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A Condition for the Overflow Stability of 
Second-Order Digital Filters That is Satisfied 

by All Scaled State-Space Structures 
Using Saturation 

JOHN H. F. RITZERFELD 

Abstract -A  set of conditions is derived that ensures overflow stability 
of second-order digital filters for different classes of overflow arithmetics, 
involving only the elements of the state-bansition matrix. The well-known 
arithmetic saturation, zeroing, and two’s-complement lead to different 
stability conditions, the condition for saturation being the least restrictive. 
As  a result, all properly scaled second-order state-space structures are 
zero-input overflow stable if saturation is used for overflow correction. 
Furthermore, conditions are derived for stable second-order digital filters 
in a nonzero input situation by introducing a weaker form of stability of 
the forced response. The presented analysis is based on determining the 
set of Lyapunov functions for a general second-order state-transition 
matrix given a certain overflow arithmetic. 

I. INTRODUCTION 
N RECENT YEARS digital filter design has been based I to an increasing degree on state-space structures. Many 

design problems have a direct translation in terms of a 
description in the state space and as such are easily imple- 
mented and solved on a computer. For example, the prob- 
lem of scaling is reduced to solving a set of linear equa- 
tions, while the nonlinear effects due to quantization and 
overflow can be handled in a systematic way without any 
trade-offs. Optimal state-space structures can be computed 
which achieve the lowest possible quantization noise and 
yet are overflow stable for any overflow arithmetic as well 
as free from all zero-input limit cycles when magnitude 
truncation is used as a quantization characteristic [l]. 

Whereas all digital filters have a state-space description, 
not all are state-space structures. The latter are distin- 
guished by the fact that their implementation is a direct 
translation of the state equation. The elements of the 
state-transition matrix appear as multipliers, whle each 
state variable is represented by the output signal of a 
unit-delay element. Signal quantization and overflow cor- 
rection are applied in principle at the double-precision 
summation node preceding each delay. 

As for an analysis of overflow stability, an important 
class of state-space structures that was found to be stable 
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for a two’s-complement overflow arithmetic is constituted 
by “ minimum-norm’’ filters [2]. These are characterized by 
the property that the state-transition matrix has a norm 
less than unity, denoted ( ( A ( /  < 1, which simply means that 
the Euclidian norm of the state vector decreases with every 
state transition, or that the matrix I - A‘A is positive 
definite (where I stands for the identity matrix and (.)‘ 
denotes transposition). The logical extension was to re- 
quire positivity for the matrix D - A‘DA, where D is any 
positive diagonal matrix. For second-order digital filters, 
t h s  led to a condition for overflow stability involving only 
the elements of the matrix A [3]. 

In this paper this condition is relaxed by replacing the 
diagonal matrix D with an arbitrary positive definite 
matrix P .  It will be demonstrated that for saturation 
arithmetic a relaxed condition for A is found that is 
satisfied by all scaled state-space structures of second 
order. From the requirement that the matrix P - A‘PA be 
positive definite, a set of matrices P is derived that pro- 
vides candidates for Lyapunov functions x‘Px of the two 
state variables, given a state-transition matrix A .  The 
parameters which characterize the matrix P are required 
to be chosen on the face of an ellipse in a parameter plane. 
The specific overflow arithmetic also constrains these pa- 
rameters to a varying degree, since Lyapunov theory de- 
mands that the nonlinearity be energy reducing. The most 
constraining arithmetic in this respect is two’s-complement 
(modulo-2) arithmetic; the least constraining is saturation 
arithmetic. These constraints will be indicated for various 
classes of overflow characteristics, yielding a set of allow- 
able Lyapunov functions which is a subset of the above. 
The requirement that this set be nonempty provides a 
condition for overflow stability involving only the elements 
of the state-transition matrix for each class of overflow 
characteristics. 

Initially only zero-input overflow stability is studied. 
This means that a digital filter “when left to itself” cannot 
sustain an overflow oscillation of any period, irrespective 
of the initial state of the filter. A conclusion can be drawn, 
however, with respect to the “forced response” stability [4] 
of a digital filter with a certain overflow arithmetic in 
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relation to an otherwise identical filter with another over- 
flow arithmetic. This conclusion will be stated explicitly 
for the various classes of overflow characteristics. A last 
preliminary is to be mentioned, one that is commonly 
adopted in most papers on overflow stability; viz., signal 
quantization is neglected in the presented analysis, In 
nearly all practical cases the nonlinear effects of overflow 
and quantization may be treated as mutually independent. 

11. OUTLINE 
A well-established condition for the zero-input overflow 

stability of second-order state-space filters states that the 
elements of the state-transition matrix A = [a,,] are re- 
quired to satisfy [3] 

U12' a,, 2 0 (1) 

or 

(a , , -a , , l< l -de t (A) ,  if a,,a,,<O. (2) 

T h s  constraint is valid under the tacit assumption of 
linear stability, for which we demand 

1 tr(  A )  1 <1 +det ( A )  (3)  

det(A) < 1  (4) 
i.e., the well-known stability triangle in a plane with axes 
tr(A) (trace of A )  and det(A) (determinant of A ) .  When 
we write (2) in the alternative form 

tr2 ( A )  < (1 +det ( A))2+4 .  a12.a21 

we see that t h s  condition is automatically met if (1) and 
(3) are satisfied. As a result, we need not distinguish 
between two cases for the product a , , ~ ~ ~ ;  within the 

As it should be, (6) is satisfied for both direct-form realiza- 
tions, A =  [ z  i] (DF1) and A =  [ f  i] (DF2), for any 
value of the multipliers a = tr( A )  and b = - det ( A )  within 
the stability triangle. As with the origmal condition for 
overflow stability given by (1) and (2), condition (6) may 
be accompanied with an optional condition for the prod- 
uct a12a2, .  To be specific, overflow stability with satura- 
tion is achieved with the condition 

a,,a, ,  2 - m (  m + 1 -det ( A ) )  (7) 
or 
la,, - a2,) 6 2m + 1 - det ( A )  

if a12a2,  < - m ( m  +1-det(A))  

where 

m = min(la12L lQ21l)- 

The distinction between two cases for u12u21 is optional, 
because if (7) holds then (6) is implied by the premise (3) 
of linear stability. 

We note that the result of this test for overflow stability, 
as opposed to the original one, is affected by the proper 
scaling of the filter, since this will change a,, and 
(without changing their product). The following surprising 
result will be shown to hold (Section V). 

Theorem 2: All properly scaled second-order state-space 
filters using saturation for overflow correction are zero- 
input overflow stable. 

As it turns out, Theorem 1 may be stated in more 
general terms to allow for alternative overflow arithmetics: 
a second-order state-space filter is zero-input overflow 
stable if 

lall - a,,[ q (1 + s ) m + 1 - det ( A )  (8)  stability triangle, stable overflow behavior is ensured by 
the condition lall - < 1 - det( A )  alone. Moreover, we 
note that the case of a nonnegative product u12u21 is 
technically less important, because it precludes the possi- 
bility of complex-conjugate poles, in whch case we have 

where s = 1 for saturation and slope-inversion arithmetic, 
s = 0 for zeroing, and s = - 1 for modulo-2 arithmetic. In 
Section VI the set of classes 0" ( -  1 < s < 1) of overflow 
characteristics is introduced, such that, e.g., 0' contains 

t r 2 ( A )  <4 .de t (A)  or (u11-a22)2< -4.U,,'U2,. 
( 5 )  

If inequality (2) is satisfied, overflow stability is ensured 
for all overflow characteristics (saturation, zeroing, mod- 
ulo-2, slope-inversion [5]) .  We may expect the constraint 
on the state-transition matrix to be less restrictive when we 
require overflow stability for a saturation characteristic 
only. The second-order direct-form filter, for example, is 
known to exhibit overflow oscillations for certain pole 
locations when a modulo-2 overflow nonlinearity is used, 
whereas it is unconditionally stable using saturation [6]. In 
Section IV we will prove the following theorem, which 
provides a condition for overflow stability with saturation. 

Theorem 1:  Second-order state-space filters using satu- 
ration for overflow correction are zero-input overflow sta- 
ble if the elements of the state matrix A = [a,,] are re- 
stricted by the condition 

lall- ~221~2.min(la121,1a211)+l-det(A). (6) 

saturation arithmetic. The validity of the generalized con- 
dition (8) will then be demonstrated. Also, a digital filter 
that is zero-input overflow stable with respect to 0 ' 1  will 
be shown to be forced response stable with respect to 0 ' 2  

for a class of input signals whose amplitudes do not exceed 
(s2 - W ( 3  + sl)- 

111. STABILITY ANALYSIS FOR SATURATION 
In order to decide if a second-order digital filter is 

zero-input overflow stable, we seek some norm llxll of the 
state 5 = (x,, x,)' which is 

nonincreasing with respect to the linear state transi- 

decreasing with respect to the proposed overflow cor- 
tion, 

rection. 

'Under the condition 

012 'U21<  - 1 
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t Together with the fact that a norm of x is a nonnegative 
function which is zero only if x is zero, these two require- 
ments imply that the state will become asymptotically zero 
in a zero-input situation starting from any initial state 

Xz. 

I 

-- 

-1, if x,< -1  
t ( x , >  = x,, if Ix,l<l (2=1,2) .  (14) i 1, if x,>1 

In the following, we take a positive definite matrix P for 
which (12) and (13) hold and a constant K which may 
assume any positive real value. The set of curves 11x11* = 

x‘Px = K represents “concentric” ellipses in the xl, x, 
plane, which can be interpreted as curves of constant 
energy, since the quadratic form x‘Px is nonnegative. 
With our choice of P t h s  energy cannot increase with the 
linear state transition, so successive state points are located 
on ellipses with nonincreasing value of the constant K ,  as 
long as no overflow occurs. In the case of overflow, some 
point outside the unit square will be mapped to a point 
inside the unit square (or on its perimeter) by the overflow 
correction. For overflow stability we demand that the 
overflow nonlinearity reduce energy, or equivalently, be 
norm-decreasing. This will be the case if, for any K ,  the 
two arcs of the ellipse x‘Px = K which are outside the unit 
square are mapped into the ellipse’s interior by the over- 
flow characteristic t(.). Now suppose, to guide our 
thoughts, that the set x‘Px = K is oriented such that, with 
an increasing value of K ,  (xll is first to exceed unity. Then, 
for saturation, the set of ellipses shows the desired prop- 
erty if the points of extreme x2 value (where the derivative 
d x 2 / d x 1  is zero) lie inside the unit square as long as 

Fig. 1. Borderline case for the geometry of the set _x‘P& = constant if 
saturation is used for overflow correction. 

max( Ix21) < 1 and on its perimeter for max(lx,l) = 1., More 
specifically, the x1 coordinate corresponding to max( Ixzl) 
= 1 should satisfy lxll Q 1. Fig. 1 depicts the case in which 
this condition is met marginally, i.e., Jxll =1 when 
max( Ixzl) = 1. As a function of K ,  the points of extreme x, 
value lie on a straight line through the origin, given by 

ax1 + yx, = 0. 

yx, + px, = 0.  

(15) 

(16) 

Likewise, lxll has its maximum on the line 

So finally, when we distinguish between the cases “ a  < 
P”  (i.e., x, is first to “overflow”) and “a  > P ”  (i.e., x, is 
first to “overflow”), we arrive at the following condition 
for overflow stability with saturation: 

Iy l<min(a ,P) .  (17) 

Note that if a = P then the main axis of the ellipses has an 
inclination of 45” for y < 0 and of 135” for y > 0. In that 
case (17) is satisfied automatically, since we have y 2  < a/? 
on account of (11). 

*Of course this condition must be formulated with respect to x1 if the 
geometry of the set _x‘P_x = constant is such that x 2  is first to “overflow.” 
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Summarizing, given a matrix A which satisfies (3) and 
(4), we seek a matrix P which satisfies (11)-(13) and (17), 
or more accurately, we want to determine the set of 
matrices A for which such a matrix P exists. The next 
section presents the proof that for all matrices A that 
satisfy constraint (6 )  or (7), at least one Lyapunov function 
x‘Px can be found. 

Note that when we let 

y = o  (18) 
the set ~ ‘ P x  = constant has a horizontal or vertical orien- 
tation. It is easily recognized that any overflow correction 
will be norm-decreasing. Indeed, as we will see, (18) leads 
to the original condition (2) for stability. 

IV. THE SET OF LYAPUNOV FUNCTIONS AND PROOF 
OF THEOREM 1 

Lemma 1: Let A be a 2 x 2 matrix which satisfies con- 
ditions (3) and (4) for linear stability. Let P be positive 
definite; then (12) is implied by (13). The proof of this 
lemma is given in Appendix 1. 

In the following we assume that the product u12u21 is 
n e g a t i ~ e . ~  With that premise we will further examine con- 
dition (13), det( P - A‘PA) >, 0, which is equivalent to 

a ~ ( a 1 1 -  - 2~ (aa12 - ~ a 2 1 ) (  011 - 0 2 2 )  - 4 ~  ’ ~ 1 2 ~ 2 1  

+(aa,,+fia,,)’< det(P)(1-det(A))2.  (19) 
Note that by inserting y = 0 and letting det ( P )  = a,b = 1,4 
we see that (19) yields 

(a l l -  a 2 2 ) 2 + ( a a 1 2  + / 3 ~ , , ) ~ <  (l-det(A))’ (20) 
which is equivalent to (2) with the optimal choice of the 
matrix P as 

We are free to choose a = 1 in (19). Furthermore, we 
take the sign of y as 

sign(y) =Sign[a,,(a,,- a,,)] =Sign[-a,,(a,,- a,,>]. 

(22) 
This choice of sign(y) is dictated by the following argu- 
ment. The left-hand side of inequality (19) is a concave 
quadratic function of the absolute difference lall - u2’1, 
for which we want to find an upper bound for overflow 
stability. This bound will be largest if the second term on 
the left-hand side of (19) (the linear term) is strictly 
negative, which will be the case with the choice of sign ( y ) 
as in (22). Finally, with the definitions 5 =/3, TJ = ly l ,  
m = min()a12), la2,1), and M =  max(la121, la2,l), we can 
rewrite (19) as 

Elall - a2,12 - 2 q ( ~ +  Em)lal1 - a2,1+477*mM 

+( M - Em)’ 6 (( - T J ’ ) . ( ~  -det ( A ) ) ’  (23) 

’This assumption poses no real restriction, since overflow stability has 

4The matrix P may always be multiplied by some positive scaling 
already been established for u12u2,  2 0 (cf. (1)). 

factor. 

where we have let lu121 > la,,l.’ This inequality represents 
an ellipse (including its interior) in the E ,  TJ plane centered 
on the point ( E o ,  q0), where 

(1 - det ( A  ) ) 2  + 2mM 

2m2 Eo = 

This fact may be verified if we write (23) in shorthand as 
(1 - det ( Al l2  

~ I ,  

4m2 
g‘Qg 6 K, where g = ( E  - to, TJ - q0) ‘ ,  K = ‘ 

[(1+ det ( A ) ) ’  - tr2 ( A ) ]  > 0, and Q is a positive definite 
matrix,6 given by 

We conclude that the matrix P satisfies (ll), (12), and 
(13) if ( E ,  T J )  is a point on the face of an ellipse, described 
by (23), with E > q2. If we want P to meet (17) as well, we 
demand q < min ( E ,  1). 

Lemma 2: Condition (23), together with 5 > T J ~  and TJ 6 
min([,l), is met for at least one pair ([, T J )  if the matrix A 
is constrained by (6) or (7). The proof of this lemma is 
given in Appendix 11. 

Having completed the proof of Theorem 1, let us study 
inequality (23) more closely. If the two parameters and 
TJ,  which determine the symmetric 2 X 2 matrix P ,  satisfy 
(23) with inequality, then the square norm ~ ‘ P x  is a 
Lyapunov function of the state variables if, in addition, the 
overflow nonlinearity causes this quadratic form to de- 
crease. Incidentally, positivity of the matrix P demands 
that E > q2. Hence, the set of potential Lyapunov functions 
is given by the section of an ellipse in the [, TJ plane that is 
to the right of the parabola [ = T J ~ ,  The area of this ellipse 
shrinks with decreasing “distance from the stability trian- 
gle” of the parameters determining linear stability, i.e., 
tr ( A )  and det ( A ) .  For det ( A )  + 1 the ellipse shrinks to a 
single point given by (cf. (24)) 

For Itr( A)I + 1 + det ( A )  the ellipse degenerates into a line 
described by 

m . ~ + M = l a , , - a , , l . q .  (26) 

Note also that all points on the face of the ellipse satisfy 
( > 17’ in the case of complex conjugate poles (cf. (5));  the 
ellipse and the parabola touch at (1720, qo) for coinciding 
real poles. 

When we let >‘& denote the Lyapunov function corre- 
sponding to ( E ,  i j ) ,  then the following unique property 

51n case lulzl < 1 ~ ~ ~ 1 .  we let 6 = a  and /3 =1 to arrive at (23). 
6tr(Q)>Oanddet(Q)=m2[(1+det(A))’- t r2(A)]>Oonaccountof  

(3). 
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holds, irrespective of the condition det ( A )  + 1 : 

x'A'bAx=det(A).x' ix.  (27) 
Note that ([, ;1) satisfies both (23) with inequality and 
[> ;1', as long as condition (5) for complex poles is met.' 
The interpretation of (27) is appealing: in a zero-input 
situation yithout overflow: the state x ( k )  moves on the 
spiral 5'Px = det k (  A).xAPx, ,  where x, is some initial 
state at tiFe instapt k = 0. The state would remain on the 
ellipse x'Px = &Px, if det(A) =1 held. 

V. THE EFFECT OF SCALING ON OVERFLOW 
STABILITY 

In order to scale a second-order state-space filter, we 
need to determine the t2 norms of the impulse responses 
f,( k) (i = 1,2) from filter input to both state variables. The 
squares of these norms are on the main diagonal of the 
matrix K ,  defined by [l] 

K = AKA'+ bb' (28) 
where _b = (bl, b,)' describes how the input signal u ( k )  is 
linked to the state variables by the state equation 

x( k + 1) = A&( k )  + _bu( k ) .  (29) 
When we define the properly scaled filter as the filter for 
which the elements on the main diagonal of K are equal,' 
we can prove Theorem 2, which for convenience is re- 
peated. 

Theorem 2: All properly scaled second-order state-space 
filters using saturation for overflow correction are zero- 
input overflow stable. 

Proof: The state-transition matrix A' of the scaled filter 
is related to the matrix A of the unscaled filter as [l] 

] (30) 
01' a12/(K22&) 

A ' =  [ 
a 2 1 m G K J  a 22 

where K,, and K, ,  are the elements on the main diagonal 
of the matrix K, to be calculated using (28). We have 

Kll  = (1 -det (A)) - ' [  (1 +det ( A ) ) , -  tr' ( A ) ]  -' 
b: - 2a11a1, 

-det b: l - ~ ; ,  -2aua22 I bib, - 412a22 1 - 411a22 - 412a21 

tion. This is the case if 

(1 - det ( A ) ) ,  2 [ %J(K,,/K,,) + 4 0 1  2. 

(33) 

A moderate amount of algebraic manipulation is needed to 
show that 

K,,K,,(1-det(A))'- (a12K2, + a21K11)' 

- - [a,,a,,b: + a,,a,,b,2 + (1 - allQ22 - a12a21)b1b2l2 
(1 +det( A ) ) ' -  tr2 ( A )  

(34) 

T h s  expression is nonnegative on account of (3). 
Q.E.D. 

VI. GENERALIZATION 

Definition: The class 0" of overflow characteristics is 
given by those characteristics f(.) that are bounded, so 
If(x)l<l,  and that satisfy 

f ( x )  = x ,  
f ( x ) > - x + ( I + s ) ,  i f x > 1  

if 1x1 < 1 

f ( x )  < - x - ( I + s ) ,  i f x < - 1  ( 3 5 )  

where s is a fixed parameter in the range - 1 < s < 1. 
Hence, OA contains all overflow characteristics that do 

not leave the hatched region in Fig. 2. Note that 0' 
includes slope-inversion arithmetic and saturation, 0' in- 
cludes zeroing, and 0-' features all characteristics for 
which I f ( x ) l  <l( 1x1 > l ) ,  including two's-complement. 

What would happen if we were to use the overflow 
characteristic that is on the edge of the class O', i.e., 
f ( x )  = - x +2.sgn(x)  for 1 < 1x1 G 3, instead of satura- 
tion? The answer to this question can be given simply by 
tahng another look at Fig. 1. Instead of being mapped 
onto the perimeter of the unit square, the arcs of the 
ellipses that are outside the unit square are mirrored with 
respect to its perimeter. These mirrored parts are on the 
face of the corresponding ellipse (as can be checked easily) 
for any matrix P satisfying (17). As a result, the conditions 
for overflow stability formulated in Theorem 1 are valid 
for the whole class 0', whch contains saturation only as a 
special case. Also, Theorem 2 may be restated as follows. 

Theorem 2': All properly scaled second-order state- 
space filters are zero-input overflow stable with respect to 
the class 0' of overflow characteristics. 

Finally, we may generalize Theorem 1 even further for a 
general class 0". 

respect to the class O5 of overflow characteristics is given 

Theorem If: A sufficient condition for the zero-input 
overflow stability of second-order state-space filters with 

K, ,  = (1 -det ( A ) ) - ' [  (1 +det ( A ) ) ' -  tr2 ( A ) ]  -' 

. (32) 
1 - b: - 2a11a1, 

- a11a21 blb2 1 - a11a22 - a12a21 
.det[  - a i l  bl - 2a21a2, 

If satisfies condition (7), then the scaled filter is zero- 
input overflow stable with saturation for overflow correc- 

:This implies strict positivity of the matrices P and k - A'PA. 
K , ,  = K 2 ,  = S2. A large value of 6 means that scaling is conservative 'Again, we consider only the nontrivial case u I 2 u 2 ,  < 0. so (7) is 

PI. equivalent to l-det(A) >, M ' -  M'. 
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X 

Fig. 2. Region in which overflow characteristics must be located in 
order to belong to the class 0’. 

by 
1 /2 

t(1 -det ( A ) )  > [( M - m)2+4mM(1 - t 2 ) ]  (36) 
or, if 

M -  m d t(1-det(A)) < [ ( M -  m)2+4rnM(1- t’)] 
1/2 

(i) 

by 
l a 1 , - u 2 2 ( < t . ( M + m )  

+[(1-t2).((1-det(A))2-(M-rn)2)]1’2 (37) 

or, if 

t(1-det(A)) < M - r n  (ii) 

by 

~ a 1 , - a 2 , ~ ~ 2 t ~ r n + 1 - d e t ( A )  (8)  
where t = (1 + s)/2 and u12.a21 = - m . M .  Note that if 
t = 1 (s = 1) then (i) is never fulfilled and only two regions 
remain, yielding the original theorem. If t = 0 (s = - 1) 
then (36) is never fulfilled and (i) is met only for M = rn, 
but in that case both (37) and (8) yield the same condition 
(a,, - < 1 - det( A) ,  in accordance with (2). 

The proof of this primed theorem follows the same line 
of reasoning as the proof given in Section IV. Again, we 
consider the ellipse face (23)  in combination with the 
restriction on the matrix P that is dictated by the overflow 
arithmetic. We take the overflow characteristic that is on 
the edge of Os, i.e., 

f (x  ) = - x + (1 + s ).  sign (x  ) , for 1 < 1x1 < 2 + s. 
(38) 

The borderline case for the geometry of the set of “con- 
centric” ellipses x‘P5 = constant” is depicted in Fig. 3 for 
the characteristic given by (38). Only the most critical 
ellipse of this set is drawn (the middle ellipse in the 
corresponding figure for saturation, cf. Fig. l) ,  where any 
increase of the constant would cause both states to over- 
flow. The arcs outside the unit square are mirrored with 
respect to the lines lxil = (1 + s)/2 = t by the overflow 

“Again, we assume that this set is oriented such that JxlI is first to 
exceed unity with increasing value of the constant, i.e., a i  8. 

x2 ‘1 

t t 
Fig. 3. Borderline case for the geometry of the set _x‘& =constant if 

overflow is corrected by a characteristic in the class 0‘. 

arithmetic. The images are on the face of the ellipse as is 
shown in Fig. 3. From the requirement that the ellipse in 
Fig. 3, i.e., 

ax; -2(ylx,x, + px: = a -21y(+ p 

contains the point (s, l), we conclude that 21y( = (1 + s ) . a .  
Hence, the new restriction on the matrix P to replace (17) 
for a general class Os of overflow characteristics is simply 

Condition (8) is found by demanding that the minimum 
value of 7 in the set of potential Lyapunov functions (see 
Appendix 11) satisfies min(7) < t. Of course this solution 
is valid only if the corresponding value of [ is greater than 
1. The distinction between the cases [ d 1 and [ > 1 leads 
to the above regions (i) and (ii). The condition (37) is 
found by demanding that the point ([, 7) = (1, t )  represent 
a Lyapunov function. The region (36) covers the case 
where tlus condition ceases to pose a real restriction on 
lall - a22)  in view of linear stability. 

Example: The direct-form filter with state-transition 
matrix A = [ f i] is linearly stable if Jal+ b < l h b  > -1. 
It is zero-input overflow stable under the additional condi- 
tion lal- b < 1 for modulo-2 arithmetic and la1 < 1 for 
zeroing. For saturation and slope-inversion arithmetic no 
additional condition is required. 

VII. STABILITY OF THE FORCED RESPONSE 
A digital filter is said to be forced response stable if it 

recovers from overflow in the presence of a nonzero input 
signal; i.e., after an overflow the forced response is re- 

- 
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gained asymptotically in time [4]." More specifically, t h s  
recovery may be described as follows. 

The forced response x , ( k )  is defined as the particular 
solution of the linear state equation (29). Similarly, the 
response of the actual filter (with overflow correction f )  is 
given by 

& ( k  +1) = f [ A & ( k ) + _ b u ( k ) ] .  (40) 
The deviation from the forced response d( k )  = x( k )  - 
x,( k) satisfies the equation 

d(  k + 1) = f [ A d (  k )  + x,( k + l)] - &,( k + 1) 

= E [ A d ( k ) l  (41) 
where E ( . )  is a time-varying overflow arithmetic [4]. The 
norm of the difference vector 4 decreases asymptotically 
to zero, or equivalently the actual filter is forced response 
stable, if the filter with state vector and state-transition 
matrix A is zero-input overflow stable using the overflow 
arithmetic E. Note that _F is a vector function, since the 
two states d ,  and d, are corrected differently, according 
to (41). The two components of 1 are shfted versions of f 
along the line f ( x )  = x in the f plot. We can picture these 
shifts in Fig. 312 as a movement of the unit square. The 
unit square moves about in the state plane with a time- 
varying center - &,( k + 1). The amplitude of the horizon- 
tal and vertical motion is less than unity, since the forced 
response is assumed not to cause overflow. Llkewise, t h s  
amplitude will be less than c if the input signal u ( k )  is 
scaled down by a factor c, i.e., if u ( k )  is replaced with 
c - u ( k ) .  With the help of such a scaling factor (0 d c dl) 
we can introduce a limited forced response stability, where 
c = 0 corresponds to zero-input stability. 

Theorem 3: A second-order state-space filter that is 
zero-input overflow stable with respect to the class 0"' of 
overflow characteristics is forced response stable with re- 
spect to Os* for a class of input signals whose amplitudes 
do not exceed (s, - s1)/(3 + sl). 

The proof of this theorem is based on the notion that 
the worst case for the movement of the unit square in Fig. 
3 is a shift along the line d, + d, = 0. With the upper right 
corner of the unit square at the point (1 - c, 1 + c), the set 
d'P4 = constant represents the borderline case (for an 
overflow characteristic in the class Os*)  if it contains an 
ellipse through this upper right corner and the point (s, - 
c , l  + c). On the other hand the set should contain an 
ellipse through the points (1,l) and ( s,, 1) for zero-input 
stability with respect to 0'1.  With these requirements it 
follows that c = (s, - s,)/(3 + sl). 

Example: The direct-form filter with state-transition 
matrix A = [ f i] is forced response stable for input sig- 
nals with amplitudes up to 1/3 if la1 d1 and saturation is 

used for overflow correction. The wave digital filter with 
state-matrix 

I r a - b  - l + a - b  - l + u + b l  [ A=' 1 + a + b  

is forced response stable for input signals with amplitudes 
up to 1/2 if zeroing is used for overflow correction. With 
respect to 0', wave digital filters are altogether forced 
response stable ( e  = 1). Ths latter result was stated in [4]. 

VIII. CONCLUSION AND SUMMARY 
A general analysis is presented that establishes a set of 

conditions for the overflow stability of second-order state- 
space structures. The well-known overflow arithmetics sat- 
uration, zeroing, and two's-complement represent three 
classes of overflow characteristics, for each of whch a 
stability condition is derived involving only the elements 
of the state-transition matrix. The zero-input stability con- 
dition for the class containing saturation is such that it is 
satisfied by all properly scaled second-order state-space 
filters. T h s  result need not be restricted to state-space 
structures. It also holds more generally for all second-order 
digital filters if overflow at non-state-variable nodes is 
ruled out through the use of an extra bit for those nodes 
whose I ,  norms exceed that of the scaled state variables. 

The analysis is based on determining the set of 
Lyapunov functions for a general second-order state-tran- 
sition matrix. The bounds within which the elements of the 
state matrix are to be restricted are derived from the 
requirement that t h s  set contain only one element. These 
bounds represent sufficient conditions for zero-input over- 
flow stability. In Appendix 111 i t  is shown that these 
conditions are not strictly necessary. 

As for the stability of the forced response, a digital filter 
that is zero-input overflow stable for one class of overflow 
characteristics is shown to be forced response stable (possi- 
bly in a limited sense) for a related class of characteristics. 

APPENDIX I 
PROOF OF LEMMA 1 

Since P is a positive definite and symmetric matrix, we 
may write P = T - T ' ,  where T- '  = ( r l  t 2 )  is a nonsingu- 
lar matrix, so l1 # hiz. Note that T is not unique. Substitu- 
tion yields 

P - A ' P A = T - ~ ( I - S ~ S ) T - ~  

where I is the identity matrix and S = T - ' A T  i.e., S and 
A are linked by a similarity transformation. Note that 
det(S'S) =det2(A) <1. 

If det( P - A'PA) > 0 then I - S'S is positive (semi) 
definite. 

det ( I  - S'S) = det2( T )de t (  P - A'PA) >, 0 

(i) 

Proof: Let det( P - A'PA) >, 0 then 

and 
"In this definition it is assumed that the state motion associated with 

the forced response, sp( k ) ,  ultimately does not leave the unit square, or 
less formally, that overflows are sufficiently far apart in time. This will be 
the case for any properly scaled filter. 

If the state plane in Fig. 3 is understood to be the d , .  d, plane. 

tr ( I  - S'S) = 2 - tr ( StS) > 1 - tr (SS)  + det (s's) 
= det ( I  - S'S ) . 12 
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From t r ( l  - S'S) > det( I - S'S)  2 0 we conclude that 
I - S'S is positive (semi)definite. 

APPENDIX 111 

The conditions for overflow stability (laid down in the 
general Theorem 1') are sufficient but not necessary, owing 
to the following observations. (ii) If I - S'S is positive (semi)definite, then tr( P - 

A'PA) > 0. 
Proof: tr( P - A'PA) = !;(I - S'S)!, + _ti( I - S'S)!,. Let 

I - S'S be positive (semi)definite; then both terms to the 
right of the equal sign are nonnegative, But since f l  # At ,  
and I # S's, they are never simultaneously zero, so tr( P - 

(i) The adopted norm need not be required to be 
decreasing with respect to overflow correction, as long as a 
possible nonlinear increase of IIAx(J due to overflow cor- 
rection is compensated by a foregoing, larger decrease of 

A'PA) > 0. 

From (i) and (ii) we conclude that 
(13).  

APPENDIX I1 
PROOF OF LEMMA 2 

Distinguish between two regions: 

llxll as a result of the linear state transition. 
Even if the combined operation f(h) shows an 

occasional increase of the chosen norm, this need not 
necessarily lead to instability. For a periodic overflow 
oscillation to exist, the norm llxll should come "full circle"; 
i.e., after one period it should assume its original value. 

(iii) If the overflow characteristic f ( . )  does not map 
the two arcs outside the unit square of some ellipse llxll= 
constant entirely into its interior, t h s  does not necessarily 

(ii) (12) is implied by 

Q.E.D. 

(i) 1 - det(A) 2 M - m .  The line 5 = 1 intersects the 
ellipse in the ~ , T J  plane (gven by (23) satisfied with 
equality) at two, possibly coinciding, points, say (1, ql)  and 
(1, q2). The point (1, T J ~ ) ,  where q3 = (q, + q 2 ) / 2 ,  lies on 
the face of the ellipse; for the matrix P to exist, we need 
only check whether q3 <1. We find 

( M +  m)Ia11- a221 < ]  

" = (1 - det ( A ) ) ' +  4mM 

because (a l2  - a2,I2 < (l-det(A)), + 4 m M  on account of 
(3) ,  and ( M  + rn)' Q (1 - det ( A ) ) 2  + 4mM in the region 
under consideration. So, with ( 5 , ~ )  = (1, q3), P exists 
without any further constraint on A .  

1 -det(A) < M - m .  All points on the above el- 
lipse satisfy 2 > l; for the matrix P to exist we need at 
least one point on the face of the ellipse for whch q < l.13 

This will be the case if the minimum of q on the ellipse 
satisfies min(q) ~ 1 .  This minimum if found to be 

(ii) 

From min( TJ) Q 1 we conclude that 

(al ,-a2,1d2m+1-det(A).  ( 6 )  

The choice 

leads to a Lyapunov function x'P,. 

to (7) for a12u21 < 0, the proof is complete. 
Since the condition "1 - det ( A )  > M - m " is equivalent 

Q.E.D. 

Note that for this point 5 > q2 is met as well, since 5 > 1. 13 

mean that overflow correction will ever increase the norm 
of x. Since a digital filter has a bounded state space, only a 
limited region of the state plane outside the unit square 
can actually be reached, i.e., be an image under the map- 
ping of the unit square by the state-transition matrix A. 
Those parts of the ellipse llxll= constant that are mapped 
beyond its perimeter (by the overflow characteristic) might 
never be reached at all. A good example is given by the 
direct-form filter with x , ( k  + 1) = x l ( k ) :  any point (xl, x2) 
with lx21 > 1 cannot be an image of an original inside the 
unit square. 

In view of these observations a necessary condition for 
overflow stability can only be derived from a comprehen- 
sive analysis of the overflow behavior. Such an analysis 
would show a strong dependence on the choice of the 
matrix A and would probably not lead to a closed range of 
stability for the absolute difference (al, - a,,(. We can use 
the first of the above concepts, however, to relax the 
stability condition (8) even further. 

In order to do so, ,we recall that there is a unique 
Lyapunov function x'P3 for which property (27) holds. 
With the choice P = k ,  the norm Il.yII decreases by a factor /m with every state transition. As a result, we may 
allow an increase of llxll due to overflow correction by a 
factor less than do). In other w>rds, 6 may exceed 
the bound set by (38),  i.e., t . rnin([, l)=t.  If we can 
establish just how far 6 may exceed t ,  we will have found 
a new set of conditions for overflow stability, since Ja,, - 
a,,[ = 2m.G.  Following the teasoning of Section 111, we 
consider the set 9f ellipses x'Px constant (with the usual 
assumption & < p, so Oi = 1 and p = M/m). The borderline 
case for the geometry of this set is shown in Fig. 4 for the 
overflow characteristic given by (39).  This figure should be 
read as follows. The inner ellipse x'Px = K ,  contains the 
point Q = (1,l) whch has a mirror image R = (s,l) with 
respect to the line x1 = (1 + s)/2. The con_stant K ,  is equal 
to 1 - 2G+ M / m .  The outer ellipse x'Px = K ,  contains 
the original, denoted P, of Q under the mapping A ,  so 
A( P) = Q and K ,  = K,/(det( A ) ) .  
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2m. Hence, (Al) is valid under the condition [ ( M  - m )  . (1 - det ( A ) ) ] ”  
. ( A 4  m -det ( A )  s < l -  

Note that in view of this restriction the bound of (Al) does 
not exceed 2 / m ,  as indeed is necessary due to (5) 
(recall that is a Lyapunov function only in the case 
of complex poles). 
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