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Abstract-In this paper, we present a method of testing digital cir- 

cuits during normal operation. The resources used to perform on-line 

testing are those which are inserted to alleviate the off-line testing 

problem. The off-line testing resources are modified such that during 

system operation they can also observe the normal inputs and outputs 

of a combinational circuit under test. The normal inputs to the circuit 

under test are compared with test vectors in its test set. When a normal 

input matches a test vector, the circuit output for such an input is typ- 

ically compressed into a developing signature. When all of the test vec- 

tors in the test set have appeared as normal inputs, the signature is 

read and verified. 

With this method, the length of time required for all of the test vec- 

tors to appear, possibly in some order, among the normal inputs to the 

circuit under test is of considerable importance. We refer to this as the 

test latency and give analytical methods for its computation with ver- 

ification by simulation. We also describe a hardware structure for im- 

plementing the concurrent test method and identify a number of ap- 

proaches for reducing test latency. 

Zndex Terms-Concurrent testing, test latency, built-in-self-test, 

VLSI testing, testable design. 

I. INTRODUCTION 

ITH THE advent of VLSI, the complexity of digital 

circuits has been increasing at an exponential rate. 

Unfortunately, increased circuit complexity also compli- 
cates the testing problem. To ease testing, two new dis- 

ciplines have emerged, namely, design for testability 
(DFT) and built-in selj-test (BIST) [l]. Both these disci- 

plines require adding extra logic to alleviate the testing 

problem. In DFT environment, the extra logic is active 

during the test mode (off-line) operation of a logic circuit 
and such logic is idle during normal operation of the cir- 

cuit. BIST techniques, on the other hand, can be used 

either for on-line or for off-line testing. 

Structures used for on-line and off-line BIST are differ- 

ent. This is so because on-line BIST uses normally oc- 

curring data as inputs and employs redundancy techniques 

such as information redundancy, time redundancy, and 

hardware redundancy to do concurrent checking. Off-line 

BIST, on the other hand, uses stored and/or generated test 
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vectors as inputs and employs compression and compari- 

son techniques for off-line testing. As a result, typical 

structures used by on-line BIST are checkers and dupli- 

cated or triplicated hardware with comparators [ 11, 
whereas the structures employed for off-line BIST include 

the linear feedback shift register (LFSR), built-in logic 
block observer (BILBO) [ 2 ] ,  or binary counter [3], often 

with such features as scan paths [ l ] .  During normal op- 

eration, the on-line BIST hardware is active, while only 

a portion of the off-line BIST hardware is active and the 
remainder is idle. Furthermore, even in the presence of 

on-line BIST techniques, it is often essential for digital 

circuits to have either DFT or off-line BIST features for 
production testing and field diagnostics. 

In this paper we propose ways of effectively utilizing 

the logic added for off-line BIST to perform testing of the 

circuit concurrently with its normal operation with little 

additional impact on the circuit performance. Concurrent 

testing as proposed here is achieved by observing the nor- 

mal inputs to the circuit and the responses of the circuit 

to these normal inputs. This technique of concurrent test- 

ing is called concurrent comparative built-in selj-test (C- 

BIST). The hardware structure used to implement C-BIST 

is known as a Concurrent comparative built-in self-test 

unit (CBU). A CBU is capable of generating test vectors 

and verifying responses during both off-line and on-line 

modes of operation of the circuit to be tested. 

The use of this technique has several advantages rela- 

tive to DFT and off-line BIST methods. First of all, it is 
possible in the production environment to run BIST tests 

concurrently with functional chip and system tests, 

thereby providing much more thorough testing in less 

time. Second, in the field environment, faults are detected 

fairly rapidly thereby reducing the potential corruption of 

data. Furthermore, added information is available on a 

continuing basis that is useful in locating faults and helps 

to reduce the number of diagnostic tests required. In ad- 
dition, the technique is useful in conjunction with on-line 

BIST to detect multiple faults in the production environ- 

ment and to provide guaranteed self-testing for self- 
checking in the field environment. 

In Section I1 we describe some of the existing off-line 

BIST methods which are relevant to C-BIST. Section I11 

describes the C-BIST concept. Methods of computing test 
latency for CBU’s, an important measure for evaluating 

the C-BIST technique, are discussed in Section IV. The 

design of a hardware unit for concurrent testing is given 
in Section V. Finally, discussion and conclusions are 

given in Section VI. 
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11. EXISTING OFF-LINE BIST TECHNIQUES 

The conventional techniques for off-line testing make 

use of test pattern generation and fault simulation algo- 

rithms to find a set of test vectors to detect the modeled 

faults in a circuit. These tests can be applied to the circuit 

either by an external tester or alternatively they can be 

stored on chip and applied during the test mode. The 
method of storing tests on chip and applying the test vec- 

tors during the test phase can be viewed as an off-line 

BIST technique. Various other off-line BIST techniques 
have been proposed in the literature, some of which are 

outlined below. The exhaustive testing [ 11 technique does 

not require a fault model and test generation. Also, it does 

not require that the test vectors be stored, because the test 

vectors can be generated by a test generator (TG) such as 
a counter or an LFSR with nonlinear circuitry added to 

include the all zero pattern. However, the method cannot 

be used for circuits with large numbers of inputs because 

the time for testing a circuit becomes large. To overcome 

this limitation, other techniques such as pseudoexhaustive 

testing [4], verification testing [5], and testing using ran- 

dom inputs [6] have been proposed. 

To reduce the storage requirements for expected re- 

sponses, the signature analyzer [7] has been proposed as 

a response verijer (RV). Output responses can be com- 

pressed by using, for example, LFSR's or multiple input 

linear feedback shift registers (MISR's) as RV's while the 

test vectors are being applied. The final compressed re- 

sponse (known as a signature) is compared with the ex- 

pected response. Another technique, known as syndrome 

testing [3], tests the combinational circuit exhaustively 
while compressing the output. One of the features of this 

method, which signature methods lack, is that the com- 

pressed output is independent of the order in which the 

input test vectors are applied, although the compressor to 

compress the responses of a multi-output circuit can be 

rather complex. Further, the circuit under test (CUT) can 
be made to be syndrome testable, although at the expense 

of increasing the number of inputs to the circuit. 

A structure which combines both the TG and the RV 

functions is the built-in logic block observer (BILBO) [2]. 

The BILBO and its variations can be used in different 

modes as an LFSR, an MISR or a part of a scan chain 

during the off-line test phase. This structure can be used 

in the pseudoexhaustive or exhaustive testing environ- 

ment. 

A general organization of hardware for an off-line BIST 

environment is shown in Fig. l(a). Note that only the 

combinational logic is shown in the test path. If the circuit 

realizes a finite state machine then the feedback is tested 

in a separate test phase. Test logic and normal logic blocks 

contain the necessary hardware for the test as well as for 

the normal mode of operation. The normal logic parts of 

the test logic and normal logic blocks in Fig. l(a) typi- 

cally consist of latches. The test mode operation of the 

circuit is shown in Fig. l(b). During normal mode, parts 

of the test generator, TG, and the response verifier, RV, 

are idle as shown in Fig. l(c). Such a portion of the test 
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logic is called idle test logic. Clearly, the idle test logic, 

which was introduced to alleviate the off-line testing 

problem, performs no useful function during the normal 

system operation. On the other hand, if the idle test logic 

is sufficient to act as a TG or RV, then it can potentially 

be used for concurrent testing. It is this concept we first 

consider at some length in the next section. Note that to 

impart this power to the idle test logic it may be necessary 

to increase the amount of test hardware. The details of the 

hardware design for concurrent testing will be discussed 

in a later section. 

111. C-BIST CONCEPT 

To illustrate the C-BIST concept, let us consider a BIST 
scheme, in which the combinational part of a circuit with 

n inputs is tested exhaustively by using the circuit orga- 

nization shown in Fig. 2. In this organization, we assume 

that the TG and the RV stay idle during the normal mode 

of operation of the circuit. We have chosen this represen- 

tation for clarity of presentation. An actual organization 

may not employ multiplexers, or only parts of TG and RV 

may form idle test logic. We shall comment on these de- 

tails in later sections. 

We modify the hardware associated with the idle test 

logic as shown in Fig. 3 .  We have added an equality com- 

parator to compare the normal inputs to the CUT to the 

outputs of the TG. The structures shown within dotted 

lines form the CBU. The two modes of testing proceed as 

follows. 

Test Mode: 
This is off-line testing mode. During this mode, the 

multiplexer is set such that the tests generated by the TG 

are applied to the CUT and the responses are compressed 

using the RV. After the application of all tests, contents 
of the RV are used to determine the status of the CUT. In 

this configuration of the circuit, the equality comparator 

plays no role at all. 
No rrna 1 Mode : 

This is the system operation mode and the testing of the 

CUT proceeds concurrently with the normal operation of 

the system. In order for the RV to obtain a result identical 

to that for the test mode, it must process only those re- 

sponses that correspond to the test input vector set or test 

input sequence applied during the test mode. Thus the RV 

must be enabled only if a vector from a particular set or 

a vector at a particular point in a test sequence occurs. 

(The choice of a vector set versus a vector sequence de- 

pends on the type of RV employed.) The enabling of the 

RV is accomplished as follows. The TG produces, at its 
outputs, vectors from the test set or sequence for the CUT. 

During normal operation, the outputs of the TG are con- 

stantly compared, bit-by-bit, with the normal inputs to the 
CUT by the equality comparator. The particular output 

vector with which the normal inputs are compared is 

known as the active test vector. A signal HIT is generated 

if and only if the normal inputs to the CUT are the same 

as an active test vector of the TG. When a HIT is gener- 

ated, the RV is enabled to compress/record the normal 

Normal Inputs 

s 
Mode Select 

(TesVNormal) i- Multiplexer 

Combinational Logic 

RV 

Normal Outputs 

Fig. 2 .  An off-line BIST organization 

Mode Select 

Normal Inputs (TesVSomal) 

h E l C  1 A Comparator ' 1 
Equality 

Normal Outputs 

Fig. 3 .  Modified BIST organization. 

outputs of the circuit. Also, the TG is advanced to the 

next state to produce the next vector only when a HIT 

occurs. It is possible to have multiple active test vectors; 

when the HIT signal is activated, the particular active test 

vector present is identified. When the TG has gone 
through the appropriate set of states, i.e., all test vectors 

in the set or sequence have been applied to the inputs of 

the CUT, then the contents of the RV are examined to 

determine the status of the CUT. 

From the above conceptual explanation, it should be 

evident that the testing of the circuit can proceed concur- 
rently with the normal operation of the circuit. 

IV. DETERMINATION OF TEST LATENCY 

An important evaluation measure for the performance 

of the CBU's is the time required for test completion. Let 

T be the set of test vectors to completely test the CUT. 

Clearly the fault-free status of the CUT cannot be verified 

until all the test vectors from T have been applied to the 
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CUT. For the CBU discussed in the previous section (Fig- 

ure 3) ,  the status of the circuit cannot be determined until 

the TG has gone through all the required states. The ques- 
tion we need to address is the time required for the TG to 

go through all the states necessary to completely test the 

circuit. 

Dejinition I :  The test latency (TL) for a circuit is the 

time required for the TG to go through all states corre- 

sponding to the test vectors in the test set T. 

Dejinition 2: Suppose that the TG is an exhaustive test 

pattern generator with n storage elements and it produces 
all possible 2" combinations as the test set T. Then the 

test latency of exhaustive testing (TLET) for a circuit is 

the time required for the TG to go through all possible 2" 
states. 

Note that for exhaustive testing purposes the TG could 

be implemented as a counter or an LFSR with nonlinear 
circuitry added to include all-zero pattern. In such a case 
the state of the TG can be considered as the output of the 

TG. In what follows we will compute the values of TL 

and TLET. The following statement is the direct conse- 
quence of the above definitions. 

In test mode, i.e.,  off-line testing, assuming that a test 

is applied every clock cycle, 

TL = (TI  - T, 

TLET = 2" * T, 

where I T 1 denotes the number of test vectors in the test 

set T,  T, is the clock period, and n is the number of inputs 

to the CUT. 
To compute TL or TLET during the normal mode of 

operation, we make two assumptions. These are (1) all 

input patterns are equally likely to occur during the nor- 

mal operation of the circuit and (2) the probability of oc- 

currence of any one pattern is independent of the occur- 

rence of any other pattern. We have resorted to these 

assumptions because in many practical circuits informa- 

tion about the occurrence of normal input patterns and 

their statistical dependence is not known a priori. These 
assumptions therefore provide a general method of com- 

puting TL for a circuit during normal operation. We must 

add, however, that if the statistics of normal input pat- 
terns are known, then it may be possible to design a test 

generator which would result in shorter test latency com- 

pared to that obtained by making the above assumptions. 

For example, if it is known a priori that the normal inputs 

occur in an ascending order as a count sequence, then TG 

realized as a counter will result in a short test latency. On 

the other hand, it may happen that some inputs may occur 

rather infrequently during normal system operation. In 

such a case the test latency may be longer. Problems as- 

sociated with the situation where some inputs never occur 

during normal operation are discussed in Section VI. 

In the rest of this section we shall assume that the TG 
is used for exhaustive testing; therefore, our discussion 

will be confined to the computation of TLET. Further, we 

will compute the value of TLET in terms of the number 

of clock cycles, assuming that one and only one input is 

applied to the CUT in any one clock cycle. It should be 

pointed out that very often it is not necessary to apply an 

exhaustive set of test patterns to test a circuit. A desired 

fault coverage can generally be obtained with a much 

shorter sequence of random test vectors. Therefore, this 
paper gives a rather pessimistic value of test latency for 

practical purposes. We observe that TLET in the normal 

mode of operation can only be determined in a "proba- 

bilistic sense" as defined below: 

Dejinition 3: Concurrent test latency for exhaustive 

testing is the time it takes for the TG to go through all 

possible 2" states with a probability CY during the normal 

operation of the circuit. We shall denote it as C (  a ) .  

In the above definitions C (  CY) denotes the time required 

to test the CUT exhaustively during normal system op- 

eration. Thus CY is the level of confidence we have that 

during the period C(a) the TG goes through 2" states. 

Clearly it is desirable that CY be close to 1. If VCcOL, denotes 
the actual number of states the TG has gone through (i.e., 

the actual number of tests applied to the CUT which were 

also perceived to be HITS by the TG) in time C (  a )  then 

lim Vc(OL, + 2". 
O L -  I 

4. I .  Computation of Latency 

Test latency can be computed either analytically by 

using probability theory or through Monte Carlo simula- 
tion. In the next two subsections we discuss these meth- 

ods to compute test latency in greater detail. 

4. I .  I ,  Analytical Technique to Compute Test Latency: 

The TG is reset at the initiation of an on-line testing 

phase. Let L be the number of cycles, since the last reset, 

during which the TG has been in on-line test mode. As 

explained earlier, during L cycles, whenever a normal in- 

put matches the active test vector of the TG, a HIT is said 

to occur. After every HIT, the TG advances to the next 

state producing the next active test vector. On the other 

hand if a normal input does not match the active test vec- 

tor of the TG, a MISS is said to occur and the TG does 

not change state after a MISS. Thus, every cycle can be 

viewed as an independent Bernoulli trial resulting in a HIT 

or a MISS. From the assumptions it is evident that the 

probability of a HIT, denoted b y p ,  is 1/2" and that of a 

MISS, denoted by q ,  is 1 - (1/2") .  Also, these proba- 

bilities are independent of the active test vector and hence 

the state of the TG during any cycle. 

Thus the sample space for our experiment consists of L 

independent Bernoulli trials with p = 1 / 2"  and q = 1 - 

(1/2") = 1 - p .  With respect to our objective, the test- 

ing will be complete if in L such trials we have at least 2" 

HIT's. Note, the fact that the active test vector of TG 

changes after a HIT does not affect the probability of HIT, 

although due to change in the active test vector, the def- 

inition of HIT changes. The probability of exactly k HIT's 

in L such trials is given by 
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( f i ) P k P  
\ ,  

where 

lL\ L! 

Using (6 )  and (4) we need to determine the smallest L 
( such that 

2" - 1 - Lp + (1/2)  

\ k j  k ! ( L  - k ) ! .  

Clearly, the testing will not be complete if there are fewer 

than 2" HIT'S in L trials. Therefore the probability of in- 
complete testing, P (  T I ) ,  is the probability of fewer than and afortiori due to the fact that 9 ( * )  is a positive func- 

2" HIT'S in L Gals.  This probability is gLven below: tion 

k = 2 " -  I 

P(TZ) = k = O  c ( ; )pkyL- ' .  

Therefore, the probability of the completion of test, 

P ( T C ) ,  is 

P ( T C )  = 1 - P(TZ).  (3)  

(Note: To be exact, the expression for P (  T C )  should 

be 

P ( T C )  = 1 - P(TZ),  for L L 2" 

= 0, for L < 2". 

However, we shall only be interested in the case when 

L is much larger than the number of tests to be applied. ) 

Clearly, it is quite laborious to compute the above 

expression even for small values of n because 2" is very 

large. However, using the De Moiver-Laplace theorem 

[8,  p. 2391 the expression in (2), which obeys the bino- 

mial probability law, can be approximated as follows: 

k = 2 " - 1  

P(TZ) = k = O  c ( , ) p k q L P k  

) 
2" - 1 - Lp + (1 /2 )  

= .( 
( Lpq)'1/2'  

In the above equation + ( x )  denotes the normal distribu- 

tion of x .  We must add that there exists a Poisson approx- 
imation for (2), [8] and one should be careful in choosing 

the right approximation. The approximation given in (4) 

is used because Lp is expected to be large. Clearly, to 

determine C ( a ) ,  for given a we need to determine the 

smallest L such that 

P ( T C )  L a ( 5 )  

P(TZ) < 1 - a. ( 6 )  

or 

The following example demonstrates the use of above 

equations for computing the value of the concurrent test 

latency for exhaustive testing. 
Example: Computation of C(0.99) for a IO-Input Cir- 

cuit: 

< 0.01. ( 8 )  
2" - 1 - Lp + (1 /2)  

(Lpq )( I /*) 

Using the normal distribution table we find that the 

above inequality is satisfied provided 

2" - 1 - Lp + (1 /2)  
< -2.33. 

(Lpq) ' l / 2 )  

For a 10-input circuit n = 10, p = 1 /2" = 1 / 1024 and 

q = 1023/1024. Substituting these values in the above 

inequality and solving the resulting quadratic equation we 

find 

L 
- > 1100.7 
2" - 

or 

L 2 1127117. 

For this value of L the value of the term dropped be- 

tween (7) and (8) is negligible. Therefore, L = 11271 17 

is a very good approximation for C(0.99) for this ex- 

ample. For a 10-MHz system clock, this results in 

C(0.99) = 112.7 ms. 

C ( a )  expressed as the number of system clocks and 

time units for a IO-MHz system for various values of a 

and n is given in Table I. 
4.1.2.  Monte Carlo Simulation Technique to Compute 

Test Latency: 
A sequence of pseudorandom numbers satisfying the 

two assumptions stated earlier in this section can be used 

as the normal input vectors for simulation purposes. The 

average test latency can then be computed by averaging 

over several simulation runs. Note that the average value 

of L so obtained corresponds to a = 0.5. 
Such simulations were performed for circuits with var- 

ious number of inputs. The results of these simulations 

are shown in Table 11. The value of L obtained from (4) 

for a = 0.5 is approximately (2" - 0.5)2". In this table 

a comparison is also made between the test latencies ob- 

tained using analytical expressions and using simulation 

results. It is evident from the table that the simulation re- 
sults closely match the analytical results. A close look at 

Tables I and I1 reveals that only a small increase in L 

increases the confidence level cy substantially. This point 
is also illustrated by the simulation experiments. The 

maximum and the minimum test latencies were within at 
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I048064 1048975 0.09% 

16775168 16778520 0.02% 

268427264 268365880 0.02% 

TABLE I 
C(  a) FOR DIFFERENT VALUES O F  n A N D  01 

I 1 C(O.90) I C(0.95) I C(O.99) 1 

n Number of 

Simulation Runs 

10 10 

12 I O  

TABLE IV 
OPERATION TABLE FOR THE COOT 

Latency (L) Latency (L) Latency (L) Maximum Deviauon 

(Maximum) (Minimum) (Average) from Average 

1051053 1046472 1048975 0.24% 

16784258 16773371 16778816 0.03% 

TABLE I1 

AVERAGE TEST LATENCY 

Average Test Latency (L) Difference Between Analytical 1 I Analytical 1 Simulated I andSimulatedResults I 

most 0.24 percent of the average test latencies for all sim- 

ulation runs, as shown in Table 111. In close agreement 

with theory, the test latencies arrived at through simula- 

tion are very close to the average test latencies given in 

Table 11. If shorter test latencies are required, then tech- 

niques for reducing test latency (discussed in [9]) can be 

employed. 

v. HARDWARE FOR CONCURRENT TESTING 

In this section we shall discuss the design of a particular 

type of CBU, which we shall refer to as a concurrent and 
off-line observer and tester (COOT). The basic design 

philosophy is similar to that used in the design of a BILBO 

[2]. The COOT has six basic modes of operation. Fig. 4 
gives a general design of the COOT. The four building 

blocks of the COOT are the COOT cell, the feedback 

function, the scan path multiplexer and the HIT-logic. The 

COOT is controlled by four independent control inputs 

NP, TP, SI and FH. The number of control inputs can, 

however, be reduced but we have chosen four indepen- 

dent control inputs for the clarity of presentation. Each 

COOT can operate in different modes. The feedback func- 

tion provides the linear function with a nonlinearity for 

the exhaustive TG operation. The scan path multiplexer 
is controlled by SI to open (SI = 1 )  or close (SI = 0) 

the feedback path. The HIT-logic is used to generate the 

signal Hi to indicate the HIT condition for on-line testing. 

The control input FH is required to force the HIT condi- 

tion for off-line response compression and scan modes. A 

design of the COOT cell is given in Fig. 5(a). In this 
figure, NL represents the normal system latch, TL1 and 

TL2 are test latches, and 4i and cpj are two nonoverlapping 

clocks. An implementation of the COOT cell in nMOS is 
given in Fig. 5(b). This implementation is a modification 

of the implementation given in [lo]. Latches NL and TL2 

7 
0 

0 

FH I Modeofomtion 

Off-line RC 

0 On-lineRC 

are realized as dynamic latches while TL1 is realized as 
a static latch since it is required to hold the data for long 

duration in on-line test generation and on-line response 

compression modes. Table IV gives different modes of 

operations of the COOT for different values of the control 

inputs. The modes of the COOT are described next in 

detail. 

We must add that not all designs will require existence 

of all modes mentioned in this paper. Thus it may be pos- 
sible to simplify the hardware given in this paper. But for 

the sake of generality we have chosen to treat the most 

complex case. 

1 )  Normal Scan Path and Off-line Test Generation 

Modes (NP = 1, TP = 1 ) :  In these modes all NL and 

TL2 latches form a shift register. A complete scan path 

for off-line scan is formed when SI = 1, whereas for SI 

= 0 the feedback path is completed and the COOT acts 

as an LFSR for off-line test generation. The configuration 

of the COOT cell for these two modes is shown in Fig. 

6(a) by highlighting the configuration path. The normal 
scan path mode is used to test system latches as well as 

to read-out and initialize the COOT latches for test gen- 

eration and response compression modes for off-line test- 

ing. 

2) Test Scan Path (NP = 0, TP = 0, SI = 1 ,  FH = 

1 ) :  In this mode all TL1 and TL2 latches form a scan 

path. The configuration of the COOT cell is shown in Fig- 

ure 6(b). This mode is used to read-out and initialize the 

test latches while the system is operating. This mode can 

also be used to test the test latches of the COOT. 

3) On-Line Test Generation Mode (NP = 0, TP = 0, 
SI = 0, FH = 0): This mode is used for concurrent test- 

ing. Configuration of the COOT is shown in Fig. 6(c). 

The TLl  latch holds the bit to be compared with the con- 
tent of NL latch. In case of a MISS the signal Hi = 0 and 

the state of the test latches does not change. When a HIT 

occurs, the signal Hi = 1, the test latches of the COOT 

form an LFSR and a new test vector is generated. 

4) Off-Line and On-Line Response Compression Modes 

(NP = 0, TP = 1 ,  SI = 0): The control input FH is used 

to distinguish between these two modes. During off-line 

testing, the tests are applied to the CUT by the TG on 

every clock cycle, therefore the RC must compress all 
data. This is achieved by setting FH = 1 which in essence 

sets H, to 1 .  In the on-line response compression mode, a 

response needs to be compressed provided the normal in- 

put corresponding to the response was a HIT. Therefore, 

in this mode the COOT compresses the response only if 

the COOT acting as an on-line test generator for the CUT 
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Fig. 5. A design of the COOT cell. (a) Structure of the COOT cell. (b) 

An NMOS realization of the COOT cell. 
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Fig. 6. Different modes of operation of the COOT. (a) Normal scan path 
and off-line test generation. (b) Test scan path. (c) On-line test genera- 

tion. (d) On-line and off-line response compression. 
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Fig. 6 .  (Continued) 

produces a logic 1 on the line Hi. The configuration of the 

COOT cell for these modes is shown in Fig. 6(d). 

A simplified view of the use of the COOT structures in 

the system operation is shown in Fig. 7. In such an or- 

ganization off-line testing of all combinational logic struc- 

tures can be completed in two phases. The method of test- 
ing is similar to the testing in a BILBO-oriented test 

organization [4]. All COOT’s are initialized using off-line 

scan mode before the testing begins. In phase 1 (phase 2) 
all even (odd) numbered CUT’s are tested. Alternative 

COOTS are configured for off-line test generation and off- 
line response compression. At the end of the testing all 
COOT’s are read out using off-line scan mode. The com- 

pressed responses (signatures) are compared to the ex- 

pected responses to determine the status of the CUT’s. 
The concurrent testing proceeds in the similar manner but 

while the system is operating. The COOT’s are initialized 

using the on-line scan mode. Notice that the COOT struc- 
ture is such that the on-line scan mode has no effect on 

the normal system latches. To test CUT ( i  ), COOT ( i ) is 

used as on-line test generator and COOT ( i  + 1 ) is used 

as on-line response compressor. COOT ( i ) compares the 

normal inputs to CUT ( i  ) to its own content. If a normal 

input to CUT ( i  ) is the same as the content of COOT ( i  ), 

then it performs two functions: (1) it generates a HIT sig- 

nal Hi for COOT(i + 1)  thereby requiring COOT(i + 
1 ) to record the output of CUT ( i  ) by generating the next 
signature state; (2) it goes into the LFSR configuration 

and at the end of the clock cycle its content becomes the 

next test pattern. Concurrent testing is complete when 
COOT ( i  ) has gone through all states. A phase of testing 

Fig. 7.  A simplified test environment for COOT’s 

only the results of the comparison would need to be read 

out to determine the status of the circuit. 
A real system may require more than two phases for 

completely testing a system as pointed out by Craig er al. 

[ 113 for off-line testing. The techniques proposed therein 

for scheduling the tests to reduce total testing time can be 

used for on-line testing using the COOT structures pro- 

posed in this paper. This will also require a design of the 

controller to completely and correctly carry out the on- 

line testing function. 

is complete when all COOT’s in the TG mode have gone 

through all desired states. At this time all COOT’s are 
read out using test scan path mode. As mentioned earlier 

the test scan path mode can proceed without interrupting 
the system operation. The scanned out responses can be 

compared with the expected responses and the next phase 

of testing can start. It is also possible to compare the sig- 

natures internally without scanning them out in which case 

VI. DISCUSSION AND CONCLUSIONS 

In this paper we have described a method of testing dig- 

ital circuits while the system is operating. The resources 

we use to achieve this are essentially the same as used for 

off-line testing although depending on the design of off- 

line BIST, additional logic may be required. AS men- 

tioned earlier, in some situations shorter test latencies may 
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be desirable. In such situations the following techniques 

discussed in [9] can be used. 

(1) Circuit partitioning [4]. 

(2) Verification testing [ 5 ] .  
(3) Roving [12]. 
(4) Random pattern testing. 

( 5 )  Stored tests. 
(6) Multiple hardware signature analysis. 

(7) Order independent signature analysis [3]. 

The underlying concept used in these techniques is that 

the test latency primarily depends upon two factors; (1) 
the size of the test set T and (2) the probability of a HIT 
for the inputs applied to the circuit under normal opera- 

tion. The first five techniques mentioned above reduce the 

test latency by reducing the number of states of the TG 

and the last two techniques do so by effectively increasing 

the probability of a HIT for the normal inputs. 

The design of a test resource, proposed in this paper, 

is such that the resource can be initialized or its status can 

be read through scan path without interrupting the normal 

operation of the circuit. Thus the COOT design proposed 

in this paper can also be used to take a snapshot of the 

status of the circuit while the system is operating. We 

should also point out that with the design of the COOT 

not only the combinational circuit part of the system is 

tested during on-line testing, but the normal system latches 

are also tested [lo]. 

This discussion would be incomplete without a com- 

ment on the assumptions stated in the Section 111. We have 

assumed in this paper that all inputs to the circuit are 

equally probable. In a real circuit, not only may this as- 
sumption not hold, but some input combinations may 

never occur during normal operation of the circuit. There 

are two possible solutions to this problem: (1) we may 

employ test generators which generate only those test vec- 

tors which also occur as normal inputs to the circuit or (2) 

we may employ time-out indicators, which, if too much 

time has elapsed for an active test vector, halts the normal 

system operation and forces a test vector injection. This 

second method can also be used to reduce the test latency 
although at the expense of the system performance. An- 

other design of a concurrent tester and its application a:e 
studied in [13]. Sharma and Saluja [13] also investigate 

the use of the concurrent testing technique to: (1) detect 

and diagnose intermittent faults, (2) detect transient faults, 

(3) perform system diagnosis, (4) reduce maintenance, 
and ( 5 )  increase system availability. 

Finally, the distinction between concurrent testing and 

self-checking [ l ]  is an important one that has not been 

emphasized thus far. On-line testing as presented here is 

targeted at permanent faults whereas self-checking is tar- 

geted at both permanent and non-permanent (intermittent 

and transient) faults. Thus concurrent testing, proposed 

in this paper, without substantial verification of adequate 
coverage for non-permanent faults in a particular appli- 

cation is not a total replacement for self-checking. It does 

guarantee the self-testing property of self-checking , but 

1259 

typically does not provide the fault secure property for 

nonpermanent faults. Thus, additional hardware or soft- 

ware means are usually needed in combination with con- 

current testing to achieve traditional self-checking goals. 
It should be noted, however, that concurrent testing as 

proposed here can be used to guarantee that the appropri- 

ate input vectors have occurred, an issue which has been 

a problem with traditional self-testing. Thus the self-test- 

ing provided by concurrent testing is stronger than that 

provided by traditional self-checking designs. 
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