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ABSTRACT

For a system of differentiable convex inequalities, a new bound
is given for the absolute error in an infeasible point in terms of the
absolute residual. By using this bound a condition number is defined
for the system of inequalities which gives a bound for the relative

error in an infeasible point in terms of the relative residual.
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A CONDITION NUMBER FOR DIFFERENTIABLE CONVEX INEQUALITIES

0. L. Mangasarian

1. Introduction

For a system of linear equalities
(1.1) Ax = b

where A 1is a given nxn vreal nonsingular matrix and b is a given
nonzero vector in the n-dimensional real Euclidean space R", the norm
of the inverse HA—1H and the condition number HA']lIIIAH provide

the following useful bounds for the absolute error ||x-X|| in terms of

the residual ||Ax-b||, and for the relative error XL in terms of the

relative residual lhﬁ%%%“— [1,7]

(1.2) Ix=x1l < 17 I1Ax-b|

(1.3) Lecxll 71 bl

Here, x 1is any point in R, X s the exact solution A~

=

]b and

.

denotes a vector norm on R" or its subordinate matrix norm [1,7]. The
condition number HA—]lI IIA]|, which depends on the specific norm
employed and which is never less than 1, provides a very useful stability
measure for the system (1.1). It is the purpose of this work to obtain a

corresponding number for the system of inequalities
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(1.4) g(x) < 0

where g: R" = R™ s differentiable and convex on R". The key to obtaining
a condition number for (1.4) is the definition of a quantity Mgy of (2.4)
that plays the same role as that of HA'1]| for (1.1) and which would
provide an error bound (2.3) similar to (1.2). In [3] Hoffman extended the
bound (1.2) to a system of linear inequalities, and in [6] a new explicit
expression was derived for that bound for a system of linear inequalities
and equalities. In [8] Robinson extended the bound (1.2) to a system of
convex inequalities that define a bounded feasible region with a nonempty
interior. 1In Section 2 of this paper we shall extend the bound (1.2) to

a system of differentiable convex inequalities which satisfy a constraint

qualification, but without any boundedness assumption on the feasible
region. The diameter of the bounded feasible region which appears lin-
early in Robinson's bound [8, equation (4)] does not appear in our bound
(2.3). In Section 3 of this paper we employ the results of Section 2 to
obtain a condition number for (1.4) and thereby extend the relative error
bound (1.3) to a system of differentiable convex inequalities satisfying
a constraint qualification. We remark that the error bound coefficient
UBY is in general difficult to compute. However its existence and
finiteness under the assumptions of Theorem 2.1 is theoretically signifi-
cant. This parallels the situation of HA'1|1 which is also nontrivial
to compute in general but has some very useful properties.

We briefly describe now the notation and some of the basic concepts
used in this work. For a vector x in the n-dimensional real Euclidean
space R", |x| and x, will denote the vectors in R" with components

+

x|. = |x.] and (x,). = max {x., 0}, i=1,2,...,n, respectively. For
i i +74 i



a norm Hx]IB on R", []xHB* will denote the dual norm on R", that
is Hx[lB* = H WTX xy, where xy denotes the scalar product. The
Yilg=1
B

generalized Cauchy-Schwarz inequality |xy| < Hx]]B HyIIB*, for x

n

and 'y in R, follows immediately from this definition of the dual
1
1, ] TN
norm. For 1<p, g < and 6-+ i 1 the p-norm () Ixil ¥ and
i=]
the g-norm are dual norms on RN [4]. If ° 3 is a norm on Rn,

°

we shall, with a slight abuse of notation, let

8 also denote the

corresponding norm on R" for m # n. For an mxn real matrix A, Ai

denotes the ith row and A'j denotes the jth column, while IIAHB denotes

the matrix norm [1,7] subordinate to the vector norm “1lge that is
IAll, = max ||Ax]|,. The consistency condition [|Ax||, < [|All, |||
B lIXHB=1 B B = B B

follows immediately from this definition of a matrix norm. We shall also

use

to denote an arbitrary vector norm and its subordinate matrix

norm. A vector norm | on R" is said to be monotonic if and only if

]xi| §:|yil, i=1,...,n, fimplies that ||x|| < |lyll [7]. The p-norms
1<p <= are all monotonic norms [7]. A vector of ones in any real
Euclidean space will be denoted by e. For a differentiable function
g: RM > R™, Vg(x) will denote the mxn Jacobian matrix evaluated at the

point X in R". For a subset I < {1,2,....,m}, gI(x) or g. (x) will

iel
denote those components of gi(x) such that ieI. Similarly VgI(x)

will denote the rows (Vg(x)).

; of Vg(x) such that iel.



2. An Absolute Error Bound for Differentiable Convex Inequalities

We shall use the approach of [6] to obtain a bound (2.3) for the
absolute error Hx-p(x)HY, where x is any infeasible point for (1.4)
and p(x) 1is some feasible point for (1.4), in terms of the absolute
residual ]]g(x)+][8. The constant g relating these two quantities
plays a similar role for the differentiable convex inequalities (1.4) as

HA']I[ does for the linear system (1.1).

2.1 Theorem Let g be a differentiable convex function from R" into

R". let S° and S be defined by

(2.1) o # S := {x|g, (x)<0, g, (x)<0} ¢ S:= {x|g(x)<0, xeR"}
J] J2 =

where J1L1J2 is a partition of {1,...,m} such that 93 is nonlinear and
1

93 is linear and let the following asymptotic constraint qualification hold
2

For each nonempty Ic{l,...,m} and each sequence of points
{xi}c:S such that gI(xi) = (0 and ngEI(XT) are linearly inde-
pendent, each accumulation point (VEI ,ﬁ§¢1,v§i2) of the sequence
. . . 0 .
i ivn i i s
{ngélo(x »/Hngélo(x )!I,VgI](x ),VgIZ(x )} satisfies
(2.2)

ﬁﬂoz>m 6%ﬁ2>m 35%2;0 for some zeR"

where IOUI1 uI2 is a partition of I such that the sequence
{ng(XT)} is unbounded for eIO and bounded for j eI], gj611
ds nonlinear and g. is linear.

JEIZ

Then for each x in R" there exists a point p(x) in S such that

(2.3) Ix-pOOIL, < ugy 190l

where UBY is a constant independent of x and defined by
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(2.4) TS 0, SUP A{”WI”B* peS, wy>0, QI(P)=0, HWIVQI(P)le]

M
BY w,p,I

ngEI(p) lin. indep., I<{1,...,m}}

where ”-[]B* is the dual norm to and o is the positive

B
constant relating the <y-norm and w-norm by

][z]]Y <0 |z]] for all zeR"

Proof We first establish the finiteness of Hgy under the asymptotic
constraint qualification (2.2). For if UBY is infinite then there exists
a fixed nonempty I<{1,...,m} and a sequence {(w},p1)} such that

i i i i i i i
gl > p" S, wp>0,91(p") =0, lwvg; (p)]]; =1 and Ve 1(p') are
linearly independent. Let the sequence {ng(p1)}, je IO’ be unbounded

(hence 951 is nonlinear), let {ng(p])}, je 11, be bounded and
O v

g.
JeI.l

1= [lwjve, ()]l =

nonlinear, and let g, be linear. Since
JeIZ

i ivir. i i i i
s rillTss 851/ 1)) " jetbs 0 i

then the sequences

i
Vg, - (p)
1t |, Jely , g

ng€10° HVgJ-EIO(pUH, W}ex]uxz I 1 v .€IO(p1 )|

T vg. - ()] Wl .
WJeIO” gJeIO P )ll WJeI (pT)

jeI]uI2
J

have respective accumulation points (W& , Wi > W

)» Vg, , and (Vg, , Vg, )
o 1371 Io L L

2

. . i i i
which, since {ij€ HVg.EIO(p s Wil

|} + =, satisfy
J UI2

Iy 1
0=w, Vg, +w, Vg, +w. vg. , (We swy »w, )>0, lwe 5wy »w [ =1
R NS Rt PR PRte PR PR SRR P L

If IOLJI] = ¢ or (WI ,W& ) = 0 then we have a contradiction to the 1inear
0 1

independence of ngGIZ. If Tyul, #¢ and 0 ¢ (wIO, WI]) > 0, then we

contradict the asymptotic constraint qualification that Vﬁi z >0, ﬁgi z >0,

0 1
Vg; 220 for some zeR".

Hence is finite.
» Mgy
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Now for any x in R" not in S define p(x) as the projection
of x on S using the o-norm. Hence p(x) and some &(x) > 0 solve

the following convex programming problem

(2.5) min {8|-ed<p-x<ed, g(p)<0, peRn, SeR}
p,o

Since by (2.1) the inequalities -eS§<p-x < e§, 9;.(p) <0, g5 (p) <0 have a
= 3 , P
solution it follows that p(x), 6(x) and some u(x), v(x) and w(x) satisfy the

following Karush-Kuhn-Tucker conditions [5] for (2.5), where the explicit

dependence of p, 8§, u, v and w on x has been dropped for simplicity,

1 - e(utv) =0, u-v +wvg(p) =0, u, v, w>0

(2.6) -e§ < p-x<ed, g(p)<O

1]

wg(p) = 0, uj(p-x-ed)j 0, vj(—eé—p+x)j =0, j=1,...,n

From the last two equalities it follows that ujvj =0 for Jj=1,....,n,

because
(p—x-eé)j + (—eé—p+x)j = -26 <0
Consequently

peS, wg(p) = 0, w20, |lwigl(p)lly =1
It follows by the fundamental theorem of basic feasible solutions
[2, Theorem 2.11] that there exists a nonempty Ic{l,...,m}
such that (2.6) is satisfied and
»(2.7) peS, wy>0, gI(D)= 0, HWIVgI(p)H] =1, ngél(p) lin. indep., w; =0

Hence by (2.5) and (2.6) it follows that
0 < [|x-pll, =8

8 + u(p-x-ed) + v(-es-p+x) + wg(p)

x(v-u) + wg(p) - wvg(p)p

wvg(p)x + wg(p) - wvg(p)p

A

wg(x) (By convexity of g and w > 0)

A

wg(x),
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A

HWIIB*Ilg(x)+][B (By Cauchy-Schwarz inequality)

M
a% lg(x), 1l (By (2.4) and (2.7))

A

Hence

Ixepll, < o opll < gy llatx), Il :

2.2 Remark The asymptotic constraint qualification (2.2) is needed, only
when J] is nonempty, as a sufficient condition for the finiteness of
UBY as defined by (2.4). Hence Theorem 2.1 can be stated for the case
when J; is nonempty with the constraint qualification (2.2) replaced

by the assumption that the supremum of (2.4) defining Mgy is finite.

When is 1i i i i i ini

g inear, that is J]1s empty, UBY 1s automatically finite under no
additional assumption as was the case in [6, Theorem 1], because (2.2) holds
trivially with z = 0.

We give now a simple example illustrating the above theorem which is

not covered by Robinson's result [8, equation (4)] because the feasible

region is unbounded.
_ 2 X1
2.3 Example $:= {x|xeR%, x,2e ', X;201.

It is easy to verify that the assumptions of Theorem 2.1 are satisfied

X i
with g](x):= L Xo5 gz(x) = =X and that

= Sup {”WIH] PES, WI>09 QI(P)=0a HWIVQI(PH“:], I<{l 52}} = 2
W,p,sl

He oo
Consequently for each Xx in RZ there exists a p(x) in S such that

Ix-p(0) I, < 2| (e "-xy),

("x-l )+

0

The bound n_ = 2 is sharp here, for take the sequence of points

. = -t. x. =1 -2t with t a nonnegative number converging to zero.



Then

=), lI-ts -2tll, 2t

g(x) e't-1+2t e't-1+2t
g (x) Il

which approaches 2 as t approaches 0.



3. A Relative Error Bound for Differentiable Convex Inequalities

We extend now the relative error bound (1.3) to convex differentiable
inequalities by using the error bound (2.3). We will again use the
approach of [6] and will need the following simple Temma established

there.

3.1 Lemma [6, Lemma 2] Let H-][B be a monotonic norm on R and let
a, b bein R™ Then a <b implies that H(a)+[|B ;:IIbIIB.

The following is a direct consequence of the above lemma.

3.2 Lemma Let g: R" ~ R™ be differentiable and convex on R" and Tet

. m
be a monotonic norm on R°. Then

.

B

19(0), Il < [Iva(0)pll; for g(p) <0

Proof By the convexity of g, 0 > g(p) > g(0) + vg(0)p. Hence applying

Lemma 3.1 to g(0) < -Vg(0)p we obtain the desired inequality. O

3.3 Theorem (Condition number bound) Let the assumptions of Theorem 2.1

hold, let g(O)+ # 0 and let |- be a monotonic norm on R™. Then

n

B

for each x in R" there exists a p(x) in S such that

[[x-p(x)]] IEICM|
(3.1) B < Vg0 ——F
TP lgto), I,

where Ngg js defined by (2.4), and uBBllVg(O)]]B defines the condition

number of (1.4).

n

Proof For each x in R ‘there exists a p(x) 1in S such that
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Ix-p0llg N0l o), Il
oo = Ves
ot TIECHE

(By Theorem 2.1)

Iva(0)p(x)llg 19, Il
S H
B el llato,ll

(By Lemma 3.2)

s,
Heg Ilvg(0) || B “9(0).{.”8

A

For Example 2.3, it is easy to verify that ||vg(0)||_ =2 and

hence the condition number for the example, using the «-norm, is:

uoooo “VQ(O) Hoo = 4.
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