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Abstract

Uniqueness of limit Gibbs states of one dimensional models with a unique “stable” ground
state is established at low temperatures. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of phase transitions in one-dimensional models has attracted the in-
terest of many authors during the last decades. The existence (the absence) of phase
transitions in some one-dimensional models was proved in [1–13].
In this paper we investigate su�cient conditions for the uniqueness of limit Gibbs

states in one-dimensional models.
It is well known that the condition

∑
x∈Z1 xU (x)¡∞ (U (x) is a pair potential of

long range) implies uniqueness of limit Gibbs states [1–3]. In this paper we consider
models including the alternative case U (x)∼ 1=x1+�, where 0¡�¡1.
In this work we develop a method establishing uniqueness of Gibbs states under

very natural conditions similar to the conditions for two- or more-dimensional models.

2. The main result

Let us consider a model on Z1 with the Hamiltonian

H (’(x))=
∑

B⊂Z1

U (’(B)) ; (1)
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where the spin variables ’(x)∈�, � is a �nite set, the potential U (’(B)) is not
necessarily a translationally invariant function.
On the potential U (’(B)) we impose the natural condition which is necessary for

the thermodynamic limit:

∑
B⊂Z1: x∈B

|U (’(B))|¡const ; (2)

where the const does not depend on x and the con�guration ’(x).
We suppose that model (1) has a unique ground state ’gr(x) and satis�es the fol-

lowing stability condition: for any �nite set A⊂Z1 with length |A|

H (’′(x))− H (’gr(x))¿t|A| ; (3)

where t¿0, |A| is the number of sites of A and ’′(x) is a perturbation of the ground
state ’gr on the �nite set A.
We also suppose that the potential U (B) satis�es some natural decreasing condition

(see Eq. (22)).

Theorem 1. There exists �cr¿0, such that at any �¿�cr the model (1) has a unique
limit Gibbs state.

By the uniqueness of Gibbs states we mean the non-existence of two di�erent Gibbs
states.
We prove Theorem 1 based on the ideas introduced in [9]. The main idea of the

proof is the following.
Let IV be the segment [−V; V ]. Suppose that the boundary conditions ’(x)=’1(x);

x∈Z1 − IV are �xed and

HV (’(x)|’1(x))=
∑

B⊂Z1: B∩[a; b]6=∅
U (’(B)) :

A set of all con�gurations ’(x); x∈ IV we denote by �(V ).
Due to conditions (2) and (3) the partition function �1V corresponding to the bound-

ary conditions ’1(x) is �nite and the Gibbs distribution P1V (’(x)) on the set �(V ) is
well de�ned.
Let ’min; 1V (x)∈�(V ) be a con�guration with the minimal energy:

H (’min; 1V (x)|’1(x))= min
’(x)∈�(V )

H (’(x)|’1(x)) : (4)

Then the con�guration ’min(x) almost coincides with the ground state of model (1)
(see Lemma 1 in Section 3). Due to condition (2) the di�erence between energies of
two minimal con�gurations ’min and ’′

min corresponding to di�erent boundary condi-
tions is bounded by some constant. Thus, we can de�ne a common (for all boundary
conditions) contour (a contour will be de�ned as a connected subcon�guration not
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coinciding with the ground state) model and by using a well-known trick [14] we come
to noninteracting clusters from interacting contours.
Consider an arbitrary segment I in the volume IV , two arbitrary boundary conditions

’1(x) and ’2(x). We prove that the dependence of the expression P1(’′(I))=P2(’′(I))
on the boundary conditions ’1(x) and ’2(x) can be reduced to the sum of statisti-
cal weights of super clusters connecting the segment I with the boundary and this
expression is negligible at low temperatures.
Therefore, two arbitrary extreme Gibbs states are mutually continuous and hence

coincide.

3. Proof of Theorem 1

Let ’min;1V (x)∈�(V ) be a con�guration with the minimal energy. The following
lemma describes the structure of the con�guration ’min;1V (x).

Lemma 1. For arbitrary �xed boundary conditions ’1(x) there exist positive constants
Nl

b and Nr
b not depending on the boundary conditions ’1(x) and V , such that the

restriction of the con�guration ’min;1V (x) on interval [−V +Nl
b; V −Nr

b ] coincides with
the ground state ’gr(x).

It can be easily shown that the lemma follows from condition (22). For a detailed
proof of this statement see [9]. Below we give a proof of the lemma in the special
translationally invariant potential case. This proof is rather amusing due to the fact that
it does not employ any of the conditions (2), (3) and (22) and uses only the very
natural condition that the potential tends to zero while the distance between interacting
elements tends to in�nity.

Proof. Obviously, for each value of V there are numbers Nl
b(V; ’

1) and Nr
b (V; ’

1) p
(06Nl

b(V; ’
1)6V; 06Nr

b (V; ’
1)6V ) satisfying the lemma, thus, the restriction of the

con�guration ’min;1V (x) to the set [−V + Nl
b; V − Nr

b ] coincides with the ground state
’gr(x).
Let Nl

b(V; ’
1) and Nr

b (V; ’
1) be minimal, that is Nl

b(V; ’
1) + Nr

b (V; ’
1) is minimal.

Let Nb(V; ’1)= max(Nl
b(V; ’

1); N r
b (V; ’

1)) and

Nb(V )= max
’1

Nb(V; ’1) ;

where the second maximum is taken over all possible boundary conditions ’1.
In order to prove the lemma we show that maxV Nb(V ) is bounded.
Indeed, suppose that maxV Nb(V ) is not bounded. Then there exist a sequence of

numbers V (k), a sequence of boundary conditions ’k(x); x∈Z1− [−Vk; Vk ] and corre-
sponding sequence of con�gurations with minimal energy ’min; kV (k) (x); k =1; 2; : : : ; such
that limk→∞ V (k)=∞ and limk→∞ Nb(V (k); ’k)=∞.
Without loss of generality, we assume that limk→∞ Nl

b(V (k); ’
k)=∞:
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De�ne a maximal nonnegative integer number z= z(V (k); ’k) satisfying the condi-
tion:

’min; kV (k) ([−V (k) + Nl
b − z;−V (k) + Nl

b]) 6=’gr([−V (k) + Nl
b − z;−V (k) + Nl

b]) :

Due to the de�nitions, z= z(V (k); ’k)¿0, if k is su�ciently large. Below we assume
that z= z(V (k); ’k)¿0.
Now we are faced with two possible cases.
Case 1. limk′→∞ z(V (k ′); ’k′) + (V (k ′)− Nr

b )− (−V (k ′) + Nl
b)=∞ for some sub-

sequence k ′ of k.
Case 2. maxk z(V (k); ’

k) + (V (k ′) − Nr
b ) − (−V (k ′) + Nl

b) is bounded, where the
maximum is taken over all values of k.
Let us de�ne a con�guration  V (k′)(x)=’min; kV (k) (x − �x).
In the �rst case we put �x=V (k ′)−Nl

b + z=2. Thus,  V (k′)(x) is a V (k ′)−Nl
b − z=2

shift of ’min; k
′

V (k′) (x) to the right.
In the second case we put �x=V (k ′)−Nl

b=2. Thus,  V (k′)(x) is a V (k ′)−Nl
b=2 shift

of ’min; k
′

V (k′) (x) to the right.
Now note that
(1) In both cases the support of the con�gurations  V (k′)(x) in�nitely grows in both

directions when V (k ′) goes to in�nity.
(2) In both cases the restriction of the con�gurations  V (k′)(x) to any interval [−L; L]

(when L is su�ciently large) does not coincide with the ground state:

 V (k′)([−L; L]) 6=’gr([−L; L]) :

To verify the �rst property we have to show that in the con�guration ’min; k
′

V (k′) (x) the
distances dist(−V (k ′);− �x) and dist(− �x; V (k ′)) tend to in�nity in both cases.
The �rst property readily follows from the de�nitions.
In the �rst case, dist(−V (k ′);− �x)¿Nl

b=2 in both cases and since Nl
b tends to in�nity

the expression dist(−V (k ′);− �x) unboundedly grows. The expression dist(− �x; V (k ′))¿
z=2+(V (k ′)−Nr

b )−(−V (k ′)+Nl
b) and obviously tends to in�nity in the �rst case. In the

second case we have to show that both distances dist(− �x; V (k ′)) and dist(−V (k ′);− �x)
unboundedly grow when Nl

b tends to in�nity. It directly follows from the fact that
dist(− �x; V (k ′))¿Nl

b=2 and dist(−V (k ′);− �x)=Nl
b=2. The �rst property is proved.

The second property in the �rst case readily follows from the de�nition of z.
In the second case assume that there is a segment [−L; L] such that the restriction of

 (x) to the interval [−L; L] coincides with some ground state ’(x). Then by de�nition
of Nl

b and Nr
b (N

l
b(V; ’

k) +Nr
b (V; ’

k) is minimal) 2L6(V (k ′)−Nr
b )− (−V (k ′) +Nl

b)
and since z=2 + (V (k ′)− Nr

b )− (−V (k ′) + Nl
b) is bounded (over the set of all k

′) 2L
is bounded and the second property is held.
We say that a sequence of con�gurations  V (k)(x) point-wisely converges to the

con�guration  (x), if for each x∈Z1, there exists k1, such that  V (k)(x)=  (x), if
k¿k1.
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After this natural de�nition, by using a diagonal argument we can show that the
sequence  V (k′)(x); k ′=1; 2; : : : has at least one limit point, say  min(x) 6=’gr . Indeed,
there exists a subsequence  0V (k′)(x) of  V (k′)(x), such that  0V (k′)(0) is a constant. There

exists a subsequence  0;1V (k′)(x) of  0V (k′)(x), such that  0;1V (k′)(1) is a constant. There

exists a subsequence  0;1;−1V (k′) (x) of  0;1V (k′)(x), such that  
0;1;−1
V (k′) (−1) is a constant. By

continuing this process we obtain a subsequence  0:1;−1;:::; n;−n; :::
V (k′) (x) of  V (k)(x) which

converges to some con�guration  min(x).
Now, note that  min(x) is a ground state. In fact, suppose that  (x) is an arbitrary

perturbation of  min(x) on some �nite set W .

H ( (x))− H ( min(x))¿HV (’(x)|’k′(x))− HV (’min(x)|’k′(x))

−�(W;V (k); ’k′) ;

where ’(x) is the same perturbation of ’min(x) on the set W − �x, and for each �xed
W the term �(W;V (k ′); ’k′) tends to zero uniformly with respect to ’k′ while V (k ′)
tends to in�nity.
But by construction HV (’(x)|’k′) − HV (’min; k

′
(x)|’k′)¿0. Therefore, H (’(x)) −

H (’min(x))¿0 and  min(x) is a ground state.
Now, note that the con�guration  min(x) 6=’gr(x) due to the second property. In

fact, since the con�guration  V (k′)(x), which is just a shift of ’
min; k′
V (k′) , the ground state

’gr cannot coincide with  V (k′)(x) on the interval [−L; L]. And  min(x) is a limit of
con�gurations  V (k′)(x).
This contradicts the assumption that maxV Nb(V ) is not bounded. Lemma 1 is

proved.

Consider the partition of Z1 into segments Ik , where Ik is a segment with the center
at x= 1

2 + k and with the length 1.
Let us consider an arbitrary con�guration ’(x). We say that a segment Ik is not

regular, if there exists a segment I ′k , connected with Ik , such that ’(I ′k) 6=’gr(I ′k). Two
nonregular segments are called connected provided their intersection is not empty. The
connected components of nonregular segments de�ned in such a way are called supports
of contours and are denoted as suppK .
The pair K =(suppK; ’(suppK)) is called a contour.
Let P1 and P2 be two Gibbs states of model (1) corresponding to the boundary

conditions ’1(x) and ’2(x), respectively.

Lemma 2. Gibbs measures P1 and P2 are absolutely continuous with respect to each
other.

Proof. Let I = [a; b] be an arbitrary segment and ’′(I) be an arbitrary con�guration.
In order to prove the lemma we show that there exist two positive constants s and

S not depending on I , ’1(x), ’2(x) and ’′(I), such that

s6P1(’′(I))=P2(’′(I))6S : (5)
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Let P1V and P
2
V be Gibbs measures corresponding to the boundary conditions ’1(x),

and ’2(x), x∈Z1 − IV , respectively, where Z1 − IV =(−∞;−V − 1]∪ [V + 1;+∞).
Thus,

lim
V→∞

P1V=P
1 and lim

V→∞
P2V=P

2 ;

where by convergence we mean weak convergence of probability measures.
For establishing inequality (5) we prove that for each �xed interval I , there exists

a number V0(I), depending on I only, such that for V¿V0

s6P1V(’
′(I))=P2V(’

′(I))6S : (6)

Let H (’(x)|’1(x); ’min;1(x)) denote the relative energy of a con�guration ’(x) (with
respect to ’min;1(x)):

H (’(x)|’1(x); ’min;1(x))=H (’(x)|’1(x))− H (’min;1(x)|’1(x)) :
Consider

P1V(’
′(I)) =

∑
’(IV ):’(I)=’′(I) exp(−�H (’(IV )|’1(x); ’min;1(x))Y (’′(I); V; ’1(x)))∑

’(IV ) exp(−�H (’(IV )|’1(x); ’min;1(x))Y (’(I); V; ’1(x)))

=
�(IV − I |’1(x); ’′(I); ’min;1(x))Y (’′(I); V; ’1(x))∑

’′′(I) �(IV − I |’1(x); ’′′(I); ’min;1(x))Y (’′′(I); V; ’1(x))

=
�1; ′Y (’′(I); V; ’1(x))∑

’′′(I) �
1;′′Y (’′′(I); V; ’1(x))

;

where �1; ′=�(IV − I |’1(x); ’′(I); ’min;1(x)) denotes the partition function correspond-
ing to the boundary conditions ’1(x); x∈Z1 − IV ; ’′(I); x∈ I and

Y (’(I); V; ’i(x))

=
∑

A⊂Z1:A∩I 6=∅;A∩Z1−IV 6=∅
exp(−�(U (’(A))− U (’min; i(A)))); i=1; 2 ; (7)

where ’(x) in sum (6) is equal to ’′(x) for x∈ I and it is equal to ’i for x∈Z1− IV .
Expression (7) gives the “direct” interaction of ’(I) with the boundary condition ’i.
We can express P2V(’

′(I)) in just the same way.
In order to prove inequality (6) it is enough to establish inequalities (8) and (9):

1¡ Y (’(I); V; ’i(x))¡2; i=1; 2 (8)

and

1=S6
(
�1; ′′

�1; ′

)/(
�2; ′′

�2; ′

)
61=s (9)

for arbitrary ’′′(I).
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Indeed, if inequalities (8) and (9) hold, then

1=(1=s)6P1V(’
′(I))=P2V(’

′(I))61=(1=S) ;

since the quotient of (
∑n

i=1 ai)=(
∑n

i=1 bi) lies between min(ai=bi) and max(ai=bi).
Now, we start to prove inequalities (8) and (9).
Inequality (8) is a direct consequence of the natural condition on the decreasing of

the potential: for each �xed I there exists V0, such that if V¿V0, then 1¡ Y (’(I); V;
’i(x))¡2; i=1; 2.
So, in order to complete the proof of Lemma 2 we have to establish the following

inequality (which is just the transformed inequality (9)):

1=S6
�1; ′′ �2; ′

�2; ′′ �1; ′
61=s : (10)

De�ne a super partition function

(�1; ′′ �2; ′) =
∑

exp(−�H (’3(IV )|’1(x); ’′′(x)’min(x)))

× exp(−�H (’4(IV )|’2(x); ’′(x)’min(x))) ;

where the summation in
∑

p is taken over all pairs of con�gurations ’
3(IV ) and ’4(IV ),

such that ’3(I)=’′′(x); ’4(I)=’′(x).
Now, we show that for each �xed interval I , there exists a number V0(I), which

depends on I only, such that if V¿V0(I)

s6(�1; ′�2; ′′)=(�1; ′′�2; ′)6S (11)

for two positive constants s and S not depending on I , ’1(x); ’2(x); ’′(x) and ’′′(x).
Now, we try to represent the super partition functions (�1; ′�2; ′′) and (�1; ′′�2; ′) in

a more convenient form. Roughly speaking, by using a well-known technique we are
going to pass to noninteracting clusters from interacting contours [14].
Let the boundary conditions �’(x)= [’(x); x∈ (−∞;−V − 1]∪ [V +1;∞)] be �xed.

As above the set of all con�gurations ’(x); x∈ [−V; V ] we denote by �(V ).
It is obvious that for each contour K , such that suppK ∈ [−V + Nb; V − Nb]; there

exists a con�guration  K ([−V; V ]) such that the only contour of the con�guration
 K ([−V; V ]) is K .
The weight of contour K will be calculated by the following formula:


(K)=H ( K (x))− H (’1(x)) : (12)

Consider the Gibbs distribution P1 on �(V ) corresponding to the boundary condi-
tions ’1(x)= [’1(x); x∈ (−∞;−V − 1]∪ [V + 1;∞)]:

P1(’′(x))=
exp(−�(H (’′(x)|’1(x); ’min;1(x))))∑

’(x)∈�(V ) exp(−�(H (’(x)|’1(x); ’min;1(x)))) : (13)
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Let ’(x)∈�(V ) be an arbitrary con�guration, the boundary of the ’(x) includes
a �nite number of contours Ki; i=1; : : : ; n. The set of all contours of the boundary
conditions ’1(x) will be denoted by K0.
The statistical weight of a contour is

w(Ki)= exp(−�
(Ki)) : (14)

The following equation is a direct consequence of formulas (12) and (14)

exp(−�H (’(x)|’1(x); ’min;1(x)))=
n∏

i=1

w(Ki) exp(−�G(K0; K1; : : : ; Kn)) ; (15)

where the multiplier G(K0; K1; : : : ; Kn) corresponds to the interaction between contours
and with the boundary conditions ’1(x):

G(K0; K1; : : : ; Kn)=
n∑

k=2

∑
i1 ;:::; ik

G(Ki1 ; : : : ; Kik )=
n∑

k=2

∑
(B)∈Int(Ki1 ;:::; Kik )

f(B) ; (16)

where at each �xed k the summation is taken over all possible collections i1; : : : ; ik ,
ij =0; : : : ; n, il¡im, if l¡m.
The interaction between some point x from the support of K1 and some point y

from the support of K2 arises due to the fact that the weight of the contour K1 was
calculated under assumption that the con�guration outside supp (K1) coincides with the
ground state.
We do not need the explicit expressions of f(B) and (int(Ki; Kj)), they are very

huge and we do not write them down. For the pair potential case see [9].
For simplicity, Ki; i=1; : : : ; n will be denoted by Ki; i∈ I. Thus, formula (15) has

the form

exp(−�H (’(x)|’1(x); ’min;1(x)))=
∏
i∈I

w(Ki) exp(−�G(K0; K1; : : : ; Kn)) : (17)

The set of all interaction elements B in the double sum (16) will be denoted by IG
(for the pair potential B will be a pair of points (x; y)). Write Eq. (17) as follows:

exp(−�H (’(x)|’1(x); ’min;1(x)))=
∏
i∈I

w(Ki)
∏
B∈IG

(1+ exp(−�f(B)−1)) : (18)

From Eq. (18) we get

exp(−�H (’(x)|’1(x); ’min;1(x)))=
∑

IG′ ⊂ IG

∏
i∈I

w(Ki)
∏

B∈IG′;f(B)6=0
g(B) ; (19)

where the summation is taken over all subsets IG′ (including the empty set) of the set
IG, and g(B)= exp(−�f(B))− 1.
Consider an arbitrary term of sum (19), which corresponds to the subset IG′ ⊂ IG.

Let the interaction element B∈ IG′. Consider the set K of all contours such that for each



A. Kerimov / Physica A 258 (1998) 183–202 191

contour K ⊂K, the set suppK ∩B contains one point. We call any two contours from
K connected.The set of contours K ′ is called IG′ connected if for any two contours Kp

and Kq there exists a collection (K1 =Kp; K2; : : : ; Kn=Kq) such that any two contours
Ki and Ki+1; i=1; : : : ; n− 1; are connected by some interaction element B∈ IG′.
The pair D= [(Ki; i=1; : : : ; s); IG′], where IG′ is some set of interaction elements, is

called a cluster provided there exists a con�guration ’(x) containing all Ki; i=1; : : : ; s;
IG′ ⊂ IG; and the set (Ki; i=1; : : : ; s) is IG′ connected. The statistical weight of a
cluster D is de�ned by the formula

w(D)=
s∏

i=1

w(Ki)
∏

(x; y)∈IG′
g(B) ; (20)

Note that w(D) is not necessarily positive.
Two clusters D1 and D2 are called compatible provided any two contours K1 and

K2 belonging to D1 and D2, respectively, are compatible. A set of clusters is called
compatible provided any two clusters of it are compatible.
If D= [(Ki; i=1; : : : ; s); IG′], then we say that Ki ∈D; i=1; : : : ; s.
The following lemma is a direct consequence of the de�nitions.

Lemma 3. Let boundary conditions ’1(x)= [’1(x); x∈ (−∞;−V −1]∪ [V +1;∞)] be
�xed.

If [D1; : : : ; Dm] is a compatible set of clusters and
⋃m

i=1 suppDi ⊂ [−V; V ], then there
exists a con�guration ’(x) which contains this set of clusters. For
each con�guration ’(x) we have

exp(−�H (’(x)|’1(x); ’min;1(x)))=
∑

IG′ ⊂ IG

∏
w(Di) ;

where the clusters Di are completely determined by the set IG′. The partition function is

�(’1(x))=
∑

w(D1) : : : w(Dm) ;

where the summation is taken over all non-ordered compatible collections of clusters.
Lemma 3 shows that we come to noninteracting clusters from interacting contours.
The following generalization of the de�nition of compatibility allows us to represent

(�1; ′′ �2; ′) as a single partition function.
A set of clusters is called super compatible provided any of its two parts coming from

two Hamiltonians is compatible. In other words, in super compatibility an intersection
of supports of two clusters is allowed.

Lemma 4. Let boundary conditions ’1(x)= [’1(x); x∈ (−∞;−V − 1]∪ [V + 1;∞)]
and ’2(x)= [’2(x); x∈ (−∞;−V − 1]∪ [V + 1;∞)] be �xed.



192 A. Kerimov / Physica A 258 (1998) 183–202

If [D1; : : : ; Dm] is a super compatible set of clusters and
⋃m

i=1 suppDi ⊂ [−V; V ], then
there exist two con�gurations ’3(x) and ’4(x) which contain this set of clusters. For
each pair of con�gurations ’3(x) and ’4(x) we have

exp(−�H (’3(x)|’1(x); ’min;1(x))) exp(−�H (’4(x)|’2(x); ’min;2(x)))
=

∑
IG′ ⊂ IG; IG′′ ⊂ IG

∏
w(Di) ;

where the clusters Di are completely determined by the sets IG′ and IG′′.
The super partition function is

�1; ′′;2; ′=(�1; ′′ �2; ′)=
∑

w(D1) : : : w(Dm) ;

where the summation is taken over all nonordered super compatible collections of
clusters.
Lemma 4 is an analogue of Lemma 3.
Let w(D1) : : : w(Dm) be a term of the super partition function �1; ′′;2; ′. The connected

components of the collection [supp(D1); : : : ; supp(Dm)] are the supports of the super
clusters. A super cluster SD is a pair (supp(SD); ’(supp(SD))). Below, instead of the
expression “super compatible collection of clusters” we use the expression “compatible
collection of super clusters”.
A cluster (a super cluster) D= [(Ki; i=1; : : : ; r); IG′] (SD= [(Ki; i=1; : : : ; r); IG′])

is said to be long if the intersection of the set (
⋃m

i=1 suppKi))∪ IG′ with both I and
Z1−IV =(−∞;−V−1]∪ [V+1;∞) is nonempty. In other words, a long cluster (super
cluster) connects the boundary with the segment I .
A set of super clusters is called compatible provided the set of all clusters belonging

to these super clusters are super compatible.
The following important lemma shows that in our estimates long super clusters are

negligible.

Lemma 5. For each �xed interval I , there exists a number V0(I), which depends on I
only, such that if V¿V0(I)

1
2�

1; ′;2; ′′¡�1; ′;2; ′′; (n:l:) =
∑

w(SD1) · · ·w(SDm) ;

where the summation is taken over all nonlong, nonordered compatible collections of
super clusters [SD1; : : : ; SDm];

⋃m
i=1 supp(SDi)⊂ IN − I corresponding to the boundary

conditions ’1(x); ’2(x); x∈Z1 − IV ; ’′(x) and ’′′(x); x∈ I .

Consider a collection of contours K0; K1; : : : ; Kn. The value of the interaction of the
contour K0 with the contours K1; : : : ; Kn we denote via G(K0|K1; : : : ; Kn):

G(K0|K1; : : : ; Kn)=
∏

B∈IG(0|1;:::; n)
(1 + exp(−�f(B)− 1)) ; (21)
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where IG(0|1; : : : ; n) is the set of all interaction elements intersecting the support of
the contour K0.
On the potential U (B) we impose the following natural condition:

G(K0|K1; : : : ; Kn) =
∏

B∈IG(0|1;:::; n)
|(1 + exp(−�f(B)− 1))

6 h1(|supp(K0)|)h2(dist(0|1; : : : ; n)) ; (22)

where dist(0|1; : : : ; n) is the distance between the support of K0 and the union of the
supports of contours K1; : : : ; Kn, and the functions hi(x) satisfy the following conditions:

lim
x→∞ h1(x)=x=0 lim

x→∞ h2(x)= 0 : (23)

In other words, the interaction of K1; : : : ; Kn on K0 tends to zero when the distance
between them increases, and the value of the interaction increases with a rate less than
the length of the support of K0.
These conditions are very natural and in particular are held in all models with pair

potential U (x)∼ 1=x1+�; as x→∞; 0¡� . In the pair potential case (see [9])

G(K0|K1; : : : ; Kn6const(dist(0|1; : : : ; n))−�(|supp(K0)|)1−� :

The following lemma is an analogue of Lemma 5 for clusters (not super clusters).

Lemma 6. For each �xed interval I , there exists a number V0(I), which depends on I
only, such that if V¿V0(I)

1
2�

1; ′¡�1; ′; (n:l:) =
∑

w(D1) : : : w(Dm) ;

where the summation is taken over all nonlong, nonordered compatible collections of
clusters [D1; : : : ; Dm];

⋃m
i=1 suppDi ⊂ IN − I corresponding to the boundary conditions

’1(x); x∈Z1 − IV ; ’′(x); x∈ I .

Proof.

�1; ′=�1; ′; (n:l:) + (�1; ′ − �1; ′; (n:l:))=�1; ′; (n:l:) + �1; ′; (l:) ;

where the summation in �1; ′; (l:) is taken over all nonordered compatible collections of
clusters [D1; : : : ; Dm] containing at least one long cluster,

⋃m
i=1 suppDi ⊂ IN − I corre-

sponding to the boundary conditions ’1(x); x∈Z1 − IV ; ’′(x); x∈ I .
By dividing both sides of the last equality by �1; ′, we get

1=�1; ′; (n:l:)=�1; ′ + �1; ′; (l:)=�1; ′ : (24)

Now, we are going to show that the second term (which is not necessarily positive)
is negligible, that is the absolute value of it is less than 1

2 (actually we can show
that the absolute value of the second term is less than any �xed positive number at
su�ciently large values of V ).
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The term �1; ′; (l:)=�1; ′ can be interpreted as a “probability” P (Long) of the event
that there exists at least one long cluster.
We show that the absolute value of this “probability” is less than 1

2 by the following
method. We estimate the density of long clusters: the probability that a given segment
belongs to the support of some long cluster. Since some statistical weights of clusters
are positive and some negative, we estimate the absolute values of these “probabilities”.
We show that for a �xed segment the “probability” that this segment belongs to the
support of some long cluster with positive “probability” minus the “probability” that
this segment belongs to the support of some long cluster with negative “probability”
is less than one. Since the density is less than one, by the Law of Large Numbers a
“typical” long cluster has not very long support, and therefore has long bonds. When
V tends to in�nity, the total length of bonds tends to in�nity, and the impact of these
bonds tends to zero.
Let us replace each term in �1; ′; (l:) with its absolute value. That is, each factor w(Di)

we replace with |w(Di)|.

|�1; ′; (l:)=�1; ′|6
∑

|w(D1)| · · · |w(Dm)|=�1; ′:

Now, the expression
∑ |w(D1)| · · · |w(Dm)|=�1; ′ which is the sum of the absolute

values of “probabilities” of con�gurations containing at least one long cluster can be
interpreted as an “absolute probability” Pabs(Long) of the event that there is at least
one long cluster (actually, this expression exceeds the absolute value of the formal
expression for the probability of the event that there is at least one long cluster).
Now, our aim is to estimate the “absolute probability” Pabs of the event that a given

segment belongs to the support of the cluster. In other words, we are going to estimate
the statistical weights of clusters after replacing values of all negative bonds with their
absolute values. Of course, after this replacement the statistical weights of clusters
become greater, but it turns out that not essentially.
Let ’(x); x∈ IV − I be an arbitrary con�guration which contains contours K1; : : : ; Kl;

K=
⋃l
1 supp

1 Ki;K1 =K∩ [−V;−(|I |=2)] and K2 =K∩ [|I |=2; V ].
Put C1(’(x))= |K1| and C 2(’(x))= |K2|

|P(Long)|=�1; ′; (l:)=�1; ′6Pabs(Long)=
∑

|w(D1)| · · · |w(Dm)|=�1; ′

=
p;1∑

|w(D1)| · · · |w(Dm)|=�1; ′ +
p;2∑

|w(D1)| · · · |w(Dm)|=�1; ′

= Pabs(Long;¿p) + Pabs(Long;6p) ;

where last two summations are taken over all nonordered compatible collections of
clusters [D1; : : : ; Dm] containing at least one long cluster,

⋃m
i=1 suppDi ⊂ IN − I corre-

sponding to the boundary conditions ’1(x); x∈Z1−IV ; ’′(x); x∈ I , the summation in∑p;1 is taken over all con�gurations ’(IV ) :’(I)=’′(I); 2C1(’(x))=(|IV | − |I |)¿p;
2C 2(’(x))=(|IV | − |I |)¿p, the summation in

∑p;2 is taken over all con�gurations
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’(IV ) :’(I)=’′(I); 2C1(’(x))=(|IV | − |I |)6p; 2C 2(’(x))=(|IV | − |I |)6p. It means
that the density of contours in each con�guration from

∑p;1 (
∑p;2) in both segments

[−V;−(|I |=2)] and [|I |=2; V ] is greater than p (is not greater than p).
We �xed the value of p as 1 − q=2l, where the values of q and l will be de�ned

in the proof of Lemma 8.
It turns out that the long clusters are negligible:

Lemma 7. For each �xed interval I there exists a value of V0, such that if V¿V0

Pabs(Long)=Pabs(Long;¿p) + Pabs(Long;6p)¡ 1
2 : (25)

Lemma 7 is a consequence of the following two lemmas.

Lemma 8. For each �xed interval I there exists a value of V0, such that if V¿V0

Pabs(Long;¿p)¡ 1
4 :

Lemma 9. For each �xed interval I there exists a value of V0, such that if V¿V0

Pabs(Long;6p)¡ 1
4 :

Proof of Lemma 8. Consider the partition of Z1 into segments Tk = Tk(l) , where Tk(l)
is the segment with the center at x=(l=2)+ kl and with the length l (Tk consists of l
segments Ik). The value of l will be de�ned later. Let us consider an arbitrary con�gu-
ration ’(x). We say that a segment Ik is regular, if ’(Ik−1 ∪ Ik ∪ Ik+1)=’gr(Ik−1 ∪ Ik ∪
Ik+1). We say that a segment Tk is super-regular, if Tk contains at least one regular
segment.
Let PV be a Gibbs measure corresponding to the boundary conditions ’1(x); x∈Z1;

’′(I); x∈ I:
Let the segment IV − I consist of n segments Tk ; k =1; : : : ; n.
We de�ne a sample space 
 consisting of 2n elementary events Aj = [�(1); : : : ; �(n)],

where �(k); k =1; : : : ; n takes two values: �(k)= 0 corresponds to the case when the
segment Tk is super-regular and �(k)= 1 corresponds to the case when the segment Tk

is not super-regular. On the sample space 
 we de�ne two di�erent probability spaces
(
;P1) and (
;P2) by the following formulas:

P1(Aj)=P1[�(1); : : : ; �(n)]=PV[�(1); : : : ; �(n)] ;

where PV is the Gibbs distribution PV, corresponding to the boundary conditions
’1(x); x∈Z1; ’′(I); x∈ I and

P2(Aj)=P2[�(1); : : : ; �(n)]= qn−s(1− q)s ;

where s denotes the total number of 1 entries of the vector Aj = [�(1); : : : ; �(n)]:
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We de�ne a random vector (�(1); �(2); : : : ; �(n)) on the probability space (
;P1) and,
respectively, a random vector (�(1); �(2); : : : ; �(n)) on the probability space (
;P2) by
the formulas:

�(k)(Aj)= �k and �(k)(Aj)= �k

The random variables �(k) and �(k) are de�ned on the same sample space but on
di�erent probability spaces.
Due to the de�nitions, the random variables �(k) are dependent, and the random

variables �(k) are independent and identically distributed.
Consider the two sums

∑n
k=1 �(k) and

∑n
k=1 �(k).

Suppose that

P(�(m)= 1| any conditions outside Tm)61− q : (26)

Note that P(�(m)= 1| any conditions outside Tm)61 − q=P(�(m)= 1 and therefore
the following assertion must hold.

Proposition.

P

(∑
k∈K

�(k)¿l

)
6P

(∑
k∈K

�(k)¿l

)

for all natural values of l.

Proof. Let us de�ne a new pseudo-probability function Pmixed; K
′′
on the sample space


 as

Pmixed; K
′′
(Aj = [�(1); : : : ; �(n)])

=Pmixed; K
′′
(�(k ′)= �(k ′); k ′ ∈K ′; �(k ′′)= �(k ′′); k ′′ ∈K ′′)

=P(�(k ′)= �(k ′); k ′ ∈K ′)P(�(k ′′)= �(k ′′); k ′′ ∈K ′′)

=P(�(k ′)= �(k ′); k ′ ∈K ′)(1− q)|K
′′| ;

where K ′′ is an arbitrary subset of [1; : : : ; n], K ′= [1; : : : ; n]−K ′′, and |K ′′| is a number
of elements of K ′′.
Roughly speaking, we get Pmixed; K

′′
by “replacing” random variables �(k ′′) with

random variables �(k ′′).
Now, we prove the following inequality:

P

(
n∑

k=1

�(k)¿l

)
6Pmixed; K

′′
(A(l)) (27)

for any K ′′ ⊂ [1; : : : ; n], where the compound event A(l) is the union of all elementary
events Aj = [�(1); : : : ; �(n)], such that for each Aj :

∑n
i=1 �(i)¿l).
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Consider an event
∑n

k=1 �(k)¿l. This compound event can be represented as the
union of elementary events Aj = [�(1); : : : ; �(n)], such that for each elementary event
the

∑n
i=1 �(i)¿l. Thus, the inequality (27) is equivalent to the following inequality:∑
P(�(1)= �(1); : : : ; �(n)= �(n))6

∑
Pmixed; K

′′
(Aj) ; (28)

where both summations are taken over all possible events Aj = [�(1); : : : ; �(n)], such
that

∑n
i=1 �(i)¿l.

Suppose that K ′′= s in Eq. (27). It means that we are going to “replace” a random
variable �(s) with random variable �(s).
Summations in Eq. (28) are taken over some class of elementary events Aj. For

each elementary event Aj we have two possibilities, namely, �(s)= 1 and �(s)= 0.
Consider Aj, such that �(s)= 1 and two terms from Eq. (27) corresponding to Aj,

namely a term from left hand side and a term from right hand side of (27). For this
elementary event Aj = [�(1); : : : ; �(n)] we have

P(�(1)=�(1); : : : ; �(s)= �(s)= 1; : : : ; �(n)= �(n))

=P(�(1)= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)
=�(s+ 1); : : : ; �(n)= �(n))P(�(s)

=�(s)= 1| under conditions: �(1)= �(1); : : : ; �(s− 1)
=�(s− 1); �(s+ 1)= �(s+ 1); �(n)= �(n))

6P(�(1)= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)= �(s+ 1); : : : ; �(n)

=�(n))(1− q)=Pmixed; K
′′
(Aj)

because of a conditional probability P(�(s)= 1| any conditions outside Ts)61−q. Thus,
for all these Aj

P(�(1)= �(1); : : : ; �(s)= �(s)= 1; : : : ; �(n)= �(n))6Pmixed; K
′′
(Aj) :

Consider Aj, such that �(s)= 0. Now, we use the following trick: together with
Aj we consider an engaged elementary event Ai, which is obtained by changing of
�(s) into 1 (obviously Ai belongs to the same compound event A(l) and for di�erent
elementary events Aj with �(s)= 0 we have di�erent elementary events Ai:
For these two elementary events Aj = [�(1); : : : ; �(s)= 0; : : : ; �(n)] and Ai=

[�(1); : : : ; �′(s)= 1; : : : ; �(n)] we have

P(�(1) = �(1); : : : ; �(s)= �(s)= 0; : : : ; �(n)= �(n))

+P(�(1)= �(1); : : : ; �(s)= �′(s)= 1; : : : ; �(n)= �(n))

=P(�(1)= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)
= �(s+ 1); : : : ; �(n)= �(n)) + P(�(s)
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= �(s)= 0| under conditions: �(1)= �(1); : : : ; �(s− 1)
= �(s− 1); �(s+ 1)�(s+ 1); : : : ; �(n)= �(n)) + P(�(1)

= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)
= �(s+ 1); : : : ; �(n)= �(n))P(�(s)

= �′(s)= 1| under conditions: �(1)= �(1); : : : ; �(s− 1)
= �(s− 1); �(s+ 1)�(s+ 1); : : : ; �(n)= �(n))

(the following equality is valid due to the fact that the sum of two conditional com-
plementary events is equal to one)

=P(�(1)= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)= �(s+ 1); : : : ; �(n)= �(n))

= (q+ (1− q))P(�(1)= �(1); : : : ; �(s− 1)= �(s− 1); �(s+ 1)
= �(s+ 1); : : : ; �(n)= �(n))

=Pmixed; K
′′
(Aj) + Pmixed; K

′′
(Ai) :

Thus, for all Aj of the second kind we have

P(�(1) = �(1); : : : ; �(s)= �(s)= 0; : : : ; �(n)= �(n))

+P(�(1)= �(1); : : : ; �(s)= �′(s)= 1; : : : ; �(n)= �(n))

=Pmixed; K
′′
(Aj) + Pmixed; K

′′
(Ai) :

In the case when K ′′= s inequality (27) (and therefore Eq. (28)) is proved.
In the general case, when K ′′ consists of l numbers (when we “replace” l random

variables), we successively repeat l times the same argument and obtain Eq. (28).
Just by putting K ′′=K we complete the proof of the proposition.
The random variables �(k) are independent and identically distributed. The mathe-

matical expectation of �(k) equals 1− q.
Now, we show that inequality (26) is valid for the “absolute probability” Pabs, that

is

Pabs(�(m)= 1| any conditions outside Tm)61− q : (29)

Let PV be Gibbs measure corresponding to arbitrary boundary conditions and Tk

be an arbitrary segment. Consider the set of all con�gurations on the interval Tk and
the restriction of the measure PV on this set. We show that at some value of l the
“absolute probability” Pabs that in Tk there is at least one regular segment greater than
q¿0 for some constant q not depending on k. The event �(m)= 1 means that all
segments belonging to Tk are nonregular.
Condition (3) and the Peierls argument method directly imply that

Pabs(�(m)= 1| conditions outside Tm are ’gr(x))6 exp(−�tl) : (30)



A. Kerimov / Physica A 258 (1998) 183–202 199

Now we note that inequality (29) which is just inequality (30) at any conditions
outside Tk is also held at su�ciently large values of l. Indeed, due to Eq. (22) when we
increase the value of l the in
uence of the conditions outside Tk on the con�guration
in Tk increases with the rate less than l and therefore at some value of l and for some
positive t1¡t

Pabs(�(m)= 1| any conditions outside Tm)6 exp(−�t1l)61− q :

Now Lemma 8 is a direct consequence of the Strong Law of Large Numbers for �(k)
and the Proposition. Indeed, consider independent Bernoulli trials when the probability
of success at each trial equals 1− q. According to the Strong Law of Large Numbers,
the probability of the event that the density of successes exceeds 1− q′; 0¡q′¡q, is
less than 1

4 , when V tends to in�nity. It means that the “absolute probability” of the
event that the density of nonsuper-regular segments Tk is greater than 1 − q′ is less
than 1

4 . Due to the proposition, this probability is greater than the Pabs probability of
the event that the density of nonsuper-regular segments, Tk is greater than 1 − q′. In
other words, the Pabs probability of the event that the density of super-regular segments
Tk is less than 1 − q′ is less than 1

4 . Thus, the Pabs probability of the event that the
density of super-regular segments Tk is greater than 1 − q′ is greater than 1

4 . Taking
into account that each super-regular segment Tk contains at least one regular segment,
one can see that the last statement implies Lemma 8 if the parameter p is chosen from
the open interval (1− q′=l; 1). We choose the value of p as 1− q=2l.
Lemma 8 is proved.

Proof of Lemma 9. Let us consider the set of all long clusters Di with the density of
supports less than p. Let supp(D)=

⋃r
i=j supp(Kj). These supports Ki are connected

between themselves and with the boundary. Since the density of supports is not greater
than p¡1 the sum of the lengths of bonds in both halves [−V;−|I |=2 and [|I |=2; V ]
is not less than (V −|I |=2)(1−p). When V goes to in�nity the sum of lengths of any
long cluster with the density less than p tends to in�nity, and by condition (22) the
impact of these bonds tends to zero.
By choosing the appropriate value of V we complete the proof of Lemma 9. Lemma 9

is proved.

We omit the huge proof of Lemma 5 since it is absolutely analogous to the proof of
Lemma 6. The only di�erence is the fact that in �1; ′;2; ′′ overlapped clusters are allowed,
so the density of nonregular segments of typical con�gurations in Lemmas 8, 9 instead
of p will be a number less than 1− (1− p)(1− p).
Partition functions including only nonlong super clusters satisfy the following key

lemma which has a geometrically combinatorial explanation.

Lemma 10.

�1; ′′;2; ′; (n:l:) =Q�1; ′;2; ′′; (n:l:) ;
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Fig. 1.

where the factor Q=Q(’1(x); ’2(x); ’′(x); ’′′(x)) is uniformly bounded: 0¡const1¡
Q¡const2.

Remark. The factor Q appears due to the fact that the con�gurations with minimal
energies corresponding to the di�erent boundary conditions do not coincide everywhere
(due to Lemma 1 they di�er on some �nite set and due to condition (2) Q is �nite).

Proof. Due to the factor Q, without loss of generality, we suppose that the con�gura-
tions with minimal energies corresponding to the di�erent boundary conditions coincide
with ’gr(x).
The summations in �1; ′′;2; ′; (n:l:) =�1; ′;2; ′′; (n:l:) are taken over all nonlong, nonordered

compatible collections of super clusters.
We put a one-to-one correspondence between the terms of these two super partition

functions.
Fig. 1 shows how this one-to-one correspondence can be carried out.
To the term w(D1; ′′1 )w(D1; ′′2 )w(D1; ′′3 )w(D1; ′′4 )w(D2; ′

5 )w(D
2; ′
6 )w(D

2; ′
7 )w(D

2; ′
8 ) (the �rst

four factors of this term came from the partition function �1; ′′ and the last four fac-
tors of this term came from the partition function �2; ′) of the super partition func-
tion �1; ′′;2; ′; (n:l:) we correspond the term w(D1; ′1 )w(D

1; ′
6 )w(D

1; ′
7 )w(D

1; ′
4 )w(D

2; ′′
5 )w(D2; ′′

2 )
w(D2; ′′

3 )w(D2; ′′
8 ) (the �rst four factors of this term came from the partition function

�1; ′ and the last four factors of this term came from the partition function �2; ′′) of
the super partition function �1; ′;2; ′′; (n:l:).
It can be easily shown that this one-to-one correspondence is well de�ned: if some

term from �1; ′;2; ′′; (n:l:) corresponding to the term from �1; ′′;2; ′; (n:l:) does not exist (in
other words, the corresponding clusters from �1; ′ or �2; ′′ are overlapped) then the term
from �1; ′′;2; ′; (n:l:) is a long super cluster, which is impossible. The lemma is proved.

Inequality (9) is a direct consequence of Lemma 5 and 10. Lemma 2 is proved.
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Let P1 and P2 be two di�erent extreme Gibbs states of the model (1) corresponding
to the boundary conditions ’1(x) and ’2(x) respectively.

Theorem 2 (Dobrushin [15]). P1 and P2 are singular or coincide.

Proof of Theorem 1. Let P1 and P2 be two di�erent extreme limit Gibbs states of
model (1) corresponding to the boundary conditions ’1(x) and ’2(x), respectively.
Due to Lemma 2 P1 and P2 are not singular. Therefore, by Theorem 2, P1 and P2

coincide, which contradicts the assumption. Theorem 1 is proved.

4. Conclusions

In [10], the following conjecture describing su�cient conditions for the absence of
phase transitions was formulated:

Conjecture. Any one-dimensional model with discrete (at most countable) spin space
and with a unique ground state has a unique Gibbs state if the spin space of this model
is �nite or the potential of this model is translationally invariant.

Our Theorem 1 is closely related to this conjecture.
The main point in the proof of the uniqueness of Gibbs states is Lemma 10 and

the estimation of long super clusters connecting the boundary with the segment I .
We reduce the summation in �1; ′;2; ′′ into �1; ′;2; ′′; (n:l). It turns out that long clusters
from the partition function �1; ′;2; ′′; (n:l:) have long interaction elements and therefore are
negligible.
Theorem 1 admits generalizations in di�erent directions:
(1) Theorem 1 can be generalized for the models having a unique ground state to

within translations. But in this case we have to add one more condition∣∣∣∣∣∣
∑

A⊂(−∞; m];B⊂[m;∞)

U (’(B∪A)− U (’(B+ l∪A)

∣∣∣∣∣∣¡const ;
where the inequality holds uniformly with respect to the con�guration ’(x) and integer
numbers m; l.
(2) Theorem 1 can be generalized for the models with a countable spin space. In

this case, condition (3) must be replaced with the following condition:
There exists �cr¿0 such that for all �¿�cr and for any �nite set A⊂Z1 with the

length |A|∑
’′(x)

exp(−�(H (’′(x))− H (’gr(x))))6 exp(−�(t|A|)) ;

where the summation is taken over all possible �nite perturbations ’′(x) of the ground
state ’gr on the �nite set A.
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(3) Suppose that in the two-dimensional case the con�guration with the minimal
energy ’min;1V (x)∈�(V ) di�ers from the ground state on some set of �nite volume
C, where the constant C can be chosen uniformly with respect to V and boundary
conditions ’1(x). Then by using the method of this paper we can also prove the
uniqueness theorem for two-dimensional models with a unique ground state (see also
[16] but only at “very” low temperatures (in one dimension the condition on low
temperatures comes just from the need in condition (3)). In fact, even if condition
(3) is held, in two-dimension the phenomenon of percolation does not allow us to
prove the analog of Lemma 7 at any temperature (in one-dimension the constant p in
Lemma 8 can be an arbitrary number, less than one, but in two-dimension in order to
resist a percolation, p must be bounded above, say by 0:503).
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