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Abstract—Certificateless public key cryptography was intro-
duced to avoid the inherent key escrow problem in identity-based
cryptography, and eliminate the use of certificates in traditional
PKI. Most cryptographic schemes in certificateless cryptography
are built from bilinear mappings on elliptic curves which need
costly operations. Despite the investigation of certificateless public
key encryption without pairings, certificateless signature without
pairings received much less attention than what it deserves.
In this paper, we present a concrete pairing-free certificateless
signature scheme for the first time. Our scheme is more com-
putationally efficient than others built from pairings. The new
scheme is provably secure in the random oracle model assuming
the hardness of discrete logarithm problem.

Keywords-certificateless signature; bilinear pairing; discrete
logarithm problem; random oracle model; strongly secure

I. INTRODUCTION

In Asiacrypt 2003, Al-Riyami and Paterson proposed the no-
tion of “Certificateless Public Key Cryptography” [1], whose
original motivation is to find a public key system that does
not use certificates, and at the same time does not have
the key escrow problem. In certificateless cryptography, each
user has two secrets, namely a secret value and a partial
private key. The former is generated by the entity itself, and
the latter is produced by a third party called as the Key
Generating Center (KGC), who holds a master key. Decrypting
or signing requires both secrets. As KGC does not know the
secret value generated by the user, the key escrow problem
is eliminated. The corresponding public key is generated by
using the secret value and (optional) the partial private key. In
certificateless cryptography, one’s public key could be made
available to other users by transmitting it along with messages
(for example, in a signing application) or by placing it in
a public directory (this would be more appropriate for an
encryption setting).

Since the introduction of certificateless cryptography, a lot
of schemes have been proposed so far(e.g., [4], [5], [6],
[8], [9], [11]). However, as pointed out by Baek et al. [2],
certificateless encryption schemes (and certificateless signature
schemes) have been constructed within the framework of
ID-based encryption proposed by Boneh and Franklin [3].
As a result, most certificateless cryptography schemes are
based on bilinear mappings on elliptic curves, which are
used to construct identity-based encryption and require heavy

computational cost. Being aware of this, Baek et al. [2]
proposed the first certificateless encryption scheme which does
not depend on bilinear mappings. Sun et al. [12] improved
their scheme and proposed a strongly secure certificateless
encryption without pairings. Both schemes [2], [12] are more
computationally efficient than others from bilinear mappings.

To the best of our knowledge, all concrete constructions of
certificateless signatures in the literature are built from bilinear
mappings. In this paper, we present the first concrete efficient
certificateless signature scheme without pairings, and prove
its security in the random oracle model. The security of our
scheme can be reduced to discrete logarithm problem in finite
fields. Our work is motivated by certificateless encryption
schemes proposed in [2], [12]. Namely, by incorporating
Schnorr signature [10] nontrivially, we obtain a certificateless
signature scheme without pairings.

II. PRELIMINARIES

This section reviews definitions of certificateless signatures
and complexity assumptions associated with our scheme.

A. Syntax of Certificateless Signature Scheme

Definition 1: A certificateless signature scheme is made up
of seven algorithms: Setup, Partial-Key-Extract, Set-Secret-
Value, Set-Public-Key, Set-Private-Key, Sign, Verify. For a
fixed security parameter k, these algorithms work as follows:

• Setup(k).
This algorithm takes a security parameter k as input and
returns the master secret key msk, the master public key
mpk and a list of public system parameters params.

• Partial-Key-Extract(params, ID,msk).
This algorithm takes system parameters params, the
master secret key msk and a user’s identity ID as inputs,
and returns a partial private key DID and (optional) a
partial public key PID corresponding to the user with
the identity ID.

• Set-Secret-Value(params,mpk).
This algorithm takes system parameters params and the
master public key mpk as inputs, and returns a secret
value sID.

• Set-Public-Key(params,mpk, ID, PID, sID).
This algorithm takes system parameters params, the
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master public key mpk, the user’s identity ID, ID’s
partial public key PID and secret value sID as inputs,
and returns the public key PKID.

• Set-Private-Key(params,DID, sID).
This algorithm takes system parameters params, a user’s
partial private key DID and his/her secret value sID as
inputs, and returns the private key SKID.

• Sign(params,mpk, ID, SKID,m).
This algorithm takes system parameters params, the
master public key mpk, the user’s identity ID, his/her
private key SKID and the message m to be signed as
inputs, and returns a certificateless signature σ.

• Verify(params,mpk, ID, PKID,m, σ).
This algorithm takes system parameters params, the
master public key mpk, the user’s identity ID, a public
key PKID, and a message/signature pair (m,σ) as
inputs, and returns “valid” or “invalid”.

Completeness. For any correctly generated key pair
(SKID, PKID),

Verify(params,mpk, ID, PKID,m, Sign(params,mpk,

ID, SKID,m)) = valid.

B. Security Model of Certificateless Signatures

As there is no certificate to authenticate a user’s public
key, it is reasonable to assume that an adversary can replace
the user’s public key with any value of its choice. Thus,
two types of adversaries have been defined in certificateless
cryptography [1]. A Type I adversary can replace any user’s
public key but does not have the partial private key of the
target user, while a Type II adversary simulates a dishonest
KGC who has the knowledge of the master secret key (and
thus the partial private keys of all users), but is not allowed
to replace the target user’s public key.

For the security model of our certificateless signature
scheme, we consider the strongest Type I adversaries defined
in [5]: Super Type I adversary AI , which is given as much
power as possible. AI can obtain some message/signature
pairs which are valid under the public key chosen by itself
without providing the corresponding secret value.

For Type II adversary, we also consider the strongest adver-
sary model “Super Type II adversary” defined in [5], which
is given as much power as possible. AII is allowed to obtain
some message/signature pairs which are valid under the public
key chosen by itself without providing the corresponding
secret value. Note that AII is not allowed to replace the target
user’s public key.

Definition 2: Let Succcma,cida
AI ,super be the success probability

of a Super Type I adaptively chosen message and chosen
identity adversary AI , a certificateless signature scheme is
secure against Super Type I adversary AI if Succcma,cida

AI,super is
negligible for any polynomially bounded AI .

Definition 3: Let Succcma,cida
AII ,super be the success probability

of a Super Type II adaptively chosen message and chosen
identity adversary AII , a certificateless signature scheme is

secure against a Super Type II adversary AII if Succcma,cida
AII ,super

is negligible for any polynomially bounded AII .
Remark. Due to page limitation, we refer interested readers
to [5] for the formal game-based models of above definitions.

Definition 4: A certificateless signature scheme is existen-
tially unforgeable against chosen message and chosen identity
attacks if it satisfies Def. 2 and Def. 3.

C. Complexity Assumption

The security of our certificateless signature scheme can be
reduced to the hardness of discrete logarithm problem. Let p, q
be two primes and q|(p− 1). Let G be a subgroup of Z

∗
p with

prime order q and generator g. The discrete logarithm problem
is defined as follows.

Definition 5: Given a random element β ∈ G, find α ∈ Zq

such that gα = β (mod p).

III. THE PROPOSED SCHEME

In this section, we describe our certificateless signature
scheme without pairings. It consists of the following algo-
rithms:

• Setup: This algorithm runs as follows:
1) Given a security parameter k ∈ N, this algorithm

first chooses two primes p, q, where p, q > 2k and
q|(p − 1). It then chooses an element g ∈ Z

∗
p with

order q. The subgroup generated by g is denoted as
G;

2) The master secret key x is randomly chosen from
Z
∗
q , and the master public key is calculated as y =

gx (mod p);
3) Chooses three distinct cryptographic hash functions

H1 : {0, 1}∗×Z
∗
p → Z

∗
q , H2 : {0, 1}∗×Z

∗
p×Z

∗
p →

Z
∗
q , H3 : {0, 1}∗×{0, 1}∗×(Z∗

p)
4×Z

∗
q×Z

∗
p → Z

∗
q .

The system parameters params=(p, q, g,G, y,H1,H2,
H3).

• Partial-Key-Extract: Given the user’s identity ID ∈
{0, 1}∗ as input, this algorithm works as follows:

1) Picks s0, s1 ∈ Z
∗
q at random, and calculates p0 =

gs0 (mod p) and p1 = gs1 (mod p);
2) Calculates d0 = s0 +x ·H1(ID, p0) (mod q) and

d1 = s1 + x ·H2(ID, p0, p1) (mod q);
3) The partial private key DID = d0, the partial public

key PID = (p0, p1, d1).
Remark: Algorithms Setup and Partial-Key-Extract are
executed by KGC. Once the partial private and public
keys are given to the user via secure channel, the user
first checks if gd0 = p0 ·yH1(ID,p0) (mod p) and gd1 =
p1 · yH2(ID,p0,p1) (mod p). If both equations hold, the
user continues to run the following algorithms.

• Set-Secret-Value: This algorithm picks z ∈ Z
∗
q at ran-

dom, and sets sID = z as the user’s secret value.
• Set-Private-Key: Given the user’s partial private key

DID and the secret value sID, the full private key
SKID = (DID, sID) = (d0, z).

• Set-Public-Key: Given the secret value sID and the
partial public key PID = (p0, p1, d1), this algorithm
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calculates μ = gz (mod p). The user’s public key
PKID = (PID, μ) = (p0, p1, d1, μ).

• Sign: To sign a message m ∈ {0, 1}∗, the signer

1) Randomly selects r, r′ ∈ Z
∗
q , and calculates c = gr

(mod p) and c′ = gr′
(mod p));

2) Sets u = H3(m, ID, c, c′, PKID);
3) Calculates v = r−uz (mod q) and w = r′−ud0

(mod q).
The signature on the message m is σ = (u, v, w).

• Verify: Given params, the signer’s identity ID, PKID =
(p0, p1, d1, μ), a message m and the signature σ =
(u, v, w), the verifier checks if

gd1 = p1y
H2(ID,p0,p1) (mod p)

u = H2(m, ID, gvμu, gw(p0y
H1(ID,p0))u, PKID).

If both equations are correct, this algorithm outputs
“valid”. Otherwise, it outputs “invalid”.

IV. SECURITY ANALYSIS

In this section, we will show that the proposed scheme
is secure against Super Type I adversary and Super Type II
adversary defined in Section II-B. This is ensured by the
following two theorems.

Theorem 1: Our certificateless signature scheme is secure
against Super Type I adversary in the random oracle model,
assuming that the discrete logarithm problem is intractable on
Zp.

Theorem 2: Our certificateless signature scheme is secure
against Super Type II adversary in the random oracle model,
assuming that the discrete logarithm problem is intractable on
Zp.
The proofs of above theorems follow the same idea. We shall
prove that if there is a Super Type I or Type II adaptively
chosen message and chosen identity adversary which can
break our certificateless signature scheme with non-negligible
probability, then there exists another algorithm B which can
solve the discrete logarithm problem with non-negligible suc-
cess probability as well. Below we give the details of the proof
of Theorem 1. Due to page limitation, we omit the proof of
Theorem 2, which employs the similar technique to the proof
of Theorem 1.

Proof of Theorem 1. Let AI be a Super Type I adversary
against our certificateless signature scheme. We want to build
an algorithm B that uses AI as a black-box to solve the
discrete logarithm problem. At the beginning, B is given
two primes p, q and a discrete logarithm problem instance
(g, β = gα). The goal of algorithm B is to find α such that
β = gα (mod p). We show that by acting as AI ’s challenger,
B can use AI to find α.
B initializes AI with the master public key y = gx, where

x is the master secret key and B keeps it secret. B then
gives system parameters params = (p, q, g, y,H1,H2,H3)
to AI . Note that H1 and H2 are real hash functions, but H3

is simulated by B as the random oracle.

At any time, AI is allowed to access the following oracles
in polynomial time. B responds to such queries as follows.

• Create-User Request: Suppose AI makes at most qCU

queries to the Create-User Request oracle. At beginning,
B chooses t ∈ [1, qCU ] randomly. For the ith Create-
User Request query IDi

– If i �= t, B picks s0, s1, zi ∈ Z
∗
q at random

and computes p0 = gs0 (mod p), p1 = gs1

(mod p), (d0)IDi
= s0 + xe0i and (d1)IDi

=
s1 + xe1i, where e0i = H1(IDi, (p0)IDi

), e1i =
H2(IDi, (p0)IDi

, (p1)IDi
). In this case, the cor-

responding partial public key of IDi is PIDi
=

((p0)IDi
, (p1)IDi

, (d1)IDi
), μIDi

= gzi (mod p),
the partial private key of IDi is DIDi

= (d0)IDi
,

and the secret value sIDi
= zi.

– Otherwise, i = t and let IDi = ID∗. B sets
p0 = β = gα and d0 = ⊥, which means B
cannot compute the partial private key of ID∗. B
then picks s1, zt ∈ Z

∗
q at random and calculates

(p1)ID∗ = gs1 (mod p), (d1)ID∗ = s1 + xe1i,
where e1i = H2(ID∗, (p0)ID∗ , (p1)ID∗). In this
case, the corresponding partial public key of ID∗

is PID∗ = ((p0)ID∗ , (p1)ID∗ , (d1)ID∗ ), μID∗ = gzt

(mod p), and the secret value sID∗ = zt.

In either cases, B adds

(IDi, DIDi
= (d0)IDi

, sIDi
= zi,

PKIDi
= ((p0)IDi

, (p1)IDi
, (d1)IDi

, (μ)IDi
))

on list L and returns PKIDi
to AI

• Partial-Private-Key Extraction: When B receives a
partial private key query for a created user IDi,

– If IDi = ID∗, B returns “failure” and aborts the
simulation.

– Otherwise, IDi �= ID∗. B finds (d0)IDi
on L and

returns (d0)IDi
as the answer.

• Secret-Value-Extraction: For the secret value extraction
query on a created user IDi, B finds sIDi

on list L and
returns it to AI as the answer.

• Public-Key-Replacement Request: When AI makes
a public key replacement query on {IDi, PK ′

IDi
=

((p′0), (p
′
1), (d

′
1), μ

′)IDi
}, B first checks whether

g(d′
1)IDi = (p′1)IDi

· yH2(ID,p′
0,p′

1).

If the above equals, B returns “failure” and aborts the
simulation. Otherwise, B replaces the original public
key PKIDi

with (PK ′)IDi
. Then B will update the

list L and rewrites the corresponding information as
(IDi, DIDi

, sIDi
, (PK ′)IDi

). Note that the secret value
and the partial private key corresponding to the new
public key are not required.

• H3 Oracle Queries: When AI makes a query to oracle
H3, B first checks the list LH3 to see if there is an entry
for the same query. If (m, ID, c, c′, PKID, u) appears
on LH3 , then the same answer u will be given to AI .

376



Otherwise, a new random value u from Z
∗
q will be given

as the answer to AI . B then adds it to the list LH3 .
• Super-Sign Queries: Suppose that AI makes a signing

query on (IDi,m)
– If IDi �= ID∗ and the public key of IDi has not

been replaced, B first finds the corresponding private
key SKIDi

= ((d0)IDi
, sIDi

= z) on L. Then B uses
the private key SKIDi

to sign the message B.
– Otherwise, though B does not know the pri-

vate key SKIDi
, B chooses (u, v, w) ∈ (Z∗

q)
3

at random and sets u = H3(m, ID, gv(μ)u,
gw(p0y

H1(ID,p0))u, PKID). If the collision hap-
pens, B will rechoose (u, v, w) until there is no
collision happens on LH3 .

In either case, B outputs σ = (u, v, w) as IDi’s signature
on m. As the random oracle H3 is controlled by B, each
signature σ = (u, v, w) will pass the verification. The
above simulated signature is identically distributed as the
one in the real attack. By doing this, B performs a perfect
simulation.

Eventually, AI outputs a valid signature (ID,m, σ =
(u, v, w)).

• If ID �= ID∗ or σ is not a valid signature, B returns
“failure”.

• Otherwise, B can solve the discrete logarithm problem
by applying the forking technique.

According to the forking lemma [7], if AI is a sufficient
efficient forger in the above interactions, B can obtain two
valid signatures σ = (u, v, w) and σ′ = (u′, v′, w′) (u �= u′)
that satisfies

gw(p0y
H1(ID,p0))u = gw′

(p0y
H1(ID,p0))u′

B can calculate α = logg β = logg(p0) = (w′−w)/(u−u′)−
xH1(ID, β).
Probability of Success: It remains to compute the probability
that B solves the given instance of the discrete logarithm
problem. B succeeds if:

1) Λ1: B does not abort during the simulation;
2) Λ2: (ID,m, σ = (u, v, w)) can pass the verification

under the current public key PKID;
3) Λ3: In the forgery (ID,m, σ = (u, v, w)), ID = ID∗.

This happens with probability 1/qCU .

B does not abort during the simulation if and only if the
following events happen:

1) Λ11: AI does not make Partial-Private-Key Extraction
request of ID∗. Suppose that AI makes at most qPPK

queries to the oracle Partial-Private-Key Extraction,
this happens with probability (1− 1

qCU
)qP P K .

2) Λ12: AI does not make a Public-Key-Replacement that
satisfies

g(d′
1)IDi = (p′1)IDi

· yH2(ID,p′
0,p′

1)

According to forking lemma in [7], if AI finds another
(p′0, p

′
0, d

′
1, u′) that satisfies g(d′

1)IDi = (p′1)IDi
·yH2(ID,p′

0,p′
1),

then the discrete logarithm problem can been solved with
probability ε ≥ 7Q/q, in polynomially bounded time, where Q
is the number of queries that AI can ask to the random oracle
H2. This will not happen as discrete logarithm is assumed to
be hard on Zp.

Therefore, the probability that B can solve the discrete
logarithm problem is

AdvDL
B ≥ 1

qCU
(1− 1

qCU
)qP P K Succcma,cida

AI ,sup er

V. CONCLUSION

In this paper, we present the first concrete certificateless
signature scheme without pairings. Our construction is moti-
vated by certificateless encryption schemes without pairings
proposed in [2], [12]. The new scheme is provably secure (in
the random oracle model) against Super Type I and Super
Type II adversaries defined in [5], assuming that the discrete
logarithm problem is intractable. The proposed scheme is more
computationally efficient than other certificateless signature
schemes from bilinear mappings.
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