
Wolfgang Rautenberg

A Concise Introduction

to

Mathematical Logic

Textbook

Third Edition

Typeset and layout: The author

Version from June 2009

corrections included

Foreword
by Lev Beklemishev, Moscow

The field of mathematical logic—evolving around the notions of logical

validity, provability, and computation—was created in the first half of the

previous century by a cohort of brilliant mathematicians and philosophers

such as Frege, Hilbert, Gödel, Turing, Tarski, Malcev, Gentzen, and some

others. The development of this discipline is arguably among the highest

achievements of science in the twentieth century: it expanded mathe-

matics into a novel area of applications, subjected logical reasoning and

computability to rigorous analysis, and eventually led to the creation of

computers.

The textbook by Professor Wolfgang Rautenberg is a well-written in-

troduction to this beautiful and coherent subject. It contains classical

material such as logical calculi, beginnings of model theory, and Gödel’s

incompleteness theorems, as well as some topics motivated by applica-

tions, such as a chapter on logic programming. The author has taken

great care to make the exposition readable and concise; each section is

accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gödel’s

second incompleteness theorem, in which the author has succeeded in

giving an accurate and simple proof of the derivability conditions and

the provable Σ1-completeness, a technically difficult point that is usually

omitted in textbooks of comparable level. This work can be recommended

to all students who want to learn the foundations of mathematical logic.

v

Preface

The third edition differs from the second mainly in that parts of the

text have been elaborated upon in more detail. Moreover, some new

sections have been added, for instance a separate section on Horn formulas

in Chapter 4, particularly interesting for logic programming. The book

is aimed at students of mathematics, computer science, and linguistics.

It may also be of interest to students of philosophy (with an adequate

mathematical background) because of the epistemological applications of

Gödel’s incompleteness theorems, which are discussed in detail.

Although the book is primarily designed to accompany lectures on a

graduate level, most of the first three chapters are also readable by under-

graduates. The first hundred twenty pages cover sufficient material for an

undergraduate course on mathematical logic, combined with a due por-

tion of set theory. Only that part of set theory is included that is closely

related to mathematical logic. Some sections of Chapter 3 are partly

descriptive, providing a perspective on decision problems, on automated

theorem proving, and on nonstandard models.

Using this book for independent and individual study depends less on

the reader’s mathematical background than on his (or her) ambition to

master the technical details. Suitable examples accompany the theorems

and new notions throughout. We always try to portray simple things

simply and concisely and to avoid excessive notation, which could divert

the reader’s mind from the essentials. Line breaks in formulas have been

avoided. To aid the student, the indexes have been prepared very carefully.

Solution hints to most exercises are provided in an extra file ready for

download from Springer’s or the author’s website.

Starting from Chapter 4, the demands on the reader begin to grow. The

challenge can best be met by attempting to solve the exercises without

recourse to the hints. The density of information in the text is rather high;

a newcomer may need one hour for one page. Make sure to have paper and

pencil at hand when reading the text. Apart from sufficient training in

logical (or mathematical) deduction, additional prerequisites are assumed

only for parts of Chapter 5, namely some knowledge of classical algebra,

and at the very end of the last chapter some acquaintance with models of

axiomatic set theory.

vii

viii Preface

On top of the material for a one-semester lecture course on mathemat-

ical logic, basic material for a course in logic for computer scientists is

included in Chapter 4 on logic programming. An effort has been made to

capture some of the interesting aspects of this discipline’s logical founda-

tions. The resolution theorem is proved constructively. Since all recursive

functions are computable in PROLOG, it is not hard to deduce the un-

decidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in mathematics

itself. It presents various methods of model construction and contains the

basic material for an introductory course on model theory. It contains in

particular a model-theoretic proof of quantifier eliminability in the theory

of real closed fields, which has a broad range of applications.

A special aspect of the book is the thorough treatment of Gödel’s incom-

pleteness theorems in Chapters 6 and 7. Chapters 4 and 5 are not needed

here. 6.11 starts with basic recursion theory needed for the arithmeti-

zation of syntax in 6.2 as well as in solving questions about decidability

and undecidability in 6.5. Defining formulas for arithmetical predicates

are classified early, to elucidate the close relationship between logic and

recursion theory. Along these lines, in 6.5 we obtain in one sweep Gödel’s

first incompleteness theorem, the undecidability of the tautology problem

by Church, and Tarski’s result on the nondefinability of truth, all of which

are based on certain diagonalization arguments. 6.6 includes among other

things a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted mainly to Gödel’s second incompleteness theo-

rem and some of its generalizations. Of particular interest thereby is the

fact that questions about self-referential arithmetical statements are al-

gorithmically decidable due to Solovay’s completeness theorem. Here and

elsewhere, Peano arithmetic (PA) plays a key role, a basic theory for the

foundations of mathematics and computer science, introduced already in

3.3. The chapter includes some of the latest results in the area of self-

reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined

and direct the reader to the bibliography, or will be introduced later.

The bibliography can represent an incomplete selection only. It lists most

1 This is to mean Section 6.1, more precisely, Section 1 in Chapter 6. All other boldface

labels are to be read accordingly throughout the book.

Preface ix

English textbooks on mathematical logic and, in addition, some original

papers mainly for historical reasons. It also contains some titles treating

biographical, historical, and philosophical aspects of mathematical logic

in more detail than this can be done in the limited size of our book. Some

brief historical remarks are also made in the Introduction. Bibliographical

entries are sorted alphabetically by author names. This order may slightly

diverge from the alphabetic order of their citation labels.

The material contained in this book will remain with high probability

the subject of lectures on mathematical logic in the future. Its streamlined

presentation has allowed us to cover many different topics. Nonetheless,

the book provides only a selection of results and can at most accentuate

certain topics. This concerns above all Chapters 4, 5, 6, and 7, which go

a step beyond the elementary. Philosophical and foundational problems

of mathematics are not systematically discussed within the constraints of

this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A refer-

ence like Theorem 5.4 is to mean Theorem 4 in Section 5 of a given chap-

ter. In cross-referencing from another chapter, the chapter number will

be adjoined. For instance, Theorem 6.5.4 means Theorem 5.4 in Chap-

ter 6. You may find additional information about the book or contact

me on my website www.math.fu-berlin.de/~raut. Please contact me if

you propose improved solutions to the exercises, which may afterward be

included in the separate file Solution Hints to the Exercises .

I would like to thank the colleagues who offered me helpful criticism

along the way. Useful for Chapter 7 were hints from Lev Beklemishev

and Wilfried Buchholz. Thanks also to Peter Agricola for his help in

parts of the contents and in technical matters, and to Michael Knoop,

Emidio Barsanti, and David Kramer for their thorough reading of the

manuscript and finding a number of mistakes.

Wolfgang Rautenberg, June 2009

http://www.math.fu-berlin.de/~raut
http://www.math.fu-berlin.de/~raut/logic3/hint.pdf

Contents

Introduction xv

Notation xix

1 Propositional Logic 1

1.1 Boolean Functions and Formulas 2

1.2 Semantic Equivalence and Normal Forms 11

1.3 Tautologies and Logical Consequence 17

1.4 A Calculus of Natural Deduction 22

1.5 Applications of the Compactness Theorem 30

1.6 Hilbert Calculi . 35

2 First-Order Logic 41

2.1 Mathematical Structures 42

2.2 Syntax of First-Order Languages 53

2.3 Semantics of First-Order Languages 61

2.4 General Validity and Logical Equivalence 73

2.5 Logical Consequence and Theories 78

2.6 Explicit Definitions—Language Expansions 85

3 Complete Logical Calculi 91

3.1 A Calculus of Natural Deduction 92

3.2 The Completeness Proof 97

3.3 First Applications: Nonstandard Models 103

xi

xii Contents

3.4 ZFC and Skolem’s Paradox 111

3.5 Enumerability and Decidability 117

3.6 Complete Hilbert Calculi 121

3.7 First-Order Fragments . 126

3.8 Extensions of First-Order Languages 129

4 Foundations of Logic Programming 135

4.1 Term Models and Herbrand’s Theorem 136

4.2 Horn Formulas . 140

4.3 Propositional Resolution 143

4.4 Horn Resolution . 149

4.5 Unification . 152

4.6 Logic Programming . 156

4.7 A Proof of the Main Theorem 166

5 Elements of Model Theory 169

5.1 Elementary Extensions . 170

5.2 Complete and κ-Categorical Theories 176

5.3 The Ehrenfeucht Game . 183

5.4 Embedding and Characterization Theorems 186

5.5 Model Completeness . 194

5.6 Quantifier Elimination . 202

5.7 Reduced Products and Ultraproducts 209

6 Incompleteness and Undecidability 215

6.1 Recursive and Primitive Recursive Functions 217

6.2 Arithmetization . 226

6.3 Representability of Arithmetical Predicates 234

6.4 The Representability Theorem 243

6.5 The Theorems of Gödel, Tarski, Church 250

6.6 Transfer by Interpretation 258

6.7 The Arithmetical Hierarchy 264

Contents xiii

7 On the Theory of Self-Reference 269

7.1 The Derivability Conditions 270

7.2 The Provable Σ1-Completeness 277

7.3 The Theorems of Gödel and Löb 279

7.4 The Provability Logic G 284

7.5 The Modal Treatment of Self-Reference 287

7.6 A Bimodal Provability Logic for PA 291

7.7 Modal Operators in ZFC 294

Bibliography 299

Index of Terms and Names 307

Index of Symbols 317

Introduction

Traditional logic as a part of philosophy is one of the oldest scientific

disciplines. It can be traced back to the Stoics and to Aristotle1 and

is the root of what is nowadays called philosophical logic. Mathematical

logic, however, is a relatively young discipline, having arisen from the en-

deavors of Peano, Frege, and Russell to reduce mathematics entirely to

logic. It steadily developed during the twentieth century into a broad dis-

cipline with several subareas and numerous applications in mathematics,

computer science, linguistics, and philosophy.

One feature of modern logic is a clear distinction between object lan-

guage and metalanguage. The first is formalized or at least formalizable.

The latter is, like the language of this book, a kind of a colloquial language

that differs from author to author and depends also on the audience the

author has in mind. It is mixed up with semiformal elements, most of

which have their origin in set theory. The amount of set theory involved

depends on one’s objectives. Traditional semantics and model theory as

essential parts of mathematical logic use stronger set-theoretic tools than

does proof theory. In some model-theoretic investigations these are often

the strongest possible ones. But on average, little more is assumed than

knowledge of the most common set-theoretic terminology, presented in

almost every mathematical course or textbook for beginners. Much of it

is used only as a façon de parler.

The language of this book is similar to that common to almost all math-

ematical disciplines. There is one essential difference though. In math-

ematics, metalanguage and object language strongly interact with each

other, and the latter is semiformalized in the best of cases. This method

has proved successful. Separating object language and metalanguage is

relevant only in special context, for example in axiomatic set theory, where

formalization is needed to specify what certain axioms look like. Strictly

formal languages are met more often in computer science. In analyzing

complex software or a programming language, as in logic, formal linguistic

entities are the central objects of consideration.

1 The Aristotelian syllogisms are easy but useful examples for inferences in a first-order

language with unary predicate symbols. One of these syllogisms serves as an example

in Section 4.6 on logic programming.

xv

xvi Introduction

The way of arguing about formal languages and theories is traditionally

called the metatheory . An important task of a metatheoretic analysis is

to specify procedures of logical inference by so-called logical calculi, which

operate purely syntactically. There are many different logical calculi. The

choice may depend on the formalized language, on the logical basis, and

on certain aims of the formalization. Basic metatheoretic tools are in any

case the naive natural numbers and inductive proof procedures. We will

sometimes call them proofs by metainduction, in particular when talking

about formalized object theories that speak about natural numbers. In-

duction can likewise be carried out on certain sets of strings over a fixed

alphabet, or on the system of rules of a logical calculus.

The logical means of the metatheory are sometimes allowed or even ex-

plicitly required to be different from those of the object language. But in

this book the logic of object languages, as well as that of the metalang-

uage, are classical, two-valued logic. There are good reasons to argue that

classical logic is the logic of common sense. Mathematicians, computer

scientists, linguists, philosophers, physicists, and others are using it as a

common platform for communication.

It should be noticed that logic used in the sciences differs essentially

from logic used in everyday language, where logic is more an art than a se-

rious task of saying what follows from what. In everyday life, nearly every

utterance depends on the context. In most cases logical relations are only

alluded to and rarely explicitly expressed. Some basic assumptions of two-

valued logic mostly fail, in particular, a context-free use of the logical con-

nectives. Problems of this type are not dealt with here. To some extent,

many-valued logic or Kripke semantics can help to clarify the situation,

and sometimes intrinsic mathematical methods must be used in order to

solve such problems. We shall use Kripke semantics here for a different

goal, though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may

find easier to understand after and not before reading at least parts of this

book. In the relatively short period of development of modern mathemat-

ical logic in the twentieth century, some highlights may be distinguished,

of which we mention just a few. Many details on this development can be

found in the excellent biographies [Daw] and [FF] on Gödel and Tarski,

the leading logicians in the last century.

Introduction xvii

The first was the axiomatization of set theory in various ways. The most

important approaches are those of Zermelo (improved by Fraenkel and von

Neumann) and the theory of types by Whitehead and Russell. The latter

was to become the sole remnant of Frege’s attempt to reduce mathematics

to logic. Instead it turned out that mathematics can be based entirely on

set theory as a first-order theory. Actually, this became more salient after

the rest of the hidden assumptions by Russell and others were removed

from axiomatic set theory around 1915; see [Hei]. For instance, the notion

of an ordered pair, crucial for reducing the notion of a function to set

theory, is indeed a set-theoretic and not a logical one.

Right after these axiomatizations were completed, Skolem discovered

that there are countable models of the set-theoretic axioms, a drawback

to the hope for an axiomatic characterization of a set. Just then, two

distinguished mathematicians, Hilbert and Brouwer, entered the scene

and started their famous quarrel on the foundations of mathematics. It

is described in a comprehensive manner for instance in [Kl2, Chapter IV]

and need therefore not be repeated here.

As a next highlight, Gödel proved the completeness of Hilbert’s rules for

predicate logic, presented in the first modern textbook on mathematical

logic, [HA]. Thus, to some extent, a dream of Leibniz became real, namely

to create an ars inveniendi for mathematical truth. Meanwhile, Hilbert

had developed his view on a foundation of mathematics into a program. It

aimed at proving the consistency of arithmetic and perhaps the whole of

mathematics including its nonfinitistic set-theoretic methods by finitary

means. But Gödel showed by his incompleteness theorems in 1931 that

Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of math-

ematical logic in the twentieth century. A consequence of these theorems

is the existence of consistent extensions of Peano arithmetic in which true

and false sentences live in peaceful coexistence with each other, called

“dream theories” in 7.3. It is an intellectual adventure of holistic beauty

to see wisdom from number theory known for ages, such as the Chinese re-

mainder theorem, simple properties of prime numbers, and Euclid’s char-

acterization of coprimeness (page 249), unexpectedly assuming pivotal

positions within the architecture of Gödel’s proofs. Gödel’s methods were

also basic for the creation of recursion theory around 1936.

xviii Introduction

Church’s proof of the undecidability of the tautology problem marks an-

other distinctive achievement. After having collected sufficient evidence

by his own investigations and by those of Turing, Kleene, and some oth-

ers, Church formulated his famous thesis (see 6.1), although in 1936 no

computers in the modern sense existed nor was it foreseeable that com-

putability would ever play the basic role it does today.

Another highlight of mathematical logic has its roots in the work of

Tarski, who proved first the undefinability of truth in formalized languages

as explained in 6.5, and soon thereafter started his fundamental work on

decision problems in algebra and geometry and on model theory, which

ties logic and mathematics closely together. See Chapter 5.

As already mentioned, Hilbert’s program had to be revised. A decisive

step was undertaken by Gentzen, considered to be another groundbreaking

achievement of mathematical logic and the starting point of contemporary

proof theory. The logical calculi in 1.4 and 3.1 are akin to Gentzen’s

calculi of natural deduction.

We further mention Gödel’s discovery that it is not the axiom of choice

(AC) that creates the consistency problem in set theory. Set theory with

AC and the continuum hypothesis (CH) is consistent, provided set theory

without AC and CH is. This is a basic result of mathematical logic that

would not have been obtained without the use of strictly formal methods.

The same applies to the independence proof of AC and CH from the axioms

of set theory by Cohen in 1963.

The above indicates that mathematical logic is closely connected with

the aim of giving mathematics a solid foundation. Nonetheless, we confine

ourself to logic and its fascinating interaction with mathematics, which

characterizes mathematical logic. History shows that it is impossible to

establish a programmatic view on the foundations of mathematics that

pleases everybody in the mathematical community. Mathematical logic

is the right tool for treating the technical problems of the foundations of

mathematics, but it cannot solve its epistemological problems.

Notation

We assume that the reader is familiar with the most basic mathematical

terminology and notation, in particular with the union, intersection, and

complementation of sets, denoted by ∪, ∩, and \ , respectively. Here we

summarize only some notation that may differ slightly from author to

author or is specific for this book. N, Z, Q, R denote the sets of natural

numbers including 0, integers, rational, and real numbers, respectively,

and N+, Q+, R+ the sets of positive members of the corresponding sets.

n, m, i, j, k always denote natural numbers unless stated otherwise. Hence,

extended notation like n ∈ N is mostly omitted.

In the following, M, N denote sets, M ⊆ N denotes inclusion, while

M ⊂ N means proper inclusion (i.e., M ⊆ N and M 6= N). As a rule, we

write M ⊂ N only if the circumstance M 6= N has to be emphasized. If

M is fixed in a consideration and N varies over subsets of M , then M \N

may also be symbolized by \N or ¬N .

∅ denotes the empty set, and PM the power set (= set of all subsets)

of M . If one wants to emphasize that all elements of a set S are sets, S is

also called a system or family of sets.
⋃

S denotes the union of S, that is,

the set of elements belonging to at least one M ∈ S, and
⋂

S stands for

the intersection of a nonempty system S, the set of elements belonging to

all M ∈ S. If S = {Mi | i ∈ I} then
⋃

S and
⋂

S are mostly denoted by
⋃

i∈I Mi and
⋂

i∈I Mi, respectively.

A relation between M and N is a subset of M ×N , the set of ordered

pairs (a, b) with a ∈ M and b ∈ N . A precise definition of (a, b) is given

on page 114. Such a relation, f say, is said to be a function or mapping

from M to N if for each a ∈M there is precisely one b ∈ N with (a, b) ∈ f .

This b is denoted by f(a) or fa or af and called the value of f at a. We

denote a function f from M to N also by f : M → N , or by f : x 7→ t(x),

provided f(x) = t(x) for some term t (see 2.2). ran f = {fx | x ∈ M}

is called the range of f , and dom f = M its domain. idM denotes the

identical function on M , that is, idM (x) = x for all x ∈M .

f : M → N is injective if fx = fy ⇒ x = y, for all x, y ∈ M , surjective

if ran f = N , and bijective if f is both injective and surjective. The reader

should basically be familiar with this terminology. The phrase “let f be

a function from M to N ” is sometimes shortened to “let f : M → N .”

xix

xx Notation

The set of all functions from a set I to a set M is denoted by M I . If

f, g are functions with ran g ⊆ dom f then h : x 7→ f(g(x)) is called their

composition (or product). It will preferably be written as h = f ◦ g.

Let I and M be sets, f : I → M , and call I the index set. Then f will

often be denoted by (ai)i∈I and is named, depending on the context, an

(indexed) family, an I-tuple, or a sequence. If 0 is identified with ∅ and

n > 0 with {0, 1, . . . , n − 1}, as is common in set theory, then Mn can

be understood as the set of n-tuples (ai)i<n = (a0, . . . , an−1) of length n

whose members belong to M . In particular, M0 = {∅}. Also the set of

sequences (a1, . . . , an) with ai ∈M will frequently be denoted by Mn. In

concatenating finite sequences, which has an obvious meaning, the empty

sequence (i.e., ∅), plays the role of a neutral element. (a1, . . . , an) will

mostly be denoted by ~a. Note that this is the empty sequence for n = 0,

similar to {a1, . . . , an} for n = 0 always being the empty set. f~a means

f(a1, . . . , an) throughout.

If A is an alphabet , i.e., if the elements s ∈ A are symbols or at least

named symbols, then the sequence (s1, . . . , sn) ∈ An is written as s1 · · · sn
and called a string or a word over A. The empty sequence is called in

this context the empty string. A string consisting of a single symbol s is

termed an atomic string. It will likewise be denoted by s, since it will be

clear from the context whether s means a symbol or an atomic string.

Let ξη denote the concatenation of the strings ξ and η. If ξ = ξ1ηξ2 for

some strings ξ1, ξ2 and η 6= ∅ then η is called a segment (or substring) of

ξ, termed a proper segment in case η 6= ξ. If ξ1 = ∅ then η is called an

initial, if ξ2 = ∅, a terminal segment of ξ.

Subsets P,Q, R, . . . ⊆Mn are called n-ary predicates of M or n-ary re-

lations. A unary predicate will be identified with the corresponding subset

of M . We may write P~a for ~a ∈ P , and ¬P~a for ~a /∈ P . Metatheoretical

predicates (or properties) cast in words will often be distinguished from

the surrounding text by single quotes, for instance, if we speak of the

syntactic predicate ‘The variable x occurs in the formula α’. We can do

so since quotes inside quotes will not occur in this book. Single-quoted

properties are often used in induction principles or reflected in a theory,

while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f :Mn →M . Since M0 = {∅}, a

0-ary operation of M is of the form {(∅, c)}, with c ∈M ; it is denoted by

Notation xxi

c for short and called a constant . Each operation f :Mn →M is uniquely

described by the graph of f , defined as

graph f := {(a1, . . . , an+1) ∈Mn+1 | f(a1, . . . , an) = an+1}.
1

Both f and graph f are essentially the same, but in most situations it is

more convenient to distinguish between them.

The most important operations are binary ones. The corresponding

symbols are mostly written between the arguments, as in the following

listing of properties of a binary operation ◦ on a set A. ◦ :A2 → A is

commutative if a ◦ b = b ◦ a for all a, b ∈ A,

associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ A,

idempotent if a ◦ a = a for all a ∈ A,

invertible if for all a, b ∈ A there are x, y ∈ A

with a ◦x = b and y ◦ a = b.

If H,Θ (read eta, theta) are expressions of our metalanguage, H ⇔ Θ

stands for ‘H iff Θ’ which abbreviates ‘H if and only if Θ’. Similarly,

H⇒ Θ and H & Θ mean ‘if H then Θ’ and ‘H and Θ’, respectively, and

H∨∨∨Θ is to mean ‘H or Θ.’ This notation does not aim at formalizing the

metalanguage but serves improved organization of metatheoretic state-

ments. We agree that⇒, ⇔, . . . separate stronger than linguistic binding

particles such as “there is” or “for all.” Therefore, in the statement

‘X ⊢ α⇔ X � α, for all X and all α’ (Theorem 1.4.6)

the comma should not be dropped; otherwise, some serious misunder-

standing may arise: ‘X � α for all X and all α ’ is simply false.

H :⇔ Θ means that the expression H is defined by Θ. When integrating

formulas in the colloquial metalanguage, one may use certain abbreviating

notation. For instance, ‘α ≡ β and β ≡ γ’ is occasionally shortened

to α ≡ β ≡ γ. (‘the formulas α, β, and β, γ are equivalent’). This is

allowed, since in this book the symbol ≡ will never belong to the formal

language from which the formulas α, β, γ are taken. W.l.o.g. or w.l.o.g. is

a colloquial shorthand of “without loss of generality” used in mathematics.

1 This means that the left-hand term graph f is defined by the right-hand term. A

corresponding meaning has := throughout, except in programs and flow diagrams,

where x := t means the allocation of the value of the term t to the variable x.

Chapter 1

Propositional Logic

Propositional logic, by which we here mean two-valued propositional logic,

arises from analyzing connections of given sentences A, B, such as

A and B, A or B, not A, if A then B.

These connection operations can be approximately described by two-

valued logic. There are other connections that have temporal or local

features, for instance, first A then B or here A there B, as well as unary

modal operators like it is necessarily true that, whose analysis goes beyond

the scope of two-valued logic. These operators are the subject of tempo-

ral, modal, or other subdisciplines of many-valued or nonclassical logic.

Furthermore, the connections that we began with may have a meaning in

other versions of logic that two-valued logic only incompletely captures.

This pertains in particular to their meaning in natural or everyday lan-

guage, where meaning may strongly depend on context.

In two-valued propositional logic such phenomena are set aside. This

approach not only considerably simplifies matters, but has the advantage

of presenting many concepts, for instance those of consequence, rule in-

duction, or resolution, on a simpler and more perspicuous level. This will

in turn save a lot of writing in Chapter 2 when we consider the corre-

sponding concepts in the framework of predicate logic.

We will not consider everything that would make sense in two-valued

propositional logic, such as two-valued fragments and problems of defin-

ability and interpolation. The reader is referred instead to [KK] or [Ra1].

We will concentrate our attention more on propositional calculi. While

there exists a multitude of applications of propositional logic, we will not

consider technical applications such as the designing of Boolean circuits

1

2 1 Propositional Logic

and problems of optimization. These topics have meanwhile been inte-

grated into computer science. Rather, some useful applications of the

propositional compactness theorem are described comprehensively.

1.1 Boolean Functions and Formulas

Two-valued logic is based on two foundational principles: the principle of

bivalence, which allows only two truth values, namely true and false, and

the principle of extensionality , according to which the truth value of a

connected sentence depends only on the truth values of its parts, not on

their meaning. Clearly, these principles form only an idealization of the

actual relationships.

Questions regarding degrees of truth or the sense-content of sentences

are ignored in two-valued logic. Despite this simplification, or indeed

because of it, such a method is scientifically successful. One does not even

have to know exactly what the truth values true and false actually are.

Indeed, in what follows we will identify them with the two symbols 1 and

0. Of course, one could have chosen any other apt symbols such as ⊤ and

⊥ or t and f. The advantage here is that all conceivable interpretations of

true and false remain open, including those of a purely technical nature,

for instance the two states of a gate in a Boolean circuit.

According to the meaning of the word and, the conjunction A and B of

sentences A, B, in formalized languages written as A∧B or A &B, is true

if and only if A, B are both true and is false otherwise. So conjunction

corresponds to a binary function or operation over the set {0, 1} of truth

values, named the ∧ -function and denoted by ∧ . It is given by its value

matrix
„

1 0

0 0

«

, where, in general,
„

1◦1 1◦0

0◦1 0◦0

«

represents the value matrix or

truth table of a binary function ◦ with arguments and values in {0, 1}.

The delimiters of these small matrices will usually be omitted.

A function f : {0, 1}n → {0, 1} is called an n-ary Boolean function or

truth function. Since there are 2n n-tuples of 0, 1, it is easy to see that

the number of n-ary Boolean functions is 22n
. We denote their totality by

Bn. While B2 has 24 = 16 members, there are only four unary Boolean

functions. One of these is negation, denoted by ¬ and defined by ¬1 = 0

and ¬0 = 1. B0 consists just of the constants 0 and 1.

1.1 Boolean Functions and Formulas 3

The first column of the table below contains the common binary connec-

tions with examples of their instantiation in English. The second column

lists some of its traditional symbols, which also denote the corresponding

truth function, and the third its truth table. Disjunction is the inclusive

or and is to be distinguished from the exclusive disjunction. The latter

corresponds to addition modulo 2 and is therefore given the symbol +.

In Boolean circuits the functions +, ↓, ↑ are often denoted by xor, nor,

and nand ; the latter is also known as the Sheffer function. Recall our

agreement in the section Notation that the symbols &, ∨, ⇒ , and ⇔

will be used only on the metatheoretic level.

A connected sentence and its corresponding truth function need not be

denoted by the same symbol; for example, one might take ∧ for conjunc-

tion and et as the corresponding truth function. But in doing so one would

only be creating extra notation, but no new insights. The meaning of a

symbol will always be clear from the context: if α, β are sentences of a for-

mal language, then α∧β denotes their conjunction; if a, b are truth values,

then a∧ b just denotes a truth value. Occasionally, we may want to refer

to the symbols ∧ , ∨,¬, . . . themselves, setting their meaning temporarily

aside. Then we talk of the connectives or truth functors ∧ , ∨,¬, . . .

compound sentence symbol truth table

conjunction

A and B; A as well as B
∧ , &

1 0

0 0

disjunction

A or B
∨, ∨

1 1

1 0

implication

if A then B; B provided A
→, ⇒

1 0

1 1

equivalence

A if and only if B; A iff B
↔, ⇔

1 0

0 1

exclusive disjunction

either A or B but not both
+

0 1

1 0

nihilation

neither A nor B
↓

0 0

0 1

incompatibility

not at once A and B
↑

0 1

1 1

4 1 Propositional Logic

Sentences formed using connectives given in the table are said to be

logically equivalent if their corresponding truth tables coincide. This is the

case, e.g., for the sentences A provided B and A or not B, which represent

the converse implication, denoted by A← B.1 It does not appear in the

table, since it arises by swapping A, B in the implication. This and similar

reasons explain why only a few of the sixteen binary Boolean functions

require notation. Some other examples of logical equivalent sentences are

if A and B then C, C provided A and B, and A and B only if C.

In order to recognize and describe logical equivalence of compound sen-

tences it is useful to create a suitable formalism or a formal language. The

idea is basically the same as in arithmetic, where general statements are

more clearly expressed by means of certain formulas. As with arithmetical

terms, we consider propositional formulas as strings of signs built in given

ways from basic symbols. Among these basic symbols are variables, for

our purposes called propositional variables, the set of which is denoted by

PV. Traditionally, these are symbolized by p0, p1, . . . However, our num-

bering of the variables below begins with p1 rather than with p0, enabling

us later on to represent Boolean functions more conveniently. Further, we

use certain logical signs such as ∧ , ∨,¬, . . . , similar to the signs +, ·, . . . of

arithmetic. Finally, parentheses (,) will serve as technical aids, although

these are dispensable, as will be seen later on.

Each time a propositional language is in question, the set of its logi-

cal symbols, called the logical signature, and the set of its variables must

be given in advance. For instance, it is crucial in some applications of

propositional logic in Section 1.5 for PV to be an arbitrary set, and not

a countably infinite one as indicated previously. Put concretely, we de-

fine a propositional language F of formulas built up from the symbols

(,) , ∧ , ∨ ,¬ , p1, p2, . . . inductively as follows:

(F1) The atomic strings p1, p2, . . . are formulas, called prime formulas,

also called atomic formulas, or simply prime.

(F2) If the strings α, β are formulas, then so too are the strings (α∧β),

(α ∨ β), and ¬α.

This is a recursive (somewhat sloppily also called inductive) definition

in the set of strings on the alphabet of the mentioned symbols, that is,

1 Converse implication is used in the programming language PROLOG, see 4.6.

1.1 Boolean Functions and Formulas 5

only those strings gained using (F1) or (F2) are in this context formulas.

Stated set-theoretically, F is the smallest (i.e., the intersection) of all sets

of strings S built from the aforementioned symbols with the properties

(f1) p1, p2, . . . ∈ S, (f2) α, β ∈ S ⇒ (α∧β), (α ∨ β),¬α ∈ S.

Example. (p1 ∧ (p2 ∨ ¬p1)) is a formula. On the other hand, its initial

segment (p1 ∧ (p2 ∨ ¬p1) is not, because a closing parenthesis is missing.

It is intuitively clear and will rigorously be proved on the next page that

the number of left parentheses occurring in a formula coincides with the

number of its right parentheses.

Remark 1. (f1) and (f2) are set-theoretic translations of (F1) and (F2). Some
authors like to add a third condition to (F1), (F2), namely (F3): No other strings
than those obtained by (F1) and (F2) are formulas in this context. But this at
most underlines that (F1), (F2) are the only formula-building rules; (F3) follows
from our definition, as its set-theoretic translation by (f1), (f2) indicates. Note
that we do not strictly distinguish between the symbol pi and the prime formula
or atomic string pi. Note also that in the formula definition parentheses are
needed only for binary connectives, not if a formula starts with ¬. By a slightly
more involved definition at least the outermost parentheses in formulas of the
form (α◦β) with a binary connective ◦ could be saved. Howsoever propositional
formulas are defined, what counts is their unique readability, see page 7.

The formulas defined by (F1), (F2) are called Boolean formulas, because

they are obtained using the Boolean signature {∧ , ∨,¬}. Should further

connectives belong to the logical signature, for example → or ↔, (F2) of

the above definition must be augmented accordingly. But unless stated

otherwise, (α →β) and (α ↔ β) are here just abbreviations; the first is

¬(α∧¬β), the second is ((α →β)∧ (β →α)).

Occasionally, it is useful to have symbols in the logical signature for

always false and always true, ⊥ and ⊤ respectively, say, called falsum

and verum and sometimes also denoted by 0 and 1. These are to be

regarded as supplementary prime formulas, and clause (F1) should be

altered accordingly. However, we prefer to treat ⊥ and ⊤ as abbreviations:

⊥ := (p1 ∧¬p1) and ⊤ := ¬⊥.

For the time being we let F be the set of all Boolean formulas, although

everything said about F holds correspondingly for any propositional lan-

guage. Propositional variables will henceforth be denoted by p, q, . . . ,

formulas by α, β, γ, δ, ϕ, . . . , prime formulas also by π, and sets of propo-

sitional formulas by X, Y, Z, where these letters may also be indexed.

6 1 Propositional Logic

For the reason of parenthesis economy in formulas, we set some conven-

tions similar to those used in writing arithmetical terms.

1. The outermost parentheses in a formula may be omitted (if there

are any). For example, (p ∨ q)∧¬p may be written in place of

((p ∨ q)∧¬p). Note that (p ∨ q)∧¬p is not itself a formula but

denotes the formula ((p ∨ q)∧¬p).

2. In the order ¬, ∧ , ∨, → ,↔, each connective binds more strongly

than those following it. Thus, one may write p ∨ q ∧¬p instead of

p ∨ (q ∧¬p), which means (p ∨ (q ∧¬p)) by convention 1.

3. By the multiple use of → we associate to the right. So p →q →p

is to mean p → (q →p). Multiple occurrences of other binary con-

nectives are associated to the left, for instance, p∧ q ∧¬p means

(p∧ q)∧¬p. In place of α0 ∧ · · · ∧αn and α0∨ · · · ∨αn we may write
∧

i6n αi and
∨

i6n αi, respectively.

Also, in arithmetic, one normally associates to the left. An exception is

the term xyz
, where traditionally association to the right is used, that is,

xyz
equals x(yz). Association to the right has some advantages in writing

tautologies in which → occurs several times; for instance in the examples

of tautologies listed in 1.3 on page 18.

The above conventions are based on a reliable syntax in the framework

of which intuitively clear facts, such as the identical number of left and

right parentheses in a formula, are rigorously provable. These proofs are

generally carried out using induction on the construction of a formula. To

make this clear we denote by Eϕ that a property E holds for a string ϕ.

For example, let E mean the property ‘ϕ is a formula that has equally

many right- and left-hand parentheses’. E is trivially valid for prime

formulas, and if Eα, Eβ then clearly also E(α∧β), E(α ∨ β), and E¬α.

From this we may conclude that E applies to all formulas, our reasoning

being a particularly simple instance of the following

Principle of formula induction. Let E be a property of strings that

satisfies the conditions

(o) Eπ for all prime formulas π,

(s) Eα, Eβ ⇒ E(α∧β), E(α ∨ β), E¬α, for all α, β ∈ F.

Then Eϕ holds for all formulas ϕ.

1.1 Boolean Functions and Formulas 7

The justification of this principle is straightforward. The set S of all

strings with property E has, thanks to (o) and (s), the properties (f1)

and (f2) on page 5. But F is the smallest such set. Therefore, F ⊆ S.

In words, E applies to all formulas ϕ. Clearly, if other connectives are

involved, condition (s) must accordingly be modified.

It is intuitively clear and easily confirmed inductively on ϕ that a com-

pound Boolean formula ϕ (i.e., ϕ is not prime) is of the form ϕ = ¬α

or ϕ = (α∧β) or ϕ = (α ∨ β) for suitable α, β ∈ F. Moreover, this de-

composition is unique. For instance, (α∧β) cannot at the same time be

written (α′ ∨ β′) with perhaps different formulas α′, β′. Thus, compound

formulas have the unique readability property, more precisely, the

Unique formula reconstruction property. Each compound formula

ϕ ∈ F is either of the form ¬α or (α ◦ β) for some uniquely determined

formulas α, β ∈ F, where ◦ is either ∧ or ∨.

This property is less obvious than it might seem. Nonetheless, the proof

is left as an exercise (Exercise 4) in order to maintain the flow of things. It

may be a surprise to the novice that for the unique formula reconstruction,

parentheses are dispensable throughout. Indeed, propositional formulas,

like arithmetical terms, can be written without any parentheses; this is

realized in Polish notation (= PN), also called prefix notation, once widely

used in the logic literature. The idea consists in altering (F2) as follows:

if α, β are formulas then so too are ∧αβ, ∨αβ, and ¬α. Similar to PN is

RPN (reverse Polish notation), still used in some programming languages

like PostScript. RPN differs from PN only in that a connective is placed

after the arguments. For instance, (p∧ (q ∨ ¬p)) is written in RPN as

pqp¬∨∧ . Reading PN or RPN requires more effort due to the high density

of information; but by the same token it can be processed very fast by a

computer or a high-tech printer getting its job as a PostScript program.

The only advantage of the parenthesized version is that its decoding is

somewhat easier for our eye through the dilution of information.

Intuitively it is clear what a subformula of a formula ϕ is; for example,

(q ∧¬p) is a subformula of (p ∨ (q ∧¬p)). All the same, for some pur-

poses it is convenient to characterize the set Sf ϕ of all subformulas of ϕ

inductively:

Sf π = {π} for prime formulas π; Sf ¬α = Sf α ∪ {¬α},

Sf(α ◦ β) = Sf α ∪ Sf β ∪ {(α ◦ β)} for a binary connective ◦.

8 1 Propositional Logic

Thus, a formula is always regarded as a subformula of itself. The above is

a typical example of a recursive definition on the construction of formulas.

Another example of such a definition is the rank rkϕ of a formula ϕ, which

provides a sometimes more convenient measure of the complexity of ϕ

than its length as a string and occasionally simplifies inductive arguments.

Intuitively, rkϕ is the highest number of nested connectives in ϕ. Let

rkπ = 0 for prime formulas π, and if rkα and rkβ are already defined,

then rk¬α = rkα+1 and rk(α◦β) = max{rkα, rkβ}+1. Here ◦ denotes

any binary connective. We will not give here a general formulation of

this definition procedure because it is very intuitive and similar to the

well-known procedure of recursive definitions on N. It has been made

sufficiently clear by the preceding examples. Its justification is based

on the unique reconstruction property and insofar not quite trivial, in

contrast to the proof procedure by induction on formulas that immediately

follows from the definition of propositional formulas.

If a property is to be proved by induction on the construction of formulas

ϕ, we will say that it is a proof by induction on ϕ. Similarly, the recursive

construction of a function f on F will generally be referred to as defining

f by recursion on ϕ, often somewhat sloppily paraphrased as defining f

by induction on ϕ. Examples are Sf and rk. Others will follow.

Since the truth value of a connected sentence depends only on the truth

values of its constituent parts, we may assign to every propositional vari-

able of α a truth value rather than a sentence, thereby evaluating α,

i.e., calculating a truth value. Similarly, terms are evaluated in, say,

the arithmetic of real numbers, whose value is then a real (= real num-

ber). An arithmetical term t in the variables x1, . . . , xn describes an

n-ary function whose arguments and values are reals, while a formula ϕ

in p1, . . . , pn describes an n-ary Boolean function. To be precise, a propo-

sitional valuation, or alternatively, a (propositional) model, is a mapping

w : PV → {0, 1} that can also be understood as a mapping from the set

of prime formulas to {0, 1}. We can extend this to a mapping from the

whole of F to {0, 1} (likewise denoted by w) according to the stipulations

(∗) w(α∧β) = wα∧wβ; w(α ∨ β) = wα ∨ wβ; w¬α = ¬wα.2

By the value wϕ of a formula ϕ under a valuation w : PV → {0, 1}

2 We often use (∗) or (⋆) as a temporary label for a condition (or property) that we

refer back to in the text following the labeled condition.

1.1 Boolean Functions and Formulas 9

we mean the value given by this extension. We could denote the ex-

tended mapping by ŵ, say, but it is in fact not necessary to distinguish

it symbolically from w : PV → {0, 1} because the latter determines the

extension uniquely. Similarly, we keep the same symbol if an operation

in N extends to a larger domain. If the logical signature contains further

connectives, for example →, then (∗) must be supplemented accordingly,

with w(α →β) = wα →wβ in the example. However, if → is defined as

in the Boolean case, then this equation must be provable. Indeed, it is

provable, because from our definition of α →β it follows that

w(α →β) = w¬(α ∧ ¬β) = ¬w(α ∧ ¬β) = ¬(wα ∧ ¬wβ) = wα →wβ,

for any w. A corresponding remark could be made with respect to ↔

and to ⊤ and ⊥. Always w⊤ = 1 and w⊥ = 0 by our definition of ⊤,⊥,

in accordance with the meaning of these symbols. However, if these or

similar symbols belong to the logical signature, then suitable equations

must be added to the definition of w.

Let Fn denote the set of all formulas of F in which at most the variables

p1, . . . , pn occur (n > 0). Then it can easily be seen that wα for the

formula α ∈ Fn depends only on the truth values of p1, . . . , pn. In other

words, α ∈ Fn satisfies for all valuations w, w′,

(⋆) wα = w′α whenever wpi = w′pi for i = 1, . . . , n.

The simple proof of (⋆) follows from induction on the construction of for-

mulas in Fn, observing that these are closed under the operations ¬, ∧ , ∨.

Clearly, (⋆) holds for p ∈ Fn, and if (⋆) is valid for α, β ∈ Fn, then also

for ¬α, α∧β, and α ∨ β. It is then clear that each α ∈ Fn defines or

represents an n-ary Boolean function according to the following

Definition. α ∈ Fn represents the function f ∈ Bn (or f is represented

by α) whenever wα = fw~p (:= f(wp1, . . . , wpn)) for all valuations w.

Because wα for α ∈ Fn is uniquely determined by wp1, . . . , wpn, α

represents precisely one function f ∈ Bn, sometimes written as α(n). For

instance, both p1 ∧p2 and ¬(¬p1 ∨ ¬p2) represent the ∧ -function, as can

easily be illustrated using a table. Similarly, ¬p1 ∨ p2 and ¬(p1 ∧¬p2)

represent the → -function, and p1 ∨ p2, ¬(¬p1 ∧¬p2), (p1 →p2) →p2 all

represent the ∨-function. Incidentally, the last formula shows that the

∨-connective can be expressed using implication alone.

10 1 Propositional Logic

There is a caveat though: since α = p1 ∨ p2, for instance, belongs

not only to F2 but to F3 as well, α also represents the Boolean function

f : (x1, x2, x3) 7→ x1∨x2. However, the third argument is only “fictional,”

or put another way, the function f is not essentially ternary.

In general we say that an operation f :Mn →M is essentially n-ary if f

has no fictional arguments, where the ith argument of f is called fictional

whenever for all x1, . . . , xi, . . . xn ∈M and all x′
i ∈M ,

f(x1, . . . , xi, . . . , xn) = f(x1, . . . , x
′
i, . . . , xn).

Identity and the ¬-function are the essentially unary Boolean functions,

and out of the sixteen binary functions, only ten are essentially binary, as

is seen in scrutinizing the possible truth tables.

Remark 2. If an denotes temporarily the number of all n-ary Boolean func-
tions and en the number of all essentially n-ary Boolean functions, it is not
particularly difficult to prove that an =

∑

i6n

(
n
i

)
ei. Solving for en results in

en =
∑

i6n(−1)n−i
(
n
i

)
ai. However, we will not make use of these equations.

These become important only in a more specialized study of Boolean functions.

Exercises

1. f ∈ Bn is called linear if f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn for

suitable coefficients a0, . . . , an ∈ {0, 1}. Here + denotes exclusive

disjunction (addition modulo 2) and the not written multiplication

is conjunction (i.e., aixi = xi for ai = 1 and aixi = 0 for ai = 0).

(a) Show that the above representation of a linear function f is

unique. (b) Determine the number of n-ary linear Boolean functions.

(c) Prove that each formula α in ¬,+ (i.e., α is a formula of the

logical signature {¬,+}) represents a linear Boolean function.

2. Verify that a compound Boolean formula ϕ is either of the form

ϕ = ¬α or else ϕ = (α∧β) or ϕ = (α ∨ β) for suitable formulas α, β

(this is the easy part of the unique reconstruction property).

3. Prove that a proper initial segment of a formula ϕ is never a formula.

Equivalently: If αξ = βη with α, β ∈ F and arbitrary strings ξ, η,

then α = β. The same holds for formulas in PN, but not in RPN.

4. Prove (with Exercise 3) the second more difficult part of the unique

reconstruction property, the claim of uniqueness.

1.2 Semantic Equivalence and Normal Forms 11

1.2 Semantic Equivalence and Normal Forms

Throughout this chapter w will always denote a propositional valuation.

Formulas α, β are called (logically or semantically) equivalent, and we

write α ≡ β, when wα = wβ for all valuations w. For example α ≡ ¬¬α.

Obviously, α ≡ β iff for any n such that α, β ∈ Fn, both formulas represent

the same n-ary Boolean function. It follows that at most 22n
formulas in

Fn can be pairwise inequivalent, since there are no more than 22n
n-ary

Boolean functions.

In arithmetic one writes simply s = t to express that the terms s, t rep-

resent the same function. For example, (x+y)2 = x2 +2xy +y2 expresses

the equality of values of the left- and right-hand terms for all x, y ∈ R.

This way of writing is permissible because formal syntax plays a minor role

in arithmetic. In formal logic, however, as is always the case when syntac-

tic considerations are to the fore, one uses the equality sign in messages

like α = β only for the syntactic identity of the strings α and β. There-

fore, the equivalence of formulas must be denoted differently. Clearly, for

all formulas α, β, γ the following equivalences hold:

α∧ (β ∧γ) ≡ α∧β ∧γ, α ∨ (β ∨ γ) ≡ α ∨ β ∨ γ (associativity);

α∧β ≡ β ∧α, α ∨ β ≡ β ∨ α (commutativity);

α∧α ≡ α, α ∨ α ≡ α (idempotency);

α∧ (α ∨ β) ≡ α, α ∨ α∧β ≡ α (absorption);

α∧ (β ∨ γ) ≡ α∧β ∨ α∧γ, (∧ -distributivity);

α ∨ β ∧γ ≡ (α∨β)∧ (α∨γ) (∨-distributivity);

¬(α∧β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α∧¬β (de Morgan rules).

Furthermore, α ∨ ¬α ≡ ⊤, α∧¬α ≡ ⊥, and α∧⊤ ≡ α ∨ ⊥ ≡ α. It is also

useful to list certain equivalences for formulas containing → , for example

the frequently used α →β ≡ ¬α ∨ β (≡ ¬(α∧¬β), and the important

α →β →γ ≡ α∧β →γ ≡ β →α →γ.

To generalize: α1 → · · · →αn ≡ α1 ∧ · · · ∧αn−1 →αn. Further, we men-

tion the “left distributivity” of implication with respect to ∧ and ∨, namely

α →β ∧γ ≡ (α →β)∧ (α →γ); α →β ∨ γ ≡ (α →β) ∨ (α →γ).

Should the symbol → lie to the right then the following are valid:

α∧β →γ ≡ (α →γ) ∨ (β →γ); α ∨ β →γ ≡ (α →γ)∧ (β →γ).

12 1 Propositional Logic

Remark 1. These last two logical equivalences are responsible for a curious
phenomenon in everyday language. For example, the two sentences

A: Students and pensioners pay half price,
B: Students or pensioners pay half price

evidently have the same meaning. How to explain this? Let student and pen-
sioner be abbreviated by S, P , and pay half price by H. Then

α : (S → H)∧ (P → H), β : (S ∨ P) → H

express somewhat more precisely the factual content of A and B, respectively.
Now, according to our truth tables, the formulas α and β are simply logically
equivalent. The everyday-language statements A and B of α and β obscure the
structural difference of α and β through an apparently synonymous use of the
words and and or.

Obviously, ≡ is an equivalence relation, that is,

α ≡ α (reflexivity),

α ≡ β ⇒ β ≡ α (symmetry),

α ≡ β, β ≡ γ ⇒ α ≡ γ (transitivity).

Moreover, ≡ is a congruence relation on F,3 i.e., for all α, α′, β, β′,

α ≡ α′, β ≡ β′ ⇒ α ◦ β ≡ α′ ◦ β′,¬α ≡ ¬α′ (◦ ∈ {∧ , ∨ }).

For this reason the replacement theorem holds: α ≡ α′ ⇒ ϕ ≡ ϕ′,

where ϕ′ is obtained from ϕ by replacing one or several of the possi-

ble occurrences of the subformula α in ϕ by α′. For instance, by re-

placing the subformula ¬p ∨ ¬q by the equivalent formula ¬(p∧ q) in

ϕ = (¬p ∨ ¬q)∧ (p ∨ q) we obtain ϕ′ = ¬(p∧ q)∧ (p ∨ q), which is equiva-

lent to ϕ. A similar replacement theorem also holds for arithmetical terms

and is constantly used in their manipulation. This mostly goes unnoticed,

because = is written instead of ≡, and the replacement for = is usually

correctly applied. The simple inductive proof of the replacement theorem

will be given in a somewhat broader context in 2.4.

Furnished with the equivalences ¬¬α ≡ α, ¬(α∧β) ≡ ¬α ∨ ¬β, and

¬(α ∨ β) ≡ ¬α∧¬β, and using replacement it is easy to construct for each

formula an equivalent formula in which ¬ stands only in front of variables.

For example, ¬(p∧ q ∨ r) ≡ ¬(p∧ q)∧¬r ≡ (¬p ∨ ¬q)∧¬r is obtained in

this way. This observation follows also from Theorem 2.1.

3 This concept, stemming originally from geometry, is meaningfully defined in every

algebraic structure and is one of the most important and most general mathematical

concepts; see 2.1. The definition is equivalent to the condition

α ≡ α′ ⇒ α ◦ β ≡ α′ ◦ β, β ◦ α ≡ β ◦ α′,¬α ≡ ¬α′, for all α, α′, β.

1.2 Semantic Equivalence and Normal Forms 13

It is always something of a surprise to the newcomer that independent of

its arity, every Boolean function can be represented by a Boolean formula.

While this can be proved in various ways, we take the opportunity to

introduce certain normal forms and therefore begin with the following

Definition. Prime formulas and negations of prime formulas are called

literals. A disjunction α1∨ · · · ∨αn, where each αi is a conjunction of liter-

als, is called a disjunctive normal form, a DNF for short. A conjunction

β1 ∧ · · · ∧βn, where every βi is a disjunction of literals, is called a con-

junctive normal form, a CNF for short.

Example 1. The formula p ∨ (q ∧¬p) is a DNF; p ∨ q is at once a DNF

and a CNF; p ∨ ¬(q ∧¬p) is neither a DNF nor a CNF.

Theorem 2.1 states that every Boolean function is represented by a

Boolean formula, indeed by a DNF, and also by a CNF. It would suffice

to show that for given n there are at least 22n
pairwise inequivalent DNFs

(resp. CNFs). However, we present instead a constructive proof whereby

for a Boolean function given in tabular form a representing DNF (resp.

CNF) can explicitly be written down. In Theorem 2.1 we temporarily

use the following notation: p1 := p and p0 := ¬p. With this stipulation,

w(px1

1 ∧px2

2) = 1 iff wp1 = x1 and wp2 = x2. More generally, induction

on n > 1 easily shows that for all x1, . . . , xn ∈ {0, 1},

(∗) w(px1

1 ∧ · · · ∧pxn
n) = 1⇔ w~p = ~x (i.e., wp1 = x1, . . . , wpn = xn).

Theorem 2.1. Every Boolean function f with f ∈ Bn (n > 0) is repre-

sentable by a DNF, namely by

αf :=
∨

f~x=1

px1

1 ∧ · · · ∧pxn
n .4

At the same time, f is representable by the CNF

βf :=
∧

f~x=0

p¬x1

1 ∨ · · · ∨ p¬xn
n .

Proof. By the definition of αf , the following equivalences hold for an

arbitrary valuation w:

4 The disjuncts of αf can be arranged, for instance, according to the lexicographical

order of the n-tuples (x1, . . . , xn) ∈ {0, 1}n. If the disjunction is empty (that is, if f

does not take the value 1) let αf be ⊥ (= p1 ∧¬p1). Thus, the empty disjunction is

⊥. Similarly, the empty conjunction equals ⊤ (= ¬⊥). These conventions correspond

to those in arithmetic, where the empty sum is 0 and the empty product is 1.

14 1 Propositional Logic

wαf = 1 ⇔ there is an ~x with f~x = 1 and w(px1

1 ∧ · · · ∧pxn
n) = 1

⇔ there is an ~x with f~x = 1 and w~p = ~x
(
by (∗)

)

⇔ fw~p = 1 (replace ~x by w~p).

Thus, wαf = 1 ⇔ fw~p = 1. From this equivalence, and because there

are only two truth values, wαf = fw~p follows immediately. The repre-

sentability proof of f by βf runs analogously; alternatively, Theorem 2.4

below may be used.

Example 2. For the exclusive-or function +, the construction of αf

in Theorem 2.1 gives the representing DNF p1 ∧¬p2 ∨ ¬p1 ∧p2, because

(1, 0), (0, 1) are the only pairs for which + has the value 1. The CNF given

by the theorem, on the other hand, is (p1 ∨ p2)∧ (¬p1 ∨ ¬p2); the equiv-

alent formula (p1 ∨ p2)∧¬(p1 ∧p2) makes the meaning of the exclusive-or

compound particularly intuitive.

p1 ∧p2 ∨ ¬p1 ∧p2 ∨ ¬p1 ∧¬p2 is the DNF given by Theorem 2.1 for the

Boolean function → . It is longer than the formula ¬p1 ∨ p2, which is

also a representing DNF. But the former is distinctive in that each of its

disjuncts contains each variable occurring in the formula exactly once.

A DNF of n variables with the analogous property is called canonical.

The notion of canonical CNF is correspondingly explained. For instance,

the function ↔ is represented by the canonical CNF (¬p1∨p2)∧ (p1∨¬p2)

according to Theorem 2.1, which always provides canonical normal forms

as representing formulas.

Since each formula represents a certain Boolean function, Theorem 2.1

immediately implies the following fact, which has also a (more lengthy)

syntactical proof with the replacement theorem mentioned on page 12.

Corollary 2.2. Each ϕ ∈ F is equivalent to a DNF and to a CNF.

Functional completeness. A logical signature is called functional

complete if every Boolean function is representable by a formula in this

signature. Theorem 2.1 shows that {¬, ∧ , ∨ } is functional complete.

Because of p ∨ q ≡ ¬(¬p∧¬q) and p∧ q ≡ ¬(¬p ∨ ¬q), one can further

leave aside ∨, or alternatively ∧ . This observation is the content of

Corollary 2.3. Both {¬, ∧} and {¬, ∨} are functional complete.

Therefore, to show that a logical signature L is functional complete, it

is enough to represent ¬, ∧ or else ¬, ∨ by formulas in L. For example,

1.2 Semantic Equivalence and Normal Forms 15

because ¬p ≡ p →0 and p∧ q ≡ ¬(p →¬q), the signature {→ , 0} is func-

tional complete. On the other hand, {→ , ∧ , ∨ }, and a fortiori {→}, are

not. Indeed, wϕ = 1 for any formula ϕ in → , ∧ , ∨ and any valuation w

such that wp = 1 for all p. This can readily be confirmed by induction on

ϕ. Thus, never ¬p ≡ ϕ for any such formula ϕ.

It is noteworthy that the signature containing only ↓ is functional com-

plete: from the truth table for ↓ we get ¬p ≡ p ↓p as well as p∧ q ≡ ¬p ↓¬q.

Likewise for { ↑}, because ¬p ≡ p ↑p and p ∨ q ≡ ¬p ↑¬q. That { ↑} must

necessarily be functional complete once we know that { ↓} is will become

obvious in the discussion of the duality theorem below. Even up to term

equivalence, there still exist infinitely many signatures. Here signatures

are called term equivalent if the formulas of these signatures represent the

same Boolean functions as in Exercise 2, for instance.

Define inductively on the formulas from F a mapping δ : F → F by

pδ = p, (¬α)δ = ¬αδ, (α∧β)δ = αδ ∨ βδ, (α ∨ β)δ = αδ ∧βδ.

αδ is called the dual formula of α and is obtained from α simply by inter-

changing ∧ and ∨. Obviously, for a DNF α, αδ is a CNF, and vice versa.

Define the dual of f ∈ Bn by f δ~x := ¬f¬~x with ¬~x := (¬x1, . . . ,¬xn).

Clearly f δ2

:= (f δ)δ = f since (f δ)δ~x = ¬¬f¬¬~x = f~x. Note that

∧ δ = ∨, ∨δ = ∧ , ↔δ= +, ↓ δ = ↑ , but ¬δ = ¬. In other words, ¬ is self-

dual. One may check by going through all truth tables that essentially

binary self-dual Boolean functions do not exist. But it was Dedekind who

discovered the interesting ternary self-dual function

d3 : (x1, x2, x3) 7→ x1 ∧x2 ∨ x1 ∧x3 ∨ x2 ∧x3.

The above notions of duality are combined in the following

Theorem 2.4 (The duality principle for two-valued logic). If α

represents the function f then αδ represents the dual function f δ.

Proof by induction on α. Trivial for α = p. Let α, β represent f1, f2,

respectively. Then α∧β represents f : ~x 7→ f1~x∧f2~x, and in view of the

induction hypothesis, (α∧β)δ = αδ ∨ βδ represents g : ~x 7→ f δ
1~x ∨ f δ

2~x.

This function is just the dual of f because

f δ~x = ¬f¬~x = ¬(f1¬~x∧f2¬~x) = ¬f1¬~x ∨ ¬f2¬~x = f δ
1~x ∨ f δ

2~x = g~x.

The induction step for ∨ is similar. Now let α represent f . Then ¬α

represents ¬f : ~x 7→ ¬f~x. By the induction hypothesis, αδ represents f δ.

16 1 Propositional Logic

Thus (¬α)δ = ¬αδ represents ¬f δ, which coincides with (¬f)δ because of

(¬f)δ~x = (¬¬f)¬~x = ¬(¬f¬~x) = ¬(f δ~x).

For example, we know that ↔ is represented by p∧ q ∨ ¬p∧¬q. Hence,

by Theorem 2.4, + (=↔δ) is represented by (p∨q)∧ (¬p∨¬q). More gener-

ally, if a canonical DNF α represents f ∈ Bn, then the canonical CNF αδ

represents f δ. Thus, if every f ∈ Bn is representable by a DNF then ev-

ery f must necessarily be representable by a CNF, since f 7→ f δ maps Bn

bijectively onto itself as follows from f δ2

= f . Note also that Dedekind’s

just defined ternary self-dual function d3 shows in view of Theorem 2.4

that p∧ q ∨ p∧ r ∨ q ∧ r ≡ (p ∨ q)∧ (p ∨ r)∧ (q ∨ r).

Remark 2. {∧ , ∨, 0, 1} is maximally functional incomplete, that is, if f is any
Boolean function not representable by a formula in ∧ , ∨, 0, 1, then {∧ , ∨, 0, 1, f}
is functional complete (Exercise 4). As was shown by E. Post (1920), there are up
to term equivalence only five maximally functional incomplete logical signatures:
besides {∧ , ∨, 0, 1} only {→ , ∧}, the dual of this, {↔,¬}, and {d3,¬}. The
formulas of the last one represent just the self-dual Boolean functions. Since
¬p ≡ 1 + p, the signature {0, 1,+, ·} is functional complete, where · is written
in place of ∧ . The deeper reason is that {0, 1,+, ·} is at the same time the
extralogical signature of fields (see 2.1). Functional completeness in the two-
valued case just derives from the fact that for a finite field, each operation on
its domain is represented by a suitable polynomial. We mention also that for
any finite set M of truth values considered in many-valued logics there is a
generalized two-argument Sheffer function, by which every operation on M can
be obtained, similarly to ↑ in the two-valued case.

Exercises

1. Verify the logical equivalences

(p →q1)∧ (¬p →q2) ≡ p∧ q1 ∨ ¬p∧ q2,

p1 ∧ q1 →p2 ∨ q2 ≡ (p1 →p2) ∨ (q1 →q2).

2. Show that the signatures {+, 1}, {+,¬}, {↔, 0}, and {↔,¬} are all

term equivalent. The formulas of each of these signatures represent

precisely the linear Boolean functions.

3. Show that the formulas in ∧ , ∨, 0, 1 represent exactly the monotonic

Boolean functions. These are the constants from B0, and for n > 0

the f ∈ Bn such that for all i with 1 6 i 6 n,

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) 6 f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

1.3 Tautologies and Logical Consequence 17

4. Show that the logical signature {∧ , ∨, 0, 1} is maximally functional

incomplete.

5. If one wants to prove Corollary 2.2 syntactically with the properties

of ≡ (page 11) one needs generalizations of the distributivity, e.g.,
∨

i6n αi ∧
∨

j6m βj ≡
∨

i6n, j6m(αi ∧βj). Verify the latter.

1.3 Tautologies and Logical Consequence

Instead of wα = 1 we prefer from now on to write w � α and read this w

satisfies α. Further, if X is a set of formulas, we write w � X if w � α

for all α ∈ X and say that w is a (propositional) model for X. A given α

(resp. X) is called satisfiable if there is some w with w � α (resp. w � X).

�, called the satisfiability relation, evidently has the following properties:

w � p ⇔ wp = 1 (p ∈ PV); w � ¬α ⇔ w 2 α;

w � α∧β ⇔ w � α and w � β; w � α ∨ β ⇔ w � α or w � β.

One can define the satisfiability relation w � α for a given w : PV→ {0, 1}

also inductively on α, according to the clauses just given. This approach

is particularly useful for extending the satisfiability conditions in 2.3.

It is obvious that w : PV→ {0, 1} will be uniquely determined by setting

down in advance for which variables w � p should be valid. Likewise the

notation w � α for α ∈ Fn is already meaningful when w is defined only

for p1, . . . , pn. One could extend such a w to a global valuation by setting,

for instance, wp = 0 for all unmentioned variables p.

For formulas containing other connectives the satisfaction conditions

are to be formulated accordingly. For example, we expect

(∗) w � α →β ⇔ if w � α then w � β.

If → is taken to be a primitive connective, (∗) is required. However, we

defined → in such a way that (∗) is provable.

Definition. α is called logically valid or a (two-valued) tautology , in short

� α, whenever w � α for all valuations w. A formula not satisfiable at all,

i.e. w 2 α for all w, is called a contradiction.

Examples. p ∨ ¬p is a tautology and so is α ∨ ¬α for every formula α,

the so-called law of the excluded middle or the tertium non datur. On the

18 1 Propositional Logic

other hand, α∧¬α and α↔ ¬α are always contradictions. The following

tautologies in → are mentioned in many textbooks on logic. Remember

our agreement about association to the right in formulas in which →

repeatedly occurs.

p →p (self-implication),

(p →q) → (q →r) → (p →r) (chain rule),

(p →q →r) → (q →p →r) (exchange of premises),

p →q →p (premise charge),

(p →q →r) → (p →q) → (p →r) (Frege’s formula),

((p →q) →p) →p (Peirce’s formula).

It will later turn out that all tautologies in → alone are derivable (in a

sense still to be explained) from the last three formulas.

Clearly, it is decidable whether a formula α is a tautology, in that one

tries out the valuations of the variables of α. Unfortunately, no essentially

more efficient method is known; such a method exists only for formulas

of a certain form. We will have a somewhat closer look at this problem

in 4.3. Various questions such as checking the equivalence of formulas

can be reduced to a decision about whether a formula is a tautology. For

notice the obvious equivalence of α ≡ β and � α↔ β.

Basic in propositional logic is the following

Definition. α is a logical consequence of X, written X � α, if w � α for

every model w of X. In short, w � X ⇒ w � α, for all valuations w.

While we use � both as the symbol for logical consequence (which is a

relation between sets of formulas X and formulas α) and the satisfiability

property, it will always be clear from the context what � actually means.

Evidently, α is a tautology iff ∅ � α, so that � α can be regarded as an

abbreviation for ∅ � α.

In this book, X � α, β will always mean ‘X � α and X � β’. More

generally, X � Y is always to mean ‘X � β for all β ∈ Y ’. We also write

throughout α1, . . . , αn � β in place of {α1, . . . , αn} � β, and more briefly,

X,α � β in place of X ∪ {α} � β.

Examples of logical consequence. (a) α, β � α∧β and α∧β � α, β.

This is evident from the truth table of ∧ . (b) α, α →β � β, because

1 →x = 1⇒ x = 1 according to the truth table of → .

1.3 Tautologies and Logical Consequence 19

(c) X � ⊥ ⇒ X � α for each α. Indeed, X � ⊥ = p1 ∧¬p1 obviously

means that X is unsatisfiable (has no model), as e.g. X = {p2,¬p2}.

(d) X, α � β & X,¬α � β ⇒ X � β. In order to see this let w � X.

If w � α then X, α � β and hence w � β, and if w 2 α (i.e., w � ¬α)

then w � β clearly follows from X,¬α � β. Note that (d) reflects our case

distinction made in the naive metatheory while proving (d).

Example (a) could also be stated as X � α, β ⇔ X � α∧β. The

property exemplified by (b) is called the modus ponens when formulated

as a rule of inference, as will be done in 1.6. Example (d) is another

formulation of the often-used procedure of proof by cases: In order to

conclude a sentence β from a set of premises X it suffices to show it to be

a logical consequence both under an additional supposition and under its

negation. This is generalized in Exercise 3.

Important are the following general and obvious properties of �:

(R) α ∈ X ⇒ X � α (reflexivity),

(M) X � α & X ⊆ X ′ ⇒ X ′ � α (monotonicity),

(T) X � Y & Y � α ⇒ X � α (transitivity).

Useful for many purposes is also the closure of the logical consequence

relation under substitution, which generalizes the fact that from p ∨ ¬p

all tautologies of the form α ∨ ¬α arise from substituting α for p.

Definition. A (propositional) substitution is a mapping σ : PV →F

that is extended in a natural way to a mapping σ : F → F as follows:

(α∧β)σ = ασ
∧βσ, (α ∨ β)σ = ασ

∨ βσ, (¬α)σ = ¬ασ.

Thus, like valuations, substitutions are considered as operations on the

whole of F. For example, if pσ = α for some fixed p and qσ = q otherwise,

then ϕσ arises from ϕ by substituting α for p at all occurrences of p in

ϕ. From p ∨ ¬p arises in this way the schema α ∨ ¬α. For X ⊆ F let

Xσ := {ϕσ | ϕ ∈ X}. The observation � ϕ ⇒ � ϕσ turns out to be the

special instance X = ∅ of the useful property

(S) X � α ⇒ Xσ � ασ (substitution invariance).

In order to verify (S), define wσ for a given valuation w in such a way

that wσp = wpσ. We first prove by induction on α that

(∗) w � ασ ⇔ wσ � α.

If α is prime, (∗) certainly holds. As regards the induction step, note that

20 1 Propositional Logic

w � (α∧β)σ ⇔ w � ασ
∧βσ ⇔ w � ασ, βσ

⇔ wσ � α, β (induction hypothesis)

⇔ wσ � α∧β.

The reasoning for ∨ and ¬ is analogous and so (∗) holds. Now let X � α

and w � Xσ. By (∗), we get wσ � X. Thus wσ � α, and again by (∗),

w � ασ. This confirms (S). Another important property of � that is not

so easily obtained will be proved in 1.4, namely

(F) X � α ⇒ X0 � α for some finite subset X0 ⊆ X.

� shares the properties (R), (M), (T), and (S) with almost every clas-

sical or nonclassical propositional consequence relation. This is to mean a

relation ⊢ between sets of formulas and formulas of an arbitrary proposi-

tional language F that has the properties corresponding to (R), (M), (T),

and, as a rule, (S). These properties are the starting point for a very gen-

eral theory of logical systems created by Tarski, which underpins nearly all

logical systems considered in the literature. Should ⊢ satisfy the property

corresponding to (F) then ⊢ is called finitary.

Remark 1. Sometimes (S) is not demanded in defining a consequence relation,
and if (S) holds, one speaks of a structural consequence relation. We omit this
refinement. Notions such as tautology, consistency, maximal consistency, and
so on can be used with reference to any consequence relation ⊢ in an arbitrary
propositional language F. For instance, a set of formulas X is called consistent
in ⊢ whenever X 0 α for some α, and maximally consistent if X is consistent but
has no proper consistent extension. ⊢ itself is called consistent if X 0 α for some
X and α (this is equivalent to not ⊢ α for all α). Here as always, ⊢ α stands for
∅ ⊢ α. If F contains ¬ then the consistency of X is often defined by X ⊢ α,¬α for
no α. But the aforementioned definition has the advantage of being completely
independent of any assumption concerning the occurring connectives. Another
example of a general definition is this: A formula set X is called deductively
closed in ⊢ provided X ⊢ α ⇒ α ∈ X, for all α ∈ F. Because of (R), this
condition can be replaced by X ⊢ α ⇔ α ∈ X. Examples in � are the set of
all tautologies and the whole of F. The intersection of a family of deductively
closed sets is again deductively closed. Hence, each X ⊆ F is contained in a
smallest deductively closed set, called the deductive closure of X in ⊢. It equals
{α ∈ F | X ⊢ α}, as is easily seen. The notion of a consequence relation can
also be defined in terms of properties of the deductive closure. We mention that
(F) holds not just for our relation � that is given by a two-valued matrix, but
for the consequence relation of any finite logical matrix in any propositional
language. This is stated and at once essentially generalized in Exercise 3 in 5.7

as an application of the ultraproduct theorem.

1.3 Tautologies and Logical Consequence 21

A special property of the consequence relation �, easily provable, is

(D) X,α � β ⇒ X � α →β,

called the (semantic) deduction theorem for propositional logic. To see

this suppose X, α � β and let w be a model for X. If w � α then by the

supposition, w � β, hence w � α →β. If w 2 α then w � α →β as well.

Hence X � α →β in any case. This proves (D). As is immediately seen,

the converse of (D) holds as well, that is, one may replace ⇒ in (D) by

⇔. Iterated application of this simple observation yields

α1, . . . , αn � β ⇔ � α1 →α2 → · · · →αn →β ⇔ � α1 ∧α2 ∧ · · · ∧αn →β.

In this way, β’s being a logical consequence of a finite set of premises is

transformed into a tautology. Using (D) it is easy to obtain tautologies.

For instance, to prove � p →q →p, it is enough to verify p � q →p, for

which it in turn suffices to show that p, q � p, and this is trivial.

Remark 2. By some simple applications of (D) each of the tautologies in the
examples on page 18 can be obtained, except the formula of Peirce. As we shall
see in Chapter 2, all properties of � derived above and in the exercises will carry
over to the consequence relation of a first-order language.

Exercises

1. Use the deduction theorem as in the text in order to prove

(a) � (p →q →r) → (p →q) → (p →r),

(b) � (p →q) → (q →r) → (p →r).

2. Suppose that X � α →β. Prove that X � (γ →α) → (γ →β).

3. Verify the (rule of) disjunctive case distinction: if X, α � γ and

X, β � γ then X, α ∨ β � γ. This implication is traditionally written

more suggestively as
X, α � γ X, β � γ

X, α ∨ β � γ
.

4. Verify the rules of contraposition (notation as in Exercise 3):

X, α � β

X,¬β � ¬α
;

X,¬β � ¬α

X, α � β
.

5. Let ⊢ be a consequence relation and let X be maximally consistent

in ⊢ (see Remark 1). Show that X is deductively closed in ⊢.

22 1 Propositional Logic

1.4 A Calculus of Natural Deduction

We will now define a derivability relation ⊢ by means of a calculus op-

erating solely with some structural rules. ⊢ turns out to be identical to

the consequence relation �. The calculus ⊢ is of the so-called Gentzen

type and its rules are given with respect to pairs (X, α) of formulas X

and formulas α. Another calculus for �, of the Hilbert type, will be con-

sidered in 1.6. In distinction to [Ge], we do not require that X be finite;

our particular goals here make such a restriction dispensable. If ⊢ applies

to the pair (X, α) then we write X ⊢ α and say that α is derivable or

provable from X (made precise below); otherwise we write X 0 α.

Following [Kl1], Gentzen’s name for (X,α), Sequenz, is translated as

sequent. The calculus is formulated in terms of ∧ ,¬ and encompasses the

six rules below, called the basic rules. How to operate with these rules will

be explained afterwards. The choice of {∧ ,¬} as the logical signature is

a matter of convenience and justified by its functional completeness. The

other standard connectives are introduced by the definitions

α ∨ β := ¬(¬α∧¬β), α →β := ¬(α∧¬β), α↔ β := (α →β)∧ (β →α).

⊤,⊥ are defined as on page 5. Of course, one could choose any other

functional complete signature and adapt the basic rules correspondingly.

But it should be observed that a complete calculus in ¬, ∧ , ∨, → , say,

must also include basic rules concerning ∨ and → , which makes induction

arguments on the basic rules of the calculus more lengthy.

Each of the basic rules below has certain premises and a conclusion.

Only (IS) has no premises. It allows the derivation of all sequents α ⊢ α.

These are called the initial sequents, because each derivation must start

with these. (MR), the monotonicity rule, could be weakened. It becomes

even provable if all pairs (X, α) with α ∈ X are called initial sequents.

(IS)
α ⊢ α

(initial sequent) (MR)
X ⊢ α

X ′ ⊢ α
(X ′ ⊇ X),

(∧1)
X ⊢ α, β

X ⊢ α∧β
(∧2)

X ⊢ α∧β

X ⊢ α, β

(¬1)
X ⊢ α,¬α

X ⊢ β
(¬2)

X, α ⊢ β X,¬α ⊢ β

X ⊢ β

1.4 A Calculus of Natural Deduction 23

Here and in the following X ⊢ α, β is to mean X ⊢ α and X ⊢ β. This

convention is important, since X ⊢ α, β has another meaning in Gentzen

calculi that operate with pairs of sets of formulas. The rules (∧1) and

(¬1) actually have two premises, just like (¬2). Note further that (∧2)

really consists of two subrules corresponding to the conclusions X ⊢ α

and X ⊢ β. In (¬2), X, α means X ∪ {α}, and this abbreviated form will

always be used when there is no risk of misunderstanding.

α1, . . . , αn ⊢ β stands for {α1, . . . , αn} ⊢ β; in particular, α ⊢ β for

{α} ⊢ β, and ⊢ α for ∅ ⊢ α, just as with �.

X ⊢ α (read from “X is provable or derivable α”) is to mean that the

sequent (X, α) can be obtained after a stepwise application of the basic

rules. We can make this idea of “stepwise application” of the basic rules

rigorous and formally precise (intelligible to a computer, so to speak) in

the following way: a derivation is to mean a finite sequence (S0; . . . ;Sn)

of sequents such that every Si is either an initial sequent or is obtained

through the application of some basic rule to preceding elements in the

sequence. Thus, from X is derivable α if there is a derivation (S0; . . . ;Sn)

with Sn = (X, α). A simple example with the end sequent α, β ⊢ α∧β,

or minutely ({α, β}, α∧β), is the derivation

(α ⊢ α ; α, β ⊢ α ; β ⊢ β ; α, β ⊢ β ; α, β ⊢ α∧β).

Here (MR) was applied twice, followed by an application of (∧1). Not

shorter would be complete derivation of the sequent (∅,⊤), i.e., a proof of

⊢ ⊤. In this example both (¬1) and (¬2) are essentially involved.

Useful for shortening lengthy derivations is the derivation of additional

rules, which will be illustrated with the examples to follow. The second

example, a generalization of the first, is the often-used proof method re-

ductio ad absurdum: α is proved from X by showing that the assumption

¬α leads to a contradiction. The other examples are given with respect

to the defined → -connective. Hence, for instance, the → -elimination

mentioned below runs in the original language
X ⊢ ¬(α∧¬β)

X, α ⊢ β
.

Examples of derivable rules
X,¬α ⊢ α

X ⊢ α
proof applied

(¬-elimination) 1 X,α ⊢ α (IS), (MR)

2 X,¬α ⊢ α supposition

3 X ⊢ α (¬2)

24 1 Propositional Logic

X,¬α ⊢ β,¬β

X ⊢ α
proof applied

(reductio ad absurdum) 1 X,¬α ⊢ β,¬β supposition

2 X,¬α ⊢ α (¬1)

3 X ⊢ α ¬-elimination

X ⊢ α →β

X, α ⊢ β
(→ -elimination) 1 X, α,¬β ⊢ α,¬β (IS), (MR)

2 X, α,¬β ⊢ α∧¬β (∧1)

3 X ⊢ ¬(α∧¬β) supposition

4 X, α,¬β ⊢ ¬(α∧¬β) (MR)

5 X, α,¬β ⊢ β (¬1) on 2 and 4

6 X, α ⊢ β ¬-elimination
X ⊢ α X, α ⊢ β

X ⊢ β
(cut rule) 1 X,¬α ⊢ α supposition, (MR)

2 X,¬α ⊢ ¬α (IS), (MR)

3 X,¬α ⊢ β (¬1)

4 X, α ⊢ β supposition

5 X ⊢ β (¬2) on 4 and 3

X, α ⊢ β

X ⊢ α →β
(→ -introduction) 1 X, α∧¬β, α ⊢ β supposition, (MR)

2 X, α∧¬β ⊢ α (IS), (MR), (∧2)

3 X, α∧¬β ⊢ β cut rule

4 X, α∧¬β ⊢ ¬β (IS), (MR), (∧2)

5 X, α∧¬β ⊢ α →β (¬1)

6 X,¬(α∧¬β) ⊢ α →β (IS), (MR)

7 X ⊢ α →β (¬2) on 5 and 6

Remark 1. The example of → -introduction is nothing other than the syntactic
form of the deduction theorem that was semantically formulated in the previous
section. The deduction theorem also holds for intuitionistic logic. However, it is
not in general true for all logical systems dealing with implication, thus indicating
that the deduction theorem is not an inherent property of every meaningful
conception of implication. For instance, the deduction theorem does not hold
for certain formal systems of relevance logic that attempt to model implication
as a cause-and-effect relation.

1.4 A Calculus of Natural Deduction 25

A simple application of the → -elimination and the cut rule is a proof

of the detachment rule
X ⊢ α, α →β

X ⊢ β
.

Indeed, the premise X ⊢ α →β yields X, α ⊢ β by → -elimination, and

since X ⊢ α, it follows X ⊢ β by the cut rule. Applying detachment on

X = {α, α →β}, we obtain α, α →β ⊢ β. This collection of sequents is

known as modus ponens. It will be more closely considered in 1.6.

Many properties of ⊢ are proved through rule induction, which we de-

scribe after introducing some convenient terminology. We identify a prop-

erty E of sequents with the set of all pairs (X, α) to which E applies. In

this sense the logical consequence relation � is the property that applies

to all pairs (X,α) with X � α.

All the rules considered here are of the form

R :
X1 ⊢ α1 · · · Xn ⊢ αn

X ⊢ α

and are referred to as Gentzen-style rules. We say that E is closed under

R when E(X1, α1), . . . , E(Xn, αn) implies E(X, α). For a rule without

premises, i.e., n = 0, this is just to mean E(X, α). For instance, consider

the above already mentioned property E : X � α. This property is closed

under each basic rule of ⊢. In detail this means

α � α, X � α⇒ X ′ � α for X ′ ⊇ X, X � α, β ⇒ X � α∧β, etc.

From the latter we may conclude that E applies to all provable sequents;

in other words, ⊢ is (semantically) sound. What we need here to verify

this conclusion is the following easily justifiable

Principle of rule induction. Let E (⊆ PF × F) be a property closed

under all basic rules of ⊢. Then X ⊢ α implies E(X, α).

Proof by induction on the length of a derivation of S = (X, α). If

the length is 1, ES holds since S must be an initial sequent. Now let

(S0; . . . ;Sn) be a derivation of the sequent S := Sn. By the induction

hypothesis we have ESi for all i < n. If S is an initial sequent then ES

holds by assumption. Otherwise S has been obtained by the application

of a basic rule on some of the Si for i < n. But then ES holds, because E

is closed under all basic rules.

26 1 Propositional Logic

As already remarked, the property X � α is closed under all basic

rules. Therefore, the principle of rule induction immediately yields the

soundness of the calculus, that is, ⊢ ⊆ �. More explicitly,

X ⊢ α ⇒ X � α, for all X, α.

There are several equivalent definitions of ⊢. A purely set-theoretic

one is the following: ⊢ is the smallest of all relations ⊆ PF × F that are

closed under all basic rules. ⊢ is equally the smallest consequence relation

closed under the rules (∧1) through (¬2). The equivalence proofs of such

definitions are wordy but not particularly contentful. We therefore do not

elaborate further, because we henceforth use only rule induction. Using

rule induction one can also prove X ⊢ α ⇒ Xσ ⊢ ασ, and in particular

the following theorem, for which the soundness of ⊢ is irrelevant.

Theorem 4.1 (Finiteness theorem for ⊢). If X ⊢ α then there is a

finite subset X0 ⊆ X with X0 ⊢ α.

Proof. Let E(X, α) be the property ‘X0 ⊢ α for some finite X0 ⊆ X’.

We will show that E is closed under all basic rules. Certainly, E(X,α)

holds for X = {α}, with X0 = X so that E is closed under (IS). If X has

a finite subset X0 such that X0 ⊢ α, then so too does every set X ′ such

that X ′ ⊇ X. Hence E is closed under (MR). Let E(X, α), E(X, β), with,

say, X1 ⊢ α, X2 ⊢ β for finite X1, X2 ⊆ X. Then we also have X0 ⊢ α, β

for X0 = X1 ∪X2 by (MR). Hence X0 ⊢ α∧β by (∧1). Thus E(X, α∧β)

holds, and E is closed under (∧1). Analogously one shows the same for

all remaining basic rules of ⊢ so that rule induction can be applied.

Of great significance is the notion of formal consistency. It fully deter-

mines the derivability relation, as the lemma to come shows. It will turn

out that consistent formalizes adequately the notion satisfiable.

Definition. X ⊆ F is called inconsistent (in our calculus ⊢) if X ⊢ α for

all α ∈ F, and otherwise consistent. X is called maximally consistent if

X is consistent but each Y ⊃ X is inconsistent.

The inconsistency of X can be identified by the derivability of a single

formula, namely ⊥ (= p1 ∧¬p1), because X ⊢ ⊥ implies X ⊢ p1,¬p1 by

(∧2), hence X ⊢ α for all α by (¬1). Conversely, when X is inconsistent

then in particular X ⊢ ⊥. Thus, X ⊢ ⊥ may be read as ‘X is inconsistent’,

1.4 A Calculus of Natural Deduction 27

and X 0 ⊥ as ‘X is consistent’. From this it easily follows that X is

maximally consistent iff either α ∈ X or ¬α ∈ X for each α. The latter

is necessary, for α,¬α /∈ X implies X, α ⊢ ⊥ and X,¬α ⊢ ⊥, hence X ⊢ ⊥

by (¬2), contradicting the consistency of X. Sufficiency is obvious. Most

important is the following lemma. It confirms that derivability is reducible

to consistency and the reader should have it down pat.

Lemma 4.2. The derivability relation ⊢ has the properties

C+ : X ⊢ α ⇔ X,¬α ⊢ ⊥, C− : X ⊢ ¬α ⇔ X, α ⊢ ⊥.

Proof. Suppose that X ⊢ α. Then clearly X,¬α ⊢ α and since certainly

X,¬α ⊢ ¬α, we have X,¬α ⊢ β for all β by (¬1), in particular X,¬α ⊢ ⊥.

Conversely, let X,¬α ⊢ ⊥ be the case, so that in particular X,¬α ⊢ α,

and thus X ⊢ α by ¬-elimination on page 23. Property C− is proved

completely analogously.

The claim � ⊆ ⊢, not yet proved, is equivalent to X 0 α ⇒ X 2 α,

for all X and α. But so formulated it becomes apparent what needs to

be done to obtain the proof. Since X 0 α is by C+ equivalent to the

consistency of X ′ := X ∪ {¬α}, and X 2 α to the satisfiability of X ′, we

need only show that consistent sets are satisfiable. To this end we state

the following lemma, whose proof, exceptionally, jumps ahead of matters

in that it uses Zorn’s lemma from 2.1 (page 46).

Lemma 4.3 (Lindenbaum’s theorem). Every consistent set X ⊆ F

can be extended to a maximally consistent set X ′ ⊇ X.

Proof. Let H be the set of all consistent Y ⊇ X, partially ordered with

respect to ⊆. H 6= ∅, because X ∈ H. Let K ⊆ H be a chain, i.e.,

Y ⊆ Z or Z ⊆ Y , for all Y, Z ∈ K. Claim: U :=
⋃

K is an upper bound

for K. Since Y ∈ K ⇒ Y ⊆ U , we have to show that U is consistent.

Assume that U ⊢ ⊥. Then U0 ⊢ ⊥ for some finite U0 = {α0, . . . , αn} ⊆ U .

If, say, αi ∈ Yi ∈ K, and Y is the biggest of the sets Y0, . . . , Yn, then

αi ∈ Y for all i 6 n, hence also Y ⊢ ⊥ by (MR). This contradicts Y ∈ H

and confirms the claim. By Zorn’s lemma, H has a maximal element X ′,

which is necessarily a maximally consistent extension of X.

Remark 2. The advantage of this proof is that it is free of assumptions regarding
the cardinality of the language, while Lindenbaum’s original construction deals
with countable languages F only and does not require Zorn’s lemma, which is

28 1 Propositional Logic

equivalent to the axiom of choice. Lindenbaum’s argument runs as follows: Let
X0 := X ⊆ F be consistent and let α0, α1, . . . be an enumeration of F. Put
Xn+1 = Xn ∪ {αn} if this set is consistent and Xn+1 = Xn otherwise. Then
Y =

⋃

n∈ω Xn is a maximally consistent extension of X, as is easily verified.
Lemma 4.3 can also be shown very similar to this approach, using an ordinal
enumeration of X instead of Zorn’s Lemma.

Lemma 4.4. A maximally consistent set X ⊆ F has the property

[¬] X ⊢ ¬α ⇔ X 0 α, for arbitrary α.

Proof. If X ⊢ ¬α, then X ⊢ α cannot hold due to the consistency of X.

If, on the other hand, X 0 α, then X,¬α is a consistent extension of X

according by C+. But then ¬α ∈ X, because X is maximally consistent.

Consequently X ⊢ ¬α.

Lemma 4.5. A maximally consistent set X is satisfiable.

Proof. Define w by w � p ⇔ X ⊢ p. We will show that for all α,

(∗) X ⊢ α ⇔ w � α.

For prime formulas this is trivial. Further,

X ⊢ α∧β ⇔ X ⊢ α, β (rules (∧1), (∧2))

⇔ w � α, β (induction hypothesis)

⇔ w � α∧β (definition)

X ⊢ ¬α ⇔ X 0 α (Lemma 4.4)

⇔ w 2 α (induction hypothesis)

⇔ w � ¬α (definition).

By (∗), w is a model for X, thereby completing the proof.

Only the properties [∧] X ⊢ α∧β ⇔ X ⊢ α, β and [¬] from Lemma 4.4

are used in the simple model construction in Lemma 4.5, which reveals

the requirements for propositional model construction in the base {∧ ,¬}.

Since maximally consistent sets X are deductively closed (Exercise 5

in 1.3), these requirements may also be stated as

(∧) α∧β ∈ X ⇔ α, β ∈ X ; (¬) ¬α ∈ X ⇔ α /∈ X.

Lemma 4.3 and Lemma 4.5 confirm the equivalence of the consistency

and the satisfiability of a set of formulas. From this fact we easily obtain

the main result of the present section.

1.4 A Calculus of Natural Deduction 29

Theorem 4.6 (Completeness theorem). X ⊢ α ⇔ X � α, for all

formula sets X and formulas α.

Proof. The direction⇒ is the soundness of ⊢. Conversely, X 0 α implies

that X,¬α is consistent. Let Y be a maximally consistent extension of

X,¬α according to Lemma 4.3. By Lemma 4.5, Y is satisfiable, hence

also X,¬α. Therefore X 2 α.

An immediate consequence of Theorem 4.6 is the finiteness property

(F) mentioned in 1.3, which is almost trivial for ⊢ but not for �:

Theorem 4.7 (Finiteness theorem for �). If X � α, then so too

X0 � α for some finite subset X0 of X.

This is clear because the finiteness theorem holds for ⊢ (Theorem 4.1),

hence also for �. A further highly interesting consequence of the com-

pleteness theorem is

Theorem 4.8 (Propositional compactness theorem). A set X of

propositional formulas is satisfiable if each finite subset of X is satisfiable.

This theorem holds because if X is unsatisfiable, i.e., if X � ⊥, then, by

Theorem 4.7, we also know that X0 � ⊥ for some finite X0 ⊆ X, thus

proving the claim indirectly. Conversely, one easily obtains Theorem 4.7

from Theorem 4.8. Neither Theorem 4.6 nor Theorem 4.8 make any as-

sumptions regarding the cardinality of the set of variables. This fact has

many useful applications, as the next section will illustrate.

Let us notice that there are direct proofs of Theorem 4.8 or appropri-

ate reformulations that have nothing to do with a logical calculus. For

example, the theorem is equivalent to
⋂

α∈X Mdα = ∅ ⇒
⋂

α∈X0
Mdα = ∅ for some finite X0 ⊆ X,

where Mdα denotes the set of all models of α. In this formulation the

compactness of a certain naturally arising topological space is claimed.

The points of this space are the valuations of the variables, hence the

name “compactness theorem.” More on this can be found in [RS].

Another approach to completeness (probably the simplest one) is pro-

vided by Exercises 3 and 4. This approach makes some elegant use of

substitutions, hence is called the completeness proof by the substitution

method. This method is explained in the Solution Hints (and in more

30 1 Propositional Logic

detail in [Ra3]). It yields the maximality of the derivability relation ⊢

(see Exercise 3), a much stronger result than its semantic completeness.

This result yields not only the Theorems 4.6, 4.7, and 4.8 in one go, but

also some further remarkable properties: Neither new tautologies nor new

Hilbert style rules can consistently be adjoined to the calculus ⊢. These

properties (discussed in detail, e.g., in [Ra1]) are known under the names

Post completeness and structural completeness of ⊢, respectively.

Exercises

1. Prove using Theorem 4.7: if X ∪ {¬α | α ∈ Y } is inconsistent and

Y is nonempty, then there exist formulas α0, . . . , αn ∈ Y such that

X ⊢ α0 ∨ · · · ∨ αn.

2. Augment the signature {¬, ∧} by ∨ and prove the completeness of

the calculus obtained by supplementing the basic rules used so far

with the rules

(∨1)
X ⊢ α

X ⊢ α ∨ β, β ∨ α
; (∨2)

X, α ⊢ γ X, β ⊢ γ

X, α ∨ β ⊢ γ
.

3. Let ⊢ be a finitary consistent consequence relation in F{∧ ,¬} with

the properties (∧1) through (¬2). Show that ⊢ is maximal (or

maximally consistent). This means that each consequence relation

⊢′⊃ ⊢ in F{∧ ,¬} is inconsistent, i.e., ⊢′ α for all α.

4. Show by referring to Exercise 3: there is exactly one (consistent)

consequence relation in F{∧ ,¬} satisfying (∧1)–(¬2). This clearly

entails the completeness of ⊢.

1.5 Applications of the Compactness Theorem

Theorem 4.8 is very useful in carrying over certain properties of finite

structures to infinite ones. This section presents some typical examples.

While these could also be treated with the compactness theorem of first-

order logic in 3.3, the examples demonstrate how the consistency of cer-

tain sets of first-order sentences can also be obtained in propositional logic.

This approach to consistency is also useful also for Herbrand’s theorem

and related results concerning logic programming.

1.5 Applications of the Compactness Theorem 31

1. Every set M can be (totally) ordered.5

This means that there is an irreflexive, transitive, and connex relation <

on M . For finite M this follows easily by induction on the number of

elements of M . The claim is obvious when M = ∅ or is a singleton. Let

now M = N ∪ {a} with an n-element set N and a /∈ N , so that M has

n + 1 elements. Then we clearly get an order on M from that for N by

“setting a to the end,” that is, defining x < a for all x ∈ N .

Now let M be any set. We consider for every pair (a, b) ∈ M ×M a

propositional variable pab. Let X be the set consisting of the formulas

¬paa (a ∈M),

pab ∧pbc →pac (a, b, c ∈M),

pab ∨ pba (a 6= b).

From w � X we obtain an order <, simply by putting a < b ⇔ w � pab.

w � ¬paa says the same thing as a ≮ a. Analogously, the remaining

formulas of X reflect transitivity and connexity. Thus, according to The-

orem 4.8, it suffices to show that every finite subset X0 ⊆ X has a model.

In X0 only finitely many variables occur. Hence, there are finite sets

M1 ⊆M and X1 ⊇ X0, where X1 is given exactly as X except that a, b, c

now run through the finite set M1 instead of M . But X1 is satisfiable,

because if < orders the finite set M1 and w is defined by w � pab iff a < b,

then w is clearly a model for X1, hence also for X0.

2. The four-color theorem for infinite planar graphs.

A simple graph is a pair (V,E) with an irreflexive symmetrical relation

E ⊆ V 2. The elements of V are called points or vertices. It is convenient

to identify E with the set of all unordered pairs {a, b} such that aEb and

to call these pairs the edges of (V,E). If {a, b} ∈ E then we say that a, b

are neighbors. (V,E) is said to be k-colorable if V can be decomposed

into k color classes C1, . . . , Ck 6= ∅, V = C1 ∪ · · · ∪ Ck, with Ci ∩ Cj = ∅

for i 6= j, such that neighboring points do not carry the same color; in

other words, if a, b ∈ Ci then {a, b} /∈ E for i = 1, . . . , k.

5 Unexplained notions are defined in 2.1. Our first application is interesting because in

set theory the compactness theorem is weaker than the axiom of choice (AC) which

is equivalent to the statement that every set can be well-ordered. Thus, the ordering

principle is weaker than AC since it follows from the compactness theorem.

32 1 Propositional Logic

t t✔
✔
✔
✔
✔
✔
t

❚
❚

❚
❚

❚
❚

✑
✑

✑✑

◗
◗

◗◗
t

The figure shows the smallest four-colorable graph

that is not three-colorable; all its points neighbor

each other. We will show that a graph (V,E) is

k-colorable if every finite subgraph (V0, E0) is k-

colorable. E0 consists of the edges {a, b} ∈ E with

a, b ∈ V0. To prove our claim consider the following set X of formulas

built from the variables pa,i for a ∈ V and 1 6 i 6 k:

pa,1 ∨ · · · ∨ pa,k, ¬(pa,i ∧pa,j) (a ∈ V, 1 6 i < j 6 k),

¬(pa,i ∧pb,i) ({a, b} ∈ E, i = 1, . . . , k).

The first formula states that every point belongs to at least one color class;

the second ensures their disjointedness, and the third that no neighboring

points have the same color. Once again it is enough to construct some

w � X. Defining then the Ci by a ∈ Ci ⇔ w � pa,i proves that (V,E) is

k-colorable. We must therefore satisfy each finite X0 ⊆ X. Let (V0, E0)

be the finite subgraph of (V,E) of all the points that occur as indices in

the variables of X0. The assumption on (V0, E0) obviously ensures the

satisfiability of X0 for reasons analogous to those given in Example 1, and

this is all we need to show. The four-color theorem says that every finite

planar graph is four-colorable. Hence, the same holds for all graphs whose

finite subgraphs are planar. These cover in particular all planar graphs

embeddable in the real plane.

3. König’s tree lemma. There are several versions of this lemma. For

simplicity, ours refers to a directed tree. This is a pair (V,⊳) with an

irreflexive relation ⊳⊆ V 2 such that for a certain point c, the root of the

tree, and any other point a there is precisely one path connecting c with

a. This is a sequence (ai)i6n with a0 = c, an = a, and ai ⊳ ai+1 for all

i < n. From the uniqueness of a path connecting c with any other point

it follows that each b 6= c has exactly one predecessor in (V,⊳), that is,

there is precisely one a with a ⊳ b. Hence the name tree.

König’s lemma then reads as follows: If every a ∈ V has only finitely

many successors and V contains arbitrarily long finite paths, then there

is an infinite path through V starting at c. By such a path we mean a

sequence (ci)i∈N such that c0 = c and ck ⊳ ck+1 for each k. In order

to prove the lemma we define the “layer” Sk inductively by S0 = {c}

and Sk+1 = {b ∈ V | there is some a ∈ Sk with a ⊳ b}. Since every point

1.5 Applications of the Compactness Theorem 33

has only finitely many successors, each Sk is finite, and since there are

arbitrarily long paths c ⊳ a1 ⊳ · · · ⊳ ak and ak ∈ Sk, no Sk is empty.

Now let pa for each a ∈ V be a propositional variable, and let X consist

of the formulas
(A)

∨

a∈Sk
pa, ¬(pa ∧pb)

(
a, b ∈ Sk, a 6= b, k ∈ N

)
,

(B) pb →pa

(
a, b ∈ V, a ⊳ b

)
.

Suppose that w � X. Then by the formulas under (A), for every k there

is precisely one a ∈ Sk with w � pa, denoted by ck. In particular, c0 = c.

Moreover, ck ⊳ ck+1 for all k. Indeed, if a is the predecessor of b = ck+1,

then w � pa in view of (B), hence necessarily a = ck. Thus, (ci)i∈N is a

path of the type sought. Again, every finite subset X0 ⊆ X is satisfiable;

for if X0 contains variables with indices up to at most the layer Sn, then

X0 is a subset of a finite set of formulas X1 that is defined as X, except

that k runs only up to n, and for this case the claim is obvious.

4. The marriage problem (in linguistic guise).

Let N 6= ∅ be a set of words or names (in speech) with meanings in a set

M . A name ν ∈ N can be a synonym (i.e., it shares its meaning with other

names in N), or a homonym (i.e., it can have several meanings), or even

both. We proceed from the plausible assumption that each name ν has

finitely many meanings only and that k names have at least k meanings.

It is claimed that a pairing-off exists; that is, an injection f : N → M

that associates to each ν one of its original meanings.

For finite N , the claim will be proved by induction on the number n of

elements of N . It is trivial for n = 1. Now let n > 1 and assume that the

claim holds for all k-element sets of names whenever 0 < k < n.

Case 1: For each k (0 < k < n): k names in N have at least k + 1

distinct meanings. Then to an arbitrarily chosen ν from N , assign one of

its meanings a to it so that from the names out of N \{ν} any k names

still have at least k meanings 6= a. By the induction hypothesis there is a

pairing-off for N \{ν} that together with the ordered pair (ν, a) yields a

pairing-off for the whole of N .

Case 2: There is some k-element K ⊆ N (0 < k < n) such that the

set MK of meanings of the ν ∈ K has only k members. Every ν ∈ K

can be assigned its meaning from MK by the induction hypothesis. From

the names in N \K any i names (i 6 n − k) still have i meanings not in

MK , as is not hard to see. By the induction hypothesis there is also a

34 1 Propositional Logic

pairing-off for N \K with a set of values from M \MK . Joining the two

obviously results in a pairing-off for the whole of N .

We will now prove the claim for arbitrary sets of names N : assign to

each pair (ν, a) ∈ N ×M a variable pν,a and consider the set of formulas

X :

{
pν,a ∨ · · · ∨ pν,e (ν ∈ N, a, . . . , e the meanings of ν),

¬(pν,x ∧pν,y) (ν ∈ N, x, y ∈M, x 6= y).

Assume that w � X. Then to each ν there is exactly one aν with w � pν,aν ,

so that {(ν, aν) | ν ∈ N} is a pairing-off for N . Such a model w exists by

Theorem 4.8, for in a finite set X0 ⊆ X occur only finitely many names

as indices and the case of finitely many names has just been treated.

5. The ultrafilter theorem.

This theorem is of fundamental significance in topology (from which it

originally stems), model theory, set theory, and elsewhere. Let I be any

nonempty set. A nonempty collection of sets F ⊆ PI is called a filter on

I if for all M,N ⊆ I hold the conditions

(a) M, N ∈ F ⇒M ∩N ∈ F , (b) M ∈ F & M ⊆ N ⇒ N ∈ F .

Since F 6= ∅, (b) shows that always I ∈ F . As is easily verified, (a) and

(b) together are equivalent to just a single condition, namely to

(∩) M ∩N ∈ F ⇔ M ∈ F and N ∈ F.

For fixed K ⊆ I, {J ⊆ I | J ⊇ K} is a filter, the principal filter generated

by K. This is a proper filter provided K 6= ∅, which in general is to mean

a filter with ∅ /∈ F . Another example on an infinite I is the set of all

cofinite subsets M ⊆ I, i.e., ¬M (= I \M) is finite. This holds because

M1 ∩M2 is cofinite iff M1, M2 are both cofinite, so that (∩) is satisfied.

A filter F is said to be an ultrafilter on I provided it satisfies, in addition,

(¬) ¬M ∈ F ⇔ M /∈ F.

Ultrafilters on an infinite set I containing all cofinite subsets are called

nontrivial. That such ultrafilters exist will be shown below. It is nearly

impossible to describe them more closely. Roughly speaking, “we know

they exist but we cannot see them.” A trivial ultrafilter on I contains at

least one finite subset. {J ⊆ I | i0 ∈ J} is an example for each i0 ∈ I.

This is a principal ultrafilter. All trivial ultrafilters are of this form,

Exercise 3. Thus, trivial and principal ultrafilters coincide. In particular,

each ultrafilter on a finite set I is trivial in this sense.

1.6 Hilbert Calculi 35

Each proper filter F obviously satisfies the assumption of the following

theorem and can thereby be extended to an ultrafilter.

Theorem 5.1 (Ultrafilter theorem). Every subset F ⊆ PI can be

extended to an ultrafilter U on a set I, provided M0 ∩ · · · ∩Mn 6= ∅ for all

n and all M0, . . . ,Mn ∈ F .

Proof. Consider along with the propositional variables p
J

for J ⊆ I

X : p
M∩N

↔ p
M

∧p
N

, p
¬M
↔ ¬p

M
, p

J
(M,N ⊆ I, J ∈ F).

Let w � X. Then (∩), (¬) are valid for U := {J ⊆ I | w � p
J
}; hence U

is an ultrafilter such that F ⊆ U . It therefore suffices to show that every

finite subset of X has a model, for which it is in turn enough to prove the

ultrafilter theorem for finite F . But this is easy: Let F = {M0, . . . ,Mn},

D := M0 ∩ · · · ∩Mn, and i0 ∈ D. Then U = {J ⊆ I | i0 ∈ J} is an

ultrafilter containing F .

Exercises

1. Prove (using the compactness theorem) that every partial order 60

on a set M can be extended to a total order 6 on M .

2. Let F be a proper filter on I (6= ∅). Show that F is an ultrafilter iff

it satisfies (∪): M ∪N ∈ F ⇔ M ∈ F or N ∈ F .

3. Let I be an infinite set. Show that an ultrafilter U on I is trivial iff

there is an i0 ∈ I such that U = {J ⊆ I | i0 ∈ J}.

1.6 Hilbert Calculi

In a certain sense the simplest logical calculi are so-called Hilbert calculi.

They are based on tautologies selected to play the role of logical axioms ;

this selection is, however, rather arbitrary and depends considerably on

the logical signature. They use rules of inference such as, for example,

modus ponens MP: α, α →β/β.6 An advantage of these calculi consists

6 Putting it crudely, this notation should express the fact that β is held to be proved

from a formula set X when α and α → β are provable from X. Modus ponens is an

example of a binary Hilbert-style rule; for a general definition of this type of rule see,

for instance, [Ra1].

36 1 Propositional Logic

in the fact that formal proofs, defined below as certain finite sequences,

are immediately rendered intuitive. This advantage will pay off above all

in the arithmetization of proofs in 6.2.

In the following we consider such a calculus with MP as the only rule

of inference; we denote this calculus for the time being by |∼ , in order to

distinguish it from the calculus ⊢ of 1.4. The logical signature contains

just ¬ and ∧ , the same as for ⊢. In the axioms of |∼ , however, we will

also use implication defined by α →β := ¬(α∧¬β), thus considerably

shortening the writing down of the axioms.

The logical axiom scheme of our calculus consists of the set Λ of all

formulas of the following form (not forgetting the right association of

parentheses in Λ1, Λ2, and Λ4):

Λ1 (α →β →γ) → (α →β) →α →γ, Λ2 α →β →α∧β,

Λ3 α∧β →α, α∧β →β, Λ4 (α →¬β) →β →¬α.

Λ consists only of tautologies. Moreover, all formulas derivable from Λ

using MP are tautologies as well, because � α, α →β implies � β. We will

show that all 2-valued tautologies are provable from Λ by means of MP.

To this aim we first define the notion of a proof from X ⊆ F in |∼ .

Definition. A proof from X (in |∼) is a sequence Φ = (ϕ0, . . . , ϕn) such

that for every k 6 n either ϕk ∈ X ∪ Λ or there exist indices i, j < k

such that ϕj = ϕi →ϕk (i.e., ϕk results from applying MP to terms of Φ

preceding ϕk). A proof (ϕ0, . . . , ϕn) with ϕn = α is called a proof of α

from X of length n+1. Whenever such a proof exists we write X |∼α and

say that α is provable or derivable from X.

Example. (p, q, p →q →p∧ q, q →p∧ q, p∧ q) is a proof of p∧ q from the

set X = {p, q}. The last two terms in the proof sequence derive with MP

from the previous ones, which all are members of X ∪ Λ.

Since a proof contains only finitely many formulas, the preceding def-

inition leads immediately to the finiteness theorem for |∼ , formulated

correspondingly to Theorem 4.1. Every proper initial segment of a proof

is obviously a proof itself. Moreover, concatenating proofs of α and α →β

and tacking on β to the resulting sequence will produce a proof for β, as

is plain to see. This observation implies

(∗) X |∼α, α →β ⇒ X |∼β.

1.6 Hilbert Calculi 37

In short, the set of all formulas derivable from X is closed under MP. In

applying the property (∗) we will often say “MP yields . . . ” It is easily

seen that X |∼α iff α belongs to the smallest set containing X ∪ Λ and

closed under MP. For the arithmetization of proofs and for automated

theorem proving, however, it is more appropriate to base derivability on

the notion of a proof given in the last definition, because of its finitary

character. Fortunately, the following theorem relieves us of the necessity

to verify a property of formulas α derivable from a given formula set X

each time by induction on the length of a proof of α from X.

Theorem 6.1 (Induction principle for |∼). Let X be given and let E

be a property of formulas. Then E holds for all α with X |∼α, provided

(o) E holds for all α ∈ X ∪ Λ,

(s) Eα and E(α →β) imply Eβ, for all α, β.

Proof by induction on the length n of a proof Φ of α from X. If α ∈ X∪Λ

then Eα holds by (o), which applies in particular if n = 1. If α /∈ X ∪ Λ

then n > 1 and Φ contains members αi and αj = αi →α both having

proofs of length < n. Hence, it holds Eαi and Eαj by the induction

hypothesis, and so Eα according to (s).

An application of Theorem 6.1 is the proof of |∼ ⊆ �, or more explicitly,

X |∼α ⇒ X � α (soundness).

To see this let Eα be the property ‘X � α’ for fixed X. Certainly, X � α

holds for α ∈ X. The same is true for α ∈ Λ. Thus, Eα for all α ∈ X ∪Λ,

and (o) is confirmed. Now let X � α, α →β; then so too X � β, thus

confirming the inductive step (s) in Theorem 6.1. Consequently, Eα (that

is, X � α) holds for all α with X |∼α.

Unlike the proof of completeness for ⊢, the one for |∼ requires a whole

series of derivations to be undertaken. This is in accordance with the

nature of things. To get Hilbert calculi up and running one must often

begin with drawn-out derivations. In the derivations below we shall use

without further comment the monotonicity (M) (page 19, with |∼ for �).

(M) is obvious, for a proof in |∼ from X is also a proof from X ′ ⊇ X.

Moreover, |∼ is a consequence relation (as is every Hilbert calculus, based

on Hilbert style rules). For example, if X |∼Y |∼α, we construct a proof of

α from X by replacing each ϕ ∈ Y occurring in a proof of α from Y by a

proof of ϕ from X. This confirms the transitivity (T).

38 1 Propositional Logic

Lemma 6.2. (a) X |∼α →¬β ⇒ X |∼β →¬α, (b) |∼α →β →α,

(c) |∼α →α, (d) |∼α →¬¬α, (e) |∼β →¬β →α.

Proof. (a): Clearly X |∼ (α →¬β) →β →¬α by Axiom Λ4. From this and

from X |∼α →¬β the claim is derived by MP. (b): By Λ3, |∼β ∧¬α →¬α,

and so with (a), |∼α →¬(β ∧¬α) = α →β →α.

(c): From γ := α, β := α →α in Λ1 we obtain

|∼ (α → (α →α) →α) → (α →α →α) →α →α,

which yields the claim by applying (b) and MP twice; (d) then follows

from (a) using |∼¬α →¬α. (e): Due to |∼¬β ∧¬α →¬β and (a), we get
|∼β →¬(¬β ∧¬α) = β →¬β →α.

Clearly, |∼ satisfies the rules (∧1) and (∧2) of 1.4, in view of Λ2,Λ3.

Part (e) of Lemma 6.2 yields X |∼β,¬β ⇒ X |∼α, so that |∼ satisfies also

rule (¬1). After some preparation we will show that rule (¬2) holds for
|∼ as well, thereby obtaining the desired completeness result. A crucial

step in this direction is

Lemma 6.3 (Deduction theorem). X, α |∼γ implies X |∼α →γ.

Proof by induction in |∼ with a given set X, α. Let X, α |∼γ, and let Eγ

now mean ‘X |∼α →γ’. To prove (o) in Theorem 6.1, let γ ∈ Λ∪X ∪{α}.

If γ = α then clearly X |∼α →γ by Lemma 6.2(c). If γ ∈ X ∪Λ then cer-

tainly X |∼γ. Because also X |∼γ →α →γ by Lemma 6.2(b), MP yields

X |∼α →γ, thus proving (o). To show (s) let X, α |∼β and X, α |∼β →γ,

so that X |∼α →β, α →β →γ by the induction hypothesis. Applying MP

to Λ1 twice yields X |∼α →γ, thus confirming (s). Therefore, by Theo-

rem 6.1, Eγ for all γ, which completes the proof.

Lemma 6.4. |∼¬¬α →α.

Proof. By Λ3 and MP, ¬¬α∧¬α |∼¬α,¬¬α. Choose any τ with |∼τ .

The already verified rule (¬1) clearly yields ¬¬α∧¬α |∼¬τ , and in view

of Lemma 6.3, |∼¬¬α∧¬α →¬τ . From Lemma 6.2(a) it follows that
|∼τ →¬(¬¬α∧¬α). But |∼τ , hence using MP we obtain |∼¬(¬¬α∧¬α)

and the latter formula is just ¬¬α →α.

Lemma 6.3 and Lemma 6.4 are preparations for the next lemma, which

is decisive in proving the completeness of |∼ .

1.6 Hilbert Calculi 39

Lemma 6.5. |∼ satisfies also rule (¬2) of the calculus ⊢.

Proof. Let X,β |∼α and X,¬β |∼α; then X, β |∼¬¬α and X,¬β |∼¬¬α

by Lemma 6.2(d). Hence, X |∼β →¬¬α,¬β →¬¬α (Lemma 6.3), and

so X |∼¬α →¬β and X |∼¬α →¬¬β by Lemma 6.2(a). Thus, MP yields

X,¬α |∼¬β,¬¬β, whence X,¬α |∼¬τ by (¬1), with τ as in Lemma 6.4.

Therefore X |∼¬α →¬τ , due to Lemma 6.3, and hence X |∼τ →¬¬α by

Lemma 6.2(a). Since X |∼τ it follows that X |∼¬¬α and so eventually

X |∼α by Lemma 6.4.

Theorem 6.6 (Completeness theorem). |∼ = �.

Proof. Clearly, |∼ ⊆ �. Now, by what was said already on page 38 and

by the lemma above, |∼ satisfies all basic rules of ⊢. Therefore, ⊢⊆ |∼ .

Since ⊢ = � (Theorem 4.6), we obtain also � ⊆ |∼ .

This theorem implies in particular |∼ϕ⇔ � ϕ. In short, using MP one

obtains from the axiom system Λ exactly the two-valued tautologies.

Remark 1. It may be something of a surprise that Λ1–Λ4 are sufficient to obtain
all propositional tautologies, because these axioms and all formulas derivable
from them using MP are collectively valid in intuitionistic and minimal logic.
That Λ permits the derivation of all two-valued tautologies is based on the fact
that → was defined. Had → been considered as a primitive connective, this
would no longer have been the case. To see this, alter the interpretation of ¬
by setting ¬0 = ¬1 = 1. While one here indeed obtains the value 1 for every
valuation of the axioms of Λ and formulas derived from them using MP, one does
not do so for ¬¬p → p, which therefore cannot be derived. Modifying the two-
valued matrix or using many-valued logical matrices is a widely applied method
to obtain independence results for logical axioms.

Thus, we have seen that there are very different calculi for deriving

tautologies or to recover other properties of the semantic relation �. We

have studied here to some extend Gentzen-style and Hilbert-style calculi

and this will be done also for first-order logic in Chapter 2. In any case,

logical calculi and their completeness proofs depend essentially on the

logical signature, as can be seen, for example, from Exercise 1.

Besides Gentzen- and Hilbert-style calculi there are still other types

of logical calculi, for example various tableau calculi, which are above all

significant for their generalizations to nonclassical logical systems. Related

to tableau calculi is the resolution calculus dealt with in 4.3.

40 1 Propositional Logic

Using Hilbert-style calculi one can axiomatize 2-valued logic in other

logical signatures and functional incomplete fragments. For instance, the

fragment in ∧ ,∨, which, while having no tautologies, contains a lot of

interesting Hilbert-style rules. Proving that this fragment is axiomatizable

by finitely many such rules is less easy as might be expected. At least nine

Hilbert rules are required. Easier is the axiomatization of the well-known

→ -fragment in Exercise 3, less easy that of the ∨-fragment in Exercise 4.

Each of the infinitely many fragments of two-valued logic with or without

tautologies is axiomatizable by a calculus using only finitely many Hilbert-

style rules of its respective language, as was shown in [HeR].

Remark 2. The calculus in Exercise 4 that treats the fragment in ∨ alone, is
based solely on unary rules. This fact considerably simplifies the matter, but
the completeness proof is nevertheless nontrivial. For instance, the indispensable
rule (αβ)γ/α(βγ) is derivable in this calculus, since a tricky application of the
rules (3) and (4) yields (αβ)γ ⊢ γ(αβ) ⊢ (γα)β ⊢ β(γα) ⊢ (βγ)α ⊢ α(βγ).
Much easier would be a completeness proof of this fragment with respect to the
Gentzen-style rules (∨1) and (∨2) from Exercise 2 in 1.4.

Exercises

1. Prove the completeness of the Hilbert calculus ⊢ in F{→ ,⊥} with

MP as the sole rule of inference, the definition ¬α := α → ⊥, and

the axioms A1: α →β →α, A2: (α →β →γ) → (α →β) →α →γ,

and A3: ¬¬α →α.

2. Let ⊢ be a finitary consequence relation and let X 0 ϕ. Use Zorn’s

lemma to prove that there is a ϕ-maximal Y ⊇ X, that is, Y 0 ϕ

but Y, α ⊢ ϕ whenever α /∈ Y . Such a Y is deductively closed but

need not be maximally consistent.

3. Let ⊢ denote the calculus in F{→} with the rule of inference MP, the

axioms A1, A2 from Exercise 1, and ((α →β) →α) →α (the Peirce

axiom). Verify that (a) a ϕ-maximal set X is maximally consistent,

(b) ⊢ is a complete calculus in the propositional language F{→}.

4. Show the completeness of the calculus ⊢ in F{∨} with the four unary

Hilbert-style rules below. The writing of ∨ has been omitted:

(1) α/αβ, (2) αα/α, (3) αβ/βα, (4) α(βγ)/(αβ)γ.

Chapter 2

First-Order Logic

Mathematics and some other disciplines such as computer science often

consider domains of individuals in which certain relations and operations

are singled out. When using the language of propositional logic, our abil-

ity to talk about the properties of such relations and operations is very

limited. Thus, it is necessary to refine our linguistic means of expres-

sion, in order to procure new possibilities of description. To this end, one

needs not only logical symbols but also variables for the individuals of the

domain being considered, as well as a symbol for equality and symbols

for the relations and operations in question. First-order logic, sometimes

called also predicate logic, is the part of logic that subjects properties of

such relations and operations to logical analysis.

Linguistic particles such as “for all” and “there exists” (called quantifiers)

play a central role here, whose analysis should be based on a well prepared

semantic background. Hence, we first consider mathematical structures

and classes of structures. Some of these are relevant both to logic (in

particular model theory) and to computer science. Neither the newcomer

nor the advanced student needs to read all of 2.1, with its mathemati-

cal flavor, at once. The first five pages should suffice. The reader may

continue with 2.2 and later return to what is needed.

Next we home in on the most important class of formal languages,

the first-order languages, also called elementary languages. Their main

characteristic is a restriction of the quantification possibilities. We discuss

in detail the semantics of these languages and arrive at a notion of logical

consequence from arbitrary premises. In this context, the notion of a

formalized theory is made more precise.

41

42 2 First-Order Logic

Finally, we treat the introduction of new notions by explicit definitions

and other expansions of a language, for instance by Skolem functions.

Not until Chapter 3 do we talk about methods of formal logical deduc-

tion. While a multitude of technical details have to be considered in this

chapter, nothing is especially profound. Anyway, most of it is important

for the undertakings of the subsequent chapters.

2.1 Mathematical Structures

By a structure A we understand a nonempty set A together with certain

distinguished relations and operations of A, as well as certain constants

distinguished therein. The set A is also termed the domain of A, or its

universe. The distinguished relations, operations, and constants are called

the (basic) relations, operations, and constants of A. A finite structure

is one with a finite domain. An easy example is ({0, 1}, ∧ , ∨, ¬). Here

∧ , ∨, ¬ have their usual meanings on the domain {0, 1}, and no distin-

guished relations or constants occur. An infinite structure has an infinite

domain. A = (N, <,+, ·, 0, 1) is an example with the domain N; here

<, +, ·, 0, 1 have again their ordinary meaning.

Without having to say so every time, for a structure A the correspond-

ing letter A will always denote the domain of A; similarly B denotes the

domain of B, etc. If A contains no operations or constants, then A is also

called a relational structure. If A has no relations it is termed an algebraic

structure, or simply an algebra. For example, (Z, <) is a relational struc-

ture, whereas (Z,+, 0) is an algebraic structure, the additive group Z (it is

customary to use here the symbol Z as well). Also the set of propositional

formulas from 1.1 can be understood as an algebra, equipped with the

operations (α, β) 7→ (α∧β), (α, β) 7→ (α ∨ β), and α 7→ ¬α. Thus, one

may speak of the formula algebra F whenever it is useful to do so.

Despite our interest in specific structures, whole classes of structures

are also often considered, for instance the classes of groups, rings, fields,

vector spaces, Boolean algebras, and so on. Even when initially just a

single structure is viewed, call it the paradigm structure, one often needs

to talk about similar structures in the same breath, in one language, so

to speak. This can be achieved by setting aside the concrete meaning of

the relation and operation symbols in the paradigm structure and consid-

2.1 Mathematical Structures 43

ering the symbols in themselves, creating thereby a formal language that

enables one to talk at once about all structures relevant to a topic. Thus,

one distinguishes in this context clearly between denotation and what is

denoted. To emphasize this distinction, for instance for A = (A,+, <, 0),

it is better to write A = (A,+A, <A, 0A), where +A, <A, and 0A mean

the relation, operation, and constant denoted by +, <, and 0 in A. Only

if it is clear from the context what these symbols denote may the super-

scripts be omitted. In this way we are free to talk on the one hand about

the structure A, and on the other hand about the symbols +, <, 0.

A finite or infinite set L resulting in this way, consisting of relation,

operation, and constant symbols of a given arity, is called an extralogical

signature. For the class of all groups (see page 47), L = {◦, e} exemplifies

a favored signature; that is, one often considers groups as structures of

the form (G, ◦, e), where ◦ denotes the group operation and e the unit

element. But one can also define groups as structures of the signature

{◦}, because e is definable in terms of ◦, as we shall see later. Of course,

instead of ◦, another operation symbol could be chosen such as ·, ∗, or +.

The latter is mainly used in connection with commutative groups. In this

sense, the actual appearance of a symbol is less important; what matters

is its arity. r ∈ L always means that r is a relation symbol, and f ∈ L

that f is an operation symbol, each time of some arity n > 0, which of

course depends on the symbols r and f , respectively.1

An L-structure is a pairA = (A, LA), where LA contains for every r ∈ L

a relation rA on A of the same arity as r, for every f ∈ L an operation

fA on A of the arity of f , and for every c ∈ L a constant cA ∈ A. We

may omit the superscripts, provided it is clear from the context which

operation or relation on A is meant. We occasionally shorten also the

notation of structures. For instance, we sometimes speak of the ring Z or

the field R provided there is no danger of misunderstanding.

Every structure is an L-structure for a certain signature, namely that

consisting of the symbols for its relations, functions, and constants. But

this does not make the name L-structure superfluous. Basic concepts, such

1 Here r and f represent the general case and look different in a concrete situation.

Relation symbols are also called predicate symbols, in particular in the unary case,

and operation symbols are sometimes called function symbols. In special contexts,

we also admit n = 0, regarding constants as 0-ary operations.

44 2 First-Order Logic

as isomorphism and substructure, refer to structures of the same signature.

From 2.2 on, once the notion of a first-order language of signature L has

been defined, we mostly write L-structure instead of L-structure. We will

then also often say that r, f , or c belongs to L instead of L.

If A ⊆ B and f is an n-ary operation on B then A is closed under f ,

briefly f -closed, if f~a ∈ A for all ~a ∈ An. If n = 0, that is, if f is a

constant c, this simply means c ∈ A. The intersection of any nonempty

family of f -closed subsets of B is itself f -closed. Accordingly, we can talk

of the smallest (the intersection) of all f -closed subsets of B that contain

a given subset E ⊆ B. All of this extends in a natural way if f is here

replaced by an arbitrary family of operations of B.

Example. For a given positive m, the set mZ := {m · n | n ∈ Z} of

integers divisible by m is closed in Z under +, −, and ·, and is in fact the

smallest such subset of Z containing m.

The restriction of an n-ary relation rB ⊆ Bn to a subset A ⊆ B is

rA = rB ∩ An. For instance, the restriction of the standard order of

R to N is the standard order of N. Only because of this fact can the

same symbol be used to denote these relations. The restriction fA of an

operation fB on B to a set A ⊆ B is defined analogously whenever A is

f -closed. Simply let fA~a = fB~a for ~a ∈ An. For instance, addition in N

is the restriction of addition in Z to N, or addition in Z is an extension of

this operation in N. Again, only this state of affairs allows us to denote

the two operations by the same symbol.

Let B be an L-structure and let A ⊆ B be nonempty and closed under

all operations of B; this will be taken to include cB ∈ A for constant

symbols c ∈ L. To such a subset A corresponds in a natural way an L-

structure A = (A, LA), where rA and fA for r, f ∈ L are the restrictions

of rB respectively fB to A. Finally, let cA = cB for c ∈ L. The structure A

so defined is then called a substructure of B, and B is called an extension

of A, in symbols A ⊆ B. This is a certain abuse of ⊆ but it does not

cause confusion, since the arguments indicate what is meant.

A ⊆ B implies A ⊆ B but not conversely, in general. For example,

A = (N, <,+, 0) is a substructure of B = (Z, <,+, 0) since N is closed

under addition in Z and 0 has the same meaning in A and B. Here

we dropped the superscripts for <, +, and 0 because there is no risk of

misunderstanding.

2.1 Mathematical Structures 45

A nonempty subset G of the domain B of a given L-structure B defines

a smallest substructure A of B containing G. The domain of A is the

smallest subset of B containing G and closed under all operations of B.

A is called the substructure generated from G in B. For instance, 3N

(= {3n | n ∈ N}) is the domain of the substructure generated from {3} in

(N,+, 0), since 3N contains 0 and 3, is closed under +, and is clearly the

smallest such subset of N. A structure A is called finitely generated if for

some finite G ⊆ A the substructure generated from G in A coincides with

A. For instance, (Z, +,−, 0) is finitely generated by G = {1}.

If A is an L-structure and L0 ⊆ L then the L0-structure A0 with domain

A and where sA0 = sA for all symbols s ∈ L0 is termed the L0-reduct of

A, and A is called an L-expansion of A0. For instance, the group (Z,+, 0)

is the {+, 0}-reduct of the ordered ring (Z, <,+, ·, 0). The notions reduct

and substructure must clearly be distinguished. A reduct of A has always

the same domain as A, while the domain of a substructure of A is as a

rule a proper subset of A.

Below we list some frequently cited properties of a binary relation ⊳

in a set A. It is convenient to write a ⊳ b instead of (a, b) ∈⊳, and a ⋪ b

for (a, b) /∈⊳. Just as a < b < c often stands for a < b & b < c, we

write a ⊳ b ⊳ c for a ⊳ b & b ⊳ c. In the listing below, ‘for all a’ and

‘there exists an a’ respectively mean ‘for all a ∈ A’ and ‘there exists some

a ∈ A’. The relation ⊳ ⊆ A2 is called

reflexive if a ⊳ a for all a,

irreflexive if a ⋪ a for all a,

symmetric if a ⊳ b ⇒ b ⊳ a, for all a, b,

antisymmetric if a ⊳ b ⊳ a ⇒ a = b, for all a, b,

transitive if a ⊳ b ⊳ c ⇒ a ⊳ c, for all a, b, c,

connex if a = b or a ⊳ b or b ⊳ a, for all a, b.

Reflexive, transitive, and symmetric relations are also called equivalence

relations. These are often denoted by ∼, ≈, ≡, ≃, or similar symbols.

Such a relation generates a partition of its domain whose parts, consisting

of mutually equivalent elements, are called equivalence classes.

We now present an overview of classes of structures to which we will

later refer, mainly in Chapter 5. Hence, for the time being, the beginner

may skip the following and jump to 2.2.

46 2 First-Order Logic

1. Graphs, partial orders, and orders. A relational structure (A,⊳)

with ⊳ ⊆ A2 is often termed a (directed) graph. If ⊳ is irreflexive and

transitive we usually write < for ⊳ and speak of a (strict) partial order or

a partially ordered set, also called a poset for short. If we define x 6 y by

x < y or x = y, then 6 is reflexive, transitive, and antisymmetric, called

a reflexive partial order of A, the one that belongs to <. Call (A,6) a

preorder , if 6 is reflexive and transitive but not necessarily antisymmetric.

Preorders are frequently met in real life, e.g., x is less or equally expensive

as y. If x ∼ y means x 6 y 6 x then ∼ is an equivalence relation on A.

A connex partial order A = (A, <) is called a total or linear order,

briefly termed an order or an ordered or a strictly ordered set. N, Z, Q,

R are examples with respect to their standard orders. Here we follow the

tradition of referring to ordered sets by their domains only.

Let U be a nonempty subset of some ordered set A such that for all

a, b ∈ A, a < b ∈ U ⇒ a ∈ U . Such a U is called an initial segment of A.

In addition, let V := A\U 6= ∅. Then the pair (U, V) is called a cut . The

cut is said to be a gap if U has no largest and V no smallest element.

However, if U has a largest element a, and V a smallest element b, then

(U, V) is called a jump. In this case b is called the immediate successor

of a, and a the immediate predecessor of b, because there is no element

from A between a and b. An infinite ordered set without gaps and jumps

like R, is said to be continuously ordered. Such a set is easily seen to be

densely ordered, i.e., between any two elements lies another one.

A totally ordered subset K of a partially ordered set H is called a chain

in H. Such a K is said to be bounded (to the above) if there is some b ∈ H

with a 6 b for all a ∈ K. Call c ∈ H maximal in H if no a ∈ H exists

with a > c. An infinite partial order need not have maximal elements,

nor need all chains be bounded, as is seen by the example (N, <). With

these notions, a basic mathematical tool can now be stated:

Zorn’s lemma. If every chain in a nonempty poset H is bounded then

H has a maximal element.

A (totally) ordered set A is well-ordered if every nonempty subset of

A has a smallest element; equivalently, there are no infinite decreasing

sequences a0 > a1 > · · · of elements from A. Clearly, every finite ordered

set is well-ordered. The simplest example of an infinite well-ordered set is

N together with its standard order.

2.1 Mathematical Structures 47

2. Groupoids, semigroups, and groups. Algebras A = (A, ◦) with

an operation ◦ : A2 → A are termed groupoids. If ◦ is associative then A

is called a semigroup, and if ◦ is additionally invertible, then A is said

to be a group. It is provable that a group (G, ◦) in this sense contains

exactly one unit element , that is, an element e such that x ◦ e = e ◦x = x

for all x ∈ G, also called a neutral element. A well-known example is the

group of bijections of a set M . If the group operation ◦ is commutative,

we speak of a commutative or abelian group.

Here are some examples of semigroups that are not groups: (a) the

set of strings over some alphabet A with respect to concatenation, the

word-semigroup or free semigroup generated from A. (b) the set MM

of mappings from M to itself with respect to composition. (c) (N, +)

and (N, ·); these two are commutative semigroups. With the exception of

(MM , ◦), all mentioned examples of semigroups are regular, which means

x ◦ z = y ◦ z or z ◦x = z ◦ y implies x = y, for all x, y, z of the domain.

Substructures of semigroups are again semigroups. Substructures of

groups are in general only semigroups, as seen from (N,+) ⊆ (Z, +). Not

so in the signature {◦, e,−1}, where e denotes the unit element and x−1

the inverse of x. Here all substructures are indeed subgroups. The reason

is that in {◦, e,−1}, the group axioms can be written as universally quan-

tified equations, where for brevity, we omit the writing of “for all x, y, z,”

namely as x ◦ (y ◦ z) = (x ◦ y) ◦ z, x ◦ e = x, x ◦x−1 = e. These equations

certainly retain their validity in the transition to substructures, and they

imply e ◦x = x ◦ e = x and x−1 ◦x = x ◦x−1 = e for all x, although ◦ is

not a commutative operation on its domain, in general.

Ordered semigroups and groups possess along with ◦ some order, with

respect to which ◦ is monotonic in both arguments, like (N,+, 0,6). A

commutative ordered semigroup (A,+, 0,6) with neutral (or zero) ele-

ment 0 that at the same time is the smallest element in A, and where

x 6 y iff there is some z with x + z = y, is called a domain of magnitude.

Everyday examples are the domains of length, mass, money, etc.

3. Rings and fields. These belong to the commonly known structures.

Below we list the axioms for the theory TF of fields in +, ·, 0, 1. A field

is a model of TF . A ring is a model of the axiom system TR for rings

that derives from TF by dropping the axioms N×, C×, and I×, and the

constant 1 from the signature. Here are the axioms of TF :

48 2 First-Order Logic

N+ : x + 0==== x N× : x · 1==== x

C+ : x + y ==== y + x C× : x · y ==== y · x

A+ : (x + y) + z ==== x + (y + z) A× : (x · y) · z ==== x · (y · z)

D : x · (y + z)==== x · y + x · z D′ : (y + z) · x==== y · x + z · x

I+ : ∀x∃y x + y ==== 0 I× : 0 6====1∧ (∀x 6====0)∃y x · y ==== 1

In view of C×, axiom D′ is dispensable for TF but not for TR. When

removing I+ from TR, we obtain the theory of semirings. A well-known

example is (N,+, ·, 0). A commutative ring that has a unit element 1

but no zero-divisor (i.e., ¬∃x∃y(x, y 6==== 0 ∧ x · y ==== 0) is called an integral

domain. A typical example is (Z,+, ·, 0, 1).

Let K,K′ be any fields with K ⊂ K′. We call a ∈ K ′ \K algebraic or

transcendental on K, depending on whether a is a zero of a polynomial

with coefficients in K or not. If every polynomial of degree > 1 with

coefficients in K breaks down into linear factors, as is the case for the

field of complex numbers, then K is called algebraically closed, in short, K

is a.c. These fields will be more closely inspected in 3.3 and Chapter 5.

Each field K has a smallest subfield P, called a prime field. One says that

K has characteristic 0 or p (a prime number), depending on whether P is

isomorphic to the field Q or the finite field of p elements. No other prime

fields exist. It is not hard to show that K has the characteristic p iff the

sentence charp : 1 + · · ·+ 1
︸ ︷︷ ︸

p

==== 0 holds in K.

Rings, fields, etc. may also be ordered, whereby the usual monotonicity

laws are required. For example, (Z, <,+, ·, 0, 1) is the ordered ring of

integers and (N, <,+, ·, 0, 1) the ordered semiring of natural numbers.

4. Semilattices and lattices. A = (A, ◦) is called a semilattice if ◦ is

associative, commutative, and idempotent. An example is ({0, 1}, ◦) with
◦ = ∧ . If we define a 6 b :⇔ a ◦ b = a then 6 is a reflexive partial order

on A. Reflexivity holds, since a ◦ a = a. As can be easily verified, a ◦ b

is in fact the infimum of a, b with respect to 6, a ◦ b = inf{a, b}, that is,

a ◦ b 6 a, b, and c 6 a, b⇒ c 6 a ◦ b, for all a, b, c ∈ A.

A = (A, ∩ , ∪) is called a lattice if (A, ∩) and (A, ∪) are both semi-

lattices and the following so-called absorption laws hold: a ∩ (a ∪ b) = a

and a ∪ (a ∩ b) = a. These imply a ∩ b = a ⇔ a ∪ b = b. As above,

a 6 b :⇔ a ∩ b = a defines a partial order such that a ∩ b = inf{a, b}. In

2.1 Mathematical Structures 49

addition, one has a ∪ b = sup{a, b} (the supremum of a, b), which is to

mean a, b 6 a ∪ b, and a, b 6 c ⇒ a ∪ b 6 c, for all a, b, c ∈ A. If A

satisfies, moreover, the distributive laws a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) and

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c), then A is termed a distributive lattice. For

instance, the power set PM with the operations ∩ and ∪ for ∩ and ∪ re-

spectively is a distributive lattice, as is every nonempty family of subsets

of M closed under ∩ and ∪, a so-called lattice of sets. Another important

example is (N, gcd, lcm). Here gcd(a, b) and lcm(a, b) denote the greatest

common divisor and the least common multiple of a, b ∈ N.

5. Boolean algebras. An algebra A = (A, ∩ , ∪ ,¬) where (A, ∩ , ∪) is

a distributive lattice and in which at least the equations

¬¬a = a, ¬(a ∩ b) = ¬a ∪¬b, a ∩¬a = b ∩¬b

are valid is called a Boolean algebra. The paradigm structure is the two-

element Boolean algebra 2 := ({0, 1}, ∧ , ∨,¬), with ∩ , ∪ interpreted as

∧ , ∨, respectively. One defines the constants 0 and 1 by 0 := a ∩¬a for

any a ∈ A and 1 := ¬0. There are many ways to characterize Boolean

algebras A, for instance, by saying that A satisfies all equations valid in 2 .

The signature can also be variously selected. For example, the signature

∧ , ∨,¬ is well suited to deal algebraically with two-valued propositional

logic. Terms of this signature are, up to the denotation of variables,

precisely the Boolean formulas from 1.1, and a valid logical equivalence

α ≡ β corresponds to the equation α = β, valid in 2 . Further examples

of Boolean algebras are the algebras of sets A = (A,∩,∪,¬). Here A

consists of a nonempty system of subsets of a set I, closed under ∩, ∪,

and ¬ (complementation in I). These are the most general examples; a

famous theorem, Stone’s representation theorem, says that each Boolean

algebra is isomorphic to an algebra of sets.

6. Logical L-matrices. These are structures A = (A, LA, DA), where

L contains only operation symbols (the “logical” symbols) and D denotes

a unary predicate, the set of distinguished values of A. Best known is the

two-valued Boolean matrix B = (2 , DB) with DB = {1}. The consequence

relation �A in the propositional language F of signature L is defined as

in the two-valued case: Let X ⊆ F and ϕ ∈ F. Then X �A ϕ if wϕ ∈ DA

for every w : PV → A with wX ⊆ DA (wX := {wα | α ∈ X}). In words,

if the values of all α ∈ X are distinguished, then so too is the value of ϕ.

50 2 First-Order Logic

Homomorphisms and isomorphisms. The following notions are im-

portant for both mathematical and logical investigations. Much of the

material presented here will be needed in Chapter 5. In the following

definition, n (>0) denotes as always the arity of f or r.

Definition. Let A,B be L-structures and h :A → B (strictly speaking

h :A→ B) a mapping such that for all f, c, r ∈ L and ~a ∈ An,

(H): hfA~a = fBh~a, hcA = cB, rA~a⇒ rBh~a
(
h~a = (ha1, . . . , han)

)
.

Then h is called a homomorphism. If the third condition in (H) is replaced

by the stronger condition (S): (∃~b∈An)(h~a=h~b & rA~b)⇔ rBh~a 2 then h

is said to be a strong homomorphism. For algebras, the word “strong”

is clearly dispensable. An injective strong homomorphism h :A → B is

called an embedding of A into B. If, in addition, h is bijective then h is

called an isomorphism, and in case A = B, an automorphism.

An embedding or isomorphism h :A → B satisfies rA~a⇔ rBh~a. Indeed,

since h~a=h~b ⇔ ~a=~b, (S) yields rBh~a ⇒ (∃~b∈An)(~a=~b & rA~b) ⇒ rA~a.

A,B are said to be isomorphic, in symbols A ≃ B, if there is an isomor-

phism fromA to B. It is readily verified that≃ is reflexive, symmetric, and

transitive, hence an equivalence relation on the class of all L-structures.

Examples 1. (a) A valuation w considered in 1.1 can be regarded as

a homomorphism of the propositional formula algebra F into the two-

element Boolean algebra 2 . Such a w :F → 2 is necessarily onto.

(b) Let A = (A, ∗) be a word semigroup with the concatenation operation

∗ and B the additive semigroup of natural numbers, considered as L-

structures for L = {◦} with ◦A = ∗ and ◦B = +. Let lh(ξ) denote the

length of a word or string ξ ∈ A. Then ξ 7→ lh(ξ) is a homomorphism

since lh(ξ ∗ η) = lh(ξ) + lh(η), for all ξ, η ∈ A. If A is generated from a

single letter, lh is evidently bijective, hence an isomorphism.

(c) The mapping a 7→ (a, 0) from R to C (= set of complex numbers,

understood as ordered pairs of real numbers) is a good example of an

embedding of the field R into the field C. Nonetheless, we are used to

saying that R is a subfield of C, and that R is a subset of C.

2 (∃~b∈An)(h~a=h~b & rA~b) abbreviates ‘there is some ~b ∈ An with h~a = h~b and rA~b’.

If h :A → B is onto (and only this case will occur in our applications) then (S) is

equivalent to the more suggestive condition rB = {h~a | rA~a}.

2.1 Mathematical Structures 51

(d) Let A = (R, +, <) be the ordered additive group of real numbers

and B = (R+, ·, <) the multiplicative group of positive reals. Then for

any b ∈ R+ \{1} there is precisely one isomorphism η :A → B such that

η1 = b, namely η : x 7→ bx, the exponential function expb to the base b.

It is even possible to define expb as this isomorphism, by first proving

that—up to isomorphism—there is only one continuously ordered abelian

group (first noticed in [Ta2] though not explicitly put into words).

(e) The algebras A = ({0, 1}, +) and B = ({0, 1},↔) are only apparently

different, but are in fact isomorphic, with the isomorphism δ where δ0 = 1,

δ1 = 0. Thus, since A is a group, B is a group as well, which is not

obvious at first glance. By adjoining the unary predicate D = {1}, A and

B become (nonisomorphic) logical matrices. These actually define the two

“dual” fragmentary two-valued logics for the connectives either . . . or . . . ,

and . . . if and only if . . . , which have many properties in common.

Congruences. A congruence relation (or simply a congruence) in a struc-

ture A of signature L is an equivalence relation ≈ in A such that for all

n > 0, all f ∈ L of arity n, and all ~a,~b ∈ An,

~a ≈ ~b ⇒ fA~a ≈ fA~b.

Here ~a ≈ ~b means ai ≈ bi for i = 1, . . . , n. A trivial example is the

identity in A. If h :A → B is a homomorphism then ≈h ⊆ A2, defined

by a ≈h b ⇔ ha = hb, is a congruence in A, named the kernel of h. Let

A′ be the set of equivalence classes a/≈ := {x ∈ A | a ≈ x} for a ∈ A,

also called the congruence classes of ≈, and set ~a/≈ := (a1/≈, . . . , an/≈)

for ~a ∈ An. Define fA′

(~a/≈) := (fA~a)/≈ and let rA′

~a/≈ :⇔ (∃~b≈~a)rA~b.

These definitions are sound, that is, independent of the choice of the n-

tuple ~a of representatives. Then A′ becomes an L-structure A′, the factor

structure of A modulo ≈, denoted by A/≈. Interesting and useful, e.g. in

5.7, is the following very general and easily provable

Homomorphism theorem. Let A be an L-structure and ≈ a congruence

in A. Then k : a 7→ a/≈ is a strong homomorphism from A onto A/≈,

the canonical homomorphism. Conversely, if h :A → B is a strong homo-

morphism from A onto an L-structure B with kernel ≈ then ı : a/≈ 7→ ha

is an isomorphism from A/≈ to B, and h = ı ◦ k.

Proof. We omit here the superscripts for f and r just for the sake of

legibility. Clearly, kf~a = (f~a)/≈ = f(~a/≈) = fk~a
(
=f(ka1, . . . , kan)

)
,

52 2 First-Order Logic

and (∃~b∈An)(k~a = k~b & r~b) ⇔ (∃~b≈~a)r~b ⇔ r~a/≈ ⇔ r k~a by definition.

Hence k is what we claimed. The definition of ı is sound, and ı is bijective

since ha = hb⇒ a/≈ = b/≈. Furthermore, ı is an isomorphism because

ıf(~a/≈) = hf~a = fh~a = fı(~a/≈) and r~a/≈ ⇔ r h~a⇔ r ı(~a/≈).

Finally, h is the composition ı ◦ k by the definitions of ı and k.

Remark. For algebras A, this theorem is the usual homomorphism theorem of
universal algebra. A/≈ is then named the factor algebra. The theorem covers
groups, rings, etc. In groups, the kernel of a homomorphism is already deter-
mined by the congruence class of the unit element, called a normal subgroup,
in rings by the congruence class of 0, called an ideal. Hence, in textbooks on
basic algebra the homomorphism theorem is separately formulated for groups
and rings, but is easily derivable from the general theorem present here.

Direct products. These provide the basis for many constructions of new

structures, especially in 5.7. A well-known example is the n-dimensional

vector group (Rn, 0,+). This is the n-fold direct product of the group

(R, 0,+) with itself. The addition in Rn is defined componentwise, as is

also the case in the following

Definition. Let (Ai)i∈I be a nonempty family of L-structures. The

direct product B =
∏

i∈I Ai is the structure defined as follows: Its domain

is B =
∏

i∈I Ai, called the direct product of the sets Ai. The elements

a = (ai)i∈I of B are functions defined on I with ai ∈ Ai for each i ∈ I.

Relations and operations in B are defined componentwise, that is,

rB~a ⇔ rAi~ai for all i ∈ I, fB~a = (fAi~ai)i∈I , cB = (cAi)i∈I ,

where ~a = (a1, . . . , an) ∈ Bn (here the superscripts count the components)

with aν := (aν
i)i∈I for ν = 1, . . . , n, and ~ai := (a1

i , . . . , a
n
i) ∈ An

i .

Whenever Ai = A for all i ∈ I, then
∏

i∈I Ai is denoted by AI and

called a direct power of the structure A. Note that A is embedded in AI

by the mapping a 7→ (a)i∈I , where (a)i∈I denotes the I-tuple with the

constant value a, that is, (a)i∈I = (a, a, . . .). For I = {1, . . . ,m}, the

product
∏

i∈I Ai is also written as A1 × · · · × Am. If I = {0, . . . , n−1}

one mostly writes An for AI .

Examples 2. (a) Let I = {1, 2}, Ai = (Ai, <
i), and B =

∏

i∈I Ai.

Then a <B b ⇔ a1 <1 b1 & a2 <2 b2, for all a, b ∈ B = A1 × A2. Note

that if A1,A2 are ordered sets then B is only a partial order. The deeper

reason for this observation will become clear in Chapter 5.

2.2 Syntax of First-Order Languages 53

(b) Let B = 2 I be a direct power of the two-element Boolean algebra 2 .

The elements a ∈ B are I-tuples of 0 and 1. These uniquely correspond

to the subsets of I via the mapping ı : a 7→ Ia := {i ∈ I | ai = 1}. As a

matter of fact, ı is an isomorphism from B to (PI,∩,∪,¬), as can readily

be verified; Exercise 4.

Exercises

1. Show that there are (up to isomorphism) exactly five two-element

proper groupoids. Here a groupoid (H, ·) is termed proper if the

operation · is essentially binary.

2. ≈ (⊆ A2) is termed Euclidean if a ≈ b & a ≈ c ⇒ b ≈ c, for all

a, b, c ∈ A. Show that ≈ is an equivalence relation in A if and only

if ≈ is reflexive and Euclidean.

3. Prove that an equivalence relation ≈ on an algebraic L-structure A

is a congruence iff for all f ∈ L of arity n, all i = 1, . . . , n, and all

a1, . . . , ai−1, a, a′, ai+1, . . . , an ∈ A with a ≈ a′,

f(a1, . . . , ai−1, a, ai+1, . . . , an) ≈ f(a1, . . . , ai−1, a
′, ai+1, . . . , an).

4. Prove in detail that 2 I ≃ (PI,∩,∪,¬) for a nonempty index set I.

Prove the corresponding statement for any subalgebra of 2 I .

5. Show that h :
∏

i∈I Ai → Aj with ha = aj is a homomorphism for

each j ∈ I.

2.2 Syntax of First-Order Languages

Standard mathematical language enables us to talk precisely about struc-

tures, such as the field of real numbers. However, for logical (and meta-

mathematical) issues it is important to delimit the theoretical framework

to be considered; this is achieved most simply by means of a formalization.

In this way one obtains an object language; that is, the formalized elements

of the language, such as the components of a structure, are objects of our

consideration. To formalize interesting properties of a structure in this

language, one requires at least variables for the elements of its domain,

called individual variables. Further are required sufficiently many logical

54 2 First-Order Logic

symbols, along with symbols for the distinguished relations, functions,

and constants of the structure. These extralogical symbols constitute the

signature L of the formal language L that we are going to define.

In this manner one arrives at the first-order languages, also termed

elementary languages. Nothing is lost in terms of generality if the set

of variables is the same for all elementary languages; we denote this set

by Var and take it to consist of the countably many symbols v0,v1, . . .

Two such languages therefore differ only in the choice of their extralogical

symbols. Variables for subsets of the domain are consciously excluded,

since languages containing variables both for individuals and sets of these

individuals—second-order languages, discussed in 3.8—have different se-

mantic properties from those investigated here.

We first determine the alphabet , the set of basic symbols of a first-order

language L defined by a signature L. It includes, of course, the already

specified variables v0,v1, . . . In what follows, these will mostly be denoted

by x, y, z, u, v, though sometimes other letters with or without indices may

serve the same purpose. The boldface printed original variables are useful

in writing down a formula in the variables vi1 , . . . ,vin , for these can then

be denoted, for instance, by v1, . . . , vn, or by x1, . . . , xn.

Further, the logical symbols ∧ (and), ¬ (not), ∀ (for all), the equality

sign ==== , and, of course, all extralogical symbols from L should belong to

the alphabet. Note that the boldface symbol ==== is taken as a basic symbol;

simply taking the equality symbol = could lead to unintended mix-ups

with the ordinary use of = (in Chapter 4 also identity-free languages

without ==== will be considered). Finally, the parentheses (,) are included

in the alphabet. Other symbols are introduced by definition, e.g., ∨, → ,↔

are defined as in 1.4 and the symbols ∃ (there exists) and ∃! (there exists

exactly one) will be defined later. Let SL denote the set of all strings

made up of symbols that belong to the alphabet of L.

From the set SL of all strings we pick out the meaningful ones, namely

terms and formulas, according to certain rules. A term, under an inter-

pretation of the language, will always denote an element of a domain,

provided an assignment of the occurring variables to elements of that do-

main has been given. In order to keep the syntax as simple as possible,

terms will be understood as certain parenthesis-free strings, although this

kind of writing may look rather unusual at the first glance.

2.2 Syntax of First-Order Languages 55

Terms in L:

(T1) Variables and constants, considered as atomic strings, are terms,

also called prime terms.

(T2) If f ∈ L is n-ary and t1, . . . , tn are terms, then ft1 · · · tn is a term.

This is a recursive definition of the set of terms as a subset of SL. Any

string that is not generated by (T1) and (T2) is not a term in this context

(cf. the related definition of F in 1.1). Parenthesis-free term notation

simplifies the syntax, but for binary operations we proceed differently in

practice and write, for example, the term ·+xyz as (x+y) · z. The reason

is that a high density of information in the notation complicates read-

ing. Our brain does not process information sequentially like a computer.

Officially, terms are parenthesis-free, and the parenthesized notation is

just an alternative way of rewriting terms. Similarly to the unique recon-

struction property of propositional formulas in 1.1, here the unique term

reconstruction property holds, that is,

ft1 · · · tn = fs1 · · · sn implies si = ti for i = 1, . . . , n (ti, si terms),

which immediately follows from the unique term concatenation property

t1 · · · tn = s1 · · · sm implies n = m and ti = si for i = 1, . . . , n.

The latter is shown in Exercise 2. T (= TL) denotes the set of all terms

of a given signature L. The set T can be understood as an algebra with

the operations given by fT (t1, . . . , tn) = ft1 · · · tn, called the term algebra.

Variable-free terms, which exist only with the availability of constant sym-

bols, are called constant terms or ground terms, mainly in logic program-

ming. From the definition of terms immediately follows the useful

Principle of proof by term induction. Let E be a property of strings

such that E holds for all prime terms, and for each n > 0 and each n-ary

function symbol f , the assumptions Et1, . . . , Etn imply Eft1 · · · tn. Then

all terms have the property E.

Indeed, T is by definition the smallest set of strings satisfying the condi-

tions of this principle, and hence a subset of the set of all strings with the

property E . A simple application of term induction is the proof that each

compound term t is a function term in the sense that t = ft1 · · · tn for

some n-ary function symbol f and some terms t1, . . . , tn. Simply consider

the property ‘t is either prime or a function term’. Term induction can

also be executed on certain subsets of T , for instance on ground terms.

56 2 First-Order Logic

We also have at our disposal a definition principle by term recursion

which, rather than defining it generally, we present through examples.

The set var t of variables occurring in a term t is recursively defined by

var c = ∅ ; var x = {x} ; var ft1 · · · tn = var t1 ∪ · · · ∪ var tn.

var t, and even var ξ for any ξ ∈ SL, can also be defined explicitly using

concatenation. var ξ is the set of all x ∈ Var for which there are strings

η, ϑ with ξ = ηxϑ. The notion of a subterm of a term can also be defined

recursively. Again, we can also do it more briefly using concatenation.

Definition by term induction should more precisely be called definition by

term recursion. But most authors are sloppy in this respect.

We now define recursively those strings from SL to be called formulas,

also termed expressions or well-formed formulas of signature L.

Formulas in L:

(F1) If s, t are terms, then the string s==== t is a formula.

(F2) If t1, . . . , tn are terms and r ∈ L is n-ary, then rt1 · · · tn is a formula.

(F3) If α, β are formulas and x is a variable, then (α∧β), ¬α, and ∀xα

are formulas.

Any string not generated according to (F1), (F2), (F3) is in this context

not a formula. Other logical symbols serve throughout merely as abbre-

viations, namely ∃xα := ¬∀x¬α, (α ∨ β) := ¬(¬α∧¬β), and as in 1.1,

(α →β) := ¬(α∧¬β), and (α ↔ β) := ((α →β)∧ (β →α)). In addition,

s 6==== t will throughout be written for ¬ s==== t. The formulas ∀xα and ∃xα

are said to arise from α by quantification.

Examples. (a) ∀x∃y x + y ==== 0 (more explicitly, ∀x¬∀y¬x + y ==== 0) is a

formula, expressing ‘for all x there exists a y such that x+y = 0’. Here we

assume tacitly that x, y denote distinct variables. The same is assumed

in all of the following whenever this can be made out from the context.

(b) ∀x∀x x==== y is a formula, since repeated quantification of the same

variable is not forbidden. ∀z x==== y is a formula also if z 6= x, y, although

z does then not appear in the formula x==== y.

Example (b) indicates that the grammar of our formal language is more

liberal than one might expect. This will spare us a lot of writing. The for-

mulas ∀x∀x x==== y and ∃x∀x x==== y both have the same meaning as ∀x x==== y.

2.2 Syntax of First-Order Languages 57

These three formulas are logically equivalent (in a sense still to be defined),

as are ∀z x==== y and x==== y for z distinct from x and y. It would be to our

disadvantage to require any restriction here. In spite of this liberality, the

formula syntax corresponds roughly to the syntax of natural language.

The formulas procured by (F1) and (F2) are said to be prime or atomic

formulas, or simply called prime. As in propositional logic, prime formulas

and their negations are called literals.

Prime formulas of the form s==== t are called equations. These are the

only prime formulas if L contains no relation symbols, in which case L

is called an algebraic signature. Prime formulas that are not equations

begin with a relation symbol, although in practice a binary symbol tends

to separate the two arguments as, for example, in x 6 y. The official

notation is, however, that of clause (F2). The unique term concatenation

property clearly implies the unique prime formula reconstruction property

rt1 · · · tn = rs1 · · · sn implies ti = si for i = 1, . . . , n.

The set of all formulas in L is denoted by L. The case L = ∅ defines

the language of pure identity, denoted by L====, whose prime formulas are

all of the form x==== y. If L = {∈} or L = {◦} then L is also denoted by L∈

or L◦ , resp. If L is more complex, e.g. L = {◦, e}, we write L = L{◦, e}.

Instead of terms, formulas, and structures of signature L, we will talk

of L-terms (writing TL for TL), L-formulas, and L-structures respectively.

We also omit the prefix if L has been given earlier and use the same

conventions of parenthesis economy as in 1.1. We will also allow ourselves

other informal aids in order to increase readability. For instance, variously

shaped brackets may be used as in ∀x∃y∀z[z ∈ y ↔ ∃u(z ∈ u∧u∈ x)]. Even

verbal descriptions (partial or complete) are permitted, as long as the

intended formula is uniquely recognizable.

The strings ∀x and ∃x (read “for all x” respectively “there is an x”) are

called prefixes. Also concatenations of these such as ∀x∃y are prefixes. No

other prefixes are considered here. Formulas in which ∀,∃ do not occur

are termed quantifier-free or open. These are the Boolean combinations

of prime formulas. Generally, the Boolean combinations of formulas from

a set X ⊆ L are the ones generated by ¬, ∧ (and ∨) from those of X.

X, Y, Z always denote sets of formulas, α, β, γ, δ, π, ϕ, . . . denote formu-

las, and s, t terms, while Φ, Ψ are reserved to denote finite sequences of

58 2 First-Order Logic

formulas and formal proofs. Substitutions (to be defined below) will be

denoted by σ, τ, ω, ρ, and ι.

Principles of proof by formula induction and of definition by formula

induction (more precisely formula recursion) also exist for first-order and

other formal languages. After the explanation of these principles for

propositional languages in 1.1, it suffices to present here some examples,

adhering to the maxim verba docent, exempla trahunt. Formula recursion

is based on the unique formula reconstruction property , which is similar to

the corresponding in 1.1: Each composed ϕ ∈ L can uniquely be written

as ϕ = ¬α, ϕ = (α∧β), or ∀xα for some α, β ∈ L and x ∈ Var. A simple

example of a recursive definition is rkϕ, the rank of a formula ϕ. Starting

with rkπ = 0 for prime formulas π it is defined as on page 8, with the

additional clause rk∀xα = rkα+1. Functions on L are sometimes defined

by recursion on rkϕ, not on ϕ, as for instance on page 60.

Useful for some purposes is also the quantifier rank , qrϕ. It represents

a measure of nested quantifiers in ϕ. For prime π let qrπ = 0, and let

qr¬α = qrα, qr(α∧β) = max{qrα, qrβ}, qr∀xα = qrα + 1.

Note that qr∃xϕ = qr¬∀x¬ϕ = qr∀xϕ. A subformula of a formula is

defined analogously to the definition in 1.1. Hence, we need say no more

on this. We write x ∈ bnd ϕ (or x occurs bound in ϕ) if ϕ contains the

prefix ∀x. In subformulas of ϕ of the form ∀xα, the formula α is called

the scope of ∀x. The same prefix can occur repeatedly and with nested

scopes in ϕ, as for instance in ∀x(∀x x==== 0 ∧ x<y). In practice we avoid

this way of writing, though for a computer this would pose no problem.

Intuitively, the formulas (a) ∀x∃y x + y ==== 0 and (b) ∃y x + y ==== 0 are

different in that in every context with a given meaning for + and 0, the

former is either true or false, whereas in (b) the variable x is waiting to be

assigned a value. One also says that all variables in (a) are bound, while

(b) contains the “free” variable x. The syntactic predicate ‘x occurs free

in ϕ’, or ‘x ∈ free ϕ’ is defined inductively: Let free α = var α for prime

formulas α (var α was defined on page 56), and

free (α∧β) = free α ∪ free β, free¬α = free α, free∀xα = free α\{x}.

For instance, free (∀x∃y x+y ==== 0) = ∅, while free (x 6 y ∧ ∀x∃y x+y ==== 0)

equals {x, y}. As the last formula shows, x can occur both free and bound

in a formula. This too will be avoided in practice whenever possible. In

some proof-theoretically oriented presentations, even different symbols are

2.2 Syntax of First-Order Languages 59

chosen for free and bound variables. Each of these approaches has its

advantages and its disadvantages.

Formulas without free variables are called sentences, or closed formulas.

1+1==== 0 and ∀x∃y x+y ==== 0 (= ∀x¬∀y¬x+y ==== 0) are examples. Through-

out take L0 to denote the set of all sentences of L. More generally, let Lk

be the set of all formulas ϕ such that free ϕ ⊆ Vark := {v0, . . . ,vk−1}.

Clearly, L0 ⊆ L1 ⊆ · · · and L =
⋃

k∈N
Lk.

At this point we meet a for the remainder of the book valid

Convention. As long as not otherwise stated, the notation ϕ = ϕ(x)

means that the formula ϕ contains at most x as a free variable; more

generally, ϕ = ϕ(x1, . . . , xn) or ϕ = ϕ(~x) is to mean free ϕ ⊆ {x1, . . . , xn},

where x1, . . . , xn stand for arbitrary but distinct variables. Not all of these

variables need actually occur in ϕ. Further, t = t(~x) for terms t is to be

read completely analogously.

The term ft1 · · · tn is often denoted by f~t , the prime formula rt1 · · · tn
by r~t . Here ~t denotes the string concatenation t1 · · · tn. Fortunately, ~t

behaves exactly like the sequence (t1, . . . , tn) as was pointed out already;

it has the unique term concatenation property, see page 55.

Substitutions. We begin with the substitution t
x of some term t for a

single variable x, called a simple substitution. Put intuitively, ϕ t
x (also

denoted by ϕx(t) and read “ϕ t for x”) is the formula that results from

replacing all free occurrences of x in ϕ by the term t. This intuitive

characterization is made precise recursively, first for terms by

x t
x = t, y t

x = y (x 6= y), c t
x = c, (ft1 · · · tn) t

x = ft′1 · · · t
′
n,

where, for brevity, t′i stands for ti
t
x , and next for formulas as follows:

(t1 ==== t2)
t
x = t′1 ==== t′2, (r~t) t

x = rt′1 · · · t
′
n,

(α∧β) t
x = α t

x ∧β t
x , (¬α) t

x = ¬(α t
x),

(∀yα)t
x =

{

∀yα if x = y,

∀y(α t
x) otherwise.

Then also (α →β) t
x = α t

x → β t
x , and the corresponding holds for ∨,

while (∃yα) t
x = ∃yα for y = x, and ∃y(α t

x) otherwise. Simple substitu-

tions are special cases of so-called simultaneous substitutions

ϕ t1··· tn
x1···xn

(x1, . . . , xn distinct).

For brevity, this will be written ϕ
~t
~x or ϕ~x(~t) or just ϕ(~t), provided there is

no danger of misunderstanding. Here the variables xi are simultaneously

replaced by the terms ti at free occurrences. Simultaneous substitutions

60 2 First-Order Logic

easily generalize to global substitutions σ. Such a σ assigns to every

variable x a term xσ ∈ T . It extends to the whole of T by the clauses

cσ = c and (f~t)σ = ftσ1 · · · t
σ
n, and subsequently to L by recursion on

rkϕ, so that σ is defined for the whole of T ∪ L: (t1 ==== t2)
σ = tσ1 ==== tσ2 ,

(r~t)σ = rtσ1 · · · t
σ
n, (α∧β)σ = ασ ∧βσ, (¬α)σ = ¬ασ, and (∀xϕ)σ = ∀xϕτ ,

where τ is defined by xτ = x and yτ = yσ for y 6= x.3

These clauses cover also the case of a simultaneous substitution, because
~t
~x can be identified with the global substitution σ such that xσ

i = ti
for i = 1, . . . , n and xσ = x otherwise. In other words, a simultaneous

substitution can be understood as a global substitution σ such that xσ = x

for almost all variables x, i.e., with the exception of finitely many. The

identical substitution, always denoted by ι, is defined by xι = x for all x;

hence tι = t and ϕι = ϕ for all terms t and formulas ϕ.

Clearly, a global substitution yields locally, i.e. with respect to individual

formulas, the same as a suitable simultaneous substitution. Moreover, it

will turn out below that simultaneous substitutions are products of simple

ones. Nonetheless, a separate study of simultaneous substitutions is useful

mainly for Chapter 4.

It always holds that t1t2
x1x2

= t2t1
x2x1

, whereas the compositions t1
x1

t2
x2

and
t2
x2

t1
x1

are distinct, in general. Let us elaborate by explaining the difference

between ϕ t1t2
x1x2

and ϕ t1
x1

t2
x2

(
= (ϕ t1

x1
) t2

x2

)
. For example, if one wants

to swap x1, x2 at their free occurrences in ϕ then the desired formula

is ϕ x2x1

x1x2
, but not, in general, ϕ x2

x1

x1

x2
(choose for instance ϕ = x1<x2).

Rather ϕ x2x1

x1x2
= ϕ y

x2

x2

x1

x1

y for any y /∈ var ϕ∪{x1, x2}, as is readily shown

by induction on ϕ after first treating terms. We recommend to carry out

this induction in detail. In the same way we obtain

(1) ϕ
~t
~x = ϕ y

xn

t1··· tn-1

x1···xn-1

tn
y (y /∈ var ϕ ∪ var ~x ∪ var~t , n > 2).

This formula shows that a simultaneous substitution is a suitable product

(composition) of simple substitutions. Conversely, it can be shown that

each such product can be written as a single simultaneous substitution.

In some cases (1) can be simplified. Useful, for example, is the following

equation which holds in particular when all terms ti are variable-free:

(2) ϕ
~t
~x = ϕ t1

x1
· · · tn

xn
(xi /∈ var tj for i 6= j).

3 Since rk ϕ < rk ∀xϕ, we may assume according to the recursive construction of σ that

ϕτ is already defined for all global substitutions τ .

2.3 Semantics of First-Order Languages 61

Getting on correctly with substitutions is not altogether simple; it

requires practice, because our ability to regard complex strings is not

especially trustworthy. A computer is not only much faster but also more

reliable in this respect.

Exercises

1. Show by term induction that a terminal segment of a term t is a

concatenation s1 · · · sm of terms si for some m > 1. Thus, a symbol

in t is at each position in t the initial symbol of a unique subterm s

of t. The uniqueness of s is an easy consequence of Exercise 2(a).

2. Let L be a first-order language, T = TL, and Et the property ‘No

proper initial segment of t (∈ T) is a term, nor is t a proper initial

segment of a term from T ’. Prove (a) Et for all t ∈ T , hence

tξ = t′ξ′ ⇒ t = t′ for all t, t′ ∈ T and arbitrary ξ, ξ′ ∈ SL, and

(b) the unique term concatenation property (page 55).

3. Prove (a) No proper initial segment of a formula ϕ is a formula.

(b) The unique formula reconstruction property stated on page 58.

(c) ¬ξ ∈ L ⇒ ξ ∈ L and α, (α∧ ξ) ∈ L ⇒ ξ ∈ L. (c) easily yields

(d) α, (α → ξ) ∈ L ⇒ ξ ∈ L, for all ξ ∈ SL.

4. Prove that ϕ t
x = ϕ for x /∈ free ϕ, and ϕ y

x
t
y = ϕ t

x for y /∈ var ϕ.

It can even be shown ϕ t
x = ϕ⇔ x /∈ free ϕ whenever t 6= x.

5. Let X ⊆ L be a nonempty formula set and X∗ = X ∪{¬ϕ |ϕ ∈ X}.

Show that a Boolean combination of formulas from X is equivalent

to a disjunction of conjunctions of formulas from X∗.

2.3 Semantics of First-Order Languages

Intuitively it is clear that the formula ∃y y+y ==== x can be allocated a truth

value in the domain (N,+) only if to the free variable x there corresponds a

value in N. Thus, along with an interpretation of the extralogical symbols,

a truth value allocation for a formula ϕ requires a valuation of at least the

variables occurring free in ϕ. However, it is technically more convenient

62 2 First-Order Logic

to work with a global assignment of values to all variables, even if in a

concrete case only the values of finitely many variables are needed. We

therefore begin with the following

Definition. A model M is a pair (A, w) consisting of an L-structure A

and a valuation w : Var → A, w : x 7→ xw. We denote rA, fA, cA, and xw

also by rM, fM, cM, and xM, respectively. The domain of A will also be

called the domain of M.

Models are sometimes called interpretations, occasionally also L-models

if the connection to L is to be highlighted. Some authors identify models

with structures from the outset. This also happens in 2.5, where we

are talking about models of theories. The notion of a model is to be

maintained sufficiently flexible in logic and mathematics.

A model M allocates in a natural way to every term t a value in A,

denoted by tM or tA,w or just by tw. Clearly, for prime terms the value is

already given byM. This evaluation extends to compound terms by term

induction as follows: (f~t)M = fM~tM, where ~tM abbreviates here the

sequence (tM1 , . . . , tMn). If the context allows we neglect the superscripts

and retain just an imaginary distinction between symbols and their inter-

pretation. For instance, if A = (N,+, ·, 0, 1) and xw = 2, say, we write

somewhat sloppily (0 · x + 1)A,w = 0 · 2 + 1 = 1.

The value of t under M depends only on the meaning of the symbols

that effectively occur in t; using induction on t, the following slightly more

general claim is obtained: if var t ⊆ V ⊆ Var andM,M′ are models with

the same domain such that xM = xM′

for all x ∈ V and sM = sM
′

for

all remaining symbols s occurring in t, then tM = tM
′

. Clearly, tA,w may

simply be denoted by tA, provided the term t contains no variables.

We now are going to define a satisfiability relation � between models

M = (A, w) and formulas ϕ, using induction on ϕ as in 1.3. We read

M � ϕ asM satisfies ϕ, orM is a model for ϕ.

Sometimes A � ϕ [w] is written instead of M � ϕ. A similar notation,

just as frequently encountered, is introduced later. Each of these notations

has its advantages, depending on the context. If M � ϕ for all ϕ ∈ X

we write M � X and call M a model for X. For the formulation of

the satisfaction clauses below (taken from [Ta1]) we consider for given

M = (A, w), x ∈ Var, and a ∈ A also the modelMa
x (generalized toM~a

~x

2.3 Semantics of First-Order Languages 63

below). Ma
x differs fromM only in that the variable x receives the value

a ∈ A instead of xM. Thus, Ma
x = (A, w′) with xw′

= a and yw′

= yw

otherwise. The satisfaction clauses then look as follows:

M � s==== t ⇔ sM = tM,

M � r~t ⇔ rM~tM,

M � (α∧β) ⇔ M � α andM � β,

M � ¬α ⇔ M 2 α,

M � ∀xα ⇔ Ma
x � α for all a ∈ A.

Remark 1. The last satisfaction clause can be stated differently if a name for
each a ∈ A, say a, is available in the signature: M � ∀xα ⇔ M � α a

x for all
a ∈ A. This assumption permits the definition of the satisfaction relation for
sentences using induction on sentences while bypassing arbitrary formulas. If
not every a ∈ A has a name in L, one could “fill up” L in advance by adjoining
to L a name a for each a. But expanding the language is not always wanted and
does not really simplify the matter.

Ma
x is slightly generalized to M~a

~x := Ma1···an
x1···xn

(= (Ma1

x1
)a2

x2
. . .), which

differs fromM in the values of a sequence x1, . . . , xn of distinct variables.

This and writing ∀~xϕ for ∀x1 · · · ∀xnϕ permits a short notation of a useful

generalization of the last clause above, namely

M � ∀~xϕ ⇔ M~a
~x � ϕ for all ~a ∈ An.

The definitions of α ∨ β, α →β, and α↔ β from page 56 readily imply

the additional clauses M � α ∨ β iff M � α or M � β, M � α →β

iff M � α ⇒ M � β, and analogously for ↔. Clearly, if ∨, → ,↔ were

treated as independent connectives, these equivalences would have to be

added to the above ones. Further, the definition of ∃xϕ in 2.2 corresponds

to its intended meaning, because M � ∃xϕ ⇔ Ma
x � ϕ for some a ∈ A.

Indeed, whenever M � ¬∀x¬ϕ (= ∃xϕ) then Ma
x � ¬ϕ does not hold

for all a; hence there is some a ∈ A such that Ma
x 2 ¬ϕ, or equivalently,

Ma
x � ϕ. And this chain of reasoning is obviously reversible.

Example 1. M � ∃x x==== t for arbitrary M, provided x /∈ var t. Indeed,

Ma
x � x==== t with a := tM, since xMa

x = a = tM = tM
a
x in view of x /∈ var t.

The assumption x /∈ var t is essential. For instance,M � ∃x x==== fx holds

only if the function fM has a fixed point.

We now introduce several fundamental notions that will be treated more

systematically in 2.4 and 2.5, once certain necessary preparations have

been completed.

64 2 First-Order Logic

Definition. A formula or set of formulas in L is termed satisfiable if it

has a model. ϕ ∈ L is called generally valid, logically valid, or a tautology,

in short, � ϕ, if M � ϕ for every model M. Formulas α, β are called

(logically or semantically) equivalent , in symbols, α ≡ β, if

M � α ⇔ M � β, for each L-model M.

Further, let A � ϕ (read ϕ holds in A or A satisfies ϕ) if (A, w) � ϕ for

all w : Var→ A. One writes A � X in case A � ϕ for all ϕ ∈ X. Finally,

let X � ϕ (read from X follows ϕ, or ϕ is a consequence of X) if every

modelM of X also satisfies the formula ϕ, i.e., M � X ⇒M � ϕ.

As in Chapter 1, � denotes both the satisfaction and the consequence

relation. Here, as there, we write ϕ1, . . . , ϕn � ϕ for {ϕ1, . . . , ϕn} � ϕ.

Note that in addition, � denotes the validity relation in structures, which

is illustrated by the following

Example 2. We show that A � ∀x∃y x 6==== y, where the domain of A

contains at least two elements. Indeed, let M = (A, w) and let a ∈ A

be given arbitrarily. Then there exists some b ∈ A with a 6= b. Hence,

(Ma
x)b

y = Ma b
xy � x 6==== y, and so Ma

x � ∃y x 6==== y. Since a was arbitrary,

M � ∀x∃y x 6==== y. Clearly the actual values of w are irrelevant in this

argument. Hence (A, w) � ∀x∃y x 6====y for all w, that is, A � ∀x∃y x 6====y.

Here some care is needed. While M � ϕ or M � ¬ϕ for all formulas,

A � ϕ orA � ¬ϕ (the law of the excluded middle for validity in structures)

is in general correct only for sentences ϕ, as Theorem 3.1 will show. If

A contains more than one element, then, for example, neither A � x==== y

nor A � x 6====y. Indeed, x==== y is falsified by any w such that xw 6= yw, and

x 6====y by any w with xw = yw. This is one of the reasons why models were

not simply identified with structures.

For ϕ ∈ L let ϕg be the sentence ∀x1 · · · ∀xmϕ, where x1, . . . , xm is

an enumeration of free ϕ according to index size, say. ϕg is called the

generalized of ϕ, also called its universal closure. For ϕ ∈ L0 clearly

ϕg = ϕ. From the definitions immediately results

(1) A � ϕ ⇔ A � ϕg ,

and more generally, A � X ⇔ A � X g (:= {ϕg | ϕ ∈ X}). (1) explains

why ϕ and ϕg are often notionally identified, and the information that

formally runs ϕg is often shortened to ϕ. It must always be clear from

2.3 Semantics of First-Order Languages 65

the context whether our eye is on validity in a structure, or on validity in

a model with its fixed valuation. Only in the first case can a generaliza-

tion (or globalization) of the free variables be thought of as carried out.

However, independent of this discussion, � ϕ ⇔ � ϕg always holds.

Even after just these incomplete considerations it is already clear that

numerous properties of structures and whole systems of axioms can ad-

equately be described by first-order formulas and sentences. Thus, for

example, an axiom system for groups in ◦, e,−1, mentioned already in

2.1, can be formulated as follows:

∀x∀y∀z x ◦ (y ◦ z)==== (x ◦ y) ◦ z; ∀x x ◦ e==== x; ∀x x ◦x−1 ==== e.

Precisely, the sentences that follow from these axioms form the elementary

group theory in ◦, e,−1. It will be denoted by T ====
G . In the sense elaborated

in Exercise 3 in 2.6 an equivalent formulation of the theory of groups in
◦, e, denoted by TG, is obtained if the third T ====

G -axiom is replaced by

∀x∃y x ◦ y ==== e. Let us mention that ∀x e ◦x==== x and ∀x∃y y ◦x==== e are

provable in TG and also in T ====
G .

An axiom system for ordered sets can also easily be provided, in that

one formalizes the properties of being irreflexive, transitive, and connex.

Here and elsewhere, ∀x1 · · ·xnϕ stands for ∀x1 · · · ∀xnϕ:

∀x x ≮ x; ∀xyz(x < y ∧ y < z →x < z); ∀xy(x 6====y →x < y ∨ y < x).

In writing down these and other axioms the outer ∀-prefixes are very

often omitted so as to save on writing, and we think implicitly of the

generalization of variables as having been carried out. This kind of eco-

nomical writing is employed also in the formulation of (1) above, which

strictly speaking runs ‘for all A, ϕ : A � ϕ ⇔ A � ϕg ’.

For sentences α of a given language it is intuitively clear that the values

of the variables of w for the relation (A, w) � α are irrelevant. The

precise proof is extracted from the following theorem for V = ∅. Thus,

either (A, w) � α for all w and hence A � α, or else (A, w) � α for no w,

i.e., (A, w) � ¬α for all w, and hence A � ¬α. Sentences therefore obey

the already-cited tertium non datur.

Theorem 3.1 (Coincidence theorem). Let V ⊆ Var, free ϕ ⊆ V , and

M,M′ be models on the same domain A such that xM = xM′

for all

x ∈ V , and sM = sM
′

for all extralogical symbols s occurring in ϕ. Then

M � ϕ ⇔ M′ � ϕ.

66 2 First-Order Logic

Proof by induction on ϕ. Let ϕ = r~t be prime, so that var~t ⊆ V . As was

mentioned earlier, the value of a term t depends only on the meaning of the

symbols occurring in t. But in view of the suppositions, these meanings

are the same in M and M′. Therefore, ~t M = ~t M′

(i.e., tMi = tM
′

i for

i = 1, . . . , n), and so M � r~t ⇔ rM~t M ⇔ rM
′~t M′

⇔ M′ � r~t . For

equations t1 ==== t2 one reasons analogously. Further, the induction hypoth-

esis for α, β yields M � α∧β ⇔ M � α, β ⇔ M′ � α, β ⇔ M′ � α∧β.

In the same way one obtainsM � ¬α⇔M′ � ¬α. By the induction step

on ∀ it becomes clear that the induction hypothesis needs to be skillfully

formulated. It must be given with respect to any pair M,M′ of models

and any subset V of Var.

Therefore let a ∈ A and Ma
x � ϕ. Since for V ′ := V ∪ {x} certainly

free ϕ ⊆ V ′ and the models Ma
x, M′ a

x coincide for all y ∈ V ′ (although

in general xM 6= xM′

), by the induction hypothesisMa
x � ϕ⇔M′ a

x � ϕ,

for each a ∈ A. This clearly implies

M � ∀xϕ⇔Ma
x � ϕ for all a⇔M′ a

x � ϕ for all a⇔M′ � ∀xϕ.

It follows from this theorem that an L-model M = (A, w) of ϕ for

the case that ϕ ∈ L ⊆ L′ can be completely arbitrarily expanded to an

L′-model M′ = (A′, w) of ϕ, i.e., arbitrarily fixing sM
′

for s ∈ L′ \L

gives M � ϕ ⇔ M′ � ϕ by the above theorem with V = Var. This

readily implies that the consequence relation �L′ with respect to L′ is a

conservative extension of �L in that X �L ϕ ⇔ X �L′ ϕ, for all sets

X ⊆ L and all ϕ ∈ L. Hence, there is no need here for using indices. In

particular, the satisfiability or general validity of ϕ depends only on the

symbols effectively occurring in ϕ.

Another application of Theorem 3.1 is the following fact, which justifies

the already mentioned “omission of superfluous quantifiers.”

(2) ∀xϕ ≡ ϕ ≡ ∃xϕ whenever x /∈ free ϕ.

Indeed, x /∈ free ϕ implies M � ϕ ⇔ Ma
x � ϕ (here a ∈ A is arbitrary)

according to Theorem 3.1; choose M′ =Ma
x and V = free ϕ. Therefore,

M � ∀xϕ⇔Ma
x � ϕ for all a⇔M � ϕ

⇔Ma
x � ϕ for some a ⇔M � ∃xϕ.

Very important for the next theorem and elsewhere is

(3) If A ⊆ B,M = (A, w), M′ = (B, w) and w : Var→ A then

tM = tM
′

.

2.3 Semantics of First-Order Languages 67

This is clear for prime terms, and the induction hypothesis tMi = tM
′

i for

i = 1, . . . , n together with fM = fM′

imply

(f~t)M = fM(tM1 , . . . , tMn) = fM′

(tM
′

1 , . . . , tM
′

n) = (f~t)M
′

.

For M = (A, w) and xw
i = ai let tA,~a, or more suggestively tA(~a) denote

the value of t = t(~x). Then (3) can somewhat more simply be written as

(4) A ⊆ B and t = t(~x) imply tA(~a) = tB(~a) for all ~a ∈ An.

Thus, along with the basic functions, also the so-called term functions

~a 7→ tA(~a) are the restrictions to their counterparts in B. Clearly, if n = 0

or t is variable-free, one may write tA for tA(~a). Note that in these cases

tA = tB whenever A ⊆ B, according to (4).

By Theorem 3.1 the satisfaction of ϕ in (A, w) depends only on the

values of the x ∈ free ϕ. Let ϕ = ϕ(~x)4 and ~a = (a1, . . . , an) ∈ An. Then

the statement

(A, w) � ϕ for a valuation w with xw
1 = a1, . . . , x

w
n = an

can more suggestively be expressed by writing

(A,~a) � ϕ or A � ϕ [a1, . . . , an] or A � ϕ [~a]

without mentioning w as a global valuation. Such notation also makes

sense if w is restricted to a valuation on {x1, . . . , xn}. One may accordingly

extend the concept of a model and call a pair (A,~a) a model for a formula

ϕ(~x) whenever (A,~a) � ϕ(~x), in particular if ϕ ∈ Ln. We return to this

extended concept in 4.1. Until then we use it only for n = 0. That is,

besides M = (A, w) also the structure A itself is occasionally called a

model for a set S ⊆ L0 of sentences, provided A � S.

As above let ϕ = ϕ(~x). Then ϕA := {~a ∈ An | A � ϕ [~a]} is called the

predicate defined by the formula ϕ in the structure A. For instance, the

6-predicate in (N,+) is defined by ϕ(x, y) = ∃z z + x==== y, but also by

several other formulas.

More generally, a predicate P ⊆ An is termed (explicitly or elementarily

or first-order) definable in A if there is some ϕ = ϕ(~x) with P = ϕA, and

ϕ is called a defining formula for P . Analogously, f : An → A is called

definable in A if ϕA = graph f for some ϕ(~x, y). One often talks in this

4 Since this equation is to mean free ϕ ⊆ {x1, . . . , xn}, ~x is not uniquely determined

by ϕ. Hence, the phrase “Let ϕ = ϕ(~x) . . . ” implicitly includes along with a given ϕ

also a tuple ~x given in advance. The notation ϕ = ϕ(~x) does not even state that ϕ

contains free variables at all.

68 2 First-Order Logic

case of explicit definability of f in A, to distinguish it from other kinds

of definability. Much information is gained from the knowledge of which

sets, predicates, or functions are definable in a structure. For instance,

the sets definable in (N, 0, 1,+) are the eventually periodic ones (periodic

from some number on). Thus, · cannot explicitly be defined by +, 0, 1

because the set of square numbers is not eventually periodic.

A ⊆ B and ϕ = ϕ(~x) do not imply ϕA = ϕB ∩ An, in general. For

instance, let A = (N,+), B = (Z,+), and ϕ = ∃z z + x==== y. Then

ϕA = 6A, while ϕB contains all pairs (a, b) ∈ Z2. As the next theorem

will show, ϕA = ϕB ∩ An holds in general only for open formulas ϕ, and

is even characteristic for A ⊆ B provided A ⊆ B. Clearly, A ⊆ B is much

weaker a condition than A ⊆ B:

Theorem 3.2 (Substructure theorem). For structures A,B such that

A ⊆ B the following conditions are equivalent:

(i) A ⊆ B,

(ii) A � ϕ [~a]⇔ B � ϕ [~a], for all open ϕ = ϕ(~x) and all ~a ∈ An,

(iii) A � ϕ [~a]⇔ B � ϕ [~a], for all prime formulas ϕ(~x) and ~a ∈ An.

Proof. (i)⇒(ii): It suffices to prove that M � ϕ ⇔ M′ � ϕ, with

M = (A, w) and M′ = (B, w), where w : Var → A. In view of (3) the

claim is obvious for prime formulas, and the induction steps for ∧ ,¬ are

carried out just as in Theorem 3.1. (ii)⇒(iii): Trivial. (iii)⇒(i): By (iii),

rA~a⇔ A � r~x [~a]⇔ B � r~x [~a]⇔ rB~a. Analogously,

fA~a = b ⇔ A � f~x==== y [~a, b] ⇔ B � f~x==== y [~a, b] ⇔ fB~a = b,

for all ~a ∈ An, b ∈ A. These conclusions state precisely that A ⊆ B.

Let α be of the form ∀~xβ with open β, where ∀~x may also be the empty

prefix. Then α is a universal or ∀-formula (spoken “A-formula”), and for

α ∈ L0 also a universal or ∀-sentence. A simple example is ∀x∀y x==== y,

which holds in A iff A contains precisely one element. Dually, ∃~xβ with

β open is termed an ∃-formula, and an ∃-sentence whenever ∃~xβ ∈ L0.

Examples are the “how-many sentences”

∃1 := ∃v0 v0 ==== v0; ∃n := ∃v0 · · · ∃vn−1
∧

i<j<n vi 6====vj (n > 1).

∃n states ‘there exist at least n elements’, ¬∃n+1 thus that ‘there exist

at most n elements’, and ∃=n := ∃n ∧¬∃n+1 says ‘there exist exactly

2.3 Semantics of First-Order Languages 69

n elements’. Since ∃1 is a tautology, it is convenient to set ⊤ := ∃1,

and ∃0 := ⊥ := ¬⊤ in all first-order languages with equality. Clearly,

equivalent definitions of ⊤, ⊥ may be used as well.

Corollary 3.3. Let A ⊆ B. Then every ∀-sentence ∀~xα valid in B is also

satisfied in A. Dually, every ∃-sentence ∃~xβ valid in A is also valid in B.

Proof. Let B � ∀~xβ and ~a ∈ An. Then B � β [~a], hence A � β [~a] by

Theorem 3.2. ~a was arbitrary and therefore A � ∀~xβ. Now let A � ∃~xβ.

Then A � β [~a] for some ~a ∈ An, hence B � β [~a] by Theorem 3.2, and

consequently B � ∃~xβ.

We now formulate a generalization of certain individual often-used ar-

guments about the invariance of properties under isomorphisms:

Theorem 3.4 (Invariance theorem). Let A,B be isomorphic structures

of signature L and let ı :A → B be an isomorphism. Then for all ϕ = ϕ(~x)

A � ϕ [~a] ⇔ B � ϕ [ı~a]
(
~a ∈ An, ı~a = (ıa1, . . . , ıan)

)
.

In particular A � ϕ⇔ B � ϕ, for all sentences ϕ of L.

Proof. It is convenient to reformulate the claim as

M � ϕ ⇔ M′ � ϕ
(
M = (A, w), M′ = (B, w′), w′ : x 7→ ıxw

)
.

This is easily confirmed by induction on ϕ after first proving ı(tM) = tM
′

inductively on t. This proof clearly includes the case ϕ ∈ L0.

Thus, for example, it is once and for all clear that the isomorphic image

of a group is a group even if we know at first only that it is a groupoid.

Simply let ϕ in the theorem run through all axioms of group theory.

Another application: Let ı be an isomorphism of the group A = (A, ◦)

onto the group A′ = (A′, ◦) and let e and e′ denote their unit elements,

not named in the signature. We claim that nonetheless ıe = e′, using

the fact that the unit element of a group is the only solution of x ◦x==== x

(Example 2, page 83). Thus, since A � e ◦ e==== e, we get A′ � ıe ◦ ıe==== ıe by

Theorem 3.4, hence ıe = e′. Theorem 3.4, incidentally, holds for formulas

of higher order as well. For instance, the property of being a continuously

ordered set (formalizable in a second-order language, see 3.8) is likewise

invariant under isomorphism.

L-structures A,B are termed elementarily equivalent if A � α⇔ B � α,

for all α ∈ L0. One then writes A ≡ B. We consider this important notion

70 2 First-Order Logic

in 3.3 and more closely in 5.1. Theorem 3.4 states in particular that

A ≃ B ⇒ A ≡ B. The question immediately arises whether the converse

of this also holds. For infinite structures the answer is negative (see 3.3),

for finite structures affirmative; a finite structure of a finite signature can,

up to isomorphism, even be described by a single sentence. For example,

the 2-element group ({0, 1},+) is up to isomorphism well determined by

the following sentence, which tells us precisely how + operates:

∃v0∃v1[v0 6====v1 ∧∀x(x==== v0 ∨ x==== v1)

∧ v0 + v0 ==== v1 + v1 ==== v0 ∧ v0 + v1 ==== v1 + v0 ==== v1].

We now investigate the behavior of the satisfaction relation under sub-

stitution. The definition of ϕ t
x in 2.2 pays no attention to collision of

variables , which is taken to mean that some variables of the substitution

term t fall into the scope of quantifiers after the substitution has been

performed. In this case M � ∀xϕ does not necessarily imply M � ϕ t
x ,

although this might have been expected. In other words, ∀xϕ � ϕ t
x is

not unrestrictedly correct. For instance, if ϕ = ∃y x 6==== y then certainly

M � ∀xϕ (= ∀x∃y x 6==== y) whenever M has at least two elements, but

M � ϕ y
x (= ∃y y 6==== y) is certainly false. Analogously ϕ t

x � ∃xϕ is not

correct, in general. For example, choose ∀y x==== y for ϕ and y for t.

One could forcibly obtain ∀xϕ � ϕ t
x without any limitation by renam-

ing bound variables by a suitable modification of the inductive definition

of ϕ t
x in the quantifier step. However, such measures are rather unwieldy

for the arithmetization of proof method in 6.2. It is therefore preferable

to put up with minor restrictions when we are formulating rules of deduc-

tion later. The restrictions we will use are somewhat stronger than they

need to be but can be handled more easily; they look as follows:

Call ϕ, t
x collision-free if y /∈ bnd ϕ for all y ∈ var t distinct from x.

We need not require x /∈ bnd ϕ because t is substituted only at free oc-

currences of x in ϕ, that is, x cannot fall after substitution within the

scope of a prefix ∀x, even if x ∈ var t. For collision-free ϕ, t
x we always

get ∀xϕ � ϕ t
x by Corollary 3.6 below.

If σ is a global substitution (see 2.2) then ϕ, σ are termed collision-free

if ϕ, xσ

x are collision-free for every x ∈ Var. If σ =
~t
~x , this condition clearly

need be checked only for the pairs ϕ, xσ

x with x ∈ var ~x and x ∈ free ϕ.

2.3 Semantics of First-Order Languages 71

For M = (A, w) put Mσ := (A, wσ) with xwσ
:= (xσ)M for x ∈ Var,

so that xMσ
= xσM (= (xσ)M). This equation reproduces itself to

(5) tM
σ

= tσM for all terms t.

Indeed, tM
σ

= fM(tM
σ

1 , . . . , tM
σ

n) = fM(tσ
1
M, . . . , tσ

n
M) = tσM for

t = f~t in view of the induction hypothesis tM
σ

i = tσ
i
M (i = 1, . . . , n).

Notice thatMσ coincides with M~tM

~x for the case σ =
~t
~x .

Theorem 3.5 (Substitution theorem). Let M be a model and σ a

global substitution. Then holds for all ϕ such that ϕ, σ are collision-free,

(6) M � ϕσ ⇔ Mσ � ϕ.

In particular, M � ϕ
~t
~x ⇔ M~tM

~x � ϕ, provided ϕ,
~t
~x are collision-free.

Proof by induction on ϕ. In view of (5), we obtain

M � (t1 ==== t2)
σ ⇔ tσ1

M = tσ2
M ⇔ tM

σ

1 = tM
σ

2 ⇔ Mσ � t1 ==== t2.

Prime formulas r~t are treated analogously. The induction steps for ∧ ,¬

in the proof of (6) are harmless. Only the ∀-step is interesting. The

reader should recall the definition of (∀xα)σ page 60 and realize that the

induction hypothesis refers to an arbitrary global substitution τ .

M �(∀xα)σ⇔M � ∀x ατ (xτ = x and yτ = yσ else)

⇔Ma
x � ατ for all a (definition)

⇔ (Ma
x)τ � α for all a (induction hypothesis)

⇔ (Mσ)a
x � α for all a

(
(Ma

x)τ = (Mσ)a
x, see below

)

⇔Mσ � ∀xα.

We show that (Ma
x)τ = (Mσ)a

x. Since ∀xα, σ (hence ∀xα, yσ

y for every y)

are collision-free, we have x /∈ var yσ if y 6= x, and since yτ = yσ we get

in this case y(Ma
x)τ

= yτMa
x = yσMa

x = yσM = yM
σ

= y(Mσ)a
x . But also

in the case y = x we have x(Ma
x)τ

= xτMa
x = xMa

x = a = x(Mσ)a
x .

Corollary 3.6. For all ϕ and
~t
~x such that ϕ,

~t
~x are collision-free, the

following properties hold:

(a) ∀~xϕ � ϕ
~t
~x , in particular ∀xϕ � ϕ t

x , (b) ϕ
~t
~x � ∃~xϕ,

(c) ϕ s
x , s==== t � ϕ t

x , provided ϕ, s
x , t

x are collision-free.

Proof. Let M � ∀~xϕ, so that M~a
~x � ϕ for all ~a ∈ An. In particular,

M~tM

~x � ϕ. Therefore, M � ϕ
~t
~x by Theorem 3.5. (b) follows easily from

¬∃~xϕ � ¬ϕ
~t
~x . This holds by (a), for ¬∃~xϕ ≡ ∀~x¬ϕ and ¬(ϕ

~t
~x) ≡ (¬ϕ)

~t
~x .

72 2 First-Order Logic

(c): LetM � ϕ s
x , s==== t, so that sM = tM andMsM

x � ϕ by the theorem.

Clearly, then also MtM
x � ϕ. HenceM � ϕ t

x .

Remark 2. The identical substitution ι is obviously collision-free with every
formula. Thus, ∀xϕ � ϕ (= ϕι) is always the case, while ∀xϕ � ϕ t

x is correct
in general only if t contains at most the variable x, since ϕ, t

x are then collision-
free. Theorem 3.5 and Corollary 3.6 are easily strengthened. Define inductively
a ternary predicate ‘t is free for x in ϕ’, which intuitively is to mean that no free
occurrence in ϕ of the variable x lies within the scope of a prefix ∀y whenever
y ∈ var t. In this case Theorem 3.5 holds for σ = t

x as well, so that nothing
needs to be changed in the proofs based on this theorem if one works with
‘t is free for x in ϕ’, or simply reads “ϕ, t

x are collision-free” as “t is free for x in
ϕ.” Though collision-freeness is somewhat cruder and slightly more restrictive,
it is for all that more easily manageable, which will pay off, for example, in 6.2,
where proofs will be arithmetized. Once one has become accustomed to the
required caution, it is allowable not always to state explicitly the restrictions
caused by collisions of variables, but rather to assume them tacitly.

Theorem 3.5 also shows that the quantifier “there exists exactly one,” de-

noted by ∃!, is correctly defined by ∃!xϕ := ∃xϕ ∧ ∀x∀y(ϕ∧ϕ y
x →x==== y)

with y /∈ var ϕ. Indeed, it is easily seen that M � ∀x∀y(ϕ∧ϕ y
x →x==== y)

means justMa
x � ϕ &Mb

y � ϕ y
x ⇒ a = b. In short,Ma

x � ϕ for at most

one a. Putting everything together, M � ∃!xϕ iff there is precisely one

a ∈ A with Ma
x � ϕ. An example is M � ∃!x x==== t for arbitrary M and

x /∈ var t. In other words, ∃!x x==== t is a tautology. Half of this, namely

� ∃x x==== t, was shown in Example 1, and � ∀x∀y(x==== t∧y ==== t →x==== y) is

obvious. There are various equivalent definitions of ∃!xϕ. For example,

a short and catchy formula is ∃x∀y(ϕ y
x ↔ x==== y), where y /∈ var ϕ. The

equivalence proof is left to the reader.

Exercises

1. Let X � ϕ and x /∈ free X. Show that X � ∀xϕ.

2. Prove that ∀x(α →β) � ∀xα →∀xβ, which is obviously equivalent

to � ∀x(α →β) →∀xα →∀xβ.

3. Suppose A′ results from A by adjoining a constant symbol a for

some a ∈ A. Prove A � α [a] ⇔ A′ � α(a) (= α a
x) for α = α(x),

by first verifying t(x)A,a = t(a)A
′

. This is easily generalized to the

case of more than one free variable in α.

2.4 General Validity and Logical Equivalence 73

4. Show that (a) A conjunction of the ∃i and their negations is equiva-

lent to ∃n ∧¬∃m for suitable n, m (∃n ∧¬∃0 ≡ ∃n, ∃1 ∧¬∃m ≡ ¬∃m).

(b) A Boolean combination of the ∃i is equivalent to
∨

ν6n ∃=kν
or

to ∃k ∨
∨

ν6n ∃=kν
, with k0 < · · · < kn < k. Note that

∨

ν6n ∃=kν

equals ∃=0 (≡ ⊥) for n=k0=0 and ¬∃n ≡
∨

ν<n ∃=ν for n>0.

2.4 General Validity and Logical Equivalence

From the perspective of predicate logic α ∨ ¬α (α ∈ L) is a trivial example

of a tautology, because it results by inserting α for p from the propositional

tautology p ∨ ¬p. Every propositional tautology provides generally valid

L-formulas by the insertion of L-formulas for the propositional variables.

But there are tautologies not arising in this way. ∀x(x < x ∨ x ≮ x) is

an example, though it has still a root in propositional logic. Tautologies

without a such a root are ∃x x==== x and ∃x x==== t for x /∈ var t. The former

arises from the convention that structures are always nonempty, the latter

from the restriction to totally defined basic operations. A particularly

interesting tautology is given by the following

Example 1 (Russell’s antinomy). We will show that the “Russellian

set” u, consisting of all sets not containing themselves as a member, does

not exist which clearly follows from � ¬∃u∀x(x∈ u↔ x /∈ x). We start with

∀x(x∈ u↔ x /∈ x) � u∈ u↔ u /∈ u. This holds by Corollary 3.6(a). Clearly,

u∈ u↔ u /∈ u is unsatisfiable. Hence, the same holds for ∀x(x∈ u↔ x /∈ x),

and thus for ∃u∀x(x∈ u↔ x /∈ x). Consequently, � ¬∃u∀x(x∈ u↔ x /∈ x).

Note that we need not assume in the above argument that ∈ means

membership. The proof of � ¬∃u∀x(x∈ u↔ x /∈ x) need not be related to

set theory at all. Hence, our example represents rather a logical paradox

than a set-theoretic antinomy. What looks like an antinomy here is the

expectation that ∃u∀x(x∈ u↔ x /∈ x) should hold in set theory if ∈ is to

mean membership and Cantor’s definition of a set is taken literally.

The satisfaction clause for α →β easily yields α � β ⇔ � α →β,

a special case of X, α � β ⇔ X � α →β. This can be very useful

in checking whether formulas given in implicative form are tautologies, as

was mentioned already in 1.3. For instance, from ∀xα � α t
x (which holds

for collision-free α, t
x) we immediately get � ∀xα →α t

x .

74 2 First-Order Logic

As in propositional logic, α ≡ β is again equivalent to � α ↔ β.

By inserting L-formulas for the variables of a propositional equivalence

one automatically procures one of predicate logic. Thus, for instance,

α →β ≡ ¬α ∨ β, because certainly p →q ≡ ¬p ∨ q. Since every L-formula

results from the insertion of propositionally irreducible L-formulas in a

formula of propositional logic, one also sees that every L-formula can be

converted into a conjunctive normal form. But there are also numerous

other equivalences, for example ¬∀xα ≡ ∃x¬α and ¬∃xα ≡ ∀x¬α. The

first of these means just ¬∀xα ≡ ¬∀x¬¬α (= ∃x¬α), obtained by replac-

ing α by the equivalent formula ¬¬α under the prefix ∀x. This is a simple

application of Theorem 4.1 below with ≡ for ≈.

As in propositional logic, semantic equivalence is an equivalence relation

in L and, moreover, a congruence in L. Speaking more generally, an

equivalence relation ≈ in L satisfying the congruence property

CP: α ≈ α′, β ≈ β′ ⇒ α∧β ≈ α′ ∧β′, ¬α ≈ ¬α′, ∀xα ≈ ∀xα′

is termed a congruence in L. Its most important property is expressed by

Theorem 4.1 (Replacement theorem). Let ≈ be a congruence in L

and α ≈ α′. If ϕ′ results from ϕ by replacing the formula α at one or

more of its occurrences in ϕ by the formula α′, then ϕ ≈ ϕ′.

Proof by induction on ϕ. Suppose ϕ is a prime formula. Both for ϕ = α

and ϕ 6= α, ϕ ≈ ϕ′ clearly holds. Now let ϕ = ϕ1 ∧ϕ2. In case ϕ = α

holds trivially ϕ ≈ ϕ′. Otherwise ϕ′ = ϕ′
1 ∧ϕ′

2, where ϕ′
1, ϕ

′
2 result from

ϕ1, ϕ1 by possible replacements. By the induction hypothesis ϕ1 ≈ ϕ′
1

and ϕ2 ≈ ϕ′
2. Hence, ϕ = ϕ1 ∧ϕ2 ≈ ϕ′

1 ∧ϕ′
2 = ϕ′ according to CP above.

The induction steps for ¬, ∀ follow analogously.

This theorem will constantly be used, mainly with ≡ for ≈, without

actually specifically being cited, just as in the arithmetical rearrangement

of terms, where the laws of arithmetic used are hardly ever named ex-

plicitly. The theorem readily implies that CP is provable for all defined

connectives such as → and ∃. For example, α ≈ α′ ⇒ ∃xα ≈ ∃xα′,

because α ≈ α′ ⇒ ∃xα = ¬∀x¬α ≈ ¬∀x¬α′ = ∃xα′.

First-order languages have a finer structure than those of propositional

logic. There are consequently further interesting congruences in L. In

particular, formulas α, β are equivalent in an L-structure A, in symbols

2.4 General Validity and Logical Equivalence 75

α ≡A β, if A � α [w] ⇔ A � β [w], for all w. Hence, in A = (N, <,+, 0)

the formulas x < y and ∃z (z 6====0 ∧ x + z ==== y) are equivalent. The proof

of CP for ≡A is very simple and is therefore left to the reader.

Clearly, α ≡A β is equivalent to A � α ↔ β. Because of ≡ ⊆ ≡A,

properties such as ¬∀xα ≡ ∃x¬α carry over from ≡ to ≡A. But there

are often new interesting equivalences in certain structures. For instance,

there are structures in which every formula is equivalent to a formula

without quantifiers, as we will see in 5.6.

A very important fact with an almost trivial proof is that the intersec-

tion of a family of congruences is itself a congruence. Consequently, for

any class K 6= ∅ of L-structures, ≡K :=
⋂
{≡A | A ∈ K} is necessarily a

congruence. For the class K of all L-structures, ≡K equals the logical

equivalence ≡, which in this section we deal with exclusively. Below we

list its most important features; these should be committed to memory,

since they will continually be applied.

(1) ∀x(α∧β) ≡ ∀xα∧∀xβ, (2) ∃x(α ∨ β) ≡ ∃xα ∨ ∃xβ,

(3) ∀x∀yα ≡ ∀y∀xα, (4) ∃x∃yα ≡ ∃y∃xα.

If x does not occur free in the formula β, then also

(5) ∀x(α ∨ β) ≡ ∀xα ∨ β, (6) ∃x(α∧β) ≡ ∃xα∧β,

(7) ∀xβ ≡ β, (8) ∃xβ ≡ β,

(9) ∀x(α →β) ≡ ∃xα →β, (10) ∃x(α →β) ≡ ∀xα →β.

The simple proofs are left to the reader. (7) and (8) were stated in (2)

in 2.3. Only (9) and (10) look at first sight surprising. But in practice

these equivalences are very frequently used. For instance, consider for a

fixed set of formulas X the evidently true metalogical assertion ‘for all α:

if X � α,¬α then X � ∀x x 6====x’. This clearly states the same as ‘If there

is some α such that X � α,¬α then X � ∀x x 6====x’.

Remark. In everyday speech variables tend to remain unquantified, partly be-
cause in some cases the same meaning results from quantifying with “there exists
a” as with “for all.” For instance, consider the following three sentences, which
obviously tell us the same thing, and of which the last two correspond to the
logical equivalence (9):
• If a lawyer finds a loophole in the law it must be changed.

• If there is a lawyer who finds a loophole in the law it must be changed.

• For all lawyers: if one of them finds a loophole in the law then it must be
changed.

76 2 First-Order Logic

Often, the type of quantification in linguistic bits of information can be made
out only from the context, and this leads not all too seldom to unintentional (or
intentional) misunderstandings. “Logical relations in language are almost always
just alluded to, left to guesswork, and not actually expressed” (G. Frege).

Let x, y be distinct variables and α ∈ L. One of the most important

logical equivalences is renaming of bound variables (in short, bound re-

naming), stated in

(11) (a) ∀xα ≡ ∀y(α y
x), (b) ∃xα ≡ ∃y(α y

x) (y /∈ var α).

(b) follows from (a) by rearranging equivalently. Note that y /∈ var α is

equivalent to y /∈ free α and α, y
x collision-free. WritingMy

x forMyM

x , (a)

derives as follows:

M � ∀xα ⇔ Ma
x � α for all a (definition)

⇔ (Ma
y)

a
x � α for all a (Theorem 3.1)

⇔ (Ma
y)

y
x � α for all a

(
(Ma

y)
y
x = (Ma

y)
a
x

)

⇔ Ma
y � α y

x for all a (Theorem 3.5)

⇔ M � ∀y(α y
x) .

(12) and (13) below are also noteworthy. According to (13), substitu-

tions are completely described up to logical equivalence by so-called free

renamings (substitutions of the form y
x). (13) also embraces the case

x ∈ var t. In (12) and (13) we tacitly assume that α, t
x are collision-free.

(12) ∀x(x==== t →α) ≡ α t
x ≡ ∃x(x==== t ∧ α) (x /∈ var t).

(13) ∀y(y ==== t →α y
x) ≡ α t

x ≡ ∃y(y ==== t ∧ α y
x) (y /∈ var α, t).

Proof of (12): ∀x(x==== t →α) � (x==== t →α) t
x = t==== t →α t

x � α t
x by

Corollary 3.6. Conversely, let M � α t
x . If Ma

x � x==== t then clearly

a = tM. Hence also Ma
x � α, since MtM

x � α. Thus, Ma
x � x==== t →α for

any a ∈ A, i.e., M � ∀x(x==== t →α). This proves the left equivalence in

(12). The right equivalence reduces to the left one because

∃x(x==== t ∧ α) = ¬∀x¬(x==== t ∧ α) ≡ ¬∀x(x==== t→ ¬α) ≡ ¬¬α t
x ≡ α t

x .

Item (13) is proved similarly. Note that ∀y(y ==== t →α y
x) � α y

x
t
y = α t

x

by Corollary 3.6 and Exercise 4 in 2.2.

With the above equivalences we can now regain an equivalent formula

starting with any formula in which all quantifiers are standing at the be-

ginning. But this result requires both quantifiers ∀ and ∃, in the following

denoted by Q, Q1, Q2, . . .

2.4 General Validity and Logical Equivalence 77

A formula of the form α = Q1x1 · · · Qnxnβ with an open formula β

is termed a prenex formula or a prenex normal form, in short, a PNF.

β is called the kernel of α. W.l.o.g. x1, . . . , xn are distinct and xi occurs

free in β since we may drop “superfluous quantifiers,” see (2) page 66.

Prenex normal forms are very important for classifying definable number-

theoretic predicates in 6.3, and for other purposes. The already mentioned

∀- and ∃-formulas are the simplest examples.

Theorem 4.2 (on the prenex normal form). Every formula ϕ is

equivalent to a formula in prenex normal form that can effectively be con-

structed from ϕ.

Proof. Without loss of generality let ϕ contain (besides ====) at most the

logical symbols ¬, ∧ ,∀,∃. For each prefix Qx in ϕ consider the number of

symbols ¬ or left parentheses occurring to the left of Qx. Let sϕ be the

sum of these numbers, summed over all prefixes occurring in ϕ. Clearly,

ϕ is a PNF iff sϕ = 0. Let sϕ 6= 0. Then ϕ contains some prefix Qx and ¬

or ∧ stands immediately in front of Qx. A successive application of either

¬∀xα ≡ ∃x¬α, ¬∃xα ≡ ∀x¬α, or (β ∧Qxα) ≡ Qy(β ∧α y
x) (y /∈ var α, β),

inside ϕ obviously reduces sϕ stepwise.

Example 2. ∀x∃y(x 6====0 →x ·y ==== 1) is a PNF for ∀x(x 6====0 →∃y x ·y ==== 1).

And ∃x∀y∀z(ϕ∧ (ϕ y
x ∧ϕ z

x →y ==== z)) for ∃xϕ∧∀y∀z(ϕ y
x ∧ϕ z

x →y ==== z),

provided y, z /∈ free ϕ; if not, a bound renaming will help. An equivalent

PNF for this formula with minimal quantifier rank is ∃x∀y(ϕ y
x ↔ x==== y).

The formula ∀x(x 6====0 →∃y x·y ==== 1) from Example 2 may be abbreviated

by (∀x 6====0)∃y x · y ==== 1. More generally, we shall often write (∀x 6==== t)α for

∀x(x 6==== t →α) and (∃x 6==== t)α for ∃x(x 6==== t ∧ α). A similar notation is used

for 6, <, ∈ and their negations. For instance, (∀x6t)α and (∃x6t)α

are to mean ∀x(x6t →α) and ∃x(x6t ∧ α), respectively. For any binary

relation symbol ⊳, the “prefixes” (∀y⊳x) and (∃y⊳x) are related to each

other, as are ∀ and ∃, see Exercise 2.

Exercises

1. Let α ≡ β. Prove that α
~t
~x ≡ β

~t
~x (α,

~t
~x and β,

~t
~x collision-free).

2. Prove that ¬(∀x⊳y)α ≡ (∃x⊳y)¬α and ¬(∃x⊳y)α ≡ (∀x⊳y)¬α.

Here ⊳ represents any binary relation symbol.

78 2 First-Order Logic

3. Show by means of bound renaming that both the conjunction and

the disjunction of ∀-formulas α, β is equivalent to some ∀-formula.

Prove the same for ∃-formulas.

4. Show that every formula ϕ ∈ L is equivalent to some ϕ′ ∈ L built

up from literals by means of ∧ , ∨, ∀, and ∃.

5. Let P be a unary predicate symbol. Prove that ∃x(Px →∀yPy) is

a tautology.

6. Call α, β ∈ L tautologically equivalent if � α ⇔ � β. Confirm that

the following (in general not logically equivalent) formulas are tau-

tologically equivalent: α, ∀xα, and α c
x , where the constant symbol

c does not occur in α.

2.5 Logical Consequence and Theories

Whenever L′ ⊇ L, the language L′ is called an expansion or extension

of L and L a reduct or restriction of L′. Recall the insensitivity of the

consequence relation to extensions of a first-order language, mentioned in

2.3. Theorem 3.1 yields that establishing X � α does not depend on the

language to which the set of formulas X and the formula α belong. For

this reason, indices for �, such as �L, are dispensable.

Because of the unaltered satisfaction conditions for ∧ and ¬, all prop-

erties of the propositional consequence gained in 1.3 carry over to the

first-order logical consequence relation. These include general properties

such as, for example, the reflexivity and transitivity of �, and the seman-

tic counterparts of the rules (∧1), (∧2), (¬1), (¬2) from 1.4, for instance

the counterpart of (∧1),
X � α, β

X � α∧β
.5

In addition, Gentzen-style properties such as the deduction theorem

automatically carry over. But there are also completely new properties.

Some of these will be elevated to basic rules of a logical calculus for first-

order languages in 3.1, to be found among the following ones:

5 A suggestive way of writing “X � α, β implies X � α ∧ β,” a notation that was

introduced already in Exercise 3 in 1.3. A corresponding notation will also be used

in stating the properties of � on the next page.

2.5 Logical Consequence and Theories 79

Some properties of the predicate logical consequence relation.

(a)
X � ∀xα

X � α t
x

(α, t
x collision-free),

(b)
X � α s

x , s==== t

X � α t
x

(α, s
x and α, t

x collision-free),

(c)
X, β � α

X,∀xβ � α
(anterior generalization),

(d)
X � α

X � ∀xα
(x /∈ free X, posterior generalization),

(e)
X, β � α

X,∃xβ � α
(x /∈ free X, α, anterior particularization),

(f)
X � α t

x

X � ∃xα
(α, t

x collision-free, posterior particularization)

(a) follows from X � ∀xα � α t
x , for � is transitive. Similarly, (b) follows

from α s
x , s==== t � α t

x , stated in Corollary 3.6. Analogously (c) results from

∀xβ � β. To prove (d), suppose that X � α, M � X, and x /∈ free X.

ThenMa
x � X for any a ∈ A by Theorem 3.1, which just meansM � ∀xα.

As regards (e), let X, β � α. Observe that by contraposition and by (d),

X, β � α ⇒ X,¬α � ¬β ⇒ X,¬α � ∀x¬β,

whence X,¬∀x¬β � α. (e) captures deduction from an existence claim,

while (f) confirms an existence claim. (f) holds since α t
x � ∃xα according

to Corollary 3.6. Both (e) and (f) are permanently applied in mathemati-

cal reasoning and will briefly be discussed in Example 1 on the next page.

All above properties have certain variants; for example, a variant of (d) is

(g)
X � α y

x

X � ∀xα
(y /∈ free X ∪ var α).

This results from (d) with α y
x for α and y for x, since ∀yα y

x ≡ ∀xα.

From the above properties, complicated chains of deduction can, where

necessary, be justified step by step. But in practice this makes sense only

in particular circumstances, because formalized proofs are readable only

at the expense of a lot of time, just as with lengthy computer programs,

even with well-prepared documentation. What is most important is that a

proof, when written down, can be understood and reproduced. This is why

mathematical deduction tends to proceed informally, i.e., both claims and

80 2 First-Order Logic

their proofs are formulated in a mathematical “everyday” language with

the aid of fragmentary and flexible formalization. To what degree a proof

is to be formalized depends on the situation and need not be determined

in advance. In this way the strict syntactic structure of formal proofs is

slackened, compensating for the imperfection of our brains in regard to

processing syntactic information.

Further, certain informal proof methods will often be described by a

more or less clear reference to so-called background knowledge, and not

actually carried out. This method has proven itself to be sufficiently

reliable. As a matter of fact, apart from specific cases it has not yet been

bettered by any of the existing automatic proof machines. Let us present

a very simple example of an informal proof in a language L for natural

numbers that along with 0, 1,+, · contains the symbol for divisibility,

defined by m n⇔ ∃k m · k = n. In addition, let L contain a symbol f for

some given function from N to N+. We need no closer information on this

function, but we shall write fi for f(i) in the example.

Example 1. We want to prove ∀n(∃x>0)(∀i6n)fi x, i.e., f0, . . . , fn have

a common multiple (in N+). The proof proceeds by induction on n. Here

we focus solely on X, (∃x>0)(∀i6n)fi x � (∃x>0)(∀i6n+1)fi x, the in-

duction step. X represents our prior knowledge about familiar properties

of divisibility. Informally we reason as follows: Assume (∃x>0)(∀i6n)fi x

and choose any such x. Then x · fn+1 is obviously a common multiple of

f0, . . . , fn+1, hence (∃x>0)(∀i6n+1)fi x. To argue here formally like a

proof machine, we start from (∀i6n)fi x � (∀i6n+1)fi (x · fn+1). Then

posterior particularization yields X, (∀i6n)fi x � (∃x>0)(∀i6n+1)fi x

since x · fn+1 > 0, and so, after anterior particularization, we get the de-

sired X, (∃x>0)(∀i6n)fi x � (∃x>0)(∀i6n+1)fi x. This example shows

that formalizing a nearly trivial informal argument may need a lot of

writing without making things more lucid for mathematicians.

Some textbooks deal with a somewhat stricter consequence relation,

which we denote here by �
g

. The reason is that in mathematics one largely

considers derivations in theories. For X ⊆ L and ϕ ∈ L define X �
g

ϕ if

A � X ⇒ A � ϕ, for all L-structures A. In contrast to �, which may

be called the local consequence relation, �
g

can be considered as the global

consequence relation since it cares only about A, not about a concrete

valuation w in A as does �.

2.5 Logical Consequence and Theories 81

Let us collect a few properties of �
g

. Obviously, X � ϕ implies X �
g

ϕ, but

the converse does not hold in general. For example, x==== y �
g

∀xy x==== y,

but x==== y 2 ∀xy x==== y. By (d) from page 79, X � ϕ ⇒ X � ϕg holds

in general only if the free variables of ϕ do not occur free in X, while

X �
g

ϕ⇒ X �
g

ϕg (hence ϕ �
g

ϕg) holds unrestrictedly. A reduction of �
g

to � is provided by the following equivalence, which easily follows from

M � X g ⇔ A � X g , for each model M = (A, w):

(1) X �
g

ϕ ⇔ X g
� ϕ.

Because of S g = S for sets of sentences S, we clearly obtain from (1)

(2) S �
g

ϕ ⇔ S � ϕ (S ⊆ L0).

In particular, �
g

ϕ⇔ � ϕ. Thus, a distinction between � and �
g

is apparent

only when premises are involved that are not sentences. In this case the

relation �
g

must be treated with the utmost care. Neither the rule of case

distinction
X, α �

g

β X,¬α �
g

β

X �
g
β

nor the deduction theorem
X, α �

g

β

X �
g
α →β

is

unrestrictedly correct. For example x==== y �
g

∀xy x==== y, but it is false that

�
g

x==== y →∀xy x==== y. This means that the deduction theorem fails to hold

for the relation �
g

. It holds only under certain restrictions.

One of the reasons for our preference of � over �
g

is that � extends the

propositional consequence relation conservatively, so that features such as

the deduction theorem carry over unrestrictedly, while this is not the case

for �
g

. It should also be said that �
g

does not reflect the actual procedures of

natural deduction in which formulas with free variables are frequently used

also in deductions of sentences from sentences, for instance in Example 1.

We now make more precise the notion of a formalized theory in L, where

it is useful to think of the examples in 2.3, such as group theory. Again,

the definitions by different authors may look somewhat differently.

Definition. An elementary theory or first-order theory in L, also termed

an L-theory, is a set of sentences T ⊆ L0 deductively closed in L0, i.e.,

T � α ⇔ α ∈ T , for all α ∈ L0. If α ∈ T then we say that α is valid

or true or holds in T , or α is a theorem of T . The extralogical symbols

of L are called the symbols of T . If T ⊆ T ′ then T is called a subtheory

of T ′, and T ′ an extension of T . An L-structure A such that A � T is

also termed a model of T , briefly a T -model. MdT denotes the class of

all models of T in this sense; MdT consist of L-structures only.

82 2 First-Order Logic

For instance, {α ∈ L0 |X � α} is a theory for any set X ⊆ L, since �

is transitive. A theory T in L satisfies T � ϕ ⇔ A � ϕ for all A � T ,

where ϕ ∈ L is any formula. Important is also T � ϕ ⇔ T � ϕg . These

readily confirmed facts should be taken in and remembered, since they

are constantly used. Different authors may use different definitions for a

theory. For example, they may not demand that theories contain sentences

only, as we do. Conventions of this type each have their advantages and

disadvantages. Proofs regarding theories are always adaptable enough to

accommodate small modifications of the definition. Using the definition

given above we set the following

Convention. In talking of the theory S, where S is a set of sentences, we

always mean the theory determined by S, that is, {α ∈ L0 | S � α}. A set

X ⊆ L is called an axiom system for T whenever T = {α ∈ L0 |X g
� α},

i.e., we tacitly generalize all possibly open formulas in X. We have always

to think of free variables occurring in axioms as being generalized.

Thus, axioms of a theory are always sentences. But we conform to stan-

dard practice of writing long axioms as formulas. We will later consider

extensive axiom systems (in particular, for arithmetic and set theory)

whose axioms are partly written as open formulas just for economy.

There exists a smallest theory in L, namely the set Taut (= TautL) of all

generally valid sentences in L, also called the “logical” theory. An axiom

system for Taut is the empty set of axioms. There is also a largest the-

ory: the set L0 of all sentences, the inconsistent theory, which possesses

no models. All remaining theories are called satisfiable or consistent .6

Moreover, the intersection T =
⋂

i∈I Ti of a nonempty family of theories

Ti is in turn a theory: if T � α ∈ L0 then clearly Ti � α and so α ∈ Ti for

each i ∈ I, hence α ∈ T as well. In this book T and T ′, with or without

indices, exclusively denote theories.

For T ⊆ L0 and α ∈ L0 let T + α denote the smallest theory that

extends T and contains α. Similarly let T + S for S ⊆ L0 be the smallest

theory containing T ∪S. If S is finite then T ′ = T +S = T +
∧

S is called

a finite extension of T . Here
∧

S denotes the conjunction of all sentences

in S. A sentence α is termed compatible or consistent with T if T + α is

6 Consistent mostly refers to a logic calculus, e.g., the calculus in 3.1. However, it will

be shown in 3.2 that consistency and satisfiability of a theory coincide, thus justifying

the word’s ambiguous use.

2.5 Logical Consequence and Theories 83

satisfiable, and refutable in T if T +¬α is satisfiable. Thus, the theory TF

of fields is compatible with the sentence 1 + 1==== 0. Equivalently, 1 + 1 6====0

is refutable in TF , since the 2-element field satisfies 1 + 1==== 0.

If both α and ¬α are compatible with T then the sentence α is termed

independent of T . The classic example is the independence of the parallel

axiom from the remaining axioms of Euclidean plane geometry, which

define absolute geometry. Much more difficult is the independence proof

of the continuum hypothesis from the axioms for set theory. These axioms

are presented and discussed in 3.4.

At this point we introduce another important concept; α, β ∈ L are

said to be equivalent in or modulo T , α ≡T β, if α ≡A β for all A � T .

Being an intersection of congruences, ≡T is itself a congruence and hence

satisfies the replacement theorem. This will henceforth be used without

mention, as will the obvious equivalence of α ≡T β, T � α ↔ β, and of

T � (α↔ β)g . A suggestive writing of α ≡T β would also be α====T β.

Example 2. Let TG be as on p. 65. Claim: x ◦x==== x ≡TG
x==== e. The only

tricky proof step is TG � x ◦x==== x→ x==== e. Let x ◦x==== x and choose some

y with x ◦ y ==== e. The claim then follows from x==== x ◦ e==== x ◦x ◦ y ==== x ◦ y ==== e.

A strict formal proof of the latter uses anterior particularization.

Another important congruence is term equivalence. Call terms s, t

equivalent modulo (or in) T , in symbols s ≈T t, if T � s==== t, that is,

A � s==== t [w] for all A � T and w : Var →A. For instance, in T = T ====
G ,

(x ◦ y)−1 ==== y−1 ◦x−1 is easily provable, so that (x ◦ y)−1 ≈T y−1 ◦x−1.

Another example: in the theory of fields, each term is equivalent to a

polynomial in several variables with integer coefficients.

If all axioms of a theory T are ∀-sentences then T is called a univer-

sal or ∀-theory. Examples are partial orders, orders, rings, lattices, and

Boolean algebras. For such a theory, MdT is closed with respect to sub-

structures, which means A ⊆ B � T ⇒ A � T . This follows at once

from Corollary 3.3. Conversely, a theory closed with respect to substruc-

tures is necessarily a universal one, as will turn out in 5.4. ∀-theories are

further classified. The most important subclasses are equational, quasi-

equational, and universal Horn theories, all of which will be considered to

some extent in later chapters. Besides ∀-theories, the ∀∃-theories (those

having ∀∃-sentences as axioms) are of particular interest for mathematics.

More about all these theories will be said in 5.4.

84 2 First-Order Logic

Theories are frequently given by structures or classes of structures. The

elementary theory ThA and the theory ThK of a nonempty class K of

structures are defined respectively by

ThA := {α ∈ L0 | A � α}, ThK :=
⋂
{ThA |A ∈K}.

It is easily seen that ThA and ThK are theories in the precise sense

defined above. Instead of α ∈ ThK one often writes K � α. In general,

MdThK is larger than K, as we shall see.

One easily confirms that the set of formulas breaks up modulo T (more

precisely, modulo ≡T) into equivalence classes; their totality is denoted

by BωT . Based on these we can define in a natural manner operations

∧ , ∨,¬. For instance, ᾱ∧ β̄ = α∧β, where ϕ̄ denotes the equivalence

class to which ϕ belongs. One shows easily that BωT forms a Boolean

algebra with respect to ∧ , ∨,¬. For every n, the set BnT of all ϕ̄ in

BωT such that the free variables of ϕ belong to Varn (= {v0, . . . ,vn−1})

is a subalgebra of BωT . Note that B0T is isomorphic to the Boolean

algebra of all sentences modulo ≡T , also called the Tarski–Lindenbaum

algebra of T . The significance of the Boolean algebras BnT is revealed only

in the somewhat higher reaches of model theory, and they are therefore

mentioned only incidentally.

Exercises

1. Suppose x /∈ free X and c is not in X, α. Prove the equivalence of

(i) X � α, (ii) X � ∀xα, (iii) X � α c
x .

This holds then in particular if X is the axiom system of a theory

or itself a theory. Then x /∈ free X is trivially satisfied.

2. Let S be a set of sentences, α and β formulas, x /∈ free β, and let c

be a constant not occurring in S, α, β. Show that

S � α c
x →β ⇔ S � ∃xα →β.

3. Verify for all α, β ∈ L0 that β ∈ T + α ⇔ α →β ∈ T .

4. Let T ⊆ L be a theory, L0 ⊆ L, and T0 := T ∩ L0. Prove that T0 is

also a theory (the so-called reduct theory in the language L0).

2.6 Explicit Definitions—Language Expansions 85

2.6 Explicit Definitions—Language Expansions

The deductive development of a theory, be it given by an axiom system

or a single structure or classes of those, nearly always goes hand in hand

with expansions of the language carried out step by step. For example,

in developing elementary number theory in the language L(0, 1,+, ·), the

introduction of the divisibility relation by means of the (explicit) definition

x y ↔ ∃z x · z ==== y has certainly advantages not only for purely technical

reasons. This and similar examples motivate the following

Definition I. Let r be an n-ary relation symbol not occurring in L. An

explicit definition of r in L is to mean a formula of the shape

ηr : r~x↔ δ(~x)

with δ(~x) ∈ L and distinct variables in ~x, called the defining formula. For

a theory T ⊆ L, the extension Tr := T + η g

r is then called a definitorial

extension (or expansion) of T by r, more precisely, by ηr.

Tr is a theory in L[r], the language resulting from L by adjoining the

symbol r. It will turn out that Tr is a conservative extension of T , which,

in the general case, means a theory T ′ ⊇ T in L′ ⊇ L such that T ′∩L = T .

Thus, Tr contains exactly the same L-sentences as does T . In this sense, Tr

is a harmless extension of T . Our claim constitutes part of Theorem 6.1.

For ϕ ∈ L[r] define the reduced formula ϕrd ∈ L as follows: Starting from

the left, replace every prime formula r~t occurring in ϕ by δ~x(~t). Clearly,

ϕrd = ϕ, provided r does not appear in ϕ.

Theorem 6.1 (Elimination theorem). Let Tr ⊆ L[r] be a definitorial

extension of the theory T ⊆ L0 by the explicit definition ηr. Then for all

formulas ϕ ∈ L[r] holds the equivalence

(∗) Tr � ϕ ⇔ T � ϕrd.

For ϕ ∈ L we get in particular Tr � ϕ ⇔ T � ϕ (since ϕrd = ϕ). Hence,

Tr is a conservative extension of T , i.e., α ∈ Tr ⇔ α ∈ T , for all α ∈ L0.

Proof. Each A � T is expandable to a model A′ � Tr with the same

domain, setting rA
′

~a :⇔ A � δ [~a] (~a ∈ An). Since r~t ≡Tr δ(~t) for any ~t ,

we obtain ϕ ≡Tr ϕrd for all ϕ ∈ L[r] by the replacement theorem. Thus,

(∗) follows from

86 2 First-Order Logic

Tr � ϕ⇔ A′ � ϕ for all A � T (MdTr = {A′ | A � T})

⇔ A′ � ϕrd for all A � T (because ϕ ≡Tr ϕrd)

⇔ A � ϕrd for all A � T (Theorem 3.1)

⇔ T � ϕrd.

Operation symbols and constants can be similarly introduced, though

in this case there are certain conditions to observe. For instance, in TG

(see page 65) the operation −1 is defined by η : y ==== x−1 ↔ x ◦ y ==== e. This

definition is legitimate, since TG � ∀x∃!y x ◦ y ==== e; Exercise 3. Only this

requirement (which by the way is a logical consequence of η) ensures that

TG+η g is a conservative extension of TG. We therefore extend Definition I

as follows, keeping in mind that to the end of this section constant symbols

are to be counted among the operation symbols.

Definition II. An explicit definition of an n-ary operation symbol f not

occurring in L is a formula of the form

ηf : y ==== f~x↔ δ(~x, y) (δ ∈ L and y, x1, . . . , xn distinct).

ηf is called legitimate in T ⊆ L if T � ∀~x∃!yδ, and Tf := T + η g

f is

then called a definitorial extension by f , more precisely by ηf . In the case

n = 0 we write c for f and speak of an explicit definition of the constant

symbol c. Written more suggestively y ==== c↔ δ(y).

Some of the free variables of δ are often not explicitly named, and thus

downgraded to parameter variables. More on this will be said in the

discussion of the axioms for set theory in 3.4. The elimination theorem is

proved in almost exactly the same way as above, provided ηf is legitimate

in T . The reduced formula ϕrd is defined correspondingly. For a constant

c (n = 0 in Definition II), let ϕrd := ∃z(ϕ z
c ∧ δ z

y), where ϕ z
c denotes the

result of replacing c in ϕ by z (/∈ var ϕ). Now let n > 0. If f does not

appear in ϕ, set ϕrd = ϕ. Otherwise, looking at the first occurrence of

f in ϕ from the left, we certainly may write ϕ = ϕ0
f~t
y for appropriate

ϕ0, ~t , and y /∈ var ϕ. Clearly, ϕ ≡Tf
∃y(ϕ0 ∧ y ==== f~t) ≡Tf

ϕ1, with

ϕ1 := ∃y(ϕ0 ∧ δf (~t , y)). If f still occurs in ϕ1 then repeat this procedure,

which ends in, say, m steps in a formula ϕm that no longer contains f .

Then put ϕrd := ϕm.

Frequently, operation symbols f are introduced in more or less strictly

formalized theories by definitions of the form

(∗) f~x := t(~x),

2.6 Explicit Definitions—Language Expansions 87

where of course f does not occur in the term t(~x). This procedure is in

fact subsumed by Definition II, because the former is nothing more than

a definitorial extension of T with the explicit definition

ηf : y ==== f~x↔ y ==== t(~x).

This definition is legitimate, since ∀~x∃!y y ==== t(~x) is a tautology. It can

readily be shown that η g

f is logically equivalent to ∀~x f~x==== t(~x). Hence,

(∗) can indeed be regarded as a kind of an informative abbreviation of a

legitimate explicit definition with the defining formula y ==== t(~x).

Remark 1. Instead of introducing new operation symbols, so-called iota-terms
from [HB] could be used. For any formula ϕ = ϕ(~x, y) in a given language,
let ιyϕ be a term in which y appears as a variable bound by ι. Whenever
T � ∀~x∃!yϕ, then T is extended by the axiom ∀~x∀y[y ==== ιyϕ(~x, y)↔ ϕ(~x, y)], so
that ιyϕ(~x, y) so to speak stands for the function term f~x, which could have been
introduced by an explicit definition. We mention that a definitorial language
expansion is not a necessity. In principle, formulas of the expanded language can
always be understood as abbreviations in the original language. This is in some
presentations the actual procedure, though our imagination prefers additional
notions over long sentences that would arise if we were to stick to a minimal set
of basic notions.

Definitions I and II can be unified in a more general declaration. Let

T , T ′ be theories in the languages L, L′, respectively. Then T ′ is called a

definitorial extension (or expansion) of T whenever T ′ = T + ∆ for some

list ∆ of explicit definitions of new symbols legitimate in T , given in terms

of those of T (here legitimate refers to operation symbols and constants

only). ∆ need not be finite, but in most cases it is finite. A reduced

formula ϕrd ∈ L is stepwise constructed as above, for every ϕ ∈ L′.

In this way the somewhat long-winded proof of the following theorem is

reduced each time to the case of an extension by a single symbol:

Theorem 6.2 (General elimination theorem). Let T ′ be a definitorial

extension of T . Then α ∈ T ′ ⇔ αrd ∈ T . In particular, α ∈ T ′ ⇔ α ∈ T

whenever α ∈ L, i.e., T ′ is a conservative extension of T .

A relation or operation symbol s occurring in T ⊆ L is termed explicitly

definable in T if T contains an explicit definition of s whose defining

formula belongs to L0, the language of symbols of T without s. For

example, in the theory TG of groups the constant e is explicitly defined

by x==== e ↔ x ◦x==== x; Example 2 page 83. Another example is presented

88 2 First-Order Logic

in Exercise 3. In such a case each model of T0 := T ∩L0 can be expanded

in only one way to a T -model. If this special condition is fulfilled then s is

said to be implicitly definable in T . This could also be stated as follows: if

T ′ is distinct from T only in that the symbol s is everywhere replaced by a

new symbol s′, then either T ∪T ′ � ∀~x(s~x↔ s′~x) or T ∪T ′ � ∀~x(s~x==== s′~x),

depending on whether s, s′ are relation or operation symbols. It is highly

interesting that this kind of definability is already sufficient for the explicit

definability of s in T . But we will go without the proof and only quote

the following theorem.

Beth’s definability theorem. A relation or operation symbol implicitly

definable in a theory T is also explicitly definable in T .

Definitorial expansions of a language should be conscientiously distin-

guished from expansions of languages that arise from the introduction of

so-called Skolem functions. These are useful for many purposes and are

therefore briefly described.

Skolem normal forms. According to Theorem 4.2, every formula α can

be converted into an equivalent PNF, α ≡ Q1x1 · · · Qkxkα
′, where α′ is

open. Obviously then ¬α ≡ Q1x1 · · · Qkxk¬α′, where ∀ = ∃ and ∃ = ∀.

Because � α if and only if ¬α is unsatisfiable, the decision problem for

general validity can first of all be reduced to the satisfiability problem

for formulas in PNF. Using Theorem 6.3 below, the latter—at the cost

of introducing new operation symbols—is then completely reduced to the

satisfiability problem for ∀-formulas.

Call formulas α and β satisfiably equivalent if both are satisfiable (not

necessarily in the same model), or both are unsatisfiable. We construct

for every formula, which w.l.o.g. is assumed to be given in prenex form

α = Q1x1 · · · Qkxkβ, a satisfiably equivalent ∀-formula α̂ with additional

operation symbols such that free α̂ = free α. The construction of α̂ will be

completed after m steps, where m is the number of ∃-quantifiers among the

Q1, . . . , Qk. Take α = α0 and αi to be already constructed. If αi is already

an ∀-formula let α̂ = αi. Otherwise αi has the form ∀x1 · · · ∀xn∃yβi for

some n > 0. With an n-ary operation symbol f (which is a constant

in case n=0) not yet used let αi+1 = ∀~xβi
f~x
y . Thus, after m steps an

∀-formula α̂ is obtained such that free α̂ = free α; this formula α̂ is called

a Skolem normal form (SNF) of α.

2.6 Explicit Definitions—Language Expansions 89

Example 1. If α is the formula ∀x∃y x < y then α̂ is just ∀x x < fx.

For α = ∃x∀y x · y ==== y we have α̂ = ∀y c · y ==== y.

If α = ∀x∀y∃z(x < z ∧ y < z) then α̂ = ∀x∀y(x < fxy ∧ y < fxy).

Theorem 6.3. Let α̂ be a Skolem normal form for the formula α. Then

(a) α̂ � α, (b) α is satisfiably equivalent to α̂.

Proof. (a): It suffices to show that αi+1 � αi for each of the described

construction steps. βi
f~x
y � ∃yβi implies αi+1 = ∀~xβi

f~x
y � ∀~x∃yβi = αi,

by (c) and (d) in 2.5. (b): If α̂ is satisfiable then by (a) so too is α.

Conversely, suppose A � ∀~x∃yβi(~x, y, ~z) [~c]. For each ~a ∈ An we choose

some b ∈ A such that A � β [~a, b,~c] (which is possible in view of the

axiom of choice AC) and expand A to A′ by setting fA′

~a = b for the new

operation symbol. Then evidently A′ � αi+1 [~c]. Thus, we finally obtain

a model for α̂ that expands the initial model.

Now, for each α, a tautologically equivalent ∃-formula α̌ is gained as

well (that is, � α ⇔ � α̌). By the above theorem, we first produce for

β = ¬α a satisfiably equivalent SNF β̂ and put α̌ := ¬β̂. Then indeed

� α ⇔ � α̌, because

� α ⇔ β unsatisfiable ⇔ β̂ unsatisfiable ⇔ � α̌.

Example 2. For α := ∃x∀y(ry →rx) we have ¬α ≡ β := ∀x∃y(ry ∧¬rx)

and β̂ = ∀x(rfx∧¬rx). Thus, α̌ = ¬β̂ ≡ ∃x(rfx →rx). The last formula

is a tautology. Indeed, if rA 6= ∅ then clearly A � ∃x(rfx →rx). But the

same holds if rA = ∅, for then never A � rfx. Thus, α̌ and hence also α

is a tautology, which is not at all obvious after a first glance at α. This

shows how useful Skolem normal forms can be for discovering tautologies.

Remark 2. There are many applications of Skolem normal forms, mainly in
model theory and in logic programming. For instance, Exercise 5 permits one to
reduce the satisfiability problem of an arbitrary first-order formula set to a set
of ∀-formulas (at the cost of adjoining new function symbols). Moreover, a set
X of ∀-formulas is satisfiably equivalent to a set X ′ of open formulas as will be
shown in 4.1, and this problem can be reduced completely to the satisfiability of
a suitable set of propositional formulas, see also Remark 1 in 4.1. The examples
of applications of the propositional compactness theorem in 1.5 give a certain
feeling for how to proceed in this way.

90 2 First-Order Logic

Exercises

1. Suppose that Tf results from a consistent theory T by adjoining an

explicit definition η for f and let αrd be constructed as explained in

the text. Show that Tf is a conservative extension of T if and only

if η is a legitimate explicit definition.

2. Let S :n 7→ n+1 denote the successor function in N = (N, 0, S, +, ·).

Show that ThN is a definitorial extension of Th (N, S, ·); in other

words, 0 and + are explicitly definable by S and · in N .

3. Prove that η : y ==== x−1 ↔ x ◦ y ==== e is a legitimate explicit definition

in TG (it suffices to prove TG � x ◦ y ==== x ◦ z →y ==== z). Show in ad-

dition that T ====
G = TG + η. Thus, T ====

G is a definitorial and hence a

conservative extension of TG. In this sense, the theories T ====
G and TG

are equivalent formulations of the theory of groups.

4. As is well known, the natural <-relation of N is explicitly definable

in (N, 0,+), for instance, by x < y ↔ (∃z 6====0)z + x==== y. Prove that

the <-relation of Z is not explicitly definable in (Z, 0,+).

5. Construct to each α ∈ X (⊆ L) an SNF α̂ such that X is satisfiably

equivalent to X̂ = {α̂ | α ∈ X} and X̂ � X, called a Skolemization

of X. Since we do not suppose that X is countable, the function

symbols introduced in X̂ must properly be indexed.

Bibliography

[AGM] S. Abramsky, D. M. Gabbay, T. S. E. Maibaum (editors), Handbook
of Computer Science, I–IV, Oxford Univ. Press, Vol. I, II 1992, Vol. III

1994, Vol. IV 1995.

[Ac] W. Ackermann, Die Widerspruchsfreiheit der Allgemeinen Mengen-
lehre, Mathematische Annalen 114 (1937), 305–315.

[Bar] J. Barwise (editor), Handbook of Mathematical Logic, North-Holland

1977.

[BF] J. Barwise, S. Feferman (editors), Model-Theoretic Logics, Springer

1985.

[Be1] L. D. Beklemishev, On the classification of propositional provability
logics, Math. USSR – Izvestiya 35 (1990), 247–275.

[Be2] , Iterated local reflection versus iterated consistency, Ann. Pure

Appl. Logic 75 (1995), 25–48.

[Be3] , Bimodal logics for extensions of arithmetical theories, J. Symb.

Logic 61 (1996), 91–124.

[Be4] , Parameter free induction and reflection, in Computational Logic
and Proof Theory, Lecture Notes in Computer Science 1289, Springer

1997, 103–113.

[BM] J. Bell, M. Machover, A Course in Mathematical Logic, North-

Holland 1977.

[Ben] M. Ben-Ari, Mathematical Logic for Computer Science, New York

1993, 2nd ed. Springer 2001.

[BP] P. Benacerraf, H. Putnam (editors), Philosophy of Mathematics,
Selected Readings, Englewood Cliffs NJ 1964, 2nd ed. Cambridge Univ.

Press 1983, reprint 1997.

[BA] A. Berarducci, P. D’Aquino, ∆0-complexity of the relation
y =

∏

i6n F (i), Ann. Pure Appl. Logic 75 (1995), 49–56.

299

300 Bibliography

[Bi] G. Birkhoff, On the structure of abstract algebras, Proceedings of the

Cambridge Philosophical Society 31 (1935), 433–454.

[Boo] G. Boolos, The Logic of Provability, Cambridge Univ. Press 1993.

[BJ] G. Boolos, R. Jeffrey, Computability and Logic, 3rd ed. Cambridge

Univ. Press 1989.

[BGG] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Prob-
lem, Springer 1997.

[Bue] S. Buechler, Essential Stability Theory, Springer 1996.

[Bu] S. R. Buss (editor), Handbook of Proof Theory, Elsevier 1998.

[Ca] G. Cantor, Gesammelte Abhandlungen (editor E. Zermelo), Berlin

1932, Springer 1980.

[CZ] A. Chagrov, M. Zakharyashev, Modal Logic, Clarendon Press 1997.

[CK] C. C. Chang, H. J. Keisler, Model Theory, Amsterdam 1973, 3rd ed.

North-Holland 1990.

[Ch] A. Church, A note on the Entscheidungsproblem, J. Symb. Logic 1

(1936), 40–41, also in [Dav, 108–109].

[CM] W. Clocksin, C. Mellish, Programming in PROLOG, 3rd ed. Sprin-

ger 1987.

[Da] D. van Dalen, Logic and Structure, Berlin 1980, 4th ed. Springer 2004.

[Dav] M. Davis (editor), The Undecidable, Raven Press 1965.

[Daw] J. W. Dawson, Logical Dilemmas, The Life and Work of Kurt Gödel,
A. K. Peters 1997.

[De] O. Deiser, Axiomatische Mengenlehre, Springer, to appear 2010.

[Do] K. Doets, From Logic to Logic Programming, MIT Press 1994.

[EFT] H.-D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, New

York 1984, 2nd ed. Springer 1994.

[FF] A. B. Feferman, S. Feferman, Alfred Tarski, Live and Logic, Cam-

bridge Univ. Press 2004.

[Fe1] S. Feferman, Arithmetization of metamathematics in a general setting,
Fund. Math. 49 (1960), 35–92.

[Fe2] , In the Light of Logic, Oxford Univ. Press 1998.

[Fel1] W. Felscher, Berechenbarkeit, Springer 1993.

Bibliography 301

[Fel2] , Lectures on Mathematical Logic, Vol. 1–3, Gordon & Breach

2000.

[Fi] M. Fitting, Incompleteness in the Land of Sets, College Publ. 2007.

[Fr] T. Franzén, Gödel’s Theorem: An Incomplete Guide to Its Use and
Abuse, A. K. Peters 2005.

[Fre] G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete For-
melsprache des reinen Denkens, Halle 1879, G. Olms Verlag 1971, also

in [Hei, 1–82].

[FS] H. Friedman, M. Sheard, Elementary descent recursion and proof
theory, Ann. Pure Appl. Logic 71 (1995), 1–47.

[Ga] D. Gabbay, Decidability results in non-classical logic III, Israel Journal

of Mathematics 10 (1971), 135–146.

[GJ] M. Garey, D. Johnson, Computers and Intractability, A Guide to the
Theory of NP-Completeness, Freeman 1979.

[Ge] G. Gentzen, The Collected Papers of Gerhard Gentzen (editor M. E.

Szabo), North-Holland 1969.

[Gö1] K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionen-
kalküls, Monatshefte f. Math. u. Physik 37 (1930), 349–360, also in [Gö3,

Vol. I, 102–123], [Hei, 582–591].

[Gö2] , Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I, Monatshefte f. Math. u. Physik 38 (1931),

173–198, also in [Gö3, Vol. I, 144–195], [Hei, 592–617], [Dav, 4–38].

[Gö3] , Collected Works (editor S. Feferman), Vol. I–V, Oxford

Univ. Press, Vol. I 1986, Vol. II 1990, Vol. III 1995, Vol. IV, V 2003.

[Gor] S. N. Goryachev, On the interpretability of some extensions of arith-
metic, Mathematical Notes 40 (1986), 561–572.

[Gr] G. Grätzer, Universal Algebra, New York 1968, 2nd ed. Springer 1979.

[HP] P. Hájek, P. Pudlák, Metamathematics of First-Order Arithmetic,
Springer 1993.

[Hei] J. van Heijenoort (editor), From Frege to Gödel, Harvard Univ. Press

1967.

[He] L. Henkin, The completeness of the first-order functional calculus, J.

Symb. Logic 14 (1949), 159–166.

[Her] J. Herbrand, Recherches sur la théorie de la démonstration, C. R.

Soc. Sci. Lett. Varsovie, Cl. III (1930), also in [Hei, 525–581].

302 Bibliography

[HR] H. Herre, W. Rautenberg, Das Basistheorem und einige Anwen-
dungen in der Modelltheorie, Wiss. Z. Humboldt-Univ., Math. Nat. R.

19 (1970), 579–583.

[HeR] B. Herrmann, W. Rautenberg, Finite replacement and finite
Hilbert-style axiomatizability, Zeitsch. Math. Logik Grundlagen Math.

38 (1982), 327–344.

[HA] D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik,
Berlin 1928, 6th ed. Springer 1972.

[HB] D. Hilbert, P. Bernays, Grundlagen der Mathematik, I, II, Berlin

1934, 1939, 2nd ed. Springer, Vol. I 1968, Vol. II 1970.

[Hi] P. Hinman, Fundamentals of Mathematical Logic, A. K. Peters 2005.

[Ho] W. Hodges, Model Theory, Cambridge Univ. Press 1993.

[Hor] A. Horn, On sentences which are true of direct unions of algebras, J.

Symb. Logic 16 (1951), 14–21.

[Hu] T. W. Hungerford, Algebra, Springer 1980.

[Id] P. Idziak, A characterization of finitely decidable congruence modular
varieties, Trans. Amer. Math. Soc. 349 (1997), 903–934.

[Ig] K. Ignatiev, On strong provability predicates and the associated modal
logics, J. Symb. Logic 58 (1993), 249–290.

[JK] R. Jensen, C. Karp, Primitive recursive set functions, in Axiomatic
Set Theory, Vol. I (editor D. Scott), Proc. Symp. Pure Math. 13, I

AMS 1971, 143–167.

[Ka] R. Kaye, Models of Peano Arithmetic, Clarendon Press 1991.

[Ke] H. J. Keisler, Logic with the quantifier “there exist uncountably many”,
Annals of Mathematical Logic 1 (1970), 1–93.

[Kl1] S. Kleene, Introduction to Metamathematics, Amsterdam 1952, 2nd ed.

Wolters-Noordhoff 1988.

[Kl2] , Mathematical Logic, Wiley & Sons 1967.

[KR] I. Korec, W. Rautenberg, Model interpretability into trees and ap-
plications, Arch. math. Logik 17 (1976), 97–104.

[Kr] M. Kracht, Tools and Techniques in Modal Logic, Elsevier 1999.

[Kra] J. Krajíček, Bounded Arithmetic, Propositional Logic, and Complexity
Theory, Cambridge Univ. Press 1995.

Bibliography 303

[KK] G. Kreisel, J.-L. Krivine, Elements of Mathematical Logic, North-

Holland 1971.

[Ku] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-

Holland 1980.

[Le] A. Levy, Basic Set Theory, Springer 1979.

[Li] P. Lindström, On extensions of elementary logic, Theoria 35 (1969),

1–11.

[Ll] J. W. Lloyd, Foundations of Logic Programming, Berlin 1984, 2nd ed.

Springer 1987.

[Lö] M. Löb, Solution of a problem of Leon Henkin, J. Symb. Logic 20

(1955), 115–118.

[MS] A. Macintyre, H. Simmons, Gödel’s diagonalization technique and
related properties of theories, Colloquium Mathematicum 28 (1973),

165–180.

[Ma] A. I. Mal’cev, The Metamathematics of Algebraic Systems, North-

Holland 1971.

[Mal] J. Malitz, Introduction to Mathematical Logic, Springer 1979.

[Man] Y. I. Manin, A Course in Mathematical Logic for Mathematicians,
New York 1977, 2nd ed. Springer 2010.

[Mar] D. Marker, Model Theory, An Introduction, Springer 2002.

[Mat] Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press 1993.

[MV] R. McKenzie, M. Valeriote, The Structure of Decidable Locally
Finite Varieties, Progress in Mathematics 79, Birkhäuser 1989.

[Me] E. Mendelson, Introduction to Mathematical Logic, Princeton 1964,

4th ed. Chapman & Hall 1997.

[Mo] D. Monk, Mathematical Logic, Springer 1976.

[Moo] G. H. Moore, The emergence of first-order logic, in History and Phi-
losophy of Modern Mathematics (editors W. Aspray, P. Kitcher),

University of Minnesota Press 1988, 95–135.

[ML] G. Müller, W. Lenski (editors), The Ω-Bibliography of Mathematical
Logic, Springer 1987.

[Po] W. Pohlers, Proof Theory, An Introduction, Lecture Notes in Mathe-

matics 1407, Springer 1989.

304 Bibliography

[Pz] B. Poizat, A Course in Model Theory, Springer 2000.

[Pr] M. Presburger, Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Opera-
tion hervortritt, Congrès des Mathématiciens des Pays Slaves 1 (1930),

92–101.

[RS] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics,
Warschau 1963, 3rd ed. Polish Scientific Publ. 1970.

[Ra1] W. Rautenberg, Klassische und Nichtklassische Aussagenlogik, Vie-

weg 1979.

[Ra2] , Modal tableau calculi and interpolation, Journ. Phil. Logic 12

(1983), 403–423.

[Ra3] , A note on completeness and maximality in propositional logic,
Reports on Mathematical Logic 21 (1987), 3–8.

[Ra4] , Einführung in die mathematische Logik, Wiesbaden 1996,

3rd ed. Vieweg+Teubner 2008.

[Ra5] , Messen und Zählen, Eine einfache Konstruktion der reellen
Zahlen, Heldermann 2007.

[RZ] W. Rautenberg, M. Ziegler, Recursive inseparability in graph the-
ory, Notices Amer. Math. Soc. 22 (1975), A–523.

[Ro1] A. Robinson, Introduction to Model Theory and to the Metamathemat-
ics of Algebra, Amsterdam 1963, 2nd ed. North-Holland 1974.

[Ro2] , Non-Standard Analysis, Amsterdam 1966, 3rd ed. North-

Holland 1974.

[Rob] J. Robinson, A machine-oriented logic based on the resolution princi-
ple, Journal of the ACM 12 (1965), 23–41.

[Rog] H. Rogers, Theory of Recursive Functions and Effective Computability,
New York 1967, 2nd ed. MIT Press 1988.

[Ros] J. B. Rosser, Extensions of some theorems of Gödel and Church, J.

Symb. Logic 1 (1936), 87–91, also in [Dav, 230–235].

[Rot] P. Rothmaler, Introduction to Model Theory, Gordon & Breach 2000.

[Ry] C. Ryll-Nardzewki, The role of the axiom of induction in elemenary
arithmetic, Fund. Math. 39 (1952), 239–263.

[Sa] G. Sacks, Saturated Model Theory, W. A. Benjamin 1972.

[Sam] G. Sambin, An effective fixed point theorem in intuitionistic diagonal-
izable algebras, Studia Logica 35 (1976), 345–361.

Bibliography 305

[Sc] U. Schöning, Logic for Computer Scientist, Birkhäuser 1989.

[Se] A. Selman, Completeness of calculi for axiomatically defined classes of
algebras, Algebra Universalis 2 (1972), 20–32.

[Sh] S. Shapiro (editor), The Oxford Handbook of Philosophy of Mathemat-
ics and Logic, Oxford Univ. Press 2005.

[She] S. Shelah, Classification Theory and the Number of Nonisomorphic
Models, Amsterdam 1978, 2nd ed. North-Holland 1990.

[Shoe] J. R. Shoenfield, Mathematical Logic, Reading Mass. 1967, A. K.

Peters 2001.

[Si] W. Sieg, Herbrand analyses, Arch. Math. Logic 30 (1991), 409–441.

[Sm] P. Smith, An Introduction to Gödel’s Theorems, Cambridge Univ.

Press 2007.

[Smo] C. Smoryński, Self-reference and Modal Logic, Springer 1984.

[Smu] R. Smullyan, Theory of Formal Systems, Princeton Univ. Press 1961.

[So] R. Solovay, Provability interpretation of modal logic, Israel Journal of

Mathematics 25 (1976), 287–304.

[Sz] W. Szmielew, Elementary properties of abelian groups, Fund. Math.

41 (1954), 203–271.

[Tak] G. Takeuti, Proof Theory, Amsterdam 1975, 2nd ed. Elsevier 1987.

[Ta1] A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia

Philosophica 1 (1936), 261–405, also in [Ta4, 152-278].

[Ta2] , Introduction to Logic and to the Methodology of Deductive Sci-
ences, Oxford 1941, 3rd ed. Oxford Univ. Press 1965 (first edition in

Polish, 1936).

[Ta3] , A Decision Method for Elementary Algebra and Geometry,
Santa Monica 1948, Berkeley 1951, Paris 1967.

[Ta4] , Logic, Semantics, Metamathematics (editor J. Corcoran),

Oxford 1956, 2nd ed. Hackett 1983.

[TMR] A. Tarski, A. Mostowski, R. M. Robinson, Undecidable Theories,
North-Holland 1953.

[TV] A. Tarski, R. Vaught, Arithmetical extensions and relational systems,
Compositio Mathematica 13 (1957), 81–102.

306 Bibliography

[Tu] A. Turing, On computable numbers, with an application to the Ent-
scheidungsproblem, Proc. London Math. Soc., 2nd Ser. 42 (1937),

230–265, also in [Dav, 115–154].

[Vi1] A. Visser, Aspects of Diagonalization and Provability, Dissertation,

University of Utrecht 1981.

[Vi2] , An overview of interpretability logic, in Advances in Modal
Logic, Vol. 1 (editors M. Kracht et al.), CSLI Lecture Notes 87 (1998),

307–359.

[Wae] B. L. van der Waerden, Algebra I, Berlin 1930, 4th ed. Springer

1955.

[Wag] F. Wagner, Simple Theories, Kluwer Academic Publ. 2000.

[Wa1] H. Wang, From Mathematics to Philosophy, Routlegde & Kegan Paul

1974.

[Wa2] , Computer, Logic, Philosophy, Kluwer Academic Publ. 1990.

[Wa3] , A Logical Journey, From Gödel to Philosophy, MIT Press 1997.

[WR] A. Whitehead, B. Russell, Principia Mathematica, I–III, Cambridge

1910, 1912, 1913, 2nd ed. Cambridge Univ. Press, Vol. I 1925, Vol. II,

III 1927.

[Wi] A. Wilkie, Model completeness results for expansions of the ordered
field of real numbers by restricted Pfaffian functions and the exponential
function, Journal Amer. Math. Soc. 9 (1996), 1051–1094.

[WP] A. Wilkie, J. Paris, On the scheme of induction for bounded arith-
metic formulas, Ann. Pure Appl. Logic 35 (1987), 261–302.

[Zi] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984),

149–213.

Index of Terms and Names

A

a.c. (algebraically closed), 48

∀-formula, ∀-sentence, 68

∀-theory, 83

∀∃-sentence, ∀∃-theory, 190

abelian group, 47

divisible, torsion-free, 104

absorption laws, 48

Ackermann function, 226

Ackermann interpretation, 261

algebra, 42

algebraic, 48

almost all, 60, 210

alphabet, xx, 54

antisymmetric, 45

arithmetical, 238

arithmetical hierarchy, 264

arithmetization (of syntax), 226

associative, xxi

automated theorem proving, 120

automorphism, 50

axiom

of choice, 115

of continuity, 108

of extensionality, 113

of foundation, 115

of infinity, 115

of power set, 114

of replacement, 114

of union, 113

axiom system

logical, 36, 121

of a theory, 82

axiomatizable, 104

finitely, recursively, 104

B

β-function, 244

basis theorem

for formulas, 206

for sentences, 180

Behmann, 125

Birkhoff rules, 127

Boolean algebra, 49

atomless, 202

of sets, 49

Boolean basis

for L in T , 206

for L0 in T , 180

Boolean combination, 57

Boolean function, 2

dual, self-dual, 15

linear, 10

monotonic, 16

Boolean matrix, 49

Boolean signature, 5

bounded, 46

Brouwer, xvii

307

308 Index of Terms and Names

C

Cantor, 111

cardinal number, 173

cardinality, 173

of a structure, 174

chain, 46

of structures, 190

elementary, 191

of theories, 103

characteristic, 48

Chinese remainder theorem, 244

Church, xviii, 117

Church’s thesis, 220

clause, 144, 151

definite, 144

positive, negative, 144

closed under MP, 37

closure

deductive, 20

of a formula, 64

of a model in T , 197

closure axioms, 258

cofinite, 34

Cohen, xviii

coincidence theorem, 66

collision of variables, 70

collision-free, 70

commutative, xxi

compactness theorem

first-order, 105

propositional, 29

compatible, 82, 254

complementation, xix

completeness theorem

Birkhoff’s, 128

first-order (Gödel’s), 102

for |∼ , 123

for G, 286

for ⊢
g

, 124

propositional, 29

Solovay’s, 288

completion, 120

inductive, 194

composition, xx, 217

computable, 217

concatenation, xx

arithmetical, 224

congruence, 12, 51

in L, 74

congruence class, 51

conjunction, 2

connective, 3

connex, 45

consequence relation, 20

local, global, 80

predicate logical, 64

propositional, 20

structural, 20

consistency extension, 284

consistent, 20, 26, 82, 96, 158

constant, xxi

constant expansion, 97

constant quantification, 98

continuity schema, 110

continuum hypothesis, 174

contradiction, 17

contraposition, 21

converse implication, 4

coprime, 239

course-of-values recursion, 224

cut, 46

cut rule, 24

Index of Terms and Names 309

D

∆-elementary class, 180

δ-function, 219

∆0-formula, 238

∆0-induction, 265

Davis, 256

decidable, 104, 218

deduction theorem, 21, 38

deductively closed, 20, 82

definable

∆0-definable, 273

explicitly, 67, 87

implicitly, 88

in a structure, 67

in a theory, 272

Σ1-definable, 273

with parameters, 108

DeJongh, 290

derivability conditions, 270

derivable, 22, 23, 36, 92

derivation, 23

diagram, 170

elementary, 172

universal, 192

direct power, 52

disjunction, 3

exclusive, 3

distributive laws, 49

divisibility, 239

domain, xix, 42

of magnitude, 47

E

∃-formula, 68

simple, 203

Ehrenfeucht game, 183

elementary class, 180

elementary equivalent, 69

elementary type, 180

embedding, 50

elementary, 176

trivial, 170

end extension, 107

enumerable

effectively, 117

recursively, 225

equation, 57

Diophantine, 238, 255

equipotent, 111

equivalence, 3

equivalence class, 45

equivalence relation, 45

equivalent, 11, 64

in (or modulo) T , 83

in a structure, 74

logically or semantically, 11, 64

Euclid’s lemma, 244

existentially closed, 191, 200

expansion, 45, 78, 87

explicit definition, 85, 86

extension, 44, 78, 81

conservative, 66, 85

definitorial, 87

elementary, 171

finite, 82

immediate, 197

of a theory, 81

transcendental, 179

F

f -closed, 44

factor structure, 51

falsum, 5

family (of sets), xix

310 Index of Terms and Names

Fermat’s conjecture, 257

Fibonacci sequence, 224

fictional argument, 10

field, 47

algebraically closed, 48

of algebraic numbers, 173

of characteristic 0 or p, 48

ordered, 48

real closed, 197

filter, 34

finite model property, 125

finitely generated, 45

finiteness theorem, 26, 29, 94, 103

fixed point lemma, 250

formula, 56

arithmetical, 238, 272

Boolean, 5

closed, 59

defining, 85

dual, 15

first-order, 56

open (quantifier-free), 57

prenex, 77

representing, 9, 237

universal, 68

formula algebra, 42

formula induction, 6, 58

formula recursion, 8, 58

four-color theorem, 32

Frege, 76

Frege’s formula, 18

function, xix

bijective, xix

characteristic, 218

identical, xix

injective, surjective, xix

partial, 178

primitive recursive, 218

recursive (= µ-recursive), 218

function term, 55

functional complete, 14

G

G-frame, 285

gap, 46

generalization, 79

anterior, posterior, 79

generalized of a formula, 64

generally valid, 64

Gentzen calculus, 22

goal clause, 158

Gödel, xvii, 91, 243, 290

Gödel number, 223

of a proof, 229

of a string, 227

Gödel term, 246

Gödelizable, 228

Goldbach’s conjecture, 256

graph, 46

k-colorable, 31

of an operation, xxi

planar, simple, 31

ground instance, 138, 158

ground (or constant) term, 55

group, groupoid, 47

ordered, 47

H

H-resolution, 149

Harrington, 282

Henkin set, 99

Herbrand model, 103, 138

minimal, 142

Index of Terms and Names 311

Herbrand universe, 138

Hilbert, xvii

Hilbert calculus, 35, 121

Hilbert’s program, xvii, 216

homomorphism, 50

canonical, 51

strong, 50

homomorphism theorem, 51

Horn clause, 149

Horn formula, 140

basic, universal, 140

positive, negative, 140

Horn sentence, 140

Horn theory, 141

universal, nontrivial, 141

hyperexponentiation, 239

I

ι-term, 87

I-tuple, xx

idempotent, xxi

identity, 127

identity-free (==== -free), 102

immediate predecessor, 46

immediate successor, 46

implication, 4

incompleteness theorem

first, 251

second, 280

inconsistent, 26, 96

independent (of T), 83

individual variable, 53

induction

on ϕ, 8, 58

on t, 55

<-induction, 110

induction axiom, 108

induction hypothesis, 106

induction schema, 106

induction step, 106

infimum, 48

infinitesimal, 109

instance, 137, 158

integral domain, 48

(relatively) interpretable, 258

interpretation, 62

intersection, xix

invariance theorem, 69

invertible, xxi

irreflexive, 45

isomorphism, 50

partial, 178

J

Jeroslow, 290

jump, 46

K

kernel, 51

of a prenex formula, 77

Kleene, 218, 264

König’s lemma, 32

Kreisel, 257, 290

Kripke frame, 285

Kripke semantics, 285

L

L-formula, 57

L-model, 62

L-structure (=L-structure), 43, 44

language

arithmetizable, 228

first-order (or elementary), 54

of equations, 127

second-order, 130

312 Index of Terms and Names

lattice, 48

distributive, 49

of sets, 49

legitimate, 86

Lindenbaum, 27

Lindström’s criterion, 201

literal, 13, 57

Löb, 290

Löb’s formula, 285

logic program, 157

logical matrix, 49

logically valid, 17, 64

M

µ-operation, 218

bounded, 221

mapping (see function), xix

Matiyasevich, 255

ϕ-maximal, 40

maximal element, 46

maximally consistent, 20, 26, 30, 96

metainduction, xvi, 236

metatheory, xvi

model

free, 142

minimal, 150

of a theory, 81

predicate logical, 62

propositional, 8

transitive, 296

model companion, 202

model compatible, 193

model complete, 194

model completion, 200

model interpretable, 261

modus ponens, 19, 35

monotonicity rule, 22

Mostowski, 216, 243, 291

N

n-tuple, xx

negation, 2

neighbor, 31

nonrepresentability lemma, 251

nonstandard analysis, 109

nonstandard model, 107

nonstandard number, 107

normal form

canonical, 14

disjunctive, conjunctive, 13

prenex, 77

Skolem, 88

O

ω-consistent, 251

ω-incomplete, 253

ω-rule, 291

ω-term, 115

object language, xv

operation, xx

essentially n-ary, 10

order, 46

continuous, dense, 46

discrete, 183

linear, partial, 46

ordered pair, 114

ordinal rank, 296

P

p.r. (primitive recursive), 218

Π1-formula, 238

pair set, 114

pairing function, 222

parameter definable, 108

parenthesis economy, 6, 57

Index of Terms and Names 313

Paris, 282

partial order, 46

irreflexive, reflexive, 46

particularization, 79

anterior, posterior, 79

Peano arithmetic, 106

Peirce’s formula, 18

persistent, 189

Polish (prefix) notation, 7

(monic) polynomial, 105

poset, 46

power set, xix

predecessor function, 134

predicate, xx

arithmetical, 238

Diophantine, 238

primitive recursive, 218

recursive, 218

recursively enumerable, 225

preference order, 296

prefix, 57

premise, 22

preorder, 46

Presburger, 204

prime field, 48

prime formula, 4, 57

prime model, 171

elementary, 171

prime term, 55

primitive recursion, 218

principle of bivalence, 2

principle of extensionality, 2

product

direct, 52

reduced, 210

programming language, 132

projection, 52

projection function, 218

PROLOG, 157

(formal) proof, 36, 122

propositional variable, 4

modalized, 289

provability logic, 285, 288

provable, 22, 23, 36

provably recursive, 273

Putnam, 256

Q

quantification, 56

bounded, 221, 238

quantifier, 41

quantifier compression, 243

quantifier elimination, 202

quantifier rank, 58

quasi-identity, quasi-variety, 128

query, 157

quotient field, 188

R

r.e. (recursively enumerable), 225

Rabin, 258

range, xix

rank (of a formula), 8, 58

recursion equations, 218

recursive definition, 8

reduced formula, 85, 86

reduct, 45, 78

reduct theory, 84

reductio ad absurdum, 23

reflection principle, 283, 294

reflexive, 45

refutable, 83

relation, xix

314 Index of Terms and Names

relativised of a formula, 258

renaming, 76, 153

bound, free, 76

replacement theorem, 12, 74

representability

of Boolean functions, 9

of functions, 241

of predicates, 237

representability theorem, 246

(successful) resolution, 146

resolution calculus, 145

resolution closure, 145

resolution rule, 145

resolution theorem, 148, 151, 167

resolution tree, 146

resolvent, 145

restriction, 44

ring, 47

ordered, 48

Abraham Robinson, 109

Julia Robinson, 256

Robinson’s arithmetic, 234

Rogers, 290

rule, 22, 23, 92

basic, 22, 92

derivable (provable), 23

Gentzen-style, 25

Hilbert-style, 121

of Horn resolution, 149

sound, 25, 93

rule induction, 25, 94

Russell, xvii

Russell’s antinomy, 73

S

S-invariant, 186

Σ1-completeness, 239

provable, 278

Σ1-formula, 238

special, 267

Sambin, 290

satisfiability relation, 17, 62

satisfiable, 17, 64, 82, 144

satisfiably equivalent, 88

scope (of a prefix), 58

segment, xx

initial, xx, 46

terminal, xx

semigroup, 47

free, 47

ordered,regular, 47

semilattice, 48

semiring, 48

ordered, 48

sentence, 59

separator, 156

sequence, xx

sequent, 22

initial, 22

set

countable, uncountable, 111

densely ordered, 46

discretely ordered, 183

finite, 111

ordered, 46

partially ordered, 46

transitive, 296

well-ordered, 46

Sheffer function, 3

signature

algebraic, 57

extralogical, 43

logical, 4

Index of Terms and Names 315

signum function, 220

singleton, 152

Skolem, xvii

Skolem function, 88

Skolem’s paradox, 116

Skolemization, 90

SLD-resolution, 162

solution, 158

soundness, 26, 94

SP-invariant, 188

Stone’s representation theorem, 49

string, xx

atomic, xx

structure, 42

algebraic, relational, 42

subformula, 7, 58

substitution, 59

global, 60

identical, 60

propositional, 19

simple, 59

simultaneous, 59

substitution function, 248

substitution invariance, 127

substitution theorem, 71

substring, xx

substructure, 44

(finitely) generated, 45

elementary, 171

substructure complete, 207

subterm, 56

subtheory, 81

successor function, 105

supremum, 49

symbol, xx

extralogical, logical, 54

of T , 81

symmetric, 45

system (of sets), xix

T

T -model, 82

Tarski, 20, 169, 216

Tarski fragment, 260

Tarski–Lindenbaum algebra, 84

tautologically equivalent, 78

tautology, 17, 64

term equivalent, 15

term function, 67

term induction, 55

term model, 100, 136

term, term algebra, 55

tertium non datur, 17

theorem

Artin’s, 197

Cantor’s, 111

Cantor–Bernstein, 174

Dzhaparidze’s, 293

Goodstein’s, 282

Goryachev’s, 295

Herbrand’s, 139

Lagrange’s, 255

Lindenbaum’s, 27

Lindström’s, 129

Löb’s, 282

Łoś’s, 211

Löwenheim–Skolem, 112, 175

Morley’s, 179

Rosser’s, 252

Shelah’s, 211

Steinitz’s, 197

Trachtenbrot’s, 125

Visser’s, 289

316 Index of Terms and Names

theory, 81

(finitely) axiomatizable, 104

arithmetizable, 250

complete, 105

consistent (satisfiable), 82

countable, 111

decidable, 119, 228

elementary or first-order, 81

equational, 127

essentially undecidable, 257

hereditarily undecidable, 254

inconsistent, 82

inductive, 191

κ-categorical, 176

quasi-equational, 128

strongly undecidable, 254

undecidable, 119

universal, 83

transcendental, 48

transitive, 45

(directed) tree, 32

true, 253

truth function, 2

truth functor, 3

truth table, 2

truth value, 2

Turing machine, 220

U

U -resolution, 162

U -resolvent, 161

UH -resolution, 162

ultrafilter, 34

nontrivial, 34

ultrafilter theorem, 35

ultrapower, 211

ultraproduct, 211

undecidable, 104, 119

unifiable, 152

unification algorithm, 153

unifier, 152

generic, 153

union, xix

unique formula reconstruction, 7

unique formula reconstruction prop-

erty, 58

unique term concatenation, 55

unique term reconstruction, 55

unit element, 47

universal closure, 64

universal part, 187

universe, 114

urelement, 112

V

valuation, 8, 62, 285

value matrix, 2

variable, 54

free, bound, 58

variety, 127

Vaught, 179

verum, 5

W

w.l.o.g., xxi

word (over A), xx

word semigroup, 47

Z

Z-group, 205

zero-divisor, 48

Zorn’s lemma, 46

Index of Symbols

N, Z, Q, R xix

N+, Q+, R+ xix

∪, ∩, \ xix

⊆, ⊂ xix

∅, PM xix
⋃

S,
⋂

S xix

M ×N xix

f(a), fa, af xix

f :M → N xix

x 7→ t(x) xix

dom f, ran f xix

idM xix

M I xx

(ai)i∈I xx

(a1, . . . , an) xx

~a, f~a xx

P~a, ¬P~a xx

graph f xxi

⇔,⇒,&,∨∨∨ xxi

:=, :⇔ xxi

Bn 2

∧ , ∨,¬ 3

F, PV 4

→,↔,⊤,⊥ 5

PN, RPN 7

Sf α 7

wϕ 8

Fn, α(n) 9

α ≡ β 11

DNF, CNF 13

w � α, � α 17

X � α, X � Y 18

⊢ 20

C+, C− 27

MP 35

|∼ 36

L 43

rA, fA, cA 43

A ⊆ B 44

TF , TR 47

charp 48

2 49

A ≃ B 50

lh(ξ) 50

a/≈, A/≈ 51
∏

i∈I Ai 52

AI 52

Var 54

∀, ==== 54

SL 54

T (= TL) 55

var ξ, var t 56

∃, ∨ 56

6==== 56

L, L==== 57

L◦ , L∈ 57

TL 57

rkϕ, qrϕ 58

bnd ϕ 58

free ϕ 58

L0, Lk, Vark 59

ϕ(x1, . . . , xn) 59

ϕ(~x), t(~x) 59

~t , f~t , r~t 59

ϕ t
x
, ϕx(t) 59

ϕ
~t
~x
, ϕ~x(~t) 59

ι (iota) 60

M = (A, w) 62

rM, fM, cM 62

tA,w, tM 62

~tM, tA 62

M � ϕ 62

A � ϕ[w] 62

Ma
x,M~a

~x 62

� ϕ 64

α ≡ β 64

A � ϕ, A � X 64

X � ϕ 64

ϕg , X g 64

TG, T ====
G 65

tA(~a), tA 67

317

318 Index of Symbols

(A,~a) � ϕ 67

A � ϕ [~a] 67

ϕA 67

∃n, ∃=n 68

⊤, ⊥ 69

A ≡ B 69

Mσ 71

∃! 72

≡A, ≡K 75

Q (∀ or ∃) 76

PNF 77

(∀x⊳t),(∃x⊳t) 77

(divides) 80

X �
g
ϕ 80

T, MdT 82

Taut 82

T + α, T + S 82

≡T , ≈T 83

ThA, ThK 84

K � α 84

L[r], ϕrd 85

SNF 88

⊢ 92

mon, fin 94

Lc, LC, α z
c 97

⊢T α 102

X ⊢T α 102

ACF, ACFp 105

N , S 105

Lar 105

6, < 105

PA 106

IS 106

n (= Sn0) 107

IA 108

M ∼ N 111

ZFC, ZF 112

AE, AS, AU 113

{z ∈ x |ϕ} 113

AP, AR 114

{a, b}, {c} 114

(a, b) 114

AI, AF, AC 115

ω 115

Vα, Vω 115

|∼ 121

Λ, Λ1–Λ10 122

MQ 122

Tautfin 125

Γ ⊢
B

γ 127

LII 130

∼O, L∼O
131

Pd 134

F , FX, FT 136

Tk 137

Fk, FkX 137

GI(X) 138

CU , CT 142

144

K � H 145

λ; λ̄, K̄ 145

RR, ⊢
RR

145

Rc 145

HR, ⊢
HR

149

P, N 149

HR(P,N) 149

VP, wP, ρ
P

150

Kσ 152

P, :− 157

GI(K) 158

sum 159

UR, ⊢
UR

161

UHR, ⊢
UHR

161

UωR, UωHR 161

AA, BA 170

DA 170

A 4 B 171

DelA 172

|M| 173

ℵ0, ℵ1, 2ℵ0 174

CH 174

DO 177

L,R 177

DO00, . . . 178

〈X〉, ≡X 180

SO, SO00, . . . 183

Γk(A,B) 183

A ∼k B 184

A ≡k B 184

T ∀ 187

TJ 188

A ⊆ec B 191

D∀A 192

Index of Symbols 319

RCF 197

ZGE, ZG 204

≈F 209

a/F , w/F 210
∏F

i∈I Ai 210

Iw
α 211

Fn, F 217

h[g1, . . . , gm] 217

P [g1, . . . , gm] 217

Oc, Op, Oµ 218

f = Op(g, h) 218

Inν 218

χ
P 218

Kn
c , ·−, δ 219

sg, max 220

prime, pn 220

rem(a, d) 220

bia 220

µk[P (~a, k)] 221

µk6m[P (~a, k)] 222

℘(a, b), tn 222

〈a1, . . . , an〉 223

GN, ℓ 223

(((a)))k, (((a)))last 224

∗, f̄ , Oq 224

lcm{fν| ν6n} 226

♯s 227

ξ̇, ϕ̇, ṫ 227

V 228

ṡ, Ẇ 228

¬̃, ∧̃ , →̃ 229

bewT , bwbT 229

=̃===, ∀̃ 230

S̃, +̃, ·̃ 230

Tprim, Lprim 231

[m]ki 232

Q 234

N 235

∆0,Σ1,Π1 238

∆1 238

⊥ (coprime) 239

I∆0 239

β, beta 244

pϕq, ptq, pΦq 246

bewT , bwbT 246

cf, ṅ 248

sbx, sb~x 248

ϕ̇~x(~a) 249

prov 252

αP, XP 258

T∆, CA 258

B∆ 259

TF 260

ZFCfin (FST) 261

Sfin, Sfnd 261

Σn, Πn, ∆n 264

�(x) 270

�α, ✸α 270

ConT 270

D0–D3 271

∂, d0, . . . 271

D1∗, D2∗ 271

�[ϕ] 277

PA⊥ 281

D4, D4◦ 281

Tn, Tω 284

�nα 284

F� 284

✸, �n 285

MN 285

G, ⊢G 285

P
 H 285

�G H 285

G ≡G H 285

Gn 288

GS 289

1bwbPA 292

�1 , ✸1, Ω 292

GD 293

Rf T 294

ρa 296

Gi 296

Gj 298

	Foreword
	Preface
	Contents
	Introduction
	Notation
	1 Propositional Logic
	1.1 Boolean Functions and Formulas
	1.2 Semantic Equivalence and Normal Forms
	1.3 Tautologies and Logical Consequence
	1.4 A Calculus of Natural Deduction
	1.5 Applications of the Compactness Theorem
	1.6 Hilbert Calculi

	2 First-Order Logic
	2.1 Mathematical Structures
	2.2 Syntax of First-Order Languages
	2.3 Semantics of First-Order Languages
	2.4 General Validity and Logical Equivalence
	2.5 Logical Consequence and Theories
	2.6 Explicit Definitions—Language Expansions

	3 Complete Logical Calculi
	3.1 A Calculus of Natural Deduction
	3.2 The Completeness Proof
	3.3 First Applications: Nonstandard Models
	3.4 ZFC and Skolem's Paradox
	3.5 Enumerability and Decidability
	3.6 Complete Hilbert Calculi
	3.7 First-Order Fragments
	3.8 Extensions of First-Order Languages

	4 Foundations of Logic Programming
	4.1 Term Models and Herbrand's Theorem
	4.2 Horn Formulas
	4.3 Propositional Resolution
	4.4 Horn Resolution
	4.5 Unification
	4.6 Logic Programming
	4.7 A Proof of the Main Theorem

	5 Elements of Model Theory
	5.1 Elementary Extensions
	5.2 Complete and Categorical Theories
	5.3 The Ehrenfeucht Game
	5.4 Embedding and Characterization Theorems
	5.5 Model Completeness
	5.6 Quantifier Elimination
	5.7 Reduced Products and Ultraproducts

	6 Incompleteness and Undecidability
	6.1 Recursive and Primitive Recursive Functions
	6.2 Arithmetization
	6.3 Representability of Arithmetical Predicates
	6.4 The Representability Theorem
	6.5 The Theorems of Gödel, Tarski, Church
	6.6 Transfer by Interpretation
	6.7 The Arithmetical Hierarchy

	7 On the Theory of Self-Reference
	7.1 The Derivability Conditions
	7.2 The Provable Completeness
	7.3 The Theorems of Gödel and Löb
	7.4 The Provability Logic G
	7.5 The Modal Treatment of Self-Reference
	7.6 A Bimodal Provability Logic for PA
	7.7 Modal Operators in ZFC

	Bibliography
	Index of Terms and Names
	Index of Symbols

