption of all buildings at the city 
level. For this study only energy consumption 
details of seven buildings are available; 
therefore, the predictive model for energy 
consumption in the urban analytics layer is 
developed from the database of seven 
buildings. 

 

 
Fig-13: Impact of (Problem) Energy Consumption: Virtually Demonstrated 

 
Now, its application is demonstrated by 

extending and scaling it to a city level. Since the data 
for all the buildings are not readily available, a dummy 
data set on Ur, Uw, area of the opening, and area of the 
wall are randomly created. The other data such as 
building footprints are obtained from the GIS map, the 
height and floor areas are from building inventory, and 
the weather data are from a sensor; however, the 

reliability of data is limited, it is only for demonstration. 
The AI tool integrated with the 3D model, as shown in 
Figure 14, learns the patterns of energy consumption 
from a database of seven buildings considering building 
properties and the weather parameter and develops a 
cognitive skill to predict the energy consumption of 
other buildings as shown in Figure 15.  

 

 
Fig-14: Integration of AI tool with 3D city model 
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Fig-15: Visualization of Building Energy Consumption at the city level which is predicted by AI 

 
The use of GIS-BIM-AI can geolocate any 

building with its energy efficiency within a very short 
time. The most energy-efficient buildings are shown in 
green color whereas dark red color signifies the most 
energy-consuming buildings. The same procedure can 
be applied to study the effectiveness of solutions for 
problems. Suppose if the facility manager wants to 
retrofit the building to make it energy efficient with a 
solar panel on a roof, the impacts of solution or 
simulation of future based on scenario (what-if) 
analysis can also be virtually demonstrated for the 

decision making. Figure 16 shows the average monthly 
capacity of each building to generate solar energy, 
considering the solar panel efficiency of 15%, total 
solar panel area as 50% of roof area, the performance 
ratio of 0.75, and average monthly solar radiation of 
189.96 w/m2 (excluding shading). The facility 
management operating platform based on the GIS-BIM-
AI framework identifies a problem, generates its 
solution, and provides feedback to stakeholders. The 
stakeholders then discuss whether the impact meets 
their requirements for decision making.  

 

 
Fig-16: Visualization of Solar Energy Potential at city level which is predicted by AI 

 
(3) Dynamic Modelling: The demonstration of 

dynamic modeling is not considered in this 
research; however, the concept can be used for 
any anomaly detection, leakage detection, 
repair and maintenance, and control building 
facilities such as heating and cooling to 
prevent the failure of the facility. It can give 
early warning related to the condition of 
facilities by comparing real-time data with 

historical data. The information displayed 
could be in the form of colors, notifications, 
and beeps. Then the stakeholders can make an 
assessment and control the facility to provide 
uninterrupted services in a very short time. 
Thus, the Control and Communication layer 
can answer the queries; quantify the result of 
big data, real-time data, and the impacts of the 
urban analytics layer in an interactive way. 
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CONCLUSION 
A Smart city is considered as an innovation to 

solve urban issues such as traffic congestion, and, 
environmental degradation, which are the consequences 
of rapid urbanization. Recent researchers are 
concentrated on making a city sustainable and resilient 
via smart technologies. Many researchers have claimed 
facility management is the key to tackle those 
inefficiencies and can prevent wastage, cost, and time; 
however, with the advent of the 4th industrial revolution 
managing facilities is one of the biggest challenges. 
Current facilities management systems have problems 
such as heterogeneous data integration in the single 
platform, inefficient tools to process big data, 
inefficiency in a facility management team, and a 
problem on effective communication for decision 
making. 

 
This research develops a conceptual 

framework of facility management in smart cities to 
address those issues. The framework consists of the 
integration of a 3D virtual city model with AI. The 
findings emphasize that the GIS-BIM-AI framework 
develops an interactive, content-rich 3D city model 
where the stakeholders can find any data relevant to 
them, ask any queries, run any analysis, and visualize 
the impacts and collaborate with any team members 
with different background to improve the quality of life. 
The results from the case study demonstrated that its 
feature of integrating real-time data into the analysis of 
facility conditions is a key factor for early impact 
assessment, allocating resources efficiently, and help in 
well-informed decision making. It enables the city-wide 
simulation to solve urban problems such as energy 
demand management. The key benefits are efficiency 
gains, knowledge sharing, and cost savings, and the 
visualization of dynamic data improves citizen 
engagement that improves the quality of life and 
transparency in decision making. The proposed 
conceptual framework for Facility Management in a 
smart city: 

 Collects heterogeneous data and integrates into 
the single 3D virtual city repository prevents 
the cost and time in recollecting the data. 

 Allows the facility managers to learn, adapt, 
and optimize the operation cost. 

 Creates a predictive analysis to identify the 
failure of the system, the scenario analysis to 
solve the problem with immediate feedback. 

 Has a visualization platform that enables 
interaction of facilities with stakeholders, 
promotes citizens' engagement, and reduces 
monitoring costs. 

 Helps in real-time monitoring, evaluation of 
facilities performance under a different 
scenario provides immediate feedback; thus, 
enabling the stakeholders to control the 
facilities with well-informed information. 

 Shows basic Interoperability among the GIS-
BIM-AI. 
 
All of these features improve the quality of 

services and customer satisfaction, save resources, cost, 
and time which is the universal principle of 
sustainability. Ruohomaki et al. [27] and Kan and 
Anumba [28] have also highlighted the role of Digital 
Twin platform in making a city smart and sustainable; 
however, they were not sure what type the type of 
sensing technology can precisely collect data, how to 
aggregate the data throughout the life cycle of the 
project and how to achieve seamless heterogeneous data 
integration and interoperability among the devices. The 
GIS-BIM-AI integrated with IoT and its demonstration 
on facility management in the real world validate the 
hypothesis that the Digital Twin platform integrated 
with AI is a solution for sustainable smart city 
development.  

 
This research is expected to contribute the 

body of knowledge by demonstrating the effectiveness 
of the Digital Twin model with IoT and AI for a smart 
and sustainable city. The development of a smart city 
operating platform for FM with AI is the most 
important achievement. Since the framework is 
validated with case-studies from developing countries, 
it is also an opportunity for developing countries to 
make leapfrog in smart city development initiatives. 
The take-home message is a smart city is not only about 
developing the new infrastructures, but it's also about 
managing the existing infrastructures, and even a small 
city can be smarter.  

 
As per the scope, the concept has been 

validated in the case of FMIS and energy demand 
management in a city. Because of the limited time in 
this study, the data used in the case study is basically to 
demonstrate the process rather than the accuracy. The 
interpretation of results from case studies is only a 
generalization. Future researchers can collect more 
accurate static and dynamic data with more attributes 
and evaluate the proposed methodology. The current 
methodology is only a conceptual framework based on 
basic skills in 3D modeling, AI, and programming; 
however, future researchers can modify the framework 
to make it more interactive with more automation. 
There is also a need to validate the concept on other 
components of smart cities such as ITS and a larger 
scale with micro-level details, for example, building 
interior, and anomaly detection with a web-based 
visualization technique.  
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APPENDIX 
 

 
Fig-A1: Ruby script in Sketchup for FIMS 

 

 
Fig-A2: Ruby script in Sketchup for Integration of AI tool 

 

 
Fig-A3: Ruby script in Sketchup for Building Visualization by Height 

 

 
Fig-A4: Ruby script in Sketchup for visualization of energy consumption of buildings and potential solar energy 
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