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Abstract: 

In recent years, nanofluids have been widely used to improve the performance of various 

energy systems due to their favourable thermo-physical and optical characteristics. In 

particular, solar distillation systems, as an affordable and reliable technique to provide 

freshwater, have benefited from nanofluid technology. This article performs a review of 

literature on the implementation of nanofluid technology in active and passive solar 

distillation systems. The progress made and the existing challenges are discussed and some 

conclusions and suggestions are made for future research. The review indicates that the daily 

productivities of solar distillation systems enhance by using nanofluid and increasing the 

volume fraction of nanoparticles. However, long-term operational stability and life cycle 

assessment remain critical issues. These factors should be considered for future research in 

this field. 

Keywords: Solar distillation systems; Nanotechnology; Desalination; Active and passive 

solar desalination. 
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Nomenclature 

E                   energy (J/kg) 

F                    force (N) 

g                    gravitational acceleration (m/s2) 

k                    thermal conductivity (W/m.oC) 

p                    Pressure (Pa) 

Sh                  energy source term (Kg/m.s) 

Sα                  mass source term (Kg/m3.s) 

t                     time (s) 

T                    temperature (oC) 

V                    velocity (m/s) 

Subscripts/superscripts 

eff                     effective 

i                         ith phase  

v                       vapor  

Greek symbols 

α                    volume/void fraction (-) 

μ         dynamic viscosity (kg/m.s) 

ρ                   density of the fluid (kg/m3) 

φ         solid volume fraction of nanoparticles (-) 

Abbreviations 

CFD               Computational fluid dynamics 

VOF              Volume of fluid 
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1. Introduction 

The shortage of freshwater is rapidly being converted into a critical issue in many parts of 

the world. Such crisis significantly hurts industrial and agricultural sectors and adversely 

influences human life. Although about 75% of the earth is covered with water, just 0.014% 

of that is usable directly for the human. Indeed, most of the water on the planet is stored as 

salt sea water (up to 97.5% of the global water) [1]. This figure clearly reflects the massive 

importance of distillation systems. Electrodialysis and reverse osmosis are two common 

techniques to distillate saltwater. In electrodialysis, salt ions can be transported from one 

solution through ion-exchange membranes towards the other one through using an electrical 

potential difference [2]. A schematic view of this system is shown in Fig. 1. An external 

electrical potential difference is used between two end-electrodes to create an ionic current 

inside the membrane. Consequently, the feed flow is desalinated inside alternating ducts, 

and the concentrate and diluate are gathered. 

 
Fig. 1. A schematic view of electrodialysis system [2]  

In reverse osmosis, semipermeable membranes are employed to eliminate molecules, ions, 

and larger particles from saline water [3]. A schematic view of a reverse osmosis system is 

shown in Fig. 2. In this system, a pressure is applied to overcome osmotic pressure. 
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Fig. 2. A schematic view of a reverse osmosis system 

The high costs of construction, repair, and maintenance and also the need for electrical power 

consumption are some disadvantages of electrodialysis and reverse osmosis techniques. 

Moreover, the high capacity of these methods makes them unsuitable for the regions with 

disperse population. Solar distillation systems are a promising alternative for these 

applications. In solar distillation systems, solar energy is used to heat and evaporate water 

that at the same time is separated from impurities and salt. After evaporation, the vapour is 

condensed to collect the distilled water. A schematic view of a double slope solar still is 

disclosed in Fig. 3. Solar beam transmits through a clear glass cover and transfers to the 

water surface in salt water basin. The water evaporates and thermal energy transfers between 

the glass and salt water surface by convection, evaporation, and radiation. The vapour 

condenses on the inner surface of the glass releasing its latent heat of vaporisation. The 

condensed water drips down the internal surface of the cover due to the gravity and can be 

gathered in internal gutters [4]. 

 

Applied pressure Pure water 

Water flow 

Membrane 

Glass cover 
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Fig. 3. A schematic view of a double slope solar still [5]  

Low costs of construction, repair, and maintenance, simplicity, portability, and use of solar 

energy resources are some advantages of solar distillation systems. Conventional solar 

distillation systems have a low capacity and large size, which occupied a large space. 

Researchers used different passive and active techniques to overcome the disadvantages and 

improve the efficiencies of these devices [5-9]. 

Manikandan et al. [10] reviewed the potentials of wick materials to enhance the productivity 

of solar stills. They recommended the wick materials as leading and economic materials to 

improve the productivity of solar stills. Their review also showed that the floating wick type 

solar still has the maximum productivity amongst all existing wick type solar stills. Note that 

floating wick material in the basin of solar still causes suction of water as a result of capillary 

action. Thus, the upward surface of wick material is always moist and this increases the 

evaporation rate. Kabeel et al. [11] reviewed the potentials of condenser for improving the 

productivity of solar stills. This review showed that supplying further region for 

condensation enhances the condensation rate and also improves the evaporation rate in the 

still. Figure 4 discloses a schematic view of a single slope solar still with external condenser. 

In this design, a vacuum fan is installed on the side wall of the solar still and the output of 

this fan can be guided towards the external condenser to provide more distilled water. 
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Fig. 4. A schematic view of a single slope solar still with external condenser [11]  

Sathyamurthy et al. [12] performed a literature review on the integration of solar still with 

solar collectors to enhance the production of freshwater. They reported that the combination 

of solar stills and solar collectors enhances the production of freshwater by about 36%. A 

schematic view of a single slope solar still with a flat plate collector is discloses in Fig. 5. In 

this figure the flat plate collector is used to heat the water and assists with the evaporation 

process.  

 

Fig. 5. A schematic view of a single slope solar still with a flat plate collector [13]  

Omara et al. [14] reviewed the methods for cooling glass cover of solar stills. Their review 

indicated that using this method has a potential for reducing the temperature of glass cover 

in the range of 6 to 20 °C and that it can enhance the productivity and performance up to 
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20% and 15.5%, respectively. Figure 6 shows a schematic view of a single slope solar still 

with water flowing above the glass as a cooling film. 

 

Fig. 6. A schematic view of a single slope solar still with water flowing above the glass as 

a cooling film [15]  

Shukla et al. [16] reviewed the applications of latent heat energy storage materials. They 

stated that there are a considerable number of investigations on the numerical simulations 

and laboratory experiments in this field. However, there are a small number of studies on 

evaluating the system in the actual climatic conditions. Omara et al. [17] reviewed the solar 

stills equipped with reflectors. Reflectors can be used to improve the solar radiation directed 

to the basin of the still. They recommended these devices as a highly attractive and 

inexpensive modification for enhancing the productivity of the solar still. Figure 7 discloses 

a schematic view of a single slope solar still equipped with internal and external reflectors. 

 

Fig. 7. A schematic view of a single slope solar still with internal and external reflectors 

[18]  
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Over the last two decades, nanoparticles and nanofluids have opened a new window to 

enhance the efficiencies of various thermal systems [19-34]. Due to the promising 

characteristics of nanofluids, some researchers used them to improve the performance of 

different solar systems. Mahian et al. [35] performed a literature review on the potentials of 

nanofluids in solar systems. They concluded that using nanofluids in solar collectors is 

affordable and environmentally friendly as they lead to the reduction of CO2 emissions by 

fuel consumption. Subsequently, Kasaeian et al. [36] performed another literature review in 

this field. Their review indicated that a large value of thermal conductivity of nanofluid 

causes performance enhancement in solar systems. However, a large value of nanoparticle 

concentration does not always enhance the performance of these systems. The preceding 

reviews did not consider the solar desalination systems as a solar still. This article performs 

a comprehensive review on the role of nanoparticles on the productivity of solar desalination 

systems. The progress made and the existing challenges facing this method are discussed 

and some conclusions and suggestions are made for future research. Further, the numerical 

modelling of nanofluid solar still by volume of fluid model is explained briefly in a dedicated 

section. 

2. Mathematical modelling of nanofluid solar still 

Generally, experimental works are costly and time consuming. Hence, it is often required to 

employ an affordable and fast method to predict the performance of solar desalination 

systems. Computational fluid dynamics (CFD) provides an opportunity to achieve this goal. 

Previously, researchers used moist air model to simulate a solar still [6, 37-39]. This model 

considers all regions of the still as a moist air and condensation and evaporation processes 

are not modelled in solar still. For an actual solar still, there is a two-phase flow with a liquid-

vapour phase change process. However, volume of fluid model has the capability to simulate 
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the two-phase flow in the solar still where the change in joint surface between the two phases 

is important. This model has the ability to follow the interface between liquid and vapour 

phases and simulate the phase change during condensation and evaporation processes [40]. 

The mathematical modelling of nanofluid solar still by this model is explained briefly in this 

section. 

2.1. Governing equations  

Volume of fluid (VOF) model offered by Hirt and Nichols [41] can be used to simulate the 

two-phase flow with evaporation and condensation processes in solar stills. In VOF, it is 

required to calculate the volume fraction of each phase in any cell of geometry. The 

summation of the volume fraction for vapor or liquid phase in a cell must be one: 

1
1




p h a se
n

i

i

                                                                                                                              
(1) 

In this equation, αi is the volume fraction of the ith phase.  

The thermo-physical properties of a two-phase flow in any cell can be calculated by using 

the mean quantities of phases, weighted by their pertinent volume fractions. For example, 

viscosity of a liquid-vapour two-phase nanofluid flow is defined as [40]:  

effvvv  )1(
                                                                                                        

(2) 

In this equation, αv is the volume fraction of the vapor phase. Further, μeff and μv are 

viscosities of nanofluid as the liquid and vapor phase, respectively.  

A single phase method can be employed to calculate the effective properties of nanofluid as 

Albojamal and Vafai [42] reported that this method is able to predict nanofluids properties 

within an acceptable range of accuracy. The effective properties of nanofluid can be found 

in the work of Bovand et al. [43]. Other properties of vapour-liquid two-phase flow can be 

calculated by using a similar procedure. 
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The following continuity equation for the volume fraction of both phases should be solved 

to track the interface between them: 

i

i
i

i S
V

t 



 .

                                                                                                                                

(3) 

In this equation, ρi denotes the density for the ith phase. In addition, t and V indicate time 

and velocity, respectively. Mass exchange between the two phases during condensation and 

evaporation processes in still is taken into account by adding the source term of Sαi in the 

above equation.     

A single momentum equation can be used for all over the geometry. The velocity obtained 

by solving this equation can be shared amongst the phases. This equation is: 

  FgVVpVVV
t

eff 
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(4) 

In Eq. 4, p and F are pressure and surface tension forces at the interface between the liquid 

and vapour phases [44], respectively. The gravity term in Eq. 4 enables the model to 

reproduce the natural convection in the still. 

Finally, the temperature field can be obtained by solving an energy equation. The energy 

equation is: 

  hSTkpEVE
t





).()(.)(
                                                                                      

(5) 

In this equation, k indicates the thermal conductivity. Note that energy (E) and temperatures 

(T) are employed with mass-averaged form as follows: 
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The heat transfer during evaporation and condensation processes is taken into account by 

adding the source term of Sh in energy equation. 

It should be clarified that the velocity components at all walls of the solar still are zero due 

to the no-slip condition. Constant temperature applies on the glass cover and bottom wall as 

phase change processes occur on them. Finally, thermal insulated boundary condition can 

be used for the lateral walls to minimize heat losses from solar still. 

3. Applications of nanoparticles in solar stills 

Nanoparticles, or nanoscale solid particles, can be suspended in a liquid to boost the heat 

transfer charactristics and evaporative rate of a liquid. Generally, nanofluids have distinctive 

physical properties to those of the base liquid. Amongst them is their large thermal 

conductivity [45-48] and higher values of solar intensity absorptivity [49]. The thermal and 

optical characteristics of nanoparticles are dependent upon various factors including their 

thermo-physical properties (e.g. thermal conductivity, specific heat, and viscosity) [50], 

shape, size, and solid volume fraction of nanoparticles [51,52]. Due to these characteristics, 

some researchers investigated the potentials of various types of nanoparticles to improve the 

productivity of solar stills. Table 1 presents some date about the thermal conductivity and 

cost of various nanoparticles. These data were presented by Elango et al. [53]. As shown in 

this table, although some nanoparticles have an excellent thermal conductivity their cost is 

rather high and hence they are not affordable for the use in the solar stills. As a result, the 

nanoparticles with large thermal conductivity and sensible cost are more suitable.  

Table 1: The thermal conductivity and cost of various nanoparticles [53] 

No. Nanopowders 
Thermal conductivity 

(W/m° K) 
Quantity Cost (Rs)1 

1 Aluminum Oxide (Al2O3) 40 25 g 2000 

2 Zinc Oxide (ZnO) 29 100 g 1500 

3 Tin Oxide (SnO2) 36 25 g 1500 

                                                           
1 Indian rupee  
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4 Iron Oxide (Fe2O3) 7 25 g 1750 

5 Gold nanopowder (Au) 315 1 g 35029 

6 Titanium Dioxide (TiO2) 8.5 100 g 12859 

7 Copper Oxide (CuO) 76 5 g 3111 

8 Carbon nanotubes 3000-6000 250 mg 19521 

9 Zirconium (IV) Oxide (ZrO2) 2 100 ml 10611 

10 Silicon nitride (Si3N4) 29-30 25 g 11434 

11 Boron nitride (BN) 30-33 50 g 4911 

12 Aluminum nitride (AlN) 140-180 50 g 5193 

13 Diamond nanopowder (C) 900 1 g 8755 

14 Silver nanopowder (Ag) 424 5 g 12917 

 

3.1. Solar still enhanced only with nanoparticle 

This section reviews the solar desalination systems that are enhanced only with 

nanoparticles. Elango et al. [53] evaluated the potentials of various nanoparticles to improve 

the productivity of a solar still. Their nanoparticles were Al2O3, ZnO, and SnO2. The 

percentage enhancements in the productivity of the solar still by using these nanoparticles in 

comparison with pure water (without adding nanoparticles) are disclosed in Fig. 8.  
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Fig. 8. The percentage enhancements in the productivity of the solar still by using 

nanoparticles reported by [53] in comparison with the base fluid (without using 

nanoparticles) 

Sahota and Tiwari [54] investigated analytically the effects of Al2O3 nanoparticle on the 

efficiency of a solar still. They considered two masses containing 35 kg and 80 kg, 

respectively for basefluid. Figure 9 shows the procedures of their analytical work. BF, NF, 

DSSS, and HTC in this figure indicates the base fluid, nanofluid, double slope solar still, and 

heat transfer coefficient, respectively. Further, the thermo-physical properties of the base 

fluid and nanofluid are presented in tables 2-4. Their analysis showed that the productivity 

of solar still can be improved by about 12.2% and 8.4% through using Al2O3 nanoparticles 

with solid volume fraction of 0.12% in water with masses of 35 and 80 kg, respectively in 

comparison with the case without using nanofluid. Also, their results showed that the daily 

productivity enhances as the solid volume fraction of nanoparticles increases. 

 
Fig. 9. The procedures of the analytical work presented by Sahota and Tiwari [54] 
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Sahota and Tiwari [55,56] repeated this analysis by considering three nanoparticles 

containing Al2O3, CuO, and TiO2 nanoparticles. Figure 10 discloses the productivities of 

double slope solar still enhanced by different nanoparticles used by Sahota and Tiwari [55] 

for the east and west sides of the system. The nanoparticle concentration and water mass are 

0.25% and 35kg, respectively. As shown in this figure, the productivity achieved by the east 

side of double slope solar still is marginally higher in comparison to that of the west side.   

 

 

Fig. 10. The productivities of double slope solar still enhanced by different nanoparticles 

reported by Sahota and Tiwari [55] for the east and west sides.  

Sahota and Tiwari [56] found that the optimized concentration of nanoparticles is a function 

of the climatic conditions including the ambient temperature and solar radiation intensity. In 

a recent study Sahota and Tiwari [57] used Al2O3, CuO, and TiO2 nanoparticles in a double 

slope solar still. They calculated the annual energy, exergy, and productivity of this still. 

Sahota and Tiwari [57] observed considerable improvements in different parameters by 

using these nanoparticles. The improvements in still by nanoparticles in comparison with 

the case of base fluid are presented in Table 2. Sahota and Tiwari [57] found that the exergy 

of the solar still increases by employing the nanoparticles. 
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Table 2: Improvements of enhanced still by nanoparticles in comparison with the case of 

base fluid [57] 

 Al2O3 CuO TiO2 

Productivity 16.1% 5.25% 10.38% 

Energy 26.76% 12.96% 19.36% 

Exergy 37.77% 11.99% 25.55% 

 

Chen et al. [58] evaluated experimentally the potential usage of SiC nanoparticles in a solar 

distillation system. They recommended this type of nanofluid as a good option for solar 

distillation systems as it has efficient thermal characteristics, excellent stability, and small 

luminousness. They showed that the thermal conductivity of seawater with SiC nanoparticles 

is improved by about 5.2% in comparison with the base fluid. Kabeel et al. [59] coated the 

absorber plate of solar still the black Cu2O nanoparticles. They used the nanoparticles to 

enhance the heat transfer rate and salty water temperature. Their findings indicated that 

employing Cu2O nanoparticles enhances the productivity of still by about 16% and 25% in 

comparison with the conventional solar still for solid volume fractions of 10% and 40%, 

respectively. Taamneh [60] used VOF model to investigate the effects of zeolite particles on 

the efficiency of a three dimensional pyramid solar still. They compared the numerical 

results by experimental ones to evaluate the accuracy of their model. Figure 11 shows the 

result of velocity vectors at the central section of the pyramid still for the case of base fluid 

(without particle). As shown in this figure, there is a recirculating vortex within the still. 

This vortex is generated as the result of natural convection in the still. The vapour and 

thermal energy are transferred between water and glass surfaces due to the circulation of this 

vortex. Figure 12 shows the variations of experimental and numerical productivities with 

particle concentration. As shown in this figure, the productivity enhances by using zeolite 
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particles in the still. Further, there is a good agreement between the experimental and 

numerical results.  

 

 

Fig. 11. Velocity vectors at the central section of the still for the case of base fluid (without 

particle) presented by Taamneh [60] 
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Fig. 12. Variations of the experimental and numerical productivities with the particle 

concentration presented by Taamneh [60] 

Rashidi et al. [61] simulated the nanofluid flow in a two-dimensional single slope solar still 

by VOF model. They also performed an entropy generation analysis on this problem. These 

authors used Al2O3 nanoparticles and reported that the productivity of solar still enhances 

by about 25% through increasing the nanoparticle concentration in the range of 0 to 5%. 

Figure 13 discloses the frictional and thermal irreversibilities contours for two nanoparticle 

concentrations taken from Rashidi et al. [61]. The unit of frictional and thermal 

irreversibilities in these contours is W/m3.K. It should be stated that the thermal and 

frictional entropy generations are irreversibilities, which commonly take place during fluid 

flow and heat transfer processes. These irreversibilities affect the performance of the system, 

therefore, it is important to calculate and minimize them. The frictional and thermal entropy 

generations are defined based on the second law of thermodynamic and can be evaluated 

through calculating the velocity and temperature derivatives. For more information about 

them, the readers are referred to the seminal textbook of Bejan [62]. It can be seen that from 

this figure, the bottom and top walls of the solar still have the maximum frictional and 

thermal irreversibilities, while the irreversibilities are negligible at the centre of the still. It 

should be noted that the velocity and temperature gradients are intense at the walls due to 

the heat transfer and phase change near the walls of the still, which lead to an increase in the 

irreversibilities. This figure further shows that the frictional and thermal irreversibilities 

increase by using the nanofluid in comparison with the case of pure fluid (without using 

nanofluid). It should be stated that the thermal energy and vapour mass are transferred 

between liquid surface and glass cover of a solar still due to the natural convection. This 

natural convection is induced by the buoyancy forces generated due to the temperature 
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difference between the liquid and glass cover. Such forces become stronger through 

increasing the temperature difference. Generally, nanofluids have a smaller heat capacity in 

comparison with water. This indicates that nanofluids absorb the solar energy quicker and 

thus can be heated faster in comparison with water. As a result, the rates of evaporation and 

natural convection are strengthened by adding nanoparticles and this improves the heat and 

mass transports between the water and glass surfaces. This causes the existence of larger 

velocity and temperature gradients around the bottom and top walls as a result of the 

formation of thinner velocity and thermal boundary layers. It is evident that the existence of 

a larger velocity and temperature gradients increase the frictional and thermal entropy 

generations. 

 

Fig. 13. Frictional and thermal irreversibilities contours for two values of nanoparticle 

concentration presented by Rashidi et al. [61] 

Rashidi et al. [63] repeated this analysis for a cascade solar still. This revealed that, in 

general, the distance between evaporating and condensing surfaces (water and glass cover 
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surfaces) decreases by using a cascade solar still. Thus, the vapour transfers faster to 

condensing surface through using a cascade solar still. Rashidi et al. [63] found that the 

productivity of solar still improves by about 22% when Al2O3 nanoparticle concentration 

increases in the range of 0 to 5%. Figure 14 shows that the liquid and vapour fractions inside 

the cascade solar still of Rashidi et al. [63] during times for two values of nanoparticle 

concentration. These contours are on the basis of a VOF modelling. As discussed earlier, the 

VOF model has an ability to simulate evaporation and condensation phenomena inside the 

solar still. As inferred from this contour, at the first time (t=0 sec), there is only a liquid layer 

inside the solar still. However, the vapour appears for the next times as the volume fraction 

of the vapour phase is increased. This vapour is transferred to the glass surface due to the 

natural convection and buoyancy force generated as a result of temperature difference 

between the water and glass surfaces in the still. This figure further shows that the 

evaporation and condensation rates improve by adding the nanoparticles inside the still. 
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Fig. 14. Temporal evolution of liquid and vapour fractions in a cascade solar still for two 

values of nanoparticle concentration presented by Rashidi et al. [63] 
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Table 3 summarizes the studies on the application of nanoparticles for the productivity 

enhancement of solar desalination systems. 

Table 3: Articles on the application of nanoparticles for the productivity enhancement of 

solar desalination systems 

Authors Type of research 
Type of 

solar still 

Type of 

nanoparticle 

Concentration of 

nanoparticle (%) 

size of 

nanoparticle 

Elango et al. 
[53] 

Experimental Single slope 
Al2O3, ZnO, 

and SnO2 
0.05 and 0.1 

Al2O3-0.05% 
(394.7nm) 

Al2O3-0.1% 
(245.1nm) 

ZnO-0.05% 
(16nm) 

ZnO-0.1% 
(9.3nm)  

SnO2-0.05% 
(114.5nm) 
SnO2-0.1% 
(115.9nm) 

Sahota and 
Tiwari [54] 

Analytical 
Double 
slope 

Al2O3 
0.04, 0.08, and 

0.12 
20nm 

Sahota and 
Tiwari [55] 

Analytical 
Double 
slope 

Al2O3, CuO, 
and TiO2 

0.2, 0.25, and 0.3 20nm 

Sahota and 
Tiwari [56] 

Analytical 
Double 
slope 

Al2O3 and 
TiO2 

0.04, 0.08, and 
0.12 

20nm 

Taamneh [60] Numerical Pyramid Zeolite  1 to 5 0.25 μm 

Kabeel et al. 
[59] 

Experimental  Single slope Cu2O 10 to 40 10-14nm 

Chen et al. [58] Experimental 
Solar 

distillation 
system 

SiC 0.04-1 30nm 

Sahota and 
Tiwari [57] 

Analytical 
Double 
slope 

Al2O3, CuO, 
and TiO2 

0.25 20nm 

Rashidi et al. 
[61] 

Numerical Single slope Al2O3 1 to 5 60nm 

Rashidi et al. 
[63] 

Numerical Cascade  Al2O3 1 to 5 60nm 

 

3.2. Combination of nanoparticles and other techniques in solar desalination systems 

Some researchers combined the technique of adding nanoparticles with the other methods to 

achieve a higher productivity in the solar stills. Kabeel et al. [64] enhanced the efficiency of 

the solar still by adding nanoparticle and providing vacuum. The nanoparticles were Al2O3 

and Cu2O. They used vacuum fan to improve the condensation rate. A view of their 

experimental setup is disclosed in Fig. 15. Kabeel et al. concluded that employing Cu2O 



22 
 

improves the productivity of the solar still by about 133.64% and 93.87% for the cases of 

with and without the fan, respectively. These enhancements were by about 125.0% and 

88.97% for the case of Al2O3. Further, their cost analysis showed that the costs of producing 

one litre of pure water, when employing Cu2O, are about 0.035$ and 0.045$ for the cases 

with and without the fan, respectively. These costs were about 0.038$ and 0.051$ for the 

case of Al2O3, while for the conventional still this cost was about 0.048$. 

 
Fig. 15. The experimental setup of Kabeel et al. [64] 

 
In another investigation, Kabeel et al. [65] used simultaneously the external condenser and 

Al2O3 nanoparticles to improve the efficiency of a solar still in an experimental work. They 

installed a vacuum fan at the side wall of the solar still and the output of this fan is guided 

towards the external condenser to provide more distilled water. They found that the 

productivity of the still improves by about 53.2% through using the external condenser, 

while it enhances by about 116% by combined usage of nanofluid and the external 

condenser. Recently, Kabeel et al. [66] investigated analytically the potentials of external 

condenser and nanofluid to enhance the efficiency of a solar still. The schematic diagram of 

their solar still is disclosed in Fig. 16. Note that the fan is used in their system to provide a 
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greater evaporation rate and smaller values of pressure inside the basin still. Further, wetted 

air is guided towards the condenser to produce more pure water. They used Al2O3 and Cu2O 

nanoparticles and recorded the daily performance of 84.16% for enhanced solar still by Cu2O 

nanoparticles and fan, while the daily performance of enhanced solar still by Al2O3 

nanoparticle and fan was about 73.85%. Importantly, the daily performance of the 

conventional solar still was only about 34%. 

 

Fig. 16. The schematic diagram of the solar still proposed by Kabeel et al. [66] 

Sharshir et al. [67] improved the efficiency of the solar still by combined usage of 

nanoparticles and glass cover cooling. They used C and CuO as the nanoparticles and film 

flow as the glass cover cooling. The experimental setup of Sharshir et al. [67] is shown in 

Fig. 17. They recorded the daily performances of 47.80% and 57.60% when employing CuO 

and C nanoparticles, respectively along with the usage of glass cover cooling, while the daily 

performance of the conventional still was 30%. Also, they recorded the daily performances 

of 38% and 40% when employing CuO and C, respectively, without the usage of glass cover 

cooling. 
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Fig. 17. The experimental setup of Sharshir et al. [67] 

El-Said et al. [68] coupled a nanofluid solar heater with a hybrid desalination system to 

achieve a higher productivity.  This unit consisted of a two stage humidification–

dehumidification unit and an evaporation unit. They used a nanofluid solar water heater in 

the evaporation unit to increase the evaporation rate. These authors found that the amount of 

pure water generation increases and the cost of generated pure water decreases by using the 

nanofluid in the solar water heater of the evaporation unit. They concluded that the 

performance of solar water heater is affected by nanoparticle concentration. Mahian et al. 

[69] used simultaneously nanofluids and solar collector to improve the productivity of a solar 

still equipped with a heat exchanger. Their experimental setup is shown in Fig. 18. After 

receiving thermal energy of solar collector, nanofluid flows through the heat exchanger 

mounted in the solar still basin to exchange the thermal energy with salty water. 

Accordingly, the energy of solar collector is transferred to the salty water by the heat 

exchanger. They used both Cu and SiO2 nanoparticles. At lower temperatures (e.g. <50 °C), 

adding Cu nanoparticles was observed to be more efficient for improving the evaporation in 

the still comparing with those of SiO2. However, for larger temperatures (70°C) SiO2 
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particles have the larger values of evaporation rate in comparison with Cu nanoparticles. For 

larger temperatures (70°C), the maximum improvement in evaporation rate is about 1%. 

Moreover, they concluded that adding nanoparticles with smaller diameter is more efficient 

in the solar still.  

 
Fig. 18. The experimental setup of Mahian et al. [69] 

Sahota et al. [70] coupled a nanofluid solar still with a helically coiled heat exchanger. They 

compared their design with the conventional system. The schematic views of their systems 

are shown in Fig. 19. Some collectors are used in both systems to preheat the salt water in 

the basin of the solar still. A helically coiled heat exchanger is used in the basin of modified 

system to transfer the thermal energy into the basin water. They reported that the productivity 

of conventional system without using heat exchanger enhances by about 32%, 19.23%, and 

6.7% through using CuO, Al2O3, and TiO2 nanoparticles in comparison with case of base 

fluid. However, these enhancements in the productivity of the modified system with using 

heat exchanger were about 31.49%, 26.4%, and 7.26% by using CuO, Al2O3, and TiO2 

nanoparticles.  
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(a) Conventional system without using heat exchanger 

(b) Modified system with using heat exchanger 
Fig. 19. Schematic views of the systems analysed by Sahota et al. [70] 

In another investigation, Sahota et al. [71] repeated this analysis and performed the 

exergoeconomic and enviroeconomic analyses for this problem. They used CuO and Al2O3 

nanoparticles. Their enviroeconomic analyses were based on the amount of carbon dioxide 

reduction by using a renewable energy system and encourage to employ the maximum 

amount possible of renewable energy. They found that the amount of carbon dioxide 

reduction increases by using nanofluids in both systems a and b (with and without using 
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helically coiled heat exchanger). Shanmugan et al. [72] improved the productivity of a solar 

still by Al2O3 nanoparticles and phase change material. They achieved to efficiency of 

59.14% by combined usage of nanoparticles and phase change material. Sharshir et al. [73] 

combined three techniques containing usages of flake graphite nanoparticles, phase change 

material, and film cooling in a solar still. They improved the productivity by about 73.8% 

by combining these techniques in comparison with the conventional still. 

Table 4 summarizes the studies on combined application of nanoparticles and another 

technique for the productivity enhancement of solar desalination systems. 

Table 4: Articles on combined application of nanoparticles and another technique for the 

productivity enhancement of solar desalination systems 

Authors Type of research 
Type of 

solar still 

Type of 

nanoparticle 

Concentration of 

nanoparticle (%) 

size of 

nanoparticle 
Kabeel et al. 

[64] 
Experimental Single slope 

Al2O3 and 
Cu2O 

0.02 to 0.2 10-14nm 

Kabeel et al. 
[65] 

Experimental Single slope Al2O3 <0.2 ---- 

Sahota and 
Tiwari [70] 

Analytical 
Double 
slope 

Al2O3, CuO, 
and TiO2 

0.044 to 0.263 20nm 

Sahota and 
Tiwari [71] 

Analytical 
Double 
slope 

Al2O3, CuO, 
and TiO2 

0.04 to 0.14 20nm 

Kabeel et al. 
[66] 

Analytical Single slope 
Al2O3 and 

Cu2O 
0.02 to 0.3 10-14nm 

Sharshir et al. 
[67] 

Experimental  Single slope CuO and C 1 
CuO (1 μm) 

C (1.2–1.3 μm) 
Sharshir et al. 

[73] 
Experimental Single slope 

Flake 
graphite 

0.5 100nm 

El-Said et al. 
[68] 

Theoretical 
Hybrid 

desalination 
system 

Al2O3 1, 2, and 3 30nm 

Mahian et al. 
[69] 

Experimental/theoretical Single slope Cu and SiO2 1 to 4 
7, 40, and 100 

nm 

Shanmugan et 
al. [72] 

Experimental Single slope Al2O3 ---- 50nm 

 

4. Conclusions and suggestions for future studies 

This paper reviewed the literature on the role of nanoparticles on the productivity of solar 

desalination systems. Both active and passive solar distillation systems were included. 
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Further, the mathematical modelling of nanofluid solar still by VOF model was explained 

briefly. The main results of this review and some suggestions for future studies are as 

follows. 

4.1. Conclusions 

 The daily productivity enhances as the solid volume fraction of nanoparticles 

increases. 

 The exergy of the solar still increases by employing the nanoparticles. 

 VOF model can be used to simulate solar stills numerically. This model has the 

ability to follow the interface between liquid and vapour phases and simulate the 

phase change during condensation and evaporation processes.   

 SiC nanoparticles are an attractive option for solar distillation systems as they have 

good thermal characteristics, excellent stability, and small luminousness. 

 The bottom and top walls of the solar still have the maximum frictional and thermal 

irreversibilities, while the irreversibilities are negligible at the centre of the still. 

 The amount of carbon dioxide reduction increases by using nanofluids. 

 The technique of using nanoparticle can be combined with other passive and active 

techniques in solar stills to achieve higher productivities. 

 4.1. Suggestions for future studies 

Some suggestions are made as a direction of the future research in this section. 

 The production of solar stills can be used directly by human. Accordingly, the safety 

of nanoparticles for human health should be taken into account before using these 

materials. Complications of this system should be cleared.  

 The overall productivity enhancement by nanoparticles should be examined for 

different climate zones to achieve a more comprehensive data about this technique. 
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 Long-term operational stability and life cycle assessment are critical issues. These 

factors should be considered for future research in this field. 

 Conduction of numerical and mathematical modelling and obtaining some 

correlations for estimations of productivity and heat transfer coefficients for these 

systems are very useful in predicting the system performance.   

 Most of investigations in this field are performed for single and double slope solar 

stills. Other types of solar stills such as pyramid, sun tracing, semi-sphere, and 

cascade types need more attentions.   
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