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Summary. Multivariate extreme value theory and methods concern the characterization, esti-
mation and extrapolation of the joint tail of the distribution of a d-dimensional random variable.
Existing approaches are based on limiting arguments in which all components of the variable
become large at the same rate.This limit approach is inappropriate when the extreme values of
all the variables are unlikely to occur together or when interest is in regions of the support of the
joint distribution where only a subset of components is extreme. In practice this restricts existing
methods to applications where d is typically 2 or 3. Under an assumption about the asymptotic
form of the joint distribution of a d-dimensional random variable conditional on its having an
extreme component, we develop an entirely new semiparametric approach which overcomes
these existing restrictions and can be applied to problems of any dimension. We demonstrate
the performance of our approach and its advantages over existing methods by using theoret-
ical examples and simulation studies. The approach is used to analyse air pollution data and
reveals complex extremal dependence behaviour that is consistent with scientific understanding
of the process. We find that the dependence structure exhibits marked seasonality, with ex-
tremal dependence between some pollutants being significantly greater than the dependence
at non-extreme levels.
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1. Introduction and background

Multivariate extreme value theory and methods concern the characterization, estimation and

extrapolation of the joint tails of multidimensional distributions. Accurate assessments of the

probabilities of extreme events are sought in a diversity of applications from environmental

impact assessment (Coles and Tawn, 1994; Joe, 1994; de Haan and de Ronde, 1998; Schlather

and Tawn, 2003) to financial risk management (Embrechts et al., 1997; Longin, 2000; Stărică,

2000; Poon et al., 2004) and Internet traffic modelling (Maulik et al., 2002; Resnick and Rootzén,

2000). The application that is considered in this paper is environmental. We examine five-

dimensional air quality monitoring data comprising a series of measurements of ground level

ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO), sulphur dioxide (SO2) and particulate

matter (PM10), in Leeds city centre, UK, during the years 1994–1998 inclusively.

Regulation of air pollutants is undertaken because of their well-established deleterious effects

on human health, vegetation and materials. Government objectives for concentrations of air

pollutants are given in terms of single variables, rather than combinations of variables (Depart-

ment of the Environment, Transport and the Regions, 2000). However, atmospheric chemists are
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increasingly aware of the importance of understanding the dependence between different air pol-

lutants. Recent atmospheric chemistry research (Photochemical Oxidants Review Group, 1997;

Colls, 2002; Housley and Richards, 2001) has highlighted issues concerning extremal depen-

dence between air pollutants. In particular, the Photochemical Oxidants Review Group (1997)

suggested that the dependence between O3 and some other atmospheric pollutants strengthens

as the level of O3 increases. This is of concern since it is known that O3 has synergistic corrosive

effects in combination with other sulphur- and nitrogen-based pollutants. The adverse health

effects of particulate matter are also believed to be exacerbated by the excessive presence of

other gaseous pollutants.

The gases are recorded in parts per billion, and the particulate matter in micrograms per cubic

metre. The data are available from

http://www.blackwellpublishing.com/rss

We compare data from winter (from November to February inclusively) and early summer (from

April to July inclusively).

Fig. 1 shows the daily maxima of the hourly means of the O3 and NO2 variables for each of

these seasons. The highest values of O3 are observed in the summer, as O3 is formed by a series of

reactions that are driven by sunlight (Brimblecombe, 2001). The reactions involve hydrocarbons

and NO2; large values of the latter occur with large O3 values as shown Fig. 1. This positive

dependence between O3 and NO2 in summer is not observed during the winter when the sunlight

is weaker. Dependence between the air pollution variables influences the combinations which

can occur when any one of the pollutants is large. In Section 7 we estimate several functionals

of the extreme values of the joint distribution of the air pollution variables. One such functional

is the probability that these variables occur in an extreme set C ⊂R
d , an example of such a set

being shown in the summer data plot of Fig. 1(a). The precise specification of this set is discussed

in Section 7. Pairs of (O3, NO2) could occur in the set that is shown in Fig. 1 by being extreme in

a single component, or by being simultaneously (but possibly less) extreme in both components.
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Fig. 1. Daily maxima of O3 and NO2 variables during (a) summer and (b) winter periods, 1994–1998
inclusively: the shaded set in (a) indicates an extreme set C which is split into two subsets C1 ( ) and
C2 ( )
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The air pollution problem is a typical example of multivariate extreme value problems, sum-

marized as follows. Consider a continuous vector variable X = .X1, . . . , Xd/ with unknown distri-

bution function F.x/. From a sample of n independent and identically distributed observations

from F we wish to estimate functionals of the distribution of X when X is extreme in at least

one component. The methods that are developed in this paper allow any such functional to be

considered. However, to simplify the presentation we shall focus much of our discussion on

estimating Pr.X ∈C/ where C is an extreme set such that for all x∈C at least one component of

x is extreme. Typically no observations will have occurred in C. The structure of C motivates the

following natural partition of C into d subsets C = ∪d
i=1 Ci. Here, Ci is that part of C for which

Xi is the largest component of X, as measured by the quantiles of the marginal distributions.

Specifically, for each i=1, . . . , d, let FXi denote the marginal distribution of Xi; then

Ci =C ∩{x ∈R
d : FXi.xi/>FXj .xj/; j =1, . . . , d; j �= i}, for i=1, . . . , d:

We assume that subsets of C of the form C ∩{x ∈R
d : FXi.xi/=FXj .xj/ for some i �= j} can be

ignored; these are null sets provided that on these subsets there are no singular components

in the dependence structure of X. The partition of C into C1 and C2 for (O3, NO2) is shown

in Fig. 1; the curved boundary between the sets is due to the inequality of the two marginal

distributions.

With the partition of C defined in this way, C is an extreme set if all xi-values in a non-empty Ci

fall in the upper tail of FXi , i.e., if vXi = infx∈Ci.xi/, then FXi.vXi/ is close to 1 for i=1, . . . , d. So

Pr.X ∈C/=
d
∑

i=1

Pr.X ∈Ci/=
d
∑

i=1

Pr.X ∈Ci|Xi >vXi/Pr.Xi >vXi/: .1:1/

Consider the estimation of Pr.X ∈C/ by using decomposition (1.1). We need to estimate

Pr.Xi > vXi/ and Pr.X ∈Ci|Xi > vXi/, the former requiring a marginal extreme value model

and the latter additionally needing an extreme value model for the dependence structure. We

focus on these two terms in turn.

Methods for marginal extremes are now relatively standard; see Davison and Smith (1990),

Smith (1989) and Dekkers et al. (1989). Univariate extreme value theory provides an asymptotic

justification for the generalized Pareto distribution to be an appropriate model for the distribu-

tion of excesses over a suitably chosen high threshold; see Pickands (1975). Thus, we model the

marginal tail of Xi for i=1, . . . , d by

Pr.Xi >x+uXi |Xi >uXi/= .1+ ξix=βi/
−1=ξi
+ where x> 0: .1:2/

Here uXi is a high threshold for variable Xi, βi and ξi are scale and shape parameters respectively

with βi > 0 and s+ = max.s, 0/ for any s∈R. We require a model for the complete marginal dis-

tribution FXi of Xi for each i=1, . . . , d, since to estimate Pr.X ∈Ci|Xi > vXi/ we need to describe

all Xj-values that can occur with any large Xi. We adopt the semiparametric model F̂Xi for FXi

of Coles and Tawn (1991, 1994), i.e.

F̂Xi.x/=
{

1−{1− F̃Xi.uXi/}{1+ ξi.x−uXi/=βi}
−1=ξi
+ for x>uXi ,

F̃Xi.x/ for x�uXi ,
.1:3/

where F̃Xi is the empirical distribution of the Xi-values. We denote the upper end point of the

distribution by xFi , which is ∞ if ξi �0 and uXi −βi=ξi if ξi < 0. Model (1.3) provides the basis

for estimating the Pr.Xi >vXi/ term of decomposition (1.1).

Both the marginal and the dependence structures of X are needed to determine Pr.X ∈Ci|Xi >

vXi/. We disentangle these two contributions and focus on the dependence modelling by working
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with margins that are assumed known for much of the following. We transform all the univari-

ate marginal distributions to be of standard Gumbel form by using the probability integral

transform, which for our marginal model (1.3) is

Yi =−log[−log{F̂Xi.Xi/}] for i=1, . . . , d

= ti.Xi;ψi, F̃Xi/

= ti.Xi/, .1:4/

where ψi = .βi, ξi/ are the marginal parameters. This transformation gives Pr.Yi �y/=
exp{−exp.−y/} for each i, so Pr.Yi > y/∼ exp.−y/ as y →∞, and Yi has an exponential

upper tail. To clarify which marginal variable we are using, we use X and Y throughout

to denote the variable with its original marginal distributions and with Gumbel margins

respectively.

We now focus on extremal dependence modelling of variables with Gumbel marginal distri-

butions. Modelling dependence for extreme values is more complex than modelling univariate

extreme values and despite there already being various proposals the methodologies are still

evolving. When interest is in the upper extremes of each component of Y, the dependence

structures fall into two categories: asymptotically dependent and asymptotically independent.

Variable Y−i is termed asymptotically dependent on and asymptotically independent of variable

Yi when the limit

lim
y→∞

{Pr.Y−i >y|Yi >y/}

is non-zero and zero respectively. Here Y−i denotes the vector Y excluding component Yi and

y a vector of y-values. All the existing methods for multivariate extreme values (outlined in

Section 2) are appropriate for estimating Pr.X ∈C/ under asymptotic dependence of the asso-

ciated Y, or for asymptotically independent variables provided that all x ∈C are large in all

components.

Fig. 2 shows the winter air pollution data transformed, by using transformations (1.4), to

have identical Gumbel marginal distributions. It is clear from Fig. 2 that the extremal depen-

dence between the NO variable and each of the other variables varies from pair to pair,

with asymptotic dependence a feasible assumption only for (NO, NO2) and (NO, PM10).

Thus the range of sets for which existing methods can be used to estimate Pr.X ∈ C/ is re-

stricted.

We present an approach to multivariate extreme values that constitutes a change of direction

from previous extreme value methods. Our modelling strategy is based on an assumption about

the asymptotic form of the conditional distribution of the variable given that it has an extreme

component, i.e. the distribution of Y−i|Yi =yi as yi becomes large. This conditional approach

provides a natural extension of the univariate conditional generalized Pareto distribution model

(1.2) to the multivariate case as Pr.X ∈Ci|Xi >vXi/ can be expressed as

Pr.X ∈Ci|Xi >vXi/=
∫ xFi

vXi

Pr.X ∈Ci|Xi =x/ dF̂Xi.x/={1− F̂Xi.vXi/}, .1:5/

where the integrand is evaluated by using the distribution of Y−i|Yi = yi after marginal trans-

formation. When vXi > uXi the derivative of F̂Xi.x/={1 − F̂Xi.vXi/} is the generalized Pareto

density function with scale and shape parameters βi + ξi.vXi −uXi/ and ξi respectively.

Our conditional approach applies whether the variables are asymptotically dependent or

asymptotically independent; it can be used to estimate Pr.X ∈C/ for any extreme set C,
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Fig. 2. Winter air pollution data transformed to have Gumbel margins by using transformations (1.4)

and it is applicable in any number of dimensions. The model that we use for the conditional

distribution is motivated by an asymptotic distributional assumption and is supported by a

range of theoretical examples. The model is semiparametric; parametric regression is used to

estimate the location and scale parameters of the marginals of the joint conditional distribution

and nonparametric methods are used to estimate the multivariate residual structure. Though

our approach lacks a complete asymptotic characterization of the probabilistic structure, such

as those which underpin existing extreme value methods, we show that strong mathematical

and practical advantages are given by our approach in comparison with existing multivariate

extreme value methods.

Existing methods are presented in Section 2. In Section 3 we state the new asymptotic assump-

tion on which our conditional model is based, present some theoretical examples and draw

links between the proposed and current methods. The examples motivate the modelling strat-

egy that is introduced in Section 4. In Section 5 inference for the model is discussed. The

methods are compared by using simulated data in Section 6. In Section 7 we illustrate the

application of the techniques by analysing the extreme values of the air pollution data. Finally,

in Section 8 we give the detailed working for the theoretical examples that are presented in

Section 3.
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2. Existing methods

We present a brief overview of the current methods for variables with Gumbel marginal dis-

tributions only. The extension to variables with arbitrary marginal distributions is obtained by

incorporating marginal transformation (1.4).

Many multivariate extreme value analyses are based on models which assume implicitly

that in some joint tail region each component of Y is either independent of or asymptoti-

cally dependent on the other components. Approaches which rely on these assumptions in-

clude the models for the multivariate extreme value distribution to describe componentwise

maxima of Tawn (1988, 1990), Joe (1994), Capéraà et al. (1997) and Hall and Tajvidi (2000)

and the multivariate threshold methods of Coles and Tawn (1991, 1994), Joe et al. (1992),

de Haan and Resnick (1993), Sinha (1997), de Haan and de Ronde (1998), Draisma (2000) and

Stărică (2000). Ledford and Tawn (1996, 1997, 1998) showed that these multivariate threshold

methods are inappropriate for extrapolation of a variable Y with components that are dependent

but asymptotically independent, when estimation is carried out by using a single selected thresh-

old. Ledford and Tawn (1996, 1997) proposed a bivariate threshold model to overcome this

limitation, which has been explored and developed by Bortot and Tawn (1998), Peng (1999),

Coles et al. (1999), Bortot et al. (2000), Heffernan (2000), Draisma et al. (2003) and Ledford and

Tawn (2003).

Behind all these existing approaches is the assumption of multivariate regular variation in

Fréchet margins. For statistical purposes this asymptotic assumption is taken to hold exactly

over a joint tail region. For Gumbel margins, these modelling assumptions combine to give a

joint distributional model with the property

Pr.Y ∈ t +A/= exp.−t=ηY/Pr.Y ∈A/, .2:1/

where t +A is a componentwise translation of every element of set A by a scalar t > 0, A is

a set in which every element is large in all its components and ηY, termed the coefficient of

tail dependence, satisfies 0 <ηY �1. When ηY =1 the asymptotic theory behind property (2.1)

extends to any set A in which every element is large in at least one of its components.

Ledford and Tawn (1996) identified four classes of extremal dependence. The first class

is that of asymptotically dependent distributions, for which ηY =1. The other three classes

comprise distributions with asymptotically independent dependence structures exhibiting

positive extremal dependence (d−1 <ηY < 1), near extremal independence (ηY =d−1) and

negative extremal dependence (0 <ηY < d−1) for a d-dimensional variable. These three clas-

ses correspond respectively to joint extremes of Y occurring more often than, approximately

as often as or less often than joint extremes if all components of the variable were inde-

pendent.

Relationship (2.1) forms the basis for the estimation of probabilities of extreme multivariate

events for all the existing methods. Specifically, for an extreme set D, which will typically contain

no observations in a large sample, the approach is to choose a constant t > 0 and to identify a

set A such that D= t +A and that A is an extreme set in the joint tail that contains sufficient

observations for the empirical estimate of Pr.Y ∈A/ to be reliable. Thus the choice of t is equiv-

alent to selecting a threshold. Estimates of Pr.Y ∈D/ follow from property (2.1). Estimates of

the parameter ηY are obtained by exploiting the property that Pr{min.Y/ > y}∼ exp.−y=ηY/

for y →∞. Estimates of Pr.Y ∈A/, or equivalently Pr.Y + t ∈D/, are obtained empirically.

Extrapolation based on relationship (2.1) cannot provide estimates of probabilities for sets

D that are not simultaneously extreme in each component. The reason for this is that, for such

D, the empirical estimate of Pr.Y + t ∈D/ is likely to be 0 since the translated data Y + t are
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unlikely to fall in D. For asymptotically independent variables such sets are of most interest. This

weakness of existing methods illustrates the need for a new approach, as it is due to the inade-

quacy of the asymptotic framework of the existing methods rather than a paucity of available

models within this framework.

3. Theoretical motivation

In this section we present a range of theoretical results which motivate our choice of statis-

tical model. In Section 3.1, we make an assumption about the asymptotic form of the con-

ditional distribution and examine the consequences of this assumption. Then, in Section 3.2,

we identify the conditions that must be satisfied by the normalizing functions underlying this

assumption for the limiting representation to hold. In Section 3.3 we discuss some theoretical

examples which suggest that the asymptotic assumption is appropriate for a wide range of dis-

tributions, and that the class of normalizing functions is narrow, whereas the range of limit

distributions is broad. Finally, in Section 3.4, we draw links between the proposed and existing

methods.

3.1. Assumption of a limit representation and its properties

Consider the asymptotic structure of the conditional distributions arising from a d-dimensional

random variable Y = .Y1, . . . , Yd/ with Gumbel marginal distributions. For each i=1, . . . , d, we

examine the conditional distribution Pr.Y−i �y−i|Yi =yi/, where here, and throughout, vector

algebra is applied componentwise. To examine the limiting behaviour of these distributions as

yi →∞ we require the limiting distribution to be non-degenerate in all margins, so we must

control the growth of y−i according to the dependence of Y−i on Yi.

Specifically we assume that for a given i there are vector normalizing functions a|i.yi/ and

b|i.yi/, both R→R
.d−1/, which can be chosen such that, for all fixed z|i and for any sequence

of yi-values such that yi →∞,

lim
yi→∞

[Pr{Y−i �a|i.yi/+b|i.yi/z|i|Yi =yi}]=G|i.z|i/, .3:1/

where all the margins of the limit distribution G|i are non-degenerate. An alternative expres-

sion of this assumption, which has an easier statistical interpretation, is that the standardized

variables

Z|i =
Y−i −a|i.yi/

b|i.yi/
.3:2/

have the property that

lim
yi→∞

{Pr.Z|i � z|i|Yi =yi/}=G|i.z|i/, .3:3/

where the limit distribution G|i has non-degenerate marginal distributions.

Under assumption (3.1), or equivalently assumption (3.3), we have that, conditionally on

Yi > ui, as ui →∞ the variables Yi −ui and Z|i are independent in the limit with limiting mar-

ginal distributions being exponential and G|i.z|i/ respectively. To see that this result holds, let

yi =ui +y with y > 0 fixed; then

Pr.Z|i � z|i, Yi −ui =y|Yi > ui/=Pr{Y−i �a|i.ui +y/+b|i.ui +y/z|i|Yi =ui +y}
fYi.ui +y/

Pr.Yi > ui/

→G|i.z|i/ exp.−y/, as ui →∞, .3:4/



504 J. E. Heffernan and J. A. Tawn

where fYi is the marginal density function of Yi. The final convergence in this derivation is

implied by the exponential tail of the Gumbel variables and the property that the conditional

limit (3.1) holds irrespectively of how yi →∞.

We now consider the marginal and dependence characteristics of G|i.z|i/. For each j �= i, we

define Gj|i.zj|i/ to be the limiting conditional distribution of

Zj|i =
Yj −aj|i.yi/

bj|i.yi/
given Yi =yi as yi →∞,

where aj|i.yi/ and bj|i.yi/ are the component functions of a|i.yi/ and b|i.yi/ associated with

variable Yj. Thus Gj|i is the marginal distribution of G|i associated with variable Yj. If

G|i.z|i/=
∏

j �=i

Gj|i.zj|i/,

then we say that the elements of Y−i are mutually asymptotically conditionally independent

given Yi.

3.2. Choice of normalization

We now identify the normalizing functions a|i.yi/ and b|i.yi/ in terms of characteristics of the

conditional distribution of Y−i|Yi, thus enabling these functions to be identified for theoretical

examples. The normalizing functions and limit distribution are not unique in the sense that,

if the normalizing functions a|i.yi/ and b|i.yi/ give a non-degenerate limit distribution G|i.z|i/,
using the normalizing functions

aÅ
|i.yi/=a|i.yi/+Ab|i.yi/,

bÅ
|i.yi/=Bb|i.yi/

.3:5/

for arbitrary vector constants A and B, with B > 0, gives the non-degenerate limit G|i.Bz|i +A/.

However, following standard arguments such as used in Leadbetter et al. (1983), page 7, this is

the only way that two different limits with no mass at ∞ can arise, so the class of limit distribu-

tions is unique up to type, and the normalizing functions can be identified up to the constants

A and B in expression (3.5).

For fixed i, the choice of the vector functions can be broken into d −1 separate condi-

tions based on the limiting behaviour of Yj|Yi =yi, for each j �= i, since assumption (3.1) speci-

fies that each marginal distribution of G|i must be non-degenerate. Thus we are interested in

the conditional distribution function of Yj|Yi =yi which is denoted by Fj|i.yj|yi/. The associated

conditional hazard function hj|i is defined as

hj|i.yj|yi/=
fj|i.yj|yi/

1−Fj|i.yj|yi/
for −∞<yj <∞,

where fj|i.yj|yi/ is the conditional density function of Yj|Yi =yi.

Theorem 1. Suppose that the vector random variable Y has an absolutely continuous joint

density. If, for a given i, the vector functions a|i.yi/ and b|i.yi/ > 0 satisfy the limiting prop-

erty (3.1), or equivalently property (3.3), then the components of these vector functions

corresponding to variable Yj, for each j �= i, satisfy, up to type, properties (3.6) and (3.7):

lim
yi→∞

[Fj|i{aj|i.yi/|yi}]=pj|i, .3:6/

where pj|i is a constant in the range .0, 1/, and

bj|i.yi/=hj|i{aj|i.yi/|yi}
−1: .3:7/
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The proof of theorem 1 is given in Appendix A. Owing to the flexibility in the form of nor-

malizing function given by expression (3.5), a simplification of the structure of the normalizing

functions can be achieved, as illustrated by corollary 1.

Corollary 1.If functions aj|i.yi/ and bj|i.yi/ > 0 satisfy the conditions of theorem 1, and there

is a constant sj|i <∞ such that

lim
yi→∞

{

aj|i.yi/

bj|i.yi/

}

= sj|i,

then limit relationship (3.1) holds with aj|i.yi/=0. Furthermore, if bj|i.yi/= tj|i kj|i.yi/ for

tj|i > 0 any constant independent of yi, and kj|i.yi/ any function of yi, then the limit relation-

ship (3.1) holds with bj|i.yi/ replaced by kj|i.yi/.

3.3. Theoretical examples

We present the normalizing functions a|i.y/ and b|i.y/, given by theorem 1 and corollary 1,

and some properties of the associated non-degenerate limiting conditional distribution G|i for

a range of multivariate distributions with Gumbel marginal distributions. The examples are

selected to provide a coverage of the four classes of extremal dependence that were identified in

Section 2.

As pairwise dependence determines each of the components of the normalizing functions,

we present the results categorized by the pairwise coefficient of tail dependence for .Yi, Yj/,

denoted by ηij, with ηij = 1
2

indicating near extremal independence for the pair. Table 1 shows

two examples from each of the four classes. The special cases of perfect positive and negative

dependence (cases i and viii respectively) are included here to identify upper and lower bounds

on the behaviour of the normalizing functions, although strictly the methods of Section 3.2

Table 1. Examples of multivariate dependence structures classified by extremal
dependence behaviour†

Extremal dependence ηij Normalization Limit distribution G|i
structure

aj|i(y) bj|i(y) Gj|i ACI‡

1, i 1 y 1 Degenerate NA
1, ii 1 y 1 § No
2, iii .1+ρij/=2 ρ2

ijy y1=2 Normal No

2, iv 2−α 0 y1−α Weibull Yes
3, v 0.5 0 1 Gumbel Yes
3, vi 0.5 0 1 Gumbel No
4, vii .1+ρij/=2 −log.ρ2

ijy/ y−1=2 Normal No
4, viii 0 −log.y/ 1 Degenerate NA

†1, asymptotic dependence; 2, asymptotic independence with positive association;
3, near independence; 4, negative dependence. The dependence structures are i, perfect
positive dependence, ii, multivariate extreme value distribution, iii, multivariate nor-
mal (ρij > 0), iv, inverted multivariate extreme value distribution with symmetric logistic
dependence structure and parameter 0 <α� 1, v, independence, vi, multivariate Mor-
genstern, vii, multivariate normal (ρij < 0), and viii, perfect negative dependence.
‡ACI, asymptotic conditional independence, which is not applicable (NA) if the variable
is degenerate.
§The limiting distribution is complicated and its exact form is given in Section 8.
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do not apply to these two distributions as, for each, the associated conditional distribution

is degenerate. At this stage, interest is only in the structure of the normalizing functions and

the limiting distributions, so discussion of the precise specification of distributions ii–vii is

postponed until Section 8, where additional examples are presented. Furthermore, as the limit

distribution G|i is often complicated, here we identify only the marginal distribution Gj|i and

state whether or not the margins of G|i are independent.

The examples that are listed in Table 1, and those given in Section 8, all satisfy the asymp-

totic assumption (3.1), have a simple structure for the normalizing functions and give a range

of limiting distributions G|i that are not contained in any simple distributional family. This

finding about G|i is in contrast with the limiting representation for multivariate extreme value

distributions (de Haan and Resnick, 1977; Resnick, 1987) but is a consequence of the lack of

structure that is imposed on G|i by the limiting operation. The normalizing functions are all

special cases of the parametric family

a|i.y/=a|iy + I{a|i=0,b|i<0}{c|i −d|i log.y/},

b|i.y/=yb|i
.3:8/

where, on the right-hand side, a|i, b|i, c|i and d|i are vector constants and I is an indica-

tor function. The vectors of constants have components such that 0�aj|i �1, −∞< bj|i < 1,

−∞< cj|i <∞ and 0�dj|i �1 for all j �= i. Parametric family (3.8) has different structural

formulations for a|i.y/ for positively and negatively associated pairs, owing to the asymme-

try of the Gumbel marginal distribution, for which the upper tail is heavier than the lower

tail.

The construction of the limiting operations that give the normalizing functions and limit dis-

tribution does not ensure continuity in these functions or distributions as the parameters of the

original distribution are changed. Two particular examples illustrate this point as the parameters

of the underlying distributions approach values corresponding to independence. A special case

of distribution ii is the bivariate extreme value distribution with logistic dependence structure,

which is asymptotically dependent when the dependence parameter 0 <α< 1 (see Section 8

for details). When α=1 the variables are independent. Consequently the normalization that is

required is discontinuous in α at α=1. However, as α↑1 the limit distribution Gj|i puts all of

its mass increasingly close to −∞, indicating that the location normalization is becoming too

powerful. Similarly, the multivariate normal distribution iii gives Gj|i as normal with variance

2ρ2
ij.1−ρ2

ij/, so as ρij ↓0 the limit is degenerate as the scale normalization becomes too strong.

Similar inconsistencies are found for ηij (see Heffernan (2000)) and for a range of asymptotically

derived probability models.

We obtained the rate of convergence of each margin of the limiting conditional joint distri-

bution, i.e. the order of convergence to 0 of

Pr[{Yj −aj|i.yi/}=bj|i.yi/� zj|i|Yi =yi]−Gj|i.zj|i/ .3:9/

as a function of n, where Pr.Yi > yi/=n−1 so that n determines how extreme the conditioning

variable is in a manner that is invariant to the marginal distribution. Thus specified, the rate

of convergence depends only on the underlying dependence structure. Expression (3.9) equals

0 for all zj|i for distributions i, v and viii in Table 1; the convergence rate is O.n−1/ for distri-

butions ii and vi and O{1=log.n/} for distribution iv whereas for distributions iii and vii it is

O[log{log.n/}=log.n/1=2]. These rates are typical of those that are seen in other extreme value

problems.
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3.4. Links with existing methods

To clarify the connections with existing methods, we examine the limiting conditional distri-

bution under the existing framework for multivariate extreme values. Let A=Π
d
i=1.yi, ∞/, for

fixed large values of each yi, i=1, . . . , d, in expression (2.1). Differentiating expression (2.1)

with respect to yi and dividing by fYi.yi + t/ gives that for all t> 0

Pr.Y−i > y−i + t|Yi =yi + t/={1− δ.yi, t/}exp{−t.1−ηY/=ηY}Pr.Y−i > y−i|Yi =yi/, .3:10/

where δ.yi, t/ = 1 − exp[−exp.−yi/{1 − exp.−t/}]→0 as yi →∞. Hence, for large yi, to first

order, expression (3.10) is invariant to changes in t when ηY =1, so the limit distribution of

Y−i − Yi is non-degenerate for Yi =yi as yi →∞. This result is identical to the structure that

we find under asymptotic dependence between all the components (a|i =1 and b|i =0). Despite

strong connections between the approaches, the statistical model that is developed in Section 4

leads to a new estimator of Pr.X ∈C/ when the variables are asymptotically dependent. When

ηY < 1, expression (3.10) shows that the normalization Y−i −Yi leads to a degenerate limit

given Yi =yi as yi →∞, demonstrating the need for more sophisticated normalizations than

those considered previously.

4. Model structure and properties

In Section 4.1 we present a semiparametric dependence model for describing extreme values

in multivariate problems. This model is presented for variables with univariate marginal Gum-

bel distributions. Combined with our marginal model, described in Section 1, this dependence

model gives a complete joint model for the extreme values of the random variable X. Issues

concerning the self-consistency of the various conditional models are discussed in Section 4.2.

Methods for extrapolation for the X-variable under the joint model are described in Section 4.3.

Finally, in Section 4.4, we propose diagnostics to aid model selection.

4.1. Conditional dependence model

The model structure is motivated by the findings in Section 3. Using the same approach as

in other univariate and multivariate extreme value methods, we take an asymptotic assump-

tion which holds under weak conditions to hold exactly provided that the limiting variable is

sufficiently extreme. Here we use the formulation of the limiting conditional distribution (3.1),

and its implied limiting independence property (3.4), to capture the behaviour of variable Y−i

occurring with large Yi. We assume that for each i = 1, . . . , d there is a high threshold uYi for

which we model

Pr {Y−i < a|i.yi/+b|i.yi/z|i|Yi =yi}=Pr.Z|i < z|i|Yi =yi/

=G|i.z|i/, for all yi >uYi ,

where Z|i is the standardized residual defined by expression (3.2), with distribution function

G|i, and Z|i is independent of Yi for Yi > uYi . The extremal dependence behaviour is then char-

acterized by location and scale functions a|i.yi/ and b|i.yi/ and the distribution function G|i.
First consider the specification of the individual conditional models, i.e. a|i.yi/, b|i.yi/ and

G|i.z|i/ for a given i. We adopt the parametric model (3.8) as it is a single parametric fam-

ily of normalizing functions which is appropriate for the wide range of theoretical examples

that are shown in Table 1 and Section 8. We denote the parameters of a|i.y/ and b|i.y/ by

θ|i = .a|i, b|i, c|i, d|i/ and adopt the convention that cj|i = dj|i = 0 unless aj|i = 0 and bj|i < 0.

We discuss the estimation of θ|i in Section 5, denoting the estimator of θ|i by θ̂|i, and the
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associated estimators of the normalizing functions by â|i.y/ and b̂|i.y/. As the limiting opera-

tion (3.1) imposes no specific structure on G|i, we adopt a nonparametric model for G|i. We

estimate this distribution by using the empirical distribution of replicates of the random variable

Ẑ|i, defined by

Ẑ|i =
Y−i − â|i.yi/

b̂|i.yi/
for Yi =yi >uYi :

The theoretical examples suggest that the Z|i are often asymptotically conditionally indepen-

dent, so if supported by diagnostic tests it may be advisable to model the components of Ẑ|i as

being independent, i.e. Ĝ|i.z|i/=Πj �=i Ĝj|i.zj|i/, whereĜj|i is the empirical distribution function

of the Ẑj|i.
In summary, for i=1, . . . , d our dependence model is a multivariate semiparametric regression

model of the form

Y−i =a|i.yi/+b|i.yi/Z|i for Yi =yi >uYi , .4:1/

where a|i.yi/ and b|i.yi/ are given by the parametric model (3.8), and the distribution of the

standardized residuals is modelled nonparametrically. The parameters of the overall model

are θ= .θ|1, . . . , θ|d/. Each regression model applies only above the threshold uYi for which the

dependence structure is viewed to be well described by model (4.1). There is no necessity for the

dependence threshold uYi (on the Gumbel scale) and the marginal threshold uXi (on the original

scale) to agree in the sense that uYi = ti.uXi/, where transformation ti is given in equation (1.4).

We categorize the dependence structure that is implied by model (4.1) by using four classes

which identify the behaviour of quantiles of the distribution of Yj|Yi =yi as yi →∞. If the

quantiles of the conditional distribution grow at the same rate as yi, i.e. aj|i =1 and bj|i =0,

the variables .Yi, Yj/ are asymptotically dependent; otherwise they are asymptotically indepen-

dent. For asymptotically independent distributions, the conditional quantiles tend to ∞, a finite

limit or −∞ as yi →∞ if .Yi, Yj/ exhibit positive extremal dependence, extremal near indepen-

dence or negative extremal dependence respectively. Thus the variables exhibit positive extremal

dependence when at least one of 0 < aj|i < 1 or bj|i > 0 holds, extremal near independence when

aj|i =dj|i =0 and bj|i �0, and negative extremal dependence when aj|i =0, dj|i > 0 and bj|i < 0.

Though the examples of Section 3.3 illustrate that the limit operations on the parameters of

the original distribution and the conditioning variable cannot be interchanged, we do not see

that this poses any problems in practice for model (4.1). The theoretical examples motivate a sub-

class of the general limiting structure imposed by asymptotic assumption (3.1); the family (3.8)

that we have identified varies smoothly over the four classes of dependence. Furthermore, for

statistical applications the underlying distribution is fixed and so the issue of interchanging

limits does not arise in practice.

Treating the d conditional models separately gives the most general version of our model with

parameter θ an unconstrained vector of length 4d.d − 1/, though, for each ordered pair, cj|i
and dj|i are only non-zero if there is no positive association. Dependence submodels may be of

interest for identifying scientifically relevant structure in the joint distribution or for parsimony.

For example, there are many multivariate distributions whose dependence structure is exchange-

able in some way. The most common form of exchangeability is pairwise, i.e. Yi depends on Yj

in the same way as Yj depends on Yi. We say that variables Yi and Yj exhibit weak pairwise

extremal exchangeability if θi|j =θj|i and strong pairwise extremal exchangeability if in addition

Gi|j =Gj|i. In Section 8 we show examples of distributions which exhibit each of these forms of

exchangeability.
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4.2. Self-consistency of separate conditional models

Now consider the self-consistency of the d individual models for the conditional distributions

of Y−i|Yi for each i and large values of thresholds .uY1
, . . . , uYd

/. Problems of this general type

are discussed by Besag (1974) and Arnold et al. (1999). As all d conditional distributions are

determined by the joint distribution of Y, there are some theoretical constraints on the possible

combinations of values taken by the parameters θ and the distributions G|i for i=1, . . . , d.

However, as the individual models are applied to different subsets of the support of the joint

distribution, the self-consistency is important only on the intersection of these subsets. Gener-

ally the intersections take the form {y :yi �uYi ∀i∈J} where J is a subset of at least two elements

of {1, . . . , d}. First consider the case where J ={i, j}; then self-consistency requires that

d

dyj

Pr.Yj �yj|Yi =yi/ fYi.yi/=
d

dyi

Pr.Yi �yi|Yj =yj/fYj .yj/ .4:2/

where yj = aj|i.yi/ + bj|i.yi/zj|i and yi = ai|j.yj/ + bi|j.yj/zi|j for yi > uYi and yj > uYj . In gen-

eral condition (4.2) is too complex to impose. However, unless at least one of aj|i = 1 and

ai|j =1 holds, condition (4.2) becomes null since Pr{min.Yi, Yj/�u|max.Yi, Yj/�u}→0 as

u→∞. When aj|i =1 and bj|i =0, as min.uYi , uYj /→∞, condition (4.2) imposes that ai|j = 1

and bi|j =0 and, subject to the appropriate convergence of conditional density results, that

d

dz
Gi|j.z/= exp.−z/

d

dz
Gj|i.−z/:

Now suppose that J ={1, . . . , d} and that all the variables are asymptotically dependent. Self-

consistency then requires that, for all i and j, ai|j =1 and bi|j =0 and that

d

dzj|i
G|i.z|i/=

d

dzi|j
G|j.z|j/

∣

∣

∣

z|j=z
.i/
|j

exp.zj|i/

where z
.i/
|j denotes a .d −1/-vector with element associated with variable k .k �=j/ being zk|i −zj|i

for k �= i and zj|i for k = i. Analogous conditions apply when only a subset of the variables is

asymptotically dependent.

Though we have made progress in characterizing the self-consistency properties for the special

case of asymptotic dependence we have no solution for ensuring self-consistency of the condi-

tional distributions more generally. Our general approach is to estimate the d different condi-

tional distributions separately and not to impose further structure in addition to model (4.1).

The first defence of this approach is that the data arise from a valid joint distribution and so

estimates that are based on the data should not depart greatly from self-consistency. Secondly,

we recommend assessing the effect of using different conditionals to estimate probabilities of

events in which more than one variable is extreme. Averaging estimates over the different con-

ditionals reduces any problems of inconsistency, and in essence this is what our partitioning

of C into C1, . . . , Cd ensures. Thirdly, in many applications when submodels are fitted, the

θ-component of the model is automatically restricted to be self-consistent. Finally, we might

expect that ensuring self-consistency should improve the general performance of the method.

Contrary to this expectation, in Section 6 we illustrate the use of models which are not self-

consistent and show that imposing self-consistency of the θ-parameters substantially reduces

the performance.

4.3. Extrapolation

We generate random samples from the conditional distributions of X|Xi > vXi for each i, using

the estimated conditional models. These samples are used to obtain Monte Carlo approxima-
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tions of functionals of the joint tails of the distribution of X. Since we use the estimated model,

the parameters are replaced by their estimates θ̂ and ψ̂ which are obtained by using methods

described in Section 5. We employ the following sampling algorithm.

Step 1: simulate Yi from a Gumbel distribution conditional on its exceeding ti.vXi/.

Step 2: sample Z|i from Ĝ|i independently of Yi.

Step 3: obtain Y−i = â|i.Yi/+ b̂|i.Yi/Z|i.
Step 4: transform Y = .Y−i, Yi/ to the original scale by using the inverse of transforma-

tion (1.4).

Step 5: the resulting transformed vector X constitutes a simulated value from the conditional

distribution of X|Xi >vXi .

For example, we evaluate Pr.X ∈Ci|Xi > vXi/ by using a Monte Carlo approximation of inte-

gral (1.5) by repeating steps 1–5 and evaluating Pr.X ∈Ci|Xi >vXi/ as the long run proportion

of the generated sample that falls in Ci. When C is not contained entirely in the joint tail region

on which the dependence component of the conditional model is defined, we first partition C

into CÅ and C\CÅ where

CÅ ={x ∈C : xi <t−1
i .uYi/; i=1, . . . , d}:

By definition of the uYi , the empirical estimator of Pr.X∈CÅ/ will be reliable. In contrast Pr.X∈
C\CÅ/ requires model-based estimation, for which we use the conditional model as follows. We

partition C\CÅ into sets C1, . . . , Cd as in Section 1. Using this construction, vXi � t−1
i .uYi/ for

all i=1, . . . , d, and the above approximation can be used to evaluate Pr.X ∈Ci|Xi >vXi/.

4.4. Diagnostics

The examples in Section 3.3 indicate that the rate of convergence of the conditional distribution

of Y−i|Yi =y, as y →∞, to its limiting form can be slow. However, the limiting form of the

conditional distribution is used only to motivate our model structure and we are not interested

in the true limit values of θ|i and G|i. What is of practical importance is whether the conditional

distribution of the normalized variable Z|i is stable over the range of Yi- (or equivalently Xi-)

values that is used for estimation and extrapolation.

This requirement suggests that diagnostics for our model structure should be based on assess-

ing the stability of the extrapolations that are achieved when fitting the model above a range

of thresholds. For marginal estimation, we use diagnostics that are based on the mean resid-

ual life plot and the stability in the marginal shape parameter estimates; see Smith (1989) and

Davison and Smith (1990). For dependence estimation, a fundamental modelling assumption

is that Z|i is independent of Yi given Yi > uYi , for a high threshold uYi , for each i. By fitting the

conditional model over a range of high thresholds, the stability of the estimates of θ|i and the

resulting extrapolations can be assessed. Then, for a selected threshold, independence of Z|i
and Yi is examined. Furthermore, a range of standard tests for independence can be applied

to the observed Z|i to identify whether the variables can be treated as being asymptotically

conditionally independent.

5. Inference

Our model comprises the marginal distributional model (1.3) and the dependence model (4.1).

Both of these models are semiparametric, consisting of components that are specified paramet-

rically and components for which no parametric model is appropriate. Our strategy for inference
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is driven by three features: a lack of parametrically specified joint distributions for each con-

ditional distribution, the absence of practical constraints to impose self-consistency between

different conditional distributions and a need for simplicity. This leads us to use an algorithm

for point estimation which makes simplifying assumptions and a semiparametric bootstrap

algorithm for evaluating uncertainty which does not rely on these assumptions.

Inference for marginal and dependence structures is undertaken stepwise: first the marginal

parameters ψ are estimated and then the dependence parameters θ are estimated assuming

that the marginal parameters are known. Stepwise estimation is much simpler than joint esti-

mation of all the parameters and findings in Shi et al. (1992) suggest that the loss of effi-

ciency relative to joint estimation is likely to be small unless the values of ξi, i=1, . . . , d, differ

greatly.

Brief details of the marginal estimation step are given in Section 5.1. Following marginal

estimation, the data are transformed to have Gumbel marginals by using transformations (1.4),

with ψ replaced by their estimates ψ̂. In Section 5.2 we describe why we use Gaussian estimation

for the normalizing function parameters θ|i for each separate conditional distribution under the

assumption that there are no constraints between θ|i and θ|j for any i and j. The fitting of sub-

models requires the joint estimation of all the conditional model parameters θ. In Section 5.3 we

discuss an approach for this joint estimation which has similarities to the pseudolikelihood of

Besag (1975). In Section 5.4 we present techniques for evaluating the uncertainty in estimation

for the overall model and the resulting extrapolations. Throughout, we assume that the data are

realizations of independent and identically distributed random variables X1, . . . , Xn.

5.1. Marginal estimation

We estimate the d univariate marginal distributions jointly, ignoring the dependence between

components. Specifically, we assume independence between components of the variable in con-

structing the log-likelihood function

log{L.ψ/}=
d
∑

i=1

nuXi
∑

k=1

log{f̂ Xi
.xi|i,k/} .5:1/

wheref̂ Xi
is the density that is associated with distribution (1.3), nuXi

is the number of observa-

tions with ith component exceeding the marginal threshold uXi and the jth component of the

kth such observation is denoted by xj|i, k : j =1, . . . , d; k =1, . . . , nuXi
. If there are no functional

links between the parameters of the various components then maximizing log-likelihood (5.1)

is equivalent to fitting the generalized Pareto distribution to the excesses over the marginal

thresholds separately for each margin. When there are constraints between marginal par-

ameters, jointly maximizing the log-likelihood function (5.1) enables inferential efficiency to

be gained.

5.2. Single conditional

For each i, we wish to estimate θ|i under minimal assumptions about G|i. If we assume that

Z|i has two finite marginal moments, then θ|i determines the marginal means and variances of

the conditional variable Y−i|Yi = yi when yi > uYi . Specifically, if the Z|i have marginal means

and standard deviations denoted by vectors µ|i and σ|i respectively, then the random variables

Y−i|Yi =y, for y>uYi , have vector mean and standard deviation respectively given by

µ|i.y/=a|i.y/+µ|i b|i.y/,

σ|i.y/=σ|i b|i.y/,
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which are functions of y, θ|i and of the constants λ|i = .µ|i, σ|i/. Thus .θ|i, λ|i/ are the parameters

of a multivariate regression model with non-constant variance and unspecified error distribu-

tion. We exploit the consistency of maximum likelihood estimates of θ|i achieved by using a

parametric model for G|i which is liable to be misspecified. Specifically, we maximize the asso-

ciated objective function over the parameter space to produce a consistent and valid point

estimator for θ|i. For a general discussion of this approach see Hand and Crowder (1996), chap-

ter 7. The parametric model for G|i is chosen for convenience and computational simplicity. We

take the components of Z|i to be mutually independent and Gaussian and hence our inference

for θ|i is based on Gaussian estimation (Hand and Crowder, 1996; Crowder, 2001). The indepen-

dence simplification appears reasonable as θ|i determines only the marginal characteristics of

the conditional distribution. We considered a range of parametric distributions for the marginals

of Z|i and selected the Gaussian distribution for its simplicity, superior performance in a simu-

lation study and links to generalized estimating equations that arise from this choice of model

for G|i.
Therefore, the objective function that we use for point estimation of θ|i and λ|i is

Q|i.θ|i, λ|i/=−
∑

j �=i

nuYi
∑

k=1

[

log{σj|i.yi|i, k/}+
1

2

{

yj|i, k −µj|i.yi|i, k/

σj|i.yi|i, k/

}2 ]

, .5:2/

where the notation follows the conventions that are adopted in Section 3 and for log-likeli-

hood (5.1). We maximize Q|i jointly with respect to θ|i and λ|i to obtain our point estimate θ̂|i,
with λ|i being nuisance parameters. To overcome the structural discontinuity in a|i.y/, we fit the

dependence model in two stages: first fixing cj|i = dj|i = 0; then only estimating cj|i and dj|i if

âj|i =0 and b̂j|i < 0.

5.3. All conditionals

We now consider joint estimation of the conditional model parameters θ. For reasons that are

similar to those discussed in Section 5.2, we falsely assume independence between different

conditional distributions to give the objective function

Q.θ, λ/=
d
∑

i=1

Q|i.θ|i, λ|i/, .5:3/

where Q|i.θ|i, λ|i/ is as in expression (5.2) and λ = .λ|1, . . . , λ|d/. For Gaussian error distri-

butions it can be shown that objective function (5.3) is an approximation to the pseudolike-

lihood, which Besag (1975) introduced as an approximation to the joint likelihood function.

The approximation of equation (5.3) to the pseudolikelihood follows from Bayes’s theorem and

the property that the marginal density of Y−i and the conditional density of Y−i|Yi =yi when

yi < uYi influence the shape of the pseudolikelihood negligibly. Further, if the variables are all

mutually asymptotically independent then, for sufficiently large thresholds uYi , each datum will

exceed at most one threshold so the independence assumption underlying the construction of

objective function (5.3) will be satisfied.

5.4. Uncertainty

Uncertainty arises from the estimation of the semiparametric marginal models, the paramet-

ric normalization functions of the conditional dependence structure and the nonparametric

models of the distributions of the standardized residuals. To account for all these sources of

uncertainty, we use standard semiparametric bootstrap methods to evaluate standard errors of
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model parameter estimates and of other estimated parameters such as Pr.X ∈C/ (see Davison

and Hinkley (1997)). Throughout we assume that the marginal and dependence thresholds are

fixed and so the uncertainty that is linked to threshold selection is not accounted for by the

bootstrap methods.

Our bootstrap procedure has three stages: data generation under the fitted model, estima-

tion of model parameters and the derivation of an estimate of any derived parameters linked

to extrapolation. These stages are repeated independently to generate independent bootstrap

estimates. The novel aspect of our algorithm is the data generation. To ensure that the boot-

strap samples that are obtained replicate both the marginal and the dependence features of

the data, we use a two-step sampling algorithm for data generation. A nonparametric boot-

strap is employed first, ensuring the preservation of the dependence structure; then a paramet-

ric step is carried out so that uncertainty in the estimation of the parametric models for the

marginal tails can be assessed. The precise procedure is as follows. The original data are first

transformed to have Gumbel margins, using the marginal model (1.3) which is estimated by

using these original data. A nonparametric bootstrap sample is then obtained by sampling with

replacement from the transformed data. We then change the marginal values of this bootstrap

sample, ensuring that the marginal distributions are all Gumbel and preserving the associ-

ations between the ranked points in each component. Specifically, for each i, i=1, . . . , d, we

replace the ordered sample of component Yi with an ordered sample of the same size from the

standard Gumbel distribution. The resulting sample is then transformed back to the original

margins by using the marginal model that was estimated from the original data. The data that

are generated by using this approach have univariate marginal distributions with upper tails

simulated from the fitted generalized Pareto model and dependence structure entirely consis-

tent with the data as determined by the associations between the ranks of the components of

the variables.

6. Simulation study

Throughout this section we use simulated data with known Gumbel margins to illustrate the

application of the methods proposed. In Section 6.1 we present a detailed analysis of a single

data set to highlight inference and extrapolation issues. Section 6.2 reports results of simulation

studies comparing the performance of the existing and conditional methods for bivariate and

multivariate replicated data sets. To allow a comparison with existing methods, we consider only

positively dependent variables and hence work with the submodel a|i.y/=a|iy with 0 �a|i �1.

We focus on return level estimation. Specifically, when the multivariate set C is described by a

single parameter v say, i.e. C =C.v/, then the return level vp for an event with probability p is

defined implicitly by

Pr{Y ∈C.vp/}=p: .6:1/

We assess the performance of an estimator v̂p of vp by using the relative error .v̂p −vp/=vp.

6.1. Simulated case-study

We analyse the simulated data set of 5000 points shown in Fig. 3. The underlying distribution

is the bivariate extreme value distribution with asymmetric logistic dependence structure;

see Section 8.1 and Tawn (1988, 1990) for details. The parameters of this distribution are

θ1,{1} =1 − θ1,{1,2} =0:1, θ2,{2} =1 − θ2,{1,2} =0:75 and α{1,2} =0:2, so the limiting param-

eters for the conditional distributions are a2|1 =a1|2 =1 and b2|1 =b1|2 =0. The simulated data

have a complicated structure as, for large Y1, variable Y2 behaves as though it were asymptotically
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Fig. 3. Observations from the bivariate extreme value distribution with asymmetric logistic dependence
structure (�) and pseudosamples (ı) generated under the asymmetric model above a threshold (

|

|

|

, - - - - - - - )
(â2j1 D0:97, â1j2 D0:11, b̂2j1D0:40 and b̂1j2D0:78) and sets Ci ( )

dependent on Y1 but, for large Y2, Y1 arises from a mixture distribution with one component

that is independent of Y2 and the other asymptotically dependent on Y2. As the normalization

stabilizes the growth of the asymptotically dependent component only, the limiting distribution

of Y1|Y2 has substantial mass at −∞, corresponding to the independent component of the mix-

ture distribution. At finite levels the independent points are likely to contaminate the parameter

estimates of any asymptotically motivated model. Although the limiting values for the nor-

malization parameters are symmetric, the clear asymmetry in the data suggests that we should

compare two models: one with weak pairwise exchangeability .a2|1 = a1|2 and b2|1 = b1|2) and

the other relaxing this assumption to allow for any form of asymmetry. Both models are fitted

by using objective function (5.3) and thresholds corresponding to the 0.9 marginal quantiles.

Diagnostic procedures that are outlined in Section 4.4 aid model selection. Fig. 4 shows scat-

terplots of residuals Ẑ2|1 for large Y1 for each of the models proposed. Fig. 4(a) shows that

the estimated distribution of Ẑ2|1 has a trend in mean value with Y1 for the weak pairwise

exchangeable model, whereas this trend is much diminished in Fig. 4(b), which shows residuals

from the fitted asymmetric conditional model. Equivalent plots for Ẑ1|2 (not shown) indicate

approximate independence of these residuals and Y2 for both models.

Fig. 3 shows the pseudosamples that are obtained by using the fitted asymmetric condi-

tional model with Fig. 3(a) and Fig. 3(b) showing the samples that are obtained conditioning

on Y1 and Y2 respectively, and revealing the different forms of the conditional distributions.

For set C.v/= .v, ∞/2, Fig. 3 shows C1 and C2. Empirical estimates of Pr.Y ∈ Ci|Yi > v/ are

obtained as the proportion of the respective pseudosamples falling in these sets; Pr.Y ∈C/ is

then estimated by using decomposition (1.1). We investigated the effect of inconsistencies of

the conditional models for Y2|Y1 and Y1|Y2 on the estimation of Pr.Y ∈ C/ by comparing

approaches using pseudosamples generated under the following models: Y2|Y1 only, Y1|Y2 only

and the intermediate approach based on decomposition (1.1). Despite the very different forms

of the two conditional distributions, the differences between the three estimates are small relative

to the uncertainties in estimation.
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Fig. 4. Diagnostic plots for data from the bivariate extreme value distribution with asymmetric logistic depen-
dence structure—scatterplots of residuals Z2j1 against the conditioning variable Y1, after transforming Y1 to
uniform margins: (a) residuals from fitting the weakly pairwise exchangeable model; (b) residuals from fitting
the asymmetric conditional model

6.2. Multivariate examples

We consider the following four distributions, all with standard Gumbel margins:

(a) a multivariate extreme value distribution with symmetric logistic dependence structure

(8.4) and parameter α=0:5 (distribution A);

(b) a bivariate extreme value distribution with asymmetric logistic dependence structure (8.5)

with parameters given in Section 6.1 (distribution B);

(c) an inverted multivariate extreme value distribution with symmetric logistic dependence

structure (8.4) with parameter α, for which ηij for any pair of variables is 2−α (distribu-

tion C);

(d) a bivariate normal distribution with correlation coefficient ρij, for which ηij = .1+ρij/=2

(distribution D).

Section 8 shows the theoretical derivation of extremal properties of these distributions. Distribu-

tions A and B are asymptotically dependent whereas distributions C and D are asymptotically

independent. We select the parameters of distributions C and D so that ηij =0:75 for all bivariate

pairs. For each distribution we simulated 200 replicate data sets each of size 5000. We applied

a range of existing and conditional methods, selecting thresholds so that 10% of each data set

was used for estimation by each method. We compare the performance of the methods for a

range of forms of extreme event. Preliminary studies showed that the relative errors varied little

with p and so we show results for p=10−4, 10−6, 10−8 only.

6.2.1. Simultaneously extreme bivariate events

Table 2 shows the median, 2:5 and 97:5 percentiles of the estimated sampling distribution of

the relative errors of vp when C.v/= .v, ∞/2. First consider distributions A and B for which the

existing method based on property (2.1) with ηY =1 is asymptotically the correct form of model.

The existing method with ηY =1 has small relative errors centred on zero for distribution A, but

for distribution B the method overestimates by a small but significant amount. The conditional

method and the existing method with estimated ηY are unbiased but have variable relative errors

for distribution A. For distribution B the conditional model with weak pairwise exchangeability

significantly underestimates whereas the existing method with ηY estimated and the asymmet-

ric conditional model are equally variable and unbiased. For the asymptotically independent

distributions C and D, the estimators perform differently from one another but similarly over
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Table 2. Median (and 2:5 and 97:5 percentiles) of the estimated sampling distribution of relative errors of
vp for simultaneously extreme bivariate events†

Distribution Method Medians (and 2.5 and 97.5 percentiles) (× 100) for the
following values of p:

p=10−4 p=10−6 p=10−8

A Existing, ηY =1 −0:1 .−1:0, 0:8/ −0:1 .−0:7, 0:5/ −0:0 .−0:5, 0:4/
Existing, η̂Y −0:8 .−15:0, 0:6/ −0:8 .−16:0, 0:4/ −0:6 .−17:0, 0:3/
Conditional (weak −1:4 .−4:0, 0:8/ −1:6 .−4:1, 0:5/ −1:6 .−5:0, 0:4/

pairwise exchangeability)
B Existing, ηY =1 4:6 .3:7, 5:6/ 3:0 .2:4, 3:6/ 2:1 .1:7, 2:5/

Existing, η̂Y −1:0 .−14:0, 5:3/ −2:9 .−17:0, 3:4/ −3:9 .−19:0, 2:4/
Conditional (weak −15:0 .−21:0, −8:8/ −14:0 .−21:0, −7:4/ −12:0 .−19:0, −6:3/

pairwise exchangeability)
Conditional (asymmetry) −4:0 .−12:0, 4:2/ −5:7 .−15:0, 0:5/ −6:1 .−17:0, 0:0/

C Existing, ηY =1 23:0 .22:0, 24:0/ 26:0 .26:0, 28:0/ 29:0 .28:0, 29:0/
Existing, η̂Y −0:6 .−16:0, 14:0/ −0:1 .−18:0, 17:0/ 0:2 .−18:0, 18:0/
Conditional (weak −0:6 .−8:6, 5:3/ 0:6 .−13:0, 8:2/ 0:8 .−18:0, 9:8/

pairwise exchangeability)
D Existing, ηY =1 28:0 .27:0, 29:0/ 31:0 .30:0, 32:0/ 32:0 .32:0, 33:0/

Existing, η̂Y −1:9 .−15:0, 14:0/ −1:9 .−17:0, 16:0/ −2:2 .−18:0, 17:0/
Conditional (weak −0:6 .−10:0, 7:3/ −0:1 .−15:0, 9:2/ −0:1 .−25:0, 12:0/

pairwise exchangeability)

†The four distributions are listed in Section 6.2. The true return levels are, for distribution A, vp =8:6, 13.0, 17.9,
for distribution B, vp = 7:8, 12.4, 17.0, for distribution C, vp = 6:5, 9.7, 13.2, and, for distribution D, vp = 6:9,
10.2, 13.8, for p= 10−4, 10−6, 10−8 respectively. Four methods of estimation are used: the existing method with
ηY =1 and with ηY estimated, and the conditional method with weak pairwise exchangeability and asymmetry.

distributions. The existing method with ηY =1 grossly overestimates. The other two methods are

unbiased with the conditional approach generally having less variability. In Section 3.3 we noted

a discontinuity in the normalizing parameters as independence is approached. We extended the

above simulation study to assess the performance of the methods as these discontinuities are

approached. For distributions A and C, as α↑1, all methods perform similarly to the behaviour

shown in Table 2 with a small bias observed for the ηY =1 approach, and both of the other

two methods being unbiased with similar variances. In summary, these results suggest that the

general performance of the conditional method is good but that, when asymmetry is present,

the diagnostic procedures of Section 6.1 are vital for model selection.

6.2.2. Non-simultaneously extreme bivariate events

Now consider estimating quantiles of the distribution of Y2|Y1 > r for a given r, i.e. for a

given q we estimate v satisfying Pr.Y2 < v|Y1 > r/=q. Equivalently, we wish to estimate v

where C.v/= .r, ∞/× .−∞, v/, and Pr.Y1 > r/=p=q where p and q are given. Table 3 shows

summary characteristics of the sampling distribution of the relative error of the conditional

method for combinations of p and q. For p=10−4 and q=0:2, 0:5, 0:8 the respective true

values of r =7:6, 8:5, 9:0, and the corresponding values for v are 6.7, 8.8 and 10.5 for distribu-

tion A, 6.2, 7.8 and 9.8 for distribution B, 2.5, 4.4 and 6.7 for distribution C, and 2.1, 3.6 and

5.7 for distribution D. This illustrates that if q < 1 and the variables are asymptotically inde-

pendent the existing methods are inappropriate for estimating v as all elements of C.v/ are not

simultaneously extreme in each component. For each distribution, the estimators based on the

conditional approach have a larger variance than in Table 2, with the variability increasing as
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Table 3. Median (and 2:5 and 97:5 percentiles) of the estimated sampling distribution of relative errors of
vp for non-simultaneously extreme bivariate events†

Distribution (method) q Medians (and 2.5 and 97.5 percentiles) (× 100) for the
following values of p:

p=10−4 p=10−6 p=10−8

A (weak pairwise exchangeability) 0.2 −3:1 .−13, 2:7/ −4:7 .−15, 1:6/ −5:1 .−16, 1:0/
0.5 −2:0 .−9:4, 1:2/ −2:5 .−11, 0:8/ −2:6 .−12, 0:5/
0.8 −0:8 .−6:7, 3:8/ −0:9 .−7:8, 3:5/ −1:0 .−9:2, 2:9/

B (asymmetry) 0.2 −15 .−36, 0:7/ −17 .−43, −1:1/ −16 .−47, −2:0/
0.5 −11 .−25, −0:9/ −12 .−29, −1:9/ −12 .−32, −2:2/
0.8 −8:4 .−19, −0:3/ −9:1 .−21, −1:6/ −9:2 .−23, −1:6/

C (weak pairwise exchangeability) 0.2 6:7 .−17, 35/ 16 .−18, 58/ 25 .−19, 81/
0.5 3:1 .−15, 23/ 7:9 .−17, 36/ 13 .−19, 51/
0.8 0:5 .−18, 22/ 2:6 .−21, 32/ 5:5 .−20, 42/

D (weak pairwise exchangeability) 0.2 −4:4 .−37, 22/ 8:5 .−34, 45/ 17 .−32, 60/
0.5 −1:5 .−22, 22/ 4:4 .−23, 35/ 6:3 .−27, 44/
0.8 −1:3 .−25, 27/ −0:7 .−27, 33/ 0:2 .−29, 41/

†The four distributions are listed in Section 6.2. The conditional method is used with weak pairwise exchange-
ability or asymmetry.

q is decreased. Only for long-range extrapolations for distribution B is there a significant bias,

but even this is small. The relative errors are much the smallest for distribution A and grow as

we extrapolate for distributions C and D.

6.2.3. Multivariate events

To illustrate the performance of the conditional method in higher dimensional problems, we

consider the estimation of v when C.v/ = {y ∈ R
5 : Σ5

i=1yi > v} for distributions A and C. For

such sets, values of all the variables are equally influential and the set comprises regions of both

simultaneous and non-simultaneous extreme values of the components. Distribution A exhibits

asymptotic dependence without being asymptotically conditionally independent, whereas distri-

bution C is asymptotically independent and asymptotically conditionally independent. Because

of the symmetry of both dependence structures, in each case we fitted a model with aj|i =a and

bj|i =b for all i and j. The limit values of .a, b/ for distributions A and C are .1, 0/ and .0, 0:585/

respectively. We examined the observed components of the standardized residuals Z|i for each

Yi >uYi to see whether asymptotic conditional independence was a reasonable assumption. Our

findings agreed with the limiting properties, so we proceed to estimate vp assuming asymptotic

conditional independence for distribution C only. For distribution A we find that the median

(and 2.5 and 97.5 percentiles) (×100) of the estimated sampling distribution of relative errors

of vp are 4.4 .1:7, 7:6/ and 1.8 .−4:5, 6:8/ for p=10−4 and p=10−6 respectively. The same

quantities for distribution C are 0.1 .−6:6, 4:9/ and −0:1 .−10:0, 7:4/. The estimates are close

to the true values with increasing variability in relative error for longer-range extrapolation.

7. Air quality monitoring application

We now analyse the extremes of the five-dimensional air pollutant variable that was presented

in Section 1. The primary aim of this analysis is to study the underlying extremal dependence

structure of the variables. By identifying this structure we can assess whether the relationships
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between the extreme values of these variables conform with scientific understanding of the pro-

duction of and interaction between the pollutants and the climatic factor represented by season.

We measure the extremal dependence by estimating the individual model parameters and by

examining functionals of extremes of the joint distribution.

First we select the data to be analysed. The pollutants exhibit regular seasonal variation, which

we account for by focusing separately on two periods: winter (from November to February inclu-

sively) and early summer (from April to July inclusively) and treating the joint distribution of

the pollutants as stationary in each period. This proposal is supported by empirical evidence

and by knowledge of the seasonal behaviour of the variable (Photochemical Oxidants Review

Group, 1997). The measurements follow a diurnal cycle and exhibit marked short-term depen-

dence. By focusing on componentwise daily maxima of hourly means we remove this short-term

non-stationarity and substantially reduce temporal dependence. The residual serial dependence

is due, among other things, to short-term persistence of local atmospheric pressure systems.

We do not attempt to take this temporal dependence into account in this analysis. The data set

contains some large values on or around November 5th each year (fireworks night), which were

removed for the subsequent analysis. An exploratory analysis also revealed six data points with

excessive PM10-values (in excess of 200 µg m−3) during April 1997 and three winter points with

unusually large values of some functionals of (NO2, SO2, PM10). We performed the modelling

and inference stages of the following analysis including and excluding these large points, to

assess the sensitivity to their presence. The estimated dependence structures were not affected

by the removal of these outliers; however, marginal estimates were more physically self-consis-

tent when the points were left out. We report the analysis that was undertaken with the outliers

excluded; these outliers are omitted from the data plots in Figs 1 and 2.

We fit the marginal model (1.3), for each component and for each season. Table 4 shows

the resulting values of the threshold uXi , the threshold non-exceedance probability F̂Xi.uXi/,

the estimated generalized Pareto distribution parameters β̂i and ξ̂i, and the estimated marginal

0.99 quantiles x̂i.0:99/= F̂
−1
Xi

.0:99/ for each component and each season. The values of x̂i.0:99/

highlight differences in the marginal distributions of separate components within each season

Table 4. Summary of generalized Pareto models fitted to the marginal distributions of the air pollution data†

Season Parameter Results for the following pollutants:

O3 NO2 NO SO2 PM10

Summer uXi
43.0 66.1 43.0 22.0 46.0

F̂Xi
.uXi

/ 0.9 0.7 0.7 0.85 0.7

β̂i 15.8 (3.1) 9.1 (1.0) 32.2 (3.5) 42.9 (7.0) 22.8 (2.5)

ξ̂i −0.29 (0.14) 0.01 (0.08) 0.02 (0.07) 0.08 (0.12) 0.02 (0.08)
x̂i.0:99/ 70 (2) 75 (3) 180 (10) 152 (16) 127 (8)

Winter uXi
28.0 151.6 49.0 23.0 53.0

F̂Xi
.uXi

/ 0.7 0.7 0.7 0.7 0.7

β̂i 6.2 (0.7) 9.3 (0.9) 117.4 (13.1) 19.7 (2.4) 37.5 (4.2)

ξ̂i −0.37 (0.06) −0.03 (0.08) −0.09 (0.08) 0.11 (0.09) −0.20 (0.07)
x̂i.0:99/ 40 (1) 80 (3) 494 (30) 104 (10) 145 (6)

†Thresholds used for marginal modelling are denoted uXi
; the associated non-exceedance probabilities are

F̂Xi
.uXi

/; estimated scale β̂i and shape ξ̂i parameters; estimated 0.99 quantiles x̂i.0:99/. Bootstrap-based stand-
ard errors are given in parentheses.
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and of the same component over seasons, with O3 and NO exhibiting the largest statistically

significant variation over seasons. Though ξ̂i differ over components, the stability of the

ξ̂i-values for each component over season suggests that seasonality primarily affects the variance

of the components rather than the shape of their distributions.

Let us now consider the dependence model, applied to the data after transformation to Gum-

bel margins by using transformation (1.4). We model each season separately, initially consid-

ering the most general model consisting of a set of five conditional models with no constraints

between the different conditional distributions, so θ consists of 80 unconstrained dependence

parameters.

The first modelling choice to be made is that of the dependence threshold to be used to fit

the conditional model (4.1). For simplicity we restrict the search for the dependence thresholds

to values of uYi =u for all i. Of the diagnostics that are discussed in Section 4.4, we found that

those assessing the stability of the θ̂-values and the independence tests were the most revealing

in this application. A dependence threshold u such that Pr.Yi < u/= 0:7 was supported by the

diagnostics, although there appeared to be limited sensitivity to this choice. The resulting .â|i, b̂|i/
values, and the sampling distributions of pairs .âj|i, b̂j|i/ for all i �= j, are shown for the summer

and winter seasons in Fig. 5. In particular, the pairwise sampling distributions are shown by

the convex hull of 100 bootstrap realizations from the sampling distribution of θ̂. Plots of this

type were used to assess the stability of θ̂ to the choice of threshold. Significant shifts in the

region that is encompassed by the convex hull indicate sensitivity of parameter estimates to the

choice of threshold. An appropriate threshold should have the property that raising the thresh-

old higher does not result in any significant shifts once the increased variability of estimates

made by using higher thresholds is accounted for. The minimum such appropriate threshold is

selected for efficiency purposes.

Having decided on a dependence threshold, we consider possible simplifications to the esti-

mated dependence structure. From Fig. 5 and plots of the data with Gumbel marginals (Fig. 2),

it is clear that there are significant differences in levels of extremal dependence between different

pairs of variables. Fig. 5 shows that, for each season, there are pairs of variables for which the

bivariate sampling distributions of .âi|j, b̂i|j/ and .âj|i, b̂j|i/ differ significantly, as the convex

hulls do not intersect. For example, Fig. 5 shows that in summer (PM10, O3) and (SO2, NO) and

in winter (SO2, NO2) and (SO2, NO) do not exhibit weak pairwise exchangeability. This finding

indicates that a global weakly pairwise exchangeable dependence structure is inappropriate for

these data, a conclusion which is supported in the winter period by a complete lack of stability

in θ̂ over all dependence threshold choices for the global weakly pairwise exchangeable model.

Though for some pairs of pollutants there is no evidence to reject weak pairwise exchangeabil-

ity, in the absence of more detailed knowledge about the process we do not attempt to identify

subsets of pairs for which we may assume a simplified pairwise dependence model. Finally,

we consider whether the Z|i are independent for any i, i.e. whether we can assume asymptotic

conditional independence between the margins of the residual distribution G|i. Scatterplots

of pairs of components of Z|i for each i confirm that this assumption is inappropriate. Test-

ing for asymptotic conditional independence between pairs of variables revealed that, for the

summer data, SO2 and O3 are asymptotically conditionally independent given any other vari-

able, although these two variables are not unconditionally independent. The same conclusion

can be drawn for winter NO2 and O3 levels.

Fig. 5 also shows substantial differences between the dependence parameter estimates that are

obtained for the summer and winter data sets. All pairs which have O3 as one component exhibit

stronger dependence in the summer period than in the winter period, whereas for other pairs

the dependence is either of similar strength or weaker in summer than in winter. The strongest
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Fig. 5. Comparison of dependence parameter estimates .âijj , b̂ijj / for (a) (NO2, O3), (b) (NO, O3), (c)
(SO2, O3), (d) (PM10, O3), (e) (NO, NO2), (f) (SO2, NO2), (g) (PM10, NO2), (h) (SO2, NO), (i) (PM10, NO)
and (j) (PM10, SO2), using a dependence threshold equal to the 70% marginal quantile: for i and j in the
same order as the variables in the descriptor for each part of the figure, bootstrap convex hulls were used
for .âijj , b̂ijj / ( , summer; , winter) and for .âj ji, b̂j ji/ (. . . . . . ., summer; - - - - - - -, winter) (associated
point estimates: s, summer; w, winter)

dependence between any pair occurs in the winter between all the pairs of the triple (NO, NO2,

PM10), with reasonable evidence that these variables are asymptotically dependent. No other

pairs of variables exhibit asymptotic dependence in either season.

For non-positively associated variables, estimates of .cj|i, dj|i/ (not shown) reveal the degree of

dependence. In the summer, the only such conditional distribution is that of NO given extreme

SO2, although with the conditioning reversed these variables are clearly positively dependent.

In winter, SO2 and PM10 are both negatively dependent on high O3 values, whereas NO2 and

NO appear to be independent of O3 when O3 is extreme. Conversely, in winter O3 is negatively

associated with extreme NO2, NO and SO2. Negative dependence is also identified for all winter
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Fig. 5 (continued )

variables given that SO2 is extreme, with the exception of PM10 which appears to be independent

of extreme SO2.

These findings are consistent with the current understanding of urban pollution patterns.

In winter, air pollution episodes typically occur when cold, stable weather conditions trap

pollutants, allowing levels to build. Since the majority of such pollution derives from vehicle

emissions, winter episodes consist of simultaneously elevated levels of nitrogen and sulphur

compounds and particulate matter. Conversely, since the production of excessive O3 needs

strong sunlight, O3 levels generally remain at relatively low levels during the winter months

regardless of the presence of other pollutants. In the absence of strong sunlight, O3 levels are

negatively associated with high presences of nitrogen compounds as O3 reacts destructively with

NO. The stronger dependence that is observed between O3 and the other variables during the

summer supports the existing understanding of the photochemical processes that produce exces-

sive O3 levels during summer smog. Temperature inversions and low winds that accompany high

pressure systems trap vehicle emissions, which are then exposed to long hours of sunshine. Thus

high levels of O3 accompany elevated levels of the other pollutants (Photochemical Oxidants

Review Group, 1997; Colls, 2002; Housley and Richards, 2001).

To illustrate the implications of both the different levels of dependence between the pairs

and the different marginal distributions, in Fig. 6 we show pseudosamples, on the measured

scale, from the conditional distribution of the remaining variables given that NO exceeds a

high threshold. On each pairwise plot the curve corresponds to equal marginal quantiles. The

near asymptotic dependence of both NO2 and PM10 on NO is clearly seen by the grouping of

simulated points around this curve. The NO2 points are more scattered than the PM10 points

for large NO values as b̂j|i are positive and negative respectively. Similarly, O3 is seen to be
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Fig. 6. Simulated winter air pollution points conditional on the NO component exceeding vXi
, the 0.99 mar-

ginal quantile of this variable: j, threshold vXi
(points below and above this threshold are the original data and

data simulated under the fitted model respectively); C, points that do not fall in the set C5.23/; ı, points that
fall in the set C5.23/; , 10 points with the largest values of Σ

5
iD1yi ; , equal marginal quantiles

negatively dependent on NO whereas SO2 is dependent but asymptotically independent of NO.

The effect of the negative b̂j|i for SO2|NO is the increasing concentration of this conditional

distribution for larger NO values.

We now focus on estimating a range of functionals of the joint tails of X. Coles and Tawn

(1994) discussed several benefits of the multivariate approach (the joint probability method)

over the univariate approach (the structure variable method). We see the major advantage of

the former being the self-consistency of the resulting estimates of any such functionals; this

is particularly important here where we illustrate a range of functionals for which no single

structure variable approach could have been used.
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Table 5. Empirical and model-based estimates of conditional expectations of the air pollution
variables given values of NO in excess of a range of quantiles of that variable†

Xj Season E(Xj), empirical E{Xj |Xi >xi(0.95)} E{Xj |Xi >xi(0.99)},
model based

Empirical Model based

O3 Winter 20.0 (0.5) 8.8 (1.4) 10.3 (1.1) 8.3 (1.2)
Summer 32.0 (0.4) 35.9 (3.0) 34.4 (2.4) 39.6 (4.3)

NO2 Winter 44.2 (0.5) 67.2 (2.5) 65.1 (2.2) 75.4 (4.4)
Summer 37.6 (0.5) 57.5 (2.6) 54.6 (2.4) 62.2 (4.3)

NO Winter 135.5 (4.4) 454.0 (13.0) 431.5 (23.2) 569.9 (45.2)
Summer 55.2 (1.5) 161.2 (7.2) 157.6 (8.2) 213.5 (17.5)

SO2 Winter 21.0 (0.9) 38.4 (3.7) 35.6 (4.0) 44.6 (6.7)
Summer 17.4 (1.2) 36.6 (11.3) 36.9 (5.4) 48.5 (11.8)

PM10 Winter 48.4 (1.2) 105.8 (5.2) 105.0 (4.7) 132.3 (8.2)
Summer 41.1 (1.0) 72.9 (5.2) 66.3 (4.5) 83.7 (7.9)

†Standard errors are given in parentheses. Variable Xi is NO throughout.

We first turn to the estimation of the conditional expectation of each component given that

NO exceeds a particular level. These estimates reflect both the marginal and the dependence

features of the air pollution variables. Fig. 6 shows pseudosamples from the conditional distri-

bution of each variable given that NO exceeds its 0.99 marginal quantile. Table 5 shows esti-

mated expectations for each variable conditional on the NO level exceeding various thresholds.

When we condition on NO exceeding its 0.95 quantile, empirical estimates of this functional

are sufficiently reliable to be compared with the model-based estimates and these are seen to be

consistent. Conditional expectations of each variable increase as we move to higher quantiles

of NO, with the exception of winter O3, the only variable to exhibit negative association with

large NO values.

We now concentrate on the estimation of return levels of linear combinations of variables on

the Gumbel marginal scale. This choice of functional is made to emphasize the effect of depen-

dence on extreme combinations. We focus on subvectors of Y of size m=2, . . . , d, indexed

by M⊆{1, . . . , d} with associated multidimensional sets Cm.v/={y ∈R
m :Σi∈Myi > v} and

we report estimated return levels vp as defined in equation (6.1). This choice of set allows an

exploration of extremal dependence in parts of the space in which not all the variables are simul-

taneously extreme. To gain insight about combinations of the pollutants that fall in the set C5.v/

for large v, in Fig. 6 we highlight the simulated points with NO exceeding its 0.99 quantile that

fall in C5.23/ and indicate which of these have the largest values of Σ
5
i=1yi. Simulated points in

C5.23/ tend not to have particularly large values of O3 but do occur with moderate SO2 values

and extreme values of NO2 and PM10. The strong dependence between (NO, NO2, PM10) leads

to the largest values in C5.23/ occurring when any one of these variables is extreme.

Fig. 7 shows empirical and model-based return level estimates for Cm.v/ for M corresponding

to (O3, NO2) and (NO2, SO2, PM10). Return levels calculated under independence and perfect

dependence are also marked. For the pair (O3, NO2) the C2.11/ set is shown after transforma-

tion to the original margins in Fig. 1. High levels of O3 and NO2 are associated with summer

photochemical smog. Empirical return level estimates show that stronger dependence between

these variables during the summer leads to elevated return levels. Model-based return levels agree

closely with the empirical values and show that this seasonal difference is statistically significant

as the confidence intervals for the return levels are separated. The estimated return levels for
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Fig. 7. Return level estimates for the set Cm.v/, for M corresponding to (a) (O3, NO2) and (b) (NO2, SO2,
PM10): , point estimates for summer; - - - - - - - , point estimates for winter variables; , pointwise 95%
confidence intervals (which overlap in (b)); ı, empirical points for summer; �, empirical points for winter;

, return levels calculated under perfect dependence (upper) and exact independence (lower)

the winter (O3, NO2) lie significantly below the independence curve, highlighting the negative

dependence between these variables during the winter. Elevated levels of all three components

of (NO2, SO2, PM10) are associated with winter urban air pollution episodes and correspond-

ingly we see larger return levels in winter, indicating stronger dependence between these three

variables in this season, although this effect is not significant as the confidence intervals overlap.

Both Fig. 7(a) and Fig. 7(b) show excellent agreement between the model-based return level

estimates and the empirical estimates, illustrating the good fit of our dependence model.

8. Theoretical examples

We now derive the limiting conditional characteristics that were identified in Section 3 for a

range of theoretical examples including those summarized in Table 1. Where possible, results

are given for a d-dimensional random variable Y, and in a few special cases for bivariate Y only.

First we give the precise form of the multivariate extreme value distribution which plays a

key role in the examples that are given in this section. A d-dimensional random variable Y with

standard Gumbel margins has a multivariate extreme value distribution if its joint distribution

function can be expressed as (Pickands, 1981)

Pr.Y< y/= exp[−V .d/{exp.y/}] .8:1/

where V .d/, termed the exponent measure, is given by

V .d/.y/=d

∫

Sd−1

max
1�j�d

.wjy−1
j / dH .d/.w/, .8:2/

where H .d/ is the distribution function of an arbitrary random variable on the .d −1/-dimensional

unit simplex

Sd−1 =
{

w = .w1, . . . , wd−1/ :
d−1
∑

j=1

wj �1, wj �0 : j =1, . . . , d −1
}

satisfying the marginal moment constraint
∫

Sd−1

wj dH .d/.w/=d−1 for each j =1, . . . , d, .8:3/
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and wd =1− .w1 + . . . +wd−1/. We refer to a multivariate extreme distribution as having mass

on the boundary if H .d/ places mass on the boundary of Sd−1. We denote by mj|i the mass

on the boundary of Sd−1 for which wj =0 and wi > 0 and let Mi ={j : mj|i > 0; j �= i} and

M̄i ={1, . . . , d}\.Mi ∪{i}/. The density of H .d/ on the interior of Sd−1 is denoted by h.d/ when

it exists. Some parametric examples of V .d/ are given now.

8.1. Multivariate exchangeable logistic distribution

Gumbel (1960) introduced the multivariate exchangeable logistic distribution with

V .d/.y/=
(

d
∑

j=1

y
−1=α
j

)α

, .8:4/

for any d �2 and 0 <α�1. Independence is given by α=1 and perfect positive dependence in

the limit as α→0. There is no mass on the boundary of Sd−1 for 0 <α< 1.

8.2. Multivariate asymmetric logistic distribution

The multivariate asymmetric logistic dependence structure given by Tawn (1990) has

V .d/.y/=
∑

K∈S

{

∑

j∈K

(

θj,K

yj

)1=αK
}αK

, .8:5/

where K is an index variable over the power set S of {1, . . . , d}, 0 <αK �1 for all K ∈ S and

0� θj,K �1 for j =1, . . . , d. Further conditions on θj,K are that θj,K =0 if j �∈K or if Πk∈K θk,K =
0 and that ΣK∈S θj,K =1 for all j. Similarly, for identifiability, αK =1 when |K|=1. If, for any

K, there exists j ∈K with θj,K >0 then there is positive association between the elements of YK,

where YK is the subvector of Y made up of the variables that are indexed by the elements of

set K. For this example mj|i =ΣK∈S.j/\S.i/ θj,K where S.i/ denotes the subclass of S, all of whose

members contain i.

8.3. Bivariate discrete measure

Ledford and Tawn (1998) defined the distribution for which H .2/, satisfying constraint (8.3),

places m atoms of mass λ1, . . . , λm at points w1, . . . , wm on the interior of S1:

H .2/.w/=
m
∑

i=1

λi I.w �wi/,

where I is the indicator function. For such H .2/,

V .2/.y/=
1

y1

(

1−2
∑

i:wi�wÅ

wiλi

)

+
2

y2

∑

i:wi�wÅ

.1−wi/λi,

where wÅ =y1=.y1 +y2/. There is no mass on the boundary of S1.

8.4. Multivariate extreme value distribution

For Pr.Y < y/ given by equation (8.1), the conditional distribution function of Y−i|Yi =yi is

Pr.Y−i < y−i|Yi =yi/=−exp[−V .d/{exp.y/}]V
.d/
:i {exp.y/} exp{2yi + exp.−yi/},

where V
.d/
:i .y/ is the derivative of V .d/.y/ with respect to yi. If H .d/ places any mass on the subset

of Sd−1 for which wiwj > 0 then ηij =1; otherwise ηij = 1
2

. If mj|i =0 there is a unique nor-

malization but if 0 < mj|i < 1 there are two normalizations that give non-degenerate Gj|i.zj|i/.
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Let Zj|i = Yj − aj|iyi; then there are non-degenerate limits for aj|i = 0 if mj|i > 0 and aj|i = 1

irrespective of mj|i, with the combined limit being

Gj|i.zj|i/=mj|i[exp{−exp.−zj|i/}]I.aj|i=0/ + I.aj|i =1/ lim
s→∞

.−V
.d/
:i [exp{z.0, i/}]|zk|i=s:k �=i,j/

for −∞<zj|i <∞ and where z.0, i/= .z1|i, . . . , zi−1|i, 0, zi+1|i, . . . , zd|i/. Thus Gj|i has mass 1−
mj|i at zj|i =∞ if aj|i = 0 or mass mj|i at zj|i =−∞ if aj|i =1. This may appear to contradict

the uniqueness properties, up to type, of the normalization and limit law that was discussed

in Section 3.2. However, only one of these non-degenerate limits has no mass at ∞, so we are

interested in only one of these limits. When mj|i = 0 for all j �= i, the limiting joint conditional

distribution of Z|i is

G|i.z|i/=−V
.d/
:i [exp{z.0, i/}]:

We illustrate these limit properties with the three examples above. For the exchangeable logistic

distribution, normalization Z|i =Y−i −yi gives

G|i.z|i/=
{

1+
∑

j �=i

exp
(

−
zj|i
α

)

}α−1

:

For the asymmetric logistic distribution, mj|i is given above and

lim
s→∞

.−V
.d/
:i [exp{z.0, i/}]

∣

∣

zk|i=s:k �=i,j
/=

∑

K∈S.i/∩S.j/

[{

θ
1=αK

j,K exp

(

−
zj|i
αK

)}

+θ
1=αK

i,K

]αK−1

θ
1=αK

i,K :

For the bivariate discrete measure dependence structure, setting Z|i =Y−i −yi yields

Gj|i.zj|i/=











1−2
∑

wk�wÅ
j|i

λkwk, if i=1,

2
∑

wk�wÅ
j|i

λk.1−wk/, if i=2,

where wÅ
j|i =1={1+ exp.zj|i/} when i=1 and wÅ

j|i =1={1+ exp.−zj|i/} when i=2.

8.5. Inverted multivariate extreme value distribution

Ledford and Tawn (1997) examined the inverted bivariate extreme value distribution, which we

extend here to the multivariate case. For V .d/ defined in equation (8.2), the survivor function of

this multivariate distribution is given by

Pr.Y > y/= exp{−V .d/.−1= log[1− exp{−exp.−y/}]/}:

For this distribution ηij =1= lims→∞{V .d/.y/
∣

∣

yi=yj=1;yk=s∀k �=i,j
}. Assuming that the Yj grow

with Yi, then, as yi →∞,

Pr.Y−i > y−i|Yi =yi/≈−exp{yi −V .d/.y−1/}V
.d/
:i .y−1/=y2

i :

Further simplification is not possible without more information about the shape of H .d/ around

wi =0. We first consider the bivariate case where all the mass of H .2/ is in the interior of S1

and the measure density satisfies h.2/.wi/∼ siw
ti
i as w1 →0 and w2 →1 for 0 < si and −1 < ti

for i = 1, 2. The transformation Zj|i = Yj=y
bj|i
i where bj|i = .ti + 1/=.ti + 2/ gives the following

limiting survivor function of variable Zj|i:
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Ḡj|i.zj|i/= exp

{

−
siz

ti+2
j|i

.ti +1/.ti +2/

}

:

Thus the limiting distribution of Zj|i is Weibull.

We now consider the logistic examples. When V .d/ is of exchangeable logistic form, ηij =2−α.

Using normalization Z|i = Y−i=y
b|i
i , where bj|i = 1 −α for all j �= i, gives the limiting survivor

function of the variable Z|i:

Ḡ|i.z|i/=
∏

j �=i

exp.−αz
1=α
j|i /; .8:6/

hence the Z|i are asymptotically conditionally independent Weibull variables. Although not in

the multivariate extreme class of distributions, the inverted multivariate Crowder distribution

(Crowder, 1989) has the same ηij as the inverted multivariate extreme value distribution with

exchangeable logistic dependence structure and the same values of a|i and b|i with Ḡ|i.z|i/ as in

equation (8.6).

When V .d/ is of asymmetric logistic form, ηij =1=ΣK∈S.θ
1=αK

i,K +θ
1=αK

j,K /αK . Let Zj|i =Yj=y
bj|i
i ;

then bj|i = I.j ∈ M̄i/.1−α.ij// gives non-degenerate Gj|i.zj|i/ where α.ij/ = max.αK : K ∈S.i/ ∩
S.j//. Let K.ij/ be the set of {K :K ∈S.i/ ∩S.j/ &αK =α.ij/}. Under this normalization, the joint

survivor function for the Z|i is

Ḡ|i.z|i/=
∏

j∈M̄i

exp.−α.ij/Aijz
1=α.ij/

j|i /

× exp
(

∑

K∈S\C.i/

[

∑

j∈K∩Mi

{θj,K.−log[1− exp{exp.−zj|i/}]/}1=αK

]αK
)

,

where Aij =ΣK∈K.ij/θi,K.θj,K=θi,K/1=α.ij/
. Thus the variables in set �Mi are asymptotically condi-

tionally independent whereas the variables in Mi are not. Variables in set Mi are asymptotically

conditionally independent of those in set �Mi.

8.6. Multivariate normal distribution

Let V be a d-dimensional random variable, distributed as a standard multivariate normal ran-

dom variable, with correlation matrix Σ. Let Y represent V after transformation to Gumbel

marginal distributions, via marginal transformations:

Y =−log[−log{Φ.V/}], .8:7/

where Φ is the standard normal distribution function. The pairwise coefficient of tail dependence

for this distribution is ηij = .1+ρij/=2. We use Mill’s ratio to approximate transformation (8.7)

for large positive (or negative) components v and y of v and y to give

v≈
{√

.2y/−{log.y/+ log.4π/}=2.2y/1=2 for large positive y,

−
√

2 exp.−y=2/+ exp.y=2/{log.4π/−y}=
√

2 for large negative y,
.8:8/

and

y ≈
{

log.v/+ log.2π/=2+v2=2 for large positive v,

− log
{

log.2π/=2+v2=2+ log.−v/
}

for large negative v.
.8:9/
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The normalization that is used to give a non-degenerate limit for Z|i is

Zj|i =
{

.Yj −ρ2
ijyi/=y

1=2
i for ρij > 0,

{Yj + log.ρ2
ijyi/}=y

−1=2
i for ρij < 0.

To determine the limiting distribution of Z|i we use the property that the event Z|i � z|i|Yi =
yi for large yi can be approximated by the event V−i � v−i|Vi =vi for large vi where vi =
Φ

−1[exp{−exp.−yi/}] and v−i has elements vj|i which using expressions (8.8) and (8.9) are

found to satisfy

vj|i ∼ρijvi + zj|i|ρij|−sgn.ρij/=
√

2:

The conditional distribution of V−i|Vi = vi is .d − 1/-dimensional multivariate normal with

mean vector ρ−ivi and covariance matrix Σ−i −ρT
−iρ−i, where ρ−i is the ith column of Σ with

ith element omitted and Σ−i is Σ with ith row and ith column omitted. Hence it follows that

the Z|i are jointly .d −1/-dimensional multivariate normal with mean 0 and covariance matrix

S.Σ−i −ρT
−iρ−i/S, where S is the diagonal matrix with diagonal

√
2|ρ−i|sgn.ρ−i/.

8.7. Multivariate Morgenstern distribution

The bivariate Morgenstern distribution is stated in Joe (1997), page 149. A multivariate exten-

sion of this distribution is given by

Pr.Y < y/=
d
∏

j=1

exp{−exp.−yj/}.1+α
d
∏

j=1

[1− exp{−exp.−yj/}]/,

for −1 �α� 1. Independence is given by α= 0. Negative and positive dependence are respec-

tively given by α< 0 and α> 0. Perfect positive or negative dependence is not attainable under

this model. For this distribution, ηij = 1
2

. Taking Z|i =Y−i gives

G|i.z|i/=
∏

j �=i

exp{−exp.−zj|i/}.1−α
∏

j �=i

[1− exp{− exp.−zj|i/}]/,

so Z|i is distributed as a .d − 1/-dimensional Morgenstern random variable with the sign of

parameter α reversed. For positively and negatively dependent Y, the Z|i are respectively nega-

tively and positively dependent. For d �3 the marginal distributions of the Z|i are Gumbel and

all margins of dimension less than d − 1 are mutually independent. In contrast, for d = 2, Gj|i
is a mixture of Gumbel distributions.
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Appendix A: Proof of theorem 1

Non-degeneracy of each marginal distribution of the limiting conditional distribution (3.1) requires that

Fj|i{aj|i.yi/+bj|i.yi/zj|i|yi}→Gj|i.zj|i/ as yi →∞, .A:1/
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where Gj|i is the jth marginal distribution of G|i. Putting zj|i = 0 in equation (A.1) gives the required
condition for aj|i.yi/. The limit relationship (A.1) holds for all zj|i, because Y has an absolutely continuous
density, so the limit relationship continues to hold when differentiated with respect to zj|i. Dividing the
resulting limit relationship by 1−Fj|i gives

bj|i.yi/
fj|i{aj|i.yi/+bj|i.yi/zj|i|yi}

1−Fj|i{aj|i.yi/+bj|i.yi/zj|i|yi}
→

gj|i.zj|i/

1−Gj|i.zj|i/
, .A:2/

where

gj|i.zj|i/=
@

@zj|i
Gj|i.zj|i/:

Putting zj|i =0 in equation (A.2) we see that up to proportionality

bj|i.yi/=hj|i{aj|i.yi/|yi}
−1,

which gives the required result up to type.
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Discussion on the paper by Heffernan and Tawn

Richard L. Smith (University of North Carolina, Chapel Hill)
The original formulation of multivariate extreme value theory was

lim
n→∞

(

Pr

[

max{X11, . . . , Xn1}−bn1

an1

�x1, . . . ,
max{X1d , . . . , Xnd}−bnd

and

�xd

])

=G.x1, . . . , xd/, .1/

where .Xi1, . . . , Xid/, i = 1, 2, . . . , are independent identically distributed d-dimensional random vectors,
an1, . . . , and and bn1, . . . , bnd are normalizing constants and G is a non-degenerate d-dimensional distribu-
tion function.

I do not know who first proposed this definition, but it emerged in several papers in the 1950s, during
what might be called the golden age of asymptotic distributions in probability. As such, it seems to have
been motivated more by considerations of mathematical elegance than by messy practical problems such
as controlling air pollution. In retrospect, it seems surprising that this original formulation survived so
long.


