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A Condition-Based Failure-Prediction and
Processing-Scheme for Preventive Maintenance

S. K. Yang

Abstract—Preventive maintenance (PM) is an effective
approach for reliability enhancement. Time-based and condi-
tion-based maintenance are two major approaches for PM. In
contrast, condition-based maintenance can be a better and more
cost-effective type of maintenance than time-based maintenance.
However, irrespective of the approach adopted for PM, whether
a failure can be detected early or even predicted is the key point.
This paper presents a failure prediction method for PM by
state estimation using the Kalman filter. To improve preventive
maintenance, this study uses a hybrid Petri-net modeling method
coupled with fault-tree analysis and Kalman filtering to perform
failure prediction and processing. A Petri net arrangement,viz,
early failure detection and isolation arrangement (EFDIA), is
used; it facilitates alarm, early failure detection, fault isolation,
event count, system-state description, and automatic shutdown or
regulation. These functions are very useful for health-monitoring
and preventive-maintenance of a system. This study implements
EFDIA to an application-specific integrated circuit on a Xilinx
Demonstration Board. A condition-monitoring system of a
thermal power plant is used as an example to demonstrate the
proposed scheme. Linking the Kalman filter to the EFDIA Petri
net, a condition-based failure prediction and processing scheme
has been completed for preventive maintenance.

This paper presents a failure prediction and processing scheme
for PM via the thermal power-plant example, by using a hybrid
Petri net modeling method endowed with fault-tree analysis and
Kalman filtering. The FPN (Petri net dealing with system failure)
has to be constructed beforehand. The next step is to obtain
control charts for all fault places in the FPN in order to prescribe
thresholds and increment times for every step in Kalman predic-
tion. Afterwards, the system model of each place in the FPN must
be derived to perform Kalman filtering. With these prerequisites,
this method can be applied to any system. The proposed Petri
net approach not only can achieve early failure detection and
isolation for fault diagnosis but also facilitates event count, system
state description, and automatic shutdown or regulation. These
capabilities are very useful for health monitoring and PM of a
system. Since the triggering signal of place of the EFDIA in
Section IV ( is a place for the Kalman-predicted indicator value
of the sensing signal for the Petri net dealing with system failure)
indicates that subsystem# performance is going to reach the
prescribed failure threshold, the signal can be provided via the
Kalman filtering method in Section III. Linking the Kalman filter
to the EFDIA Petri net, a condition-based failure prediction and
processing scheme has been completed for preventive mainte-
nance.
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ACRONYMS1

ARMA auto-regressive and moving average
ASFM automatic shutdown-or-feedback mechanism
ASIC application-specific integrated circuit
CM corrective maintenance
EFDIA early failure detection-and-isolation arrangement
FPGA field-programmable gate array
FPN Petri net dealing with system failure
IM improvement maintenance
PM preventive maintenance

statistical(ly)

NOTATION

the value of at time
estimate of at time based on all known
information about the process up to time
coefficient matrix for the input term of a discrete
state equation
-expected value of the variable inside the [ ]

matrix for the ideal (noiseless) connection between
the measurement and the state vector
Kalman gain
estimation-error covariance matrix
covariance matrices for disturbance
covariance matrices for noise
time variable
increment time for every step in Kalman prediction
control input of a discrete-state equation
noise, measurement error vector (assumed to be a
white sequence with known covariance)
disturbance, system stochastic input vector (as-
sumed to be a white sequence with known covari-
ance and having zero cross-correlation with the
sequence)
system-state vector
system-output vector
output-measurement vector
matrix relating to , in the absence of a
forcing function (the state transition matrix if is
sampled from a continuous process)

1The singular and plural of an acronym are always spelled the same.
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Fig. 1. Flow chart for proposed scheme.

I. INTRODUCTION

H IGH-QUALITY and excellent-performance of a system
are always goals which engineers strive to achieve. Reli-

ability engineering integrates quality and performance from the
beginning to the end of a system life [1]. Therefore, reliability
can be treated as the time-dimensional quality of a system.
Reliability is affected by every stage throughout the system
life, including its development, design, production, quality
control, shipping, installation, operation, and maintenance.
Consequently, paying attention to each of the stages promotes
reliability. Specifically, in the onsite operation phase, failures
are the main causes of worsened performance and degraded
reliability. Accordingly, failure avoidance is the main approach
to reliability assurance. There are 3 main types of maintenance:
IM, PM, and CM [2]. The purpose of IM is to reduce or
eliminate-entirely the need for maintenance: IM is performed
at the design phase of a system and emphasizes elimination of
failures. There are many restrictions for a designer, however,
such as space, budget, and market requirements. Usually
product reliability is related to the product price. On the other
hand, CM is the repair performed after failure occurs. PM
means all actions intended to keep equipment in good operating
condition and to avoid failures [2]. PM should be able to
indicate when a failure is about to occur, so that repair can be
performed before such failure causes damage or capital-invest-
ment loss. Hence, PM is an effective approach to promoting
reliability [3]. Time-based and condition-based maintenance
are 2 major approaches for PM. In contrast, condition-based
maintenance can be a better and more cost-effective type of
maintenance than time-based maintenance [4]. Irrespective of
the approach adopted for PM, the key point is whether a failure
can be detected early or even predicted. If the predicted future
state-variables indicate a device is going to fail, then the failure
can be prevented in time by PM. Nevertheless, future-state

variables should be accurately predicted at a reasonably long
time ahead of failure occurrence [5], [6].

Many methods have been proposed for failure prediction such
as:

• statistical knowledge of the reliability parameters [7], [8];
• neural network studies [9];
• understanding the failure mechanism of damaged products

[10].
This paper proposes a condition-based failure prediction and
processing scheme for PM. Fig. 1 shows the flow chart for this
scheme.

First, a Petri net dealing with system failure, FPN, must
be established, either transformed from a system fault tree or
constructed directly [4]. Each event in the FPN is continuously
monitored by an adequate sensor and the information is fed
to a Kalman filter. Actual values of the event acquired by the
monitor sensor are fed into the corresponding Kalman filter
to execute state estimation. Based upon the current state, the
Kalman filter provides a predicted value of the next state for
the corresponding event at every time interval. Each event
has a prescribed failure threshold, and the predicted value
is compared with that prescribed failure threshold to judge
whether the monitored event has failed afteror is still within
the established threshold. Once the estimated value reaches
the threshold, the failure is predicted. Accordingly, the current
state is a warning state and the PM needs to be performed.
Subsequently, the EFDIA ASIC [11] is activated to process
this warning situation, which includes an alarm, fault isolation,
system state description, regulation or auto shutdown, and
progress recording.

II. CONTROL CHART AND THRESHOLD

A failure threshold is a value used to judge if an equipment
failure occurs or not. It is prescribed as the measurement value
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Fig. 2. Block diagram of a discrete system.

that is taken just prior to, or at the time of, failure. Life testing is
one method to obtain such data, and can be performed by field
engineers or users. Usually, the mean value of a failure-proba-
bility-function that is established from tests of manufacturers is
a theoretical value for the threshold.

Once the threshold has been determined, a margin of safety
should be added to account for variations in early failure detec-
tion. The safety margin can be determined by the requirement
of lead-time for PM or evaluation of the physical properties and
actual operating conditions of various systems. The lower the
warning value is set, the greater is the assurance that PM will be
done prior to failure [2]; but this also means more labor man-
power and cost will be expended. Theoretically, triple the stan-
dard deviation is one possible choice in prescribing a warning
value [3]. On the basis of failure thresholds and warning values,
a control chart can be constructed to conduct limit-control.

Failures can be detected by comparing actual with nominal
quantities, and fault isolation can be detected by comparing ac-
tual with fault quantities [12]. Consequently, an instrumentation
system should be set up for PM, to acquire actual quantities
at measurement points. In addition to being used for compar-
ison, acquired quantities can be stored to establish a database for
modifying predetermined failure thresholds and warning values.
The performance of some systems depends on external con-
ditions. For example, the output current of a power generator
varies with the load, which changes with time during the day.
Another example is the flow rate of a river, which is different
in the 4 seasons. Hence, thresholds and warning-values can be
varied according to a scheduled scheme that accomplishes adap-
tive adjustment for those values. The situation is called ‘error’
in this paper whenever the acquired quantity exceeds the pre-
scribed low (high) warning value but falls within the low (high)
warning value and low (high) failure threshold.

III. K ALMAN FILTERING

A. System Model

Fig. 2 shows the block diagram of a discrete system. The state
equations [13] are:

(1)

(2)

Substituting (1) into (2) yields:

Fig. 3. Block diagram of Kalman filter.

The covariance matrices for and are:

It follows that both and are symmetric and positive def-
inite [14].

B. State Estimation

State estimation aims to guess the value ofby using mea-
sured data: . is the prior estimate of

, and is the posterior estimate of [14]. The estima-
tion problem begins with: no prior measurements. Thus, the sto-
chastic portion of the initial estimate is zero if the stochastic
process-mean is zero: is only driven by the initial states
resulting from deterministic input.

The Kalman filter is a copy of the original system and is
driven by the estimation error and the deterministic input. Fig. 3
shows the block diagram of the filter structure. The filter is used
to improve the prior estimate, using to yield the posterior
estimate. Fig. 3 shows that the 1-step-ahead estimate is formu-
lated as [14]:

According to the properties of the Kalman filter, several remarks
on Kalman estimation are:

1) Because is optimal, the posterior estimate is an
optimal estimate.

2) Fig. 4 summarizes the recursive steps for constructing a
1-step estimator.

3) The recursive loop has 2 kinds of updating: a) Deriving
and from and are measure-

ment-updates; b) Projecting and to
and are time-updates.
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Fig. 4. 1-Step estimator andN -step predictor.

4) Initial conditions have
to be known to start recursive steps.

5) The increment time for every step in Kalman prediction,
, should be set at a reasonably long time ahead of failure

occurrence for performing PM. However, the shorter the
used, the higher the prediction accuracy it achieves

[15].

C. Prediction

The estimate resulting from recursive steps in Fig. 4 is a
1-step-ahead prediction. Based on the posterior estimate, the
state that is steps ahead of the can be predicted by using
the ARMA model [14]. Equations for -step-ahead prediction

are derived as in [15]:

The -step predictor is an appendage of the 1-step estimation
loop [14]; it is also shown in Fig. 4. Because the current pre-

dicted value is assumed to be the initial value for the next pre-
diction, the more steps the predictor predicts, the larger the error
[15].

The failure prediction simulation on a DC motor for preven-
tive maintenance by state estimation using the Kalman filter was
reported in [15]. Failure times were generated by Monte Carlo
simulation and predicted by the Kalman filter. 1-step-ahead and
2-step-ahead predictions are conducted. The resulting predic-
tion errors are sufficiently small in both predictions. An exper-
iment of state estimation for predictive maintenance using the
Kalman filter on a DC motor has also been performed. [16]
shows that the resultant prediction errors for 1-step-ahead pre-
diction are acceptable; and the shorter the increment time for
every step in Kalman prediction uses, the higher prediction ac-
curacy it achieves.

IV. PETRI NETS AND EFDIA

A. Introduction

A Petri net is a general-purpose graphic tool to describe re-
lations existing between conditions and events [17]. The basic
symbols of Petri nets include [18]:

: Place, drawn as a circle, denotes an event;
—: Immediate transition, drawn as a thin bar, denotes an
event transfer with no delay time;
—: Timed transition, drawn as a thick bar, denotes event
transfer with a period of delay time;
/* Note to compositor: the—is intended to be about 1/16
inch thick. I do not know how to do it. Please make it
happen in the final manuscript. */
: Arc, drawn as an arrow, between places and transitions;
: Token, drawn as a dot, contained in places, denotes the

data;
: Inhibitor arc, drawn as a line with a circle end, between

places and transitions.
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Fig. 5. Early failure detection and isolation arrangement (EFDIA).

Places contain dots, the representation of tokens, being the spe-
cific marking of a Petri net [19]. The transition is said to fire, if
input places satisfy an enabling condition. Transition firing re-
moves 1 token from all of its input places and puts 1 token into
all of its output places [20]. There are 3 types of transitions that
are time-based classified [17]. Transitions with no time delay
are ‘immediate transitions’, while those that need a certain con-
stant period of time for transition are ‘timed transitions’. The
third type is a ‘stochastic transition’ and is used for modeling
a process with random time. Hence the Petri net is a powerful
tool for modeling various systems.

B. The EFDIA

An EFDIA [4] is used in this paper. It is a hybrid Petri net that
includes three kinds of Petri sub-nets: ordinary, inhibitor-arc
type, and timed. In an FPN, for PM optimization, each place
with a monitor sensor is equipped with an EFDIA that facili-
tates alarm, early failure detection, fault isolation, event count,
system state description, and automatic shutdown or regulation.
In this context, a cause-consequence type of FPN is drawn in
fault-free style with basic events at the bottom and the final un-
desirable event at the top (see Fig. 10). Fig. 5 shows EFDIA; the
symbols are defined in the following list.

1) : total number of sensing points in a FPN.
2) : sequence number, .
3) : marking of place at time , repre-

senting the token quantity of place at time ,
.

4) : place of FPN, if the failure repre-
sented by occurs.

5) : transition of FPN, representing the time duration.
6) : a place for the Kalman-predicted indicator value of

the sensing signal of Place. generates a token such

that if the next state of that is predicted
by the Kalman filter reaches the prescribed threshold.

7) : error transition of ; an immediate transition.
8) : error times log transition of ; an immediate tran-

sition.
9) : maintained transition, representing the transi-

tional time from when the PM action for is taken to
when is maintained; a timed transition.

10) : processing transition of ; an immediate transi-
tion.

11) : reset transition of ; an immediate transition.
12) : sensing transition of ; an immediate transition.
13) : transfer transition of ; an immediate transition.
14) : unprocessed transition of , representing the tran-

sitional time from when warning-signal appears, to
when failure occurs, a timed transition.

15) Next Lower : warning times log transition of the cor-
responding next lower level ; an immediate transi-
tion; the number of the Next Lower should equal
the number of inhibitor arcs of transition .

16) : PM action taken place of ; generates a token
such that if the PM action for is taken.

17) : buffer-place of ; for tokens to stay tem-
porarily, to ; is the number of input arcs for

. is unnecessary when is a basic place in a
FPN. A basic place is a place where there is no place
lower than it in a Petri net.

18) : error indication place of ; after
fires if the situation is generated by

itself, but not aroused by lower-level places (for fault
isolation).

19) : failure counter place of ; represents
failure times log number of ; increases by 1
when failure occurs.

20) : error counter place of ; represents the
error times log number of ; increases by 1
when error occurs.

21) : maintenance counter place of; repre-
sents maintenance times log number of; in-
creases by 1 when the situation is main-
tained.

22) : processing place of , representing in a being-
maintained situation.

23) : reset counter place of ; represents the
warning times log number of that are aroused by
lower-level places: the reset times of the RESET R.

24) : transitional place of , representing a transitional
state inserted between and , which is the original
path from to without EFDIA constructed.

25) : unprocessed place of , representing: the error of
not corrected.

26) Next Lower : warning counter place of the next
lower ; (Next Lower ) represents the warning
times log number of the next lower no matter from
where warning cause arises. The number of the Next
Lower should equal the number of inhibitor arcs of
transition, .

27) RESET E : reset E place of , representing a reset
signal for , generates a token once it is triggered.
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Fig. 6. Flowchart of the EFDIA.

28) RESET R : reset R place of , representing a reset
signal for , generates a token when it is triggered.

29) Next Lower RESET W: reset place of the corre-
sponding next lower level ; representing a reset
signal for ( is the sequence number of the next
lower place); generates a token once it is triggered; the
number of the Next Lower RESET W should equal
number of inhibitor arcs of transition .

30) ASFM: Automatic Shutdown or Feedback Mechanism
place;e.g., an air-conditioning or ventilation system is a
feedback mechanism for an over temperature module.

31) WARNING SIGNAL : warning signal place for .
32) Clock: a clock is embedded to indicate and record the

time of the occurrence for each event.

Conventionally, a flowchart is an easy visual representation
for understanding operational steps. Therefore, the operational
steps for EFDIA are summarized in a flowchart (Fig. 6).

C. Properties/Capabilities of EFDIA

1) Alarm. EFDIA provides alarm capability whenever a
predicted over-threshold situation occurs, by triggering
WARNING SIGNAL for the associated place.

2) Early failure detection. EFDIA is capable of early failure
detection, because the alarm function operates whenever
the Kalman-predicted future-state variable reaches the
corresponding prescribed failure threshold. Thus the
abnormal situation is detected before failure occurs.
The lead-time of early detection can be obtained by
extrapolating the curve in a control chart with a line
slope that is constructed by the latest 2 sampled points
on the curve [21]. The lead-time is the period between
the ‘time point where the warning value is exceeded’
and the ‘intersection of the extended line and the time
axis’. The lead-time obtained from the control chart for
the ‘monitored channel to be predicted’ is one possible
value for the increment time for every step in the Kalman
prediction.

3) Fault isolation. The cause(s) of malfunction of a system
can be anywhere within the system. However, because
malfunction causes are constrained by the logic relations
of the FPN, they can be isolated by the via the in-
dication of the . The error is located at place if

. Otherwise, the error of place arises
from the lower-level place(s) even if warning signal
appears.
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Fig. 7. EFDIA macro symbol.

4) Event count. All the counters designated in EFDIA,
record the associated occurrence multiplicities of events.
By incorporating a time clock, the associated rates can
be obtained at the same time. The following items can be
derived from EFDIA:

a) Failure rate of place : ;
b) Error rate of place : ;
c) Maintenance rate of place : ;
d) Alarm rate of place : .

From these rates, two advantages can be obtained:

a) If subsystem is maintained whenever a failure is
predicted, the failure rate of place can be mini-
mized such that the system reliability is improved.

b) All the rates can be recorded as historical data so as
to perform statistical prediction of system failure
(by failure rate and error rate), and to be able to
derive the time needed for maintenance (by main-
tenance rate) of each subsystem.

5) System state description. The system state is clearly vis-
ible by the indication of every place in EFDIA. The fol-
lowing parameters are defined to account for system state:

a) : marking
of the FPN at state ;

b) : predicted
sensing signal matrix at state;

c) : main-
tenance log matrix at state;

d) : failure
number log matrix at state ;

e) : error
indication matrix at state; entry indicates that
the error is located at the place if the value of
entry is 1.

6) Automatic shutdown or regulation. Automatic shutdown
or regulation capability can be provided by EFDIA
through triggering the ASFM place. ASFM is intended
to prevent a higher-level fault or system breakdown by
automatic shutdown or regulation. It should be incorpo-
rated into the places that can cause a safety problem in
a FPN.

7) Time recording. The time at which each event occurs can
be recorded by the embedded CLOCK. This is required
for failure analysis.

V. IMPLEMENTATION OF EFDIA

A system can be modeled into a Petri-net to express not only
static behaviors such as logical relations between components
of the system, but also dynamic behaviors like operating se-
quence or failure occurrence of the system. Because Petri nets
are state machines [22], it is feasible to make Petri nets to per-
form those capabilities. Hardware implementation of Petri nets
actualizes state machines that are converted from Petri nets to
logic circuits. Nowadays, IC are becoming not only smaller and
more powerful but also faster and cheaper. As a result, ASIC
are widely used. In practice, Petri nets can be implemented as
ASIC, to perform specific functions without user intervention.
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Fig. 8. The down-loaded Demonstration Board.

Mainly because of the programmable capability, FPGA are suit-
able for hardware implementation of Petri nets. This study uses
a Xilinx FPGA [23] as the design tool to implement Petri nets.

The EFDIA circuit can be integrated into a 39-pin ASIC.
Fig. 7 shows the macro symbol for EFDIA. Hence, the EFDIA
Petri net can become an ASIC after downloading this EFDIA
macro to a Xilinx FPGA board [24]. The correspondence be-
tween EFDIA pin names (Fig. 7) and EFDIA Petri net symbol
names (Fig. 5) are:

1) Input pins

a) CPI-1W: clear signal (implicit in Fig. 5) for Next
Lower counter;

b) TI-1S: Next Lower ;
c) SIN: ;
d) PIA: ;
e) IRW: Next Lower Reset ;
f) IRR: Reset R ;
g) IRE: Reset E ;
h) CPIR: clear signal, implicit in Fig. 5, for

counter;
i) CPIM: clear signal, implicit in Fig. 5, for

counter;
j) CPIL: clear signal, implicit in Fig. 5, for counter;
k) CPIF: clear signal, implicit in Fig. 5, for

counter;

2) Output pins

a) PIT: ;
b) PIB1: ;
c) IWS: WARNING SIGNAL ;
d) PIE: ;
e) PI-1WQ0 PI-1WQ3: Next Lower counter;
f) PIRQ0 PIRQ3: counter;
g) PILQ0 PILQ3: counter;
h) PIFQ0 PIFQ3: counter;
i) PIMQ0 PIMQ3: counter;
j) PI: ;
k) PIB2: ;
l) NHPB2: Next Higher ;
m) ASFM: ASFM.

Fig. 8 shows the down-loaded Demonstration Board [11].

VI. EXAMPLE

A thermal power plant is an example for early failure detec-
tion and processing by using the scheme in this paper. Fig. 9 is
the system block diagram for the thermal power plant. To con-
struct the FPN, 8 sensors are selected to be installed at the as-
sociated test points to acquire data. Fig. 9 shows sensor types,
locations, and associated sensing signals. Fig. 10 shows the re-
sultant FPN of this system.

Fig. 11 shows the FPN for the thermal power plant with
EFDIA. It is a result of appending an EFDIA to each place with
a monitor sensor in Fig. 10: to . The logic relations among
all places in Fig. 10 are retained in Fig. 11 (the shadowed
portion). At basic places of the FPN ( , the function
for testing whether the error cause is from the ‘next lower
place’ or not is unnecessary. The following 2 situations are
used to demonstrate the function of EFDIA in this system.

1) Let the Kalman-predicted value of the monitored signal
for fuel flow in Fig. 11) reach the prescribed
threshold. Subsequently, fires such that the 1st
WARNING SIGNAL is produced and each of ,
and obtains a token. represents the fuel
flow rate that is at an error situation, and is a transitional
state between normal and faulty. There is a lead-time
from then until the failure really happens. If the PM
action takes place during the lead-time, then gener-
ates a token such that fires so that the token in
together with the token in the 1st WARNING SIGNAL
move to . The subsystem is being maintained and
the 1st WARNING SIGNAL goes off at this moment.

fires if the PM action is finished. Subsequently, the
tokens in and move to : this error has been
corrected. The marking of (the maintenance-times
log number for ) increases by 1. On the other hand,
if the PM action does not take place soon enough, then

fires such that obtains a token. Consequently,
the tokens in and move to . Hence, failure
occurs. At the same time, obtains a token: the
failure-times log number for increases by 1. Because
of the logic relation between and , the Kalman-pre-
dicted value of the monitored signal for ( ) exceeds
the prescribed threshold due to failure. Accordingly,
the 2nd WARNING SIGNAL is produced and each of

, , , obtains a token. is inhibited by
the token in , such that the tokens in and
move to and after triggering the 2nd RESET R
and the 1st RESET W, respectively. Hence this error is
located at , whereas does not increase.

2) Let the Kalman-predicted value of the monitored signal
for shaft rotation speed ( in Fig. 11) exceeds the pre-
scribed failure threshold spontaneously while all, ,
and are at the usual condition. As a result, fires
such that the 7th WARNING SIGNAL goes on. Simul-
taneously, each of , , and obtains a token.
Similarly, as exceeds the prescribed threshold, then

increases by 1 if the PM action for takes
place in time. Otherwise, the failure occurs such that

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 22:19 from IEEE Xplore.  Restrictions apply.



YANG: A CONDITION-BASED FAILURE-PREDICTION AND PROCESSING-SCHEME 381

Fig. 9. System block-diagram of a thermal power plant.

Fig. 10. The FPN for the thermal power plant.

increases by 1. However, because , ,
and are empty, then fires such that obtains
a token. As a result, (the error times log number

for ) increases by 1 after triggering the 7th RESET E.
It indicates that this error is caused by the 7th monitored
signal (the shaft rotation speed), but not by next lower
signals (vapor pressure, recycling pump rotation speed,
or return flow temperature).

ASFM should be put in the places that can cause safety prob-
lems in a FPN. In this example, each of failures can
trigger ASFM.

VII. D ISCUSSION

Knowing when and where a system needs maintenance and
economizing capital investment, are 2 of the major problems of
maintenance. The scheme in this paper improves the mainte-
nance problem in the following aspects.

1) Before a system failure occurs, the scheme can indicate
where and when the failure is going to be.

2) It makes both the health condition and the historical
record of maintenance for a system clear at a glance.

3) Scheduled maintenance is enacted, based on a statistical
average, which still retains the unavoidable risk that the
system might fail before criteria are exceeded: a failure
might occur unexpectedly. On the other hand, the actual
duty-cycles for a certain part or module might be longer
than those averages, thus if they are replaced during
scheduled maintenance, that is a waste of the investment.
The condition-based scheme avoids these drawbacks.

In contrast to previous papers, this study uses Kalman-fil-
tering instead of parameter-trend to predict the time of failure-
occurrence and to determine the PM execution-time. Further-
more, after an upcoming failure is predicted, the followed evo-
lution of the system is processed by an ASIC that is designed
by a Petri-net approach. The ASIC has been implemented and
tested, which shows the proposed scheme is practical and satis-
fies the condition-based failure prediction and processing for a
thermal power plant and other systems.
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Fig. 11. The FPN for the thermal plant EFDIA.
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