
 Open access Proceedings Article DOI:10.1145/158511.158611

A concurrent, generational garbage collector for a multithreaded implementation of
ML — Source link

Damien Doligez, Xavier Leroy

Institutions: École Normale Supérieure

Published on: 01 Mar 1993 - Symposium on Principles of Programming Languages

Topics: Garbage collection and Write barrier

Related papers:

 Portable, unobtrusive garbage collection for multiprocessor systems

 On-the-fly garbage collection: an exercise in cooperation

 List processing in real time on a serial computer

 Multiprocessing compactifying garbage collection

 Garbage collection: algorithms for automatic dynamic memory management

Share this paper:

View more about this paper here: https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-
5fww1dbu8c

https://typeset.io/
https://www.doi.org/10.1145/158511.158611
https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c
https://typeset.io/authors/damien-doligez-2x95ayrthm
https://typeset.io/authors/xavier-leroy-37gkojjfy8
https://typeset.io/institutions/ecole-normale-superieure-2rhqzl2i
https://typeset.io/conferences/symposium-on-principles-of-programming-languages-1zu4o3vo
https://typeset.io/topics/garbage-collection-1y0lwo2p
https://typeset.io/topics/write-barrier-1n2tmswp
https://typeset.io/papers/portable-unobtrusive-garbage-collection-for-multiprocessor-1qhtaujlxr
https://typeset.io/papers/on-the-fly-garbage-collection-an-exercise-in-cooperation-4l9r1sd217
https://typeset.io/papers/list-processing-in-real-time-on-a-serial-computer-3yrs51rjmy
https://typeset.io/papers/multiprocessing-compactifying-garbage-collection-32ens7lyws
https://typeset.io/papers/garbage-collection-algorithms-for-automatic-dynamic-memory-4lxa8yrew5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c
https://twitter.com/intent/tweet?text=A%20concurrent,%20generational%20garbage%20collector%20for%20a%20multithreaded%20implementation%20of%20ML&url=https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c
https://typeset.io/papers/a-concurrent-generational-garbage-collector-for-a-5fww1dbu8c

HAL Id: hal-01499969
https://hal.inria.fr/hal-01499969

Submitted on 1 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A concurrent, generational garbage collector for a
multithreaded implementation of ML

Damien Doligez, Xavier Leroy

To cite this version:
Damien Doligez, Xavier Leroy. A concurrent, generational garbage collector for a multithreaded
implementation of ML. POPL 1993: 20th symposium Principles of Programming Languages, Jan
1993, Charleston, United States. pp.113-123, 10.1145/158511.158611. hal-01499969

https://hal.inria.fr/hal-01499969
https://hal.archives-ouvertes.fr

Proc. 20th Symp. Principles of Programming Languages, 1993, pages 113{123.

A concurrent, generational garbage collector

for a multithreaded implementation of ML

Damien Doligez Xavier Leroy

�

Ecole Normale Sup�erieure and INRIA Rocquencourt

�

Abstract

This paper presents the design and implementation of a

\quasi real-time" garbage collector for Concurrent Caml

Light, an implementation of ML with threads. This

two-generation system combines a fast, asynchronous

copying collector on the young generation with a non-

disruptive concurrent marking collector on the old gen-

eration. This design crucially relies on the ML compile-

time distinction between mutable and immutable ob-

jects.

1 Introduction

This paper presents the design and implementation of a

garbage collector for Concurrent Caml Light, an imple-

mentation of the ML language that provides multiple

threads of control executing concurrently in a shared

address space.

Garbage collection | the automatic reclamation of

unused memory space | is one of the most problem-

atic components of run-time systems for multi-threaded

languages. The naive \stop-the-world" approach, where

all threads synchronously stop executing the user's pro-

gram to perform garbage collection, is clearly inade-

quate, since it introduces synchronization between oth-

erwise independent threads. For instance, this can re-

sult in all threads being blocked for some time if one

thread is in the middle of a lengthy, uninterruptible

operation when garbage collection starts. This con-

travenes one of the main motivations for having mul-

tiple threads: to reduce the response time of interactive

applications. To achieve this goal, a promising direc-

tion is to run the garbage collector concurrently with

the threads that execute the user's program, with as

little synchronization as possible between the collector

and the mutators (the threads executing the user's pro-

gram).

�

Authors' address: INRIA Rocquencourt, B. P. 105, 78153

Le Chesnay, France. E-mail: Damien.Doligez@inria.fr,

Xavier.Leroy@inria.fr.

A number of concurrent collectors have been de-

scribed in the literature, such as the concurrent mark-

and-sweep algorithm [11, 15, 5], which requires no syn-

chronization with the mutators, at the price of a moder-

ate overhead on the mutators. However, these designs

seem unable to meet the memory demands of typical

ML programs. ML programs tend to have high alloca-

tion rates, but many allocated objects have a short life

span. This is due in part to the ML language itself,

which encourages a programming style where many in-

termediate structures are built; and in part to some

compilation techniques [1, 10] that result in heap allo-

cation for large amounts of environments and control

structures.

The garbage collection technique most adapted to this

allocation pro�le is generation scavenging [24], that con-

centrates reclamation e�ort on recently allocated ob-

jects. However, the e�cient implementation of genera-

tion scavenging requires the ability to relocate objects

by copying between the memory areas that hold the

various \generations" of objects. Performing relocation

while the mutators are running is problematic: we must

ensure that the mutators are aware of the relocation,

and do not try to access a relocated object at its old,

invalid address. Some designs rely on tests when deref-

erencing a heap pointer [23, 4]; others, on an extra indi-

rection word for each heap object [8, 20]; others, on vir-

tual memory page protections [2]. All three approaches

entail a signi�cant run-time penalty on the mutators,

unless special hardware or special system software is

used.

The memory management system presented in this

paper is an attempt to circumvent this weakness of

concurrent copying collectors by relying on speci�c fea-

tures of the ML language. This system has two gener-

ations, with a fast, asynchronous copying collector on

the young generation, and a non-disruptive concurrent

marking collector on the old generation. The aforemen-

tioned di�culties with copying are avoided by splitting

the young generation into areas attached to the muta-

tors, each area being accessed by one mutator only. The

Page 1

performance issue with concurrent mark-and-sweep is

avoided by the fact that the allocation rate in the old

generation is low, since most short-lived objects are re-

claimed by the copying collectors. This combination

results in quasi real-time performance for memory al-

location, while keeping the overhead on the mutators

low.

This design relies crucially on two features of ML.

First, the ML type system distinguishes at compile-time

between mutable objects (that can be physically mod-

i�ed) and immutable objects. Second, duplicating im-

mutable objects is semantically transparent. The �rst

point makes it possible to have di�erent allocation poli-

cies for mutable and immutable objects. The second

point allows copying the object residing in the private

area of a mutator at arbitrary times.

The remainder of this paper is organized as follows.

Section 2 briey describes the Concurrent Caml Light

system. Section 3 presents the memory organization;

the concurrent aspects of the system (the mark-and-

sweep major collector) are detailed in section 4. Sec-

tion 5 comments on some experimental results. Sec-

tion 6 discusses some directions for further work. Fi-

nally, section 7 compares our design with some other

concurrent collectors.

2 Concurrent Caml Light

Concurrent Caml Light is an extension of Caml Light

[12, 16], the authors' implementation of the ML lan-

guage, with concurrency primitives. The concurrency

model is lightweight processes (threads) with shared

memory. The synchronization tools are locks and con-

ditions. (Figure 1 shows the Caml Light interface to

the module providing the concurrency primitives.) This

is the model provided by the C Threads library under

the Mach operating system [9]. On top of these con-

currency primitives, we can to implement higher-level

concurrency abstractions such as channels and events

[22, 6].

The ML language is a conventional imperative lan-

guage with functions as �rst-class values and strong

static typing [21, 17]. From the standpoint of mem-

ory management, the ML language has two distinctive

features that are crucial to the design described here.

The �rst feature is that not all ML data structures can

be modi�ed in-place. That is, the updating primitives

provided by the language operate only on speci�c data

types, either built-in (such as references and arrays)

or specially declared (such as the Caml record types

with \mutable" �elds). This fact, combined with strong

static typing, ensures a clear separation at compile-time

between mutable objects (that can be physically up-

dated) and immutable objects (that can only be read

type process;;

value fork : (unit -> 'a) -> process

and exit : unit -> 'a

and join : process -> unit

and detach : process -> unit

and yield : unit -> unit

and self : unit -> process;;

type mutex;;

type condition;;

value new_mutex : unit -> mutex

and new_condition : unit -> condition

and lock : mutex -> unit

and unlock : mutex -> unit

and try_lock : mutex -> bool

and signal : condition -> unit

and broadcast : condition -> unit

and wait : condition -> mutex -> unit;;

Figure 1: The interface to the module thread providing

the concurrency primitives

once constructed). This permits di�erent allocation

policies for mutable and immutable objects; our design

takes advantage of this fact.

Another important feature of ML is that it does not

specify any generic physical equality primitive similar to

eq in Lisp. The provided equality primitive implements

structural equality on immutable objects, and physical

equality on mutable objects. Consequently, there is no

way to test two immutable objects for physical equality.

Combined with the fact that immutable objects cannot

be modi�ed in-place, this means that it is always seman-

tically correct to duplicate an immutable structure: the

original structure and its copy cannot be distinguished

by any program. Our collector does indeed duplicate

immutable structures and keeps the two copies alive for

some time | strange as it may sound for a system that

is supposed to reclaim memory space.

3 Overview of the memory orga-

nization

The memory heap is organized as follows. (See �gure 2.)

First, there is a large, common heap shared between all

threads. All threads can allocate, read, and update ob-

jects in the shared heap. Then, each thread possesses

its own, small, private heap (typically 32K). On a mod-

ern shared-memory architecture with large, write-back

caches, we expect the private heap to remain in one and

only one cache most of the time, thereby causing very

little bus tra�c when it is accessed. This assumes that

the system scheduler is clever enough to tie each thread

to a single processor whenever possible.

Page 2

Major heap

Minor heaps

Stacks

1 2 3

Threads

Global
variables

Figure 2: Memory organization

3.1 Two generations

Each thread treats the two heaps it can access (the

shared heap and its own private heap) as two gener-

ations: the private heap contains the young genera-

tion; the shared heap contains the old generation. Each

thread allocates immutable objects in its own private

heap. Mutable objects are handled di�erently, as we

shall see below. This allocation does not require any

synchronization with the other threads.

When the private heap becomes full, the correspond-

ing thread stops and performs a minor collection: it

copies all live objects in the private heap to the shared

heap. Live objects are those that are pointed to by the

memory roots of the thread (the registers and the stacks

of the machine), as well as their descendents. This copy-

ing makes the whole private heap available again for

private allocation. Consequently, allocation in the pri-

vate heap is performed linearly, and requires only one

pointer comparison and one pointer increment. A mi-

nor collection can be performed at any time, regardless

of the status of the other mutator threads. The only

synchronization required is when allocating the copied

objects in the shared heap.

Major collection on the shared heap is performed by

a dedicated thread, which runs concurrently with the

mutator (and minor collection) threads. It uses the con-

current mark and sweep algorithmdescribed by Dijkstra

et al. [11]. We postpone a complete discussion of the

algorithm and the cooperation between the major col-

lector thread and the other threads to the next section.

Since the major collector does not move objects, no syn-

chronization is required when accessing or modifying an

object in the shared heap, either for the major collector

thread or for the mutator threads. Race conditions can

result in a dead object not being collected by the cur-

rent major collection cycle; but they cannot result in a

live object being reclaimed.

If the available space in the shared heap drops to zero

before the major collection cycle is over, then the muta-

tor threads attempt to enlarge the shared heap, by ex-

tending the process address space, instead of waiting for

the major collection to �nish. We want to avoid block-

ing the mutator threads as much as possible. Blocking

is only required in the unlikely case where the virtual

memory is exhausted.

3.2 Copy on update

The design outlined above assumes that there are no

pointers from the shared heap to a private heap, nor

from one private heap to another private heap. Other-

wise, a private heap could contain objects that are live,

but not directly reachable from the roots of the corre-

sponding threads. Without special treatment, a pointer

from the shared heap to a private heap can be created

by updating an \old" mutable object, residing in the

shared heap, with a pointer to a newly created struc-

ture, that still resides in a private heap; and a pointer

between two private heaps can then be created by read-

ing the mutable object from another thread.

This situation is avoided by copying the transmitted

private object to the main shared heap and storing in

the old mutable object a pointer to the copy, instead of a

pointer to the original private object. The descendents

of the transmitted object that reside in the private heap

are recursively copied, too. This copying is very similar

to a minor collection with only one root, the transmitted

object. Indeed, it stores forwarding pointers from the

copied objects to their copies, just as the minor collec-

tor does, so that the next minor collection will not copy

these objects again, but reuse their copies.

1

Therefore,

this \copy on update" strategy does not waste time: we

just do some of the next minor collection right away.

Also, it avoids the complexity of maintaining a remem-

bered set of old objects that contain pointers to the

young generation [24].

3.3 Allocation of mutable objects

Until the next minor collection, the thread that created

the transmitted object can access both the original, pri-

vate object and its copy in shared memory: the original

object can still be reached through the memory roots

of the thread, since we haven't updated the roots of

the thread; the copy can be accessed by dereferencing

the mutable object in which it was stored. Therefore,

we must ensure that the two objects are semantically

equivalent. This is the case if both objects contain only

immutable structures; then, as pointed out in the pre-

vious section, no constructions in the ML language can

distinguish one from the other. This is no longer true

1

To implement this, the objects in the private heaps have one

extra header word, to store a forwarding pointer without destroy-

ing the object. This extra word is stripped when the object is

copied to the major heap.

Page 3

whiteblue

grayblack

allocate

allocate

allocate

sweep

sweep

sweep

mark

mark update

Figure 3: Color transitions

if the original object contains a mutable structure, be-

cause it would be duplicated during the copying process.

This could lead to an update of the two mutable struc-

tures by two di�erent objects, breaking the equivalence

between the transmitted object and its copy.

To avoid this situation, it su�ces to allocate mutable

objects directly in the main, shared heap. Then, they

will never be copied, since they already reside in the

shared heap. This makes copying semantically trans-

parent. Of course, a performance penalty is incurred:

allocation in the shared heap is more expensive than

allocation in the private heap, because of the required

synchronization and free-list searching. However, most

ML programs allocate relatively few mutable objects,

and they tend to have a longer life span than average.

This keeps the overhead reasonable.

4 The concurrent collector

The major collector implements the concurrent mark

and sweep algorithm described by Dijkstra et al. [11].

In this section, we recall the basics of the algorithm,

adapt it to our situation (Dijkstra et al. made some

simplifying assumptions to keep correctness proofs man-

ageable), and show how the mutator threads cooperate

with the concurrent collector.

In this section, each thread along with its minor col-

lector is considered a mutator thread by the major col-

lector. The major collector will be called \the collector",

and the mutator threads (and their minor collectors)

will be called \the mutators".

The major collector does not essentially depend on

the existence of the minor collectors. It only needs

some way of asking a given mutator to mark the objects

pointed to by its roots. In our design, this marking is

performed by the minor collectors.

4.1 Four-color marking

Each object in the shared heap has one of four colors:

white, gray, black, or blue. White denotes objects that

have not yet been visited by the marking phase. Gray

denotes objects that have been visited, but whose sons

have not yet been visited. Black denotes objects that

have been visited, and whose sons have been visited too.

Blue is used for the free list objects: blue objects are

always ignored by the collector.

2

The color of a block evolves as summarized in �gure 3.

The marking phase sets to black all reachable objects.

To do so, it sets the roots to gray and repeatedly �nds

a gray object and marks it. Marking an object means

setting it to black, and shading its sons. Shading means

setting the object to gray if it is white. The sweeping

phase reclaims all white objects, setting them to blue

and adding them to the free list. It also resets all black

objects to white. Allocation in the heap turns blue ob-

jects back to white, gray or black, depending on the

relative states of the collector and mutator, as detailed

below.

4.2 The collection phases

The collector proceeds in three phases: root enumera-

tion, end of marking, and sweeping. The root enumera-

tion and end of marking together constitute the marking

phase.

At the beginning of the root enumeration phase, the

collector sets a global ag to signal the beginning of

the marking phase. It then shades the global variables,

and asks each mutator to shade its roots. During this

phase, the collector also begins to �nd gray objects and

mark them as described above.

3

The root enumeration

ends when the collector has obtained the roots of the

last mutator. The collector then completes the marking

phase by repeatedly marking gray objects until no more

remain.

When the marking phase is �nished, the collector ex-

amines each heap object in turn. All black objects are

set to white. All white objects are free; they are set to

blue and inserted into the free list (or collapsed with the

preceding free object, if adjacent). Some objects might

have been set to gray by the mutators since the end of

the marking phase. These objects are also set to white.

The marking phase assumes that no object is black

when it starts, and it ensures that all reachable objects

are black or gray when it stops. More precisely:

� all objects that are reachable from the roots of a

mutator at the time the mutator shades its roots,

or that become reachable after that time, are black

at the end of the marking phase.

2

In theory, the color blue is not needed: it su�ces to consider

the free-list head as a memory root, and the free-list blocks as

regular reachable blocks. However, the blue color avoids the extra

cost of tracing and coloring the free-list blocks.

3

To quickly �nd the next gray object, a cache of recently

shaded objects is maintained, avoiding the cost of an actual scan-

ning of the heap in most cases.

Page 4

start
marking

update pop shade the roots
of this thread

stack
another
thread

Figure 4: What happens if we do not shade the new value

Objects can become reachable by allocation and by in-

place modi�cation, which are performed by the muta-

tors concurrently with the collection. These operations

therefore require some cooperation with the collector, as

described below. The sweeping phase assumes that all

reachable objects are black or gray when it starts, and it

ensures that only unreachable objects are inserted into

the free list, and that no black objects remain when it

stops. Again, allocation and in-place modi�cation re-

quire some cooperation with the collector, in order to

avoid setting objects to black.

These preconditions and postconditions ensure the

correctness of the collector: only unreachable objects

are ever inserted into the free list. The completeness

(all unreachable objects are eventually inserted into the

free list) stems from the following facts:

� no unreachable object ever becomes reachable

again

� there are no blue objects outside of the free list

� all white objects unreachable at the start of the

marking phase remain white

� all white objects are inserted into the free list by

the sweeping phase

� gray objects that are unreachable at the beginning

of the mark phase become black during marking,

then white during sweeping, and are reclaimed by

the next collection cycle.

4.3 Concurrent allocation and modi�ca-

tion

As explained in [11], the mutators have to take the

collector state into account when performing in-place

modi�cation on heap objects. Otherwise, updating an

already black object could result in a reachable object

that remains white at the end of marking. This prob-

lem is further complicated by the fact that the set of

roots is not �xed during the collection: mutators can

push and pop pointers on their local stacks without any

cooperation with the collector.

To avoid this kind of situations, the modi�cation op-

eration must shade both the old and the new value of

the modi�ed �eld. Shading the new value ensures that

it will be recognized as reachable by the collector, even

if all other pointers to the new value disappear (e.g., by

popping the last pointer from a stack). Shading the old

value ensures that it will be recognized as reachable by

the collector, in case some pointers to the old value are

still kept on some stack.

In the simpli�ed setting described in [11] (a �xed set

of roots), shading either the old or the new value is suf-

�cient. This is not true in our case. Assume we do not

shade the new value. Since the collector starts marking

objects before having obtained all roots, a mutator can

modify a black object by storing a pointer to a white

object which is only reachable from the local stack, then

pop all pointers to this white object before shading its

roots. This results in a reachable object that remains

white. This kind of pointer smuggling is illustrated in

�gure 4. Now, assume we do not shade the old value.

The mutator could give its roots, then push a white �eld

of a white object onto its stack, then overwrite that �eld.

This results in a white object that is reachable from the

stack. (See �gure 5.)

This coloring at modi�cation time is only necessary

during the marking phase. For the sake of e�ciency,

we do not perform it during the sweeping phase, avoid-

ing the creation of gray objects that would survive a

complete collection cycle before being reclaimed.

Concurrent allocation raises similar issues: the newly

allocated objects must be assigned the right color, de-

pending on the collector status. During the marking

phase, objects are allocated black. This is justi�ed by

the fact that the allocated objects become reachable,

and their sons were already reachable, hence will even-

tually be set to black. Setting the allocated objects to

gray would also be correct, but the marking phase might

not terminate.

During the sweeping phase, objects are allocated

Page 5

shade the roots
of this thread

push update sweepfinish
marking

stack

Figure 5: What happens if we do not shade the old value

white if they have already been swept, and gray oth-

erwise, to avoid immediate deallocation.

4.4 Synchronization issues

The coloring scheme described above has one interest-

ing property: it is always safe to set an object to gray.

Of course, setting many objects to gray is ine�cient,

since an unreachable gray object will not be reclaimed

at the end of the current collection cycle, but only at the

end of the next cycle. However, this fact allows us to

avoid synchronization whenever the resulting race con-

dition can only end up in making an object gray instead

of the intended color.

This trick is used in the modi�cation and allocation

procedures, to test the collector status without locking.

For instance, the coloring of newly allocated blocks is

implemented as follows:

1. if phase = marking then

2. set the object to black;

3. if phase = sweeping then

4. set the object to gray;

5. else

6. if address(object) < sweep pointer then

7. set the object to white;

8. else

9. set the object to gray;

There are two race conditions between this code and

the collector. First of all, the collector may enter the

sweeping phase between lines 1 and 2. Then, the object

could incorrectly be set to black after being swept. In

this case, lines 3 and 4 set the object back to gray, which

meets the preconditions of the next marking phase. The

collector must synchronize with all mutators before en-

tering the marking phase, hence line 4 is guaranteed to

complete before the next marking cycle. The other race

condition is that the sweep pointer can change after the

test in line 6. However, the sweep pointer is monotoni-

cally increasing, hence the race condition can only result

in executing line 9 instead of line 7, i.e. in setting the

object to gray instead of white, which is safe.

4.5 Interface with the minor collector

The shading of roots is performed by a variant of the

minor collector that sets to gray all objects copied to

the major heap, as well as all root objects that are al-

ready in the major heap. This requires little extra work

compared with a normal minor collection.

Hence, the least disruptive technique for getting the

roots is to set a ag telling the minor collectors to shade

the roots, and wait for all the mutators to complete a

minor collection. However, a mutator can execute a

program that does not allocate; it can also be blocked

on a lock, or waiting for input or output. In the former

case (looping mutator), the major collector interrupts

the mutator and forces a premature minor collection.

In the latter case (blocked mutator), the major collector

performs the copying and shading itself; this is similar

to a minor collection, except that the minor heap is not

emptied. The major collector also has to make sure the

mutator does not resume execution before the copying

and shading is complete. This is the most disruptive

interaction between the collector and a mutator, but it

is infrequent.

5 Experimental results

We have implemented the collector described above in

a prototype ML system derived from Caml Light re-

lease 0.4. It runs on an Encore Multimax with fourteen

NS32532 processors, under the Mach operating system.

Each processor is rated at about 6 MIPS, and has a

256 K write-back cache. The Caml Light system is a

fast bytecode interpreter; it runs 4 to 8 times slower

than the SML of New Jersey native-code compiler. To

put the timings below in perspective, an application of

the identity function takes about 15 �s. The measure-

ments used 32 K private heaps, that easily �t into the

Page 6

Test program Knuth- Pipelined Parallel SIMPLE

Bendix compiler compiler (30� 30)

Number of threads 15 3 12 6.4 (avg)

Proportion of updates requiring copying 96 % 43 % 36 % 96 %

Major GC load 32 % 16 % 39 % 10 %

Minor GC, average 2.9 ms 2.3 ms 6.3 ms 2.1 ms

Minor GC, worst-case 64 ms 180 ms 110 ms 360 ms

Copy-on-update, average 260 �s 37 �s 55 �s 70 �s

Copy-on-update, worst-case 70 ms 6.9 ms 31 ms 20 ms

Free-list locking, average 60 �s 19 �s 1.6 ms 54 �s

Free-list locking, worst-case 17 ms 220 �s 110 ms 25 ms

Figure 6: Average performance

caches, along with the run-time system and the byte-

code program.

In this section, we comment on some measurements

performed on this implementation. We have used the

following test programs:

� A parallel implementation of the Knuth-Bendix

completion algorithm. The program comprises �f-

teen threads, and performs lots of interprocess com-

munication via shared mutable data structures.

� A pipelined version of the Caml Light compiler,

with one thread for the lexical analyzer, one for the

parser, and one for the remainder of the compiler.

This program is a typical example of the producer-

consumer model. The amount of communication

is respectable, though less important than in the

parallel Knuth-Bendix program.

� A parallel version of the Caml Light compiler, that

simultaneously compiles several �les, each �le being

compiled sequentially by one thread. There is very

little communication between the threads. Our test

runs twelve compilers in parallel.

� The SIMPLE numerical benchmark from Appel's

book [1], parallelized by Morriset and Tolmach [19].

This program is typical Fortran code translated to

ML, and makes very heavy use of mutable arrays.

The parallel version relies on \futures", that is, lazy

structures with speculative evaluation.

The measurements have two goals: �rst, estimate the

latency of memory operations such as allocation and in-

place modi�cation; second, determine whether the ma-

jor collector keeps up with a high number of active mu-

tators. For the �rst point, we have measured how long

the mutators are interrupted by (1) minor collections,

(2) copy on update operations, and (3) direct allocation

in the major heap, which requires synchronization. For

the second point, we take advantage of the fact that

the major collector does not run continuously, but only

when the amount of free space in the shared heap drops

below a certain threshold (15% of the total heap size, in

the experiments). Hence, the running time of the major

collector compared with the execution time of the whole

program gives an estimate of the load of the major col-

lector.

The results are given in �gure 6. The load of the

major collector appears to be below 5% per mutator.

This suggests that our design should scale to about 20

mutators. These results hold for the four realistic pro-

grams considered here. However, on arti�cial examples

that do nothing but allocate mutable objects, the major

collector cannot keep up with as few as four mutators.

This is an experimental con�rmation of the initial as-

sumption that real ML programs do not allocate much

mutable data.

The average latency times are remarkably low. Most

minor collections complete in less than 10 ms. The copy-

on-update strategy makes the cost of an assignment pro-

portional to the size of the assigned value (with the size

of the private heap as upper bound) in the worst case; in

practice, assignment remains reasonably e�cient, even

in programs such as the Knuth-Bendix benchmark, that

transmit large structures through mutable objects. Fi-

nally, the last case where a mutator can be delayed on

a memory operation is when it accesses the free list to

allocate objects directly in the shared heap: free list ac-

cesses must be mutually exclusive. To lower contention,

each thread maintains its own small, private free list.

The private free lists are replenished from the main free

list when a request cannot be satis�ed. Transfers from

the main free list to a private free list are performed a

large chunk at a time, to keep their frequency low. This

strategy works well on three of our test programs, but

does not avoid a certain amount of contention for the

parallel compiler.

Page 7

0

10

20

30

40

50

60

0.1 1 10 100 1000

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Minor collections

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

0
10
20
30
40
50
60
70
80
90

0.01 0.1 1 10 100

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Copy on update

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

0
10
20
30
40
50
60
70
80
90

100

0.01 0.1 1 10 100

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Contention for free-list access

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

Figure 7: Latency distribution

Page 8

From these results, we conclude that our design

achieves good response time, and is adequate for inter-

active applications. However, it does not achieve true

real-time performance: there is no guaranteed upper

bound on the time taken by memory operations. A

small number of these operations take much longer than

the average time. This can be seen on �gure 7, which

plots the distribution of execution times for the three

memory operations. For instance, a minor collection

can take as much as 360 ms, in the worst-case where

all objects in the minor heap are alive. Similarly, some

copy-on-update operations may need to copy (almost)

all objects from the minor heap. There is a trade-o� be-

tween maximal latency and garbage collection overhead:

the worst-case latency can be lowered by reducing the

size of the private heaps, but this results in more time

spent in minor collections, and an increased load on the

major collector.

6 Extensions

The memory management system described above can

be extended in several ways. The �rst direction is to

parallelize the major collection, in order to keep up

with more active mutators. The sweeping phase can

straightforwardly be parallelized, since the heap is al-

ready divided in medium-sized chunks (256 K), which

can be swept by independent threads. The marking

phase can also be performed concurrently by several

threads, though achieving good balance is more deli-

cate.

Another area of improvement is the \weight" of

threads. Since each thread has its own stack and its

own private heap, thread creation is a relatively ex-

pensive operation: starting a Concurrent Caml Light

thread takes about 3 ms, which is commensurate with

the time it takes to start a Mach thread (about 1 ms),

but still too important for applications that spawn a

large number of short-lived threads. For these appli-

cations, a promising direction is to adopt the two-level

scheme outlined in [19], where the user-level threads are

multiplexed on top of a small number of kernel threads.

Each kernel thread has its own private heap, and time-

shares between a number of user-level threads. User-

level threads can freely share a private heap, provided

that the memory operations on the private heap are

mutually exclusive, which the user-level scheduler can

easily guarantee.

Finally, the concurrent collector described above can

be simpli�ed into an incremental, generational collec-

tor for uniprocessors. The idea is to perform a small

part of the major collection at each minor collection.

Since there is only one private heap, copy-on-update is

no longer mandatory, and we can maintain a remem-

bered set instead. We have integrated this incremental

collector in the release 0.5 of the Caml Light system.

7 Related work

The system described in this paper is related to two

trends in research on garbage collection. The �rst trend

deals with concurrent variants of the classical mark-

sweep algorithm, with as little synchronization as pos-

sible between the mutator and the collector [15, 11, 5].

The emphasis here is on proving the correctness of the

proposed algorithms, rather than on practicality and ef-

�ciency. To our knowledge, none of these designs has

made its way into an actual run-time system. There are

good reasons to believe that collectors based on these

designs would not be able to keep up with typical ML

programs. Hickey and Cohen [14] provide some theoret-

ical evidence of this problem. This problem is avoided

in our system by the use of generation scavenging, that

greatly reduces the allocation rate as viewed by the con-

current mark-and-sweep collector.

A di�erent approach to the parallelization of the

mark-sweep algorithm is described by Boehm et al. [7].

Their algorithm requires no cooperation from the muta-

tors; instead they rely on virtual memory protections to

keep track of modi�cations performed by the mutators.

Their collector overlaps most of its work with the muta-

tor activity but it has to stop the mutators to �nish the

marking phase. The resulting pauses are short (about

100 ms) but still one order of magnitude longer than in

our system on average. Moreover, their technique must

stop all mutators simultaneously, introducing a spuri-

ous global synchronization point between all threads.

Avoiding this phenomenon was one of our main goals.

The second trend is the practical implementation of

concurrent or incremental copying collectors. The �rst

such collectors were described by Steele [23] and Baker

[4], and later extended to generations [18] and to multi-

ple mutators [13]. This algorithm requires a test on each

heap pointer dereferencing, which imposes considerable

overhead on the mutator, unless special hardware is

used. A variant proposed by Brooks [8] replaces this test

by a systematic indirection. On stock hardware, this

technique slightly reduces the overhead, at the expense

of one extra word per heap object. North and Reppy [20]

have extended this technique with generations. Appel,

Ellis and Li [2] propose to use virtual-memory protec-

tions to implement Baker's algorithm without tests on

stock hardware. Their technique relies on sophisticated

virtual memory primitives, which most widespread op-

erating systems do not provide in an e�cient way [3].

Thus, concurrent purely copying garbage collection has

not yet been implemented on stock hardware and stan-

dard operating systems without major overhead on the

mutators. Our mixed design avoids this di�culty by re-

stricting the copying to unshared objects, which cannot

Page 9

be accessed concurrently.

8 Conclusions

We have described a memory management system for

a multithreaded implementation of ML that achieves

quasi real-time performance with low overhead on the

mutators. This system relies crucially on the compile-

time separation of mutable and immutable objects. In

the case of ML-like languages, this separation is ensured

by the type system, therefore demonstrating an unex-

pected spin-o� of strong, static typing in the area of

garbage collection. This technique can also be applied

to dynamically-typed languages such as Scheme, as long

as separate allocation primitives are provided for muta-

ble cons cells and immutable cons cells, and similarly

for other data types.

Acknowledgments

We would like to thank Ian Jacobs for his careful proof-

reading, and Greg Morriset for sending us the SIMPLE

benchmark.

References

[1] A. W. Appel. Compiling with continuations. Cam-

bridge University Press, 1992.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time con-

current collection on stock multiprocessors. SIG-

PLAN Notices, 23(7):11{23, 1988.

[3] A. W. Appel and K. Li. Virtual memory primitives

for user programs. Technical Report CS-TR-276-

90, Princeton University, 1990.

[4] H. G. Baker. List processing in real time on a serial

computer. Commun. ACM, 21(4):280{294, 1978.

[5] M. Ben-Ari. Algorithms for on-the-y garbage col-

lection. ACM Trans. Prog. Lang. Syst., 6(3):333{

344, 1984.

[6] B. Berthomieu. Implementing CCS: the LCS ex-

periment. Technical report 89425, LAAS, Dec.

1989.

[7] H. J. Boehm, A. J. Demers, and S. Shenker. Mostly

parallel garbage collection. SIGPLAN Notices,

26(6):157{164, 1991.

[8] R. A. Brooks. Trading data space for reduced time

and code space in real-time garbage collection on

stock hardware. In Lisp and Functional Program-

ming 1984, pages 256{262. ACM Press, 1984.

[9] E. C. Cooper and R. P. Draves. C threads. Techni-

cal report CMU-CS-88-154, Carnegie Mellon Uni-

versity, 1988.

[10] G. Cousineau, P.-L. Curien, and M. Mauny. The

categorical abstract machine. Science of Computer

Programming, 8(2):173{202, 1987.

[11] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.

Sholten, and E. F. M. Ste�ens. On-the-y garbage

collection: an exercice in cooperation. Commun.

ACM, 21(11):966{975, 1978.

[12] X. L. et al. The Caml Light system, release 0.6.

Software and documentation distributed by anony-

mous FTP on ftp.inria.fr, 1993.

[13] R. H. Halstead. Implementation of Multilisp: Lisp

on a multiprocessor. In Lisp and Functional Pro-

gramming 1984, pages 9{17. ACM Press, 1984.

[14] T. Hickey and J. Cohen. Performance analysis

of on-the-y garbage collection. Commun. ACM,

27(11):1143{1154, 1984.

[15] H. T. Kung and S. W. Song. An e�cient parallel

garbage collection system and its correctness proof.

In Foundations of Computer Science 1977, pages

120{131. IEEE Computer Society Press, 1977.

[16] X. Leroy. The ZINC experiment: an economical

implementation of the ML language. Technical re-

port 117, INRIA, 1990.

[17] R. Milner, M. Tofte, and R. Harper. The de�nition

of Standard ML. The MIT Press, 1990.

[18] D. A. Moon. Garbage collection in a large Lisp

system. In Lisp and Functional Programming 1984,

pages 235{246. ACM Press, 1984.

[19] J. G. Morriset and A. Tolmach. A portable multi-

processor interface for Standard ML of New Jersey.

Technical report CMU-CS-92-155, Carnegie Mellon

University, 1992.

[20] S. C. North and J. H. Reppy. Concurrent garbage

collection on stock hardware. In Functional Pro-

gramming Languages and Computer Architecture

1987, volume 242 of Lecture Notes in Computer

Science, pages 113{133. Springer-Verlag, 1987.

[21] L. C. Paulson. ML for the working programmer.

Cambridge University Press, 1991.

[22] J. H. Reppy. CML: a higher-order concurrent lan-

guage. SIGPLAN Notices, 26(6):294{305, 1991.

[23] G. L. Steele Jr. Multiprocessing compactifying

garbage collection. Commun. ACM, 18(9):495{

508, 1975.

Page 10

[24] D. Ungar. Generation scavenging: a non-disruptive

high performance storage reclamation algorithm.

In Software Engineering Symposium on Practical

Software Development Environments, pages 157{

167. ACM Press, 1984.

Page 11

