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ABSTRACT

This paper introduces a conditional Kolmogorov test of model specification for parametric
models with covariates (regressors). The test is an extension of the Kolmogorov test of goodness-
of-fit for distribution functions. The test is shown to have power against 1/1/n local alternatives
and all fixed alternatives to the null hypothesis. A parametric bootstrap procedure is used to

obtain critical values for the test.
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1. INTRODUCTION

This paper introduces a specification test for parametric models for independent observations.
The null hypothesis of interest is that the parametric model is correctly specified. The alternative
hypothesis is that the parametric model is incorrectly specified. The parametric model we consider
is one that specifies the conditional distribution of a vector Y; € RV of response variables given a
vector X; € RK of covariates (regressors). The distribution of the covariates is not specified by
the parametric model. Many models used in micro-econometric and biometric applications are
of this type. For example, see Maddala (1983) and McCullagh and Nelder (1983) for numerous
models of this sort.

The test we consider is a generalization of the Kolmogorov (K) test (sometimes called the
Kolmogorov—Smirnov test) of goodness-of-fit. We call the test a conditional Kolmogorov (CK)
test, because it is designed for parametric models for the conditional distribution of Y; given X;.
The CK test has the following attributes. It is (i) consistent against all alternatives to the null
hypothesis Ho, (ii) powerful against 1/4/n local alternatives to Hyg, and (iii) not dependent on
any smoothing parameters.

The antecedents to the CK test are numerous. Kolmogorov (1933) introduced the K test for
testing whether an independent and identically distributed (iid) sample of random variables (rv’s)
comes from a given continuous univariate distribution function (df) F. Smirnov (1939) extended
the K test to two sample problems for which the null hypothesis is that the two samples are drawn
from the same continuous univariate distribution. Doob (1949) provided an illuminating heuristic
proof of the asymptotic null distributions of Kolmogorov’s and Smirnov’s test statistics based
on the weak convergence of the empirical df. Donsker (1952) closed a gap in Doob’s proof by
establishing the first empirical process central limit theorem (CLT'), often referred to as Donsker’s
Theorem. Durbin (1973a, b) established the asymptotic null distribution of K tests for parametric
families of univariate continuous distributions in which a parameter vector is estimated. Pollard
(1984) extended Durbin’s results to univariate distributions that are not necessarily continuous.

Beran and Millar (1989) considered K tests for parametric families of multivariate distributions



— not necessarily continuous — in which a parameter vector is estimated. They introduced a
bootstrap method for obtaining critical values.

The present paper extends the results above by considering a K test for parametric models
that specify a parametric family for the conditional distribution of a (possibly multivariate, pos-
sibly non-continuous) response variable given a (possibly multivariate, possibly non-continuous)
covariate.

The testing problem considered here is also considered by Zheng (1993, 1994) and Stinchcombe
and White (1993). None of their tests is of the Kolmogorov type. Zheng’s tests are consistent
against all alternatives to the null, but are not powerful against 1/,/n local alternatives and are
dependent on smoothing parameters. Stinchcombe and White’s tests do not suffer from the latter
problems, but they rely on either the law of the iterated logarithm to obtain an upper bound on
the asymptotic critical value, which seems overly conservative, or the simulation of the supremum
or integral of a Gaussian process indexed by a multidimensional parameter, which can be difficult
to carry out. (The use of the nonparametric bootstrap, which is mentioned by Stinchcombe and
White as another way of obtaining critical values, is problematic because it yields tests with no
power.) The CK test avoids the above problems by using a parametric bootstrap procedure to
obtain critical values.

The bulk of the econometrics literature on consistent tests, e.g., see Bierens (1990), considers
tests of the specification of a parametric regression function. The present paper differs from this
literature in that it considers tests of the specification of a wide variety of conditional parametric
models.

The remainder of the paper is organized as follows. The conditional Kolmogorov test is intro-
duced in Section 2. The asymptotic null distribution of the test statistic is established in Section
3. A parametric bootstrap procedure for obtaining critical values and p-values is introduced and
justified asymptotically in Section 4. Consistency of the test is established in Section 5. The
power of the test against 1/4/n local alternatives and its asymptotic local unbiasedness are shown

in Section 6. An Appendix contains proofs of results stated in the text.



All limits below are as n — oo.

2. DEFINITION OF THE CONDITIONAL KOLMOGOROV TEST
The observed sample consists of the n rv’s {Z; : i < n}, where Z; = (Y/, X!) € RV*X. We

assume the sample comes from a sequence of rv’s that satisfies:

AsSUMPTION D: {Z; : i > 1} areiid with conditional df H(:|X;) of Y; given X; and marginal df

G(-) of X;.

(See the Appendix for results that are applicable to the case of independent non-identically dis-
tributed (inid) rv’s.)

The parametric model considered here consists of a parametric family of conditional distri-
butions of the response variable Y; given the covariate X;. In particular, the parametric family
is
(2.1) {f(ylz,0) : 6O},
where f(y|z, 8) is a density with respect to a o—finite measure y and © C RY is the parameter
space. Since u need not be Lebesgue measure, Y; may be discrete, continuous, or mixed.

The parametric conditional df of Y; given X; = z is denoted

(22) F(ylz, 0) = / (4" < V)F(v"]z, 0)du(y")

for y € RV, z € RX, and 0 € ©. Here, (y* < y) denotes the indicator function of the event
y* < y. That is, (y* < y) = 1if y* <y and (y* < y) = 0 otherwise.

The null hypothesis of interest is
(2.3) Hy : H(:|')= F(-|-,0) for some § €O .

The alternative hypothesis H; of interest is the negation of Ho.

We now define the CK test statistic. Let H,(z) denote the empirical df of {Z; : i < n}:

(2.4) Ho(2)= 137" (Z: < z) for z€ RV*K .

n



Let G,(-) denote the empirical df of {X; : i < n}:
(2.5) Ga(z)= 137 (X; < z) for z€ RK .

Let 8 be an estimator of . When Hy is true, we let 6 denote the true value of §. Below we
assume that under Ho, fisa \/n—-consistent estimator of 6.
Let F,(z, 6) denote the semi-parametric/semi-empirical df of {Z; : ¢ < n} based on the

parametric conditional df F(-|-,6) and the empirical df Gn(-):
(2.6) Fa(2,0) = LT, F(y1X:, 6)(X: < 2) for 2= (¢, ') € RVFK.

Note that under the null hypothesis E(H,(z)|X) = Fu(2, 60) V2 € RV+K, where E(-|X)
denotes conditional expectation given {X; : ¢ > 1}. On the other hand, under the alternative
hypothesis, E(H,(z)|X) # F.(z,0) for some z € RV+K for n large, for all § € © (see Section
5 below). Hence, one can construct a model specification test based on the difference between
H,(-) and Fy(-,9).

Define the CK test statistic as

(2.7) CK,

vamax| ,(2;) - Fu(Z;, 9)

max
isn

I LY < V) - F(Y;1X:, 0)](X: < X)) -

Note that CK, differs from a traditional K test statistic in two ways. First, it is not based
on the difference between an empirical df and a parametric df, as K statistics are. Rather, it is
based on the difference between the empirical df fln() and the semi-parametric/semi-empirical
df f’n(-, 5) The reason, of course, is that the parametric model does not specify the df of Z; up
to an unknown parameter. It only specifies the conditional df of Y; given X; up to an unknown
parameter.

Second, the C K, statistic is not defined by taking the supremum over all points z in RV+K
as K statistics are. Rather, CK, is defined by taking the maximum over points z in the sample
{Z; : i < n}. The reason for defining CK,, in this way is computational. Maximizing a statistic
over an unbounded high dimensional space is very difficult and time consuming. Maximizing over

z € {Z; : i < n} is straightforward and not very time consuming unless n is quite large.



The asymptotic null distribution of CK,, is determined in Section 3 below. It turns out to
depend on 6 as well as the df G(-) of the covariates. In consequence, we obtain critical values
and p—values for the C K, statistic by a parametric bootstrap procedure. This procedure and its
properties are discussed in Section 4 below. For now, let comB(’O\) denote the bootstrap critical
value for significance level a € (0,1), where B denotes the number of bootstrap repetitions. The
CK,, test rejects Hp if

(2.8) CKn > canp(8) .

As defined, the C K, test depends on the signs of the elements of the rv’s Z; = (Y/, X/)’. That
is, if one changes the j-th element, Z;;, of Z; to —Z;; for all : = 1, ..., n, then the value of the
CK test statistic changes in general. To obtain a sign invariant CK test statistic, one can define
CK, as in (2.7) for each of the possible sign permutations of the rv’s {Z; : i < n} and define
the sign invariant CK test statistic to be the maximum of these statistics. The resultant CK,
test statistic is sign invariant, though it is more burdensome computationally than the statistic
of (2.7). The sign invariant CK statistic can be analyzed in exactly the same way as the statistic
of (2.7) with some increase in notational complexity. Its asymptotic properties are analogous to
those established below for the statistic of (2.7). For simplicity, then, we only consider formally
the statistic of (2.7) below, though it may be desirable to use the sign invariant statistic in many
applications.

We note that the C K, statistic of (2.7) depends on the ordering of the values that any given
element of Z; can take on. In some cases, this is undesirable. For example, in a trinary discrete
response model, suppose Y; equals 0, 1, or 2 if individual i takes the car, bus, or train respectively.
Then, the arbitrary ordering of (car, bus, train) as (0, 1, 2) affects the value of the CK statistic.
This undesirable feature can be circumvented by taking the response variable Y; to be multivariate
with ¥; equal to (1, 0, 0)", (0, 1, 0)’, or (0, 0, 1)’ depending on whether individual 7 takes the car,
bus, or train respectively. This method can be applied more generally.

The results given below can be adapted to establish analogous results for “conditional Cramer—

von Mises tests.” For brevity, we do not do so in this paper.



3. THE ASYMPTOTIC NULL DISTRIBUTION OF THE CK, TEST STATISTIC
In this section, we determine the asymptotic null distribution of the C K, test statistic. First,

we introduce some notation. Let
(3.1) va(2,0) = Va(Hn(z) - Fa(z,0)) for z€ RVIE .

Note that if ¥; given X; has df F(-|,8), then v,,(-,8) is a conditional empirical process, as defined
in Andrews (1988), for the iid rv’s {Z; : i > 1}, since E(H,.(2)|X) = Fo(2,0).

For notational convenience, we switch between variables Z; and (Y;, X;), z and (y, ), z* and
(v*, =*), z1 and (y1, 71), etc., without comment. Thus, v,(2,0) = v,(y,z,0), etc. Often, we use
y* and z* as dummy variables of integration.

Below we establish asymptotic results that hold conditional on {X; : ¢ > 1} with {X; : i >
1} probability one. Such results are stronger than the corresponding unconditional asymptotic
results.? They are needed to justify the parametric bootstrap procedure that is introduced in
Section 4 below.

For brevity, we let “cond’l on X wpl” abbreviate “conditional on {X; : ¢ > 1} with {X; :
i > 1} probability one.” We also let “wpl” abbreviate “with {X; : ¢ > 1} probability one.” We
let P(-|X) denote probability conditional on {X; : i > 1}.

The estimator 8 is assumed below to have a linear expansion of the form

(3.2) V(8 - 60) = 2= 2%, Dot(Zi, 60) + 0p(1) cond’l on X wpl

when the sample is generated by the null df F(:|-, 6p), where Dg is a non-random L X L matrix,

¥(z,0) is a measurable function from RV¥X x © to RL, and E(¥(Z;, 60)|X) = 0 Vi > 1. Let
(33) %n(o) = %Z?:] "/)(Zi) 0) .

The asymptotic null distribution of the test statistic CK, depends on that of (v,(-,0),
V1 9,(0)). The covariance matrix of the latter is defined as follows. Let G* be any df on

RX. Define



(34) C(z1, 22,0,G") = // ((z <a)- Z((Zl’lo"”')’g)(z < xl))

(2 < 22) = F(yale,6)(= < 23) ' .
% ( 2 5(2.0) ) f(ylz,0)du(y)dG(z) .

Then,
(3.5)  C(z1, 22, 0, G) = Cov(.g) ((un(zl,o), Vi, (8Y)', (vn(22,6), x/Wn(f))’)') :

Weak convergence of (vn(:, f0), V7 %;(90)’)’, which is used to obtain the asymptotic null
distribution of C' K, requires the specification of a pseudometric p on RY*K. Given 6 and G,

we define p as follows: For z;, z, € RVtK,

(3.6) p(z1, z2) = (//[(z < z) - (2 < )P f(yle, 0o)d#(y)dG(x)> v :

Given any df F, let supp(F) denote the support of F'.
We now specify assumptions on the parametric model (M1), {f(y|z,8) : 6 € ©}, and on
the estimator (E1), 5, under which the C K, statistic has the asymptotic null distribution given

below.

AssuMPTION M1: (i) F(y|X;, 0) is differentiable in 6 on a neighborhood Ny of 6o Vi > 1.

(i) sup,erv+x SUPG|9—g(|<rn L, ;%F(le;, 0)(X; < z) — Ao(2)|| — 0 wpl for all se-
quences of positive constants {r, : n > 1} such that r, — 0 when {X; : i > 1} are iid with df
G(-), where Ag(z) = [ & F(ylz*, bo)(z* < z)dG(z*).

(iii) sup,cpv+x || Ao(2)]] < 00 and Ao(+) is uniformly continuous on RV+K (with respect to p).

AssumpTioN El: (i) va(8 — 60) = J= Iy Dow(Zi, 60) + 0,(1) cond’l on X wpl when the
sample is generated by the null df F(-|-, 6y), where Dg is a non-random L X L matriz that may

depend on 6.

(i) (z,0) is a measurable function from RVYK x © to RL  that satisfies
() [(z, 60)f(ylz, B0)du(y) = 0 Yz € supp(G) and (b) [5(z)dG(z) < oo, where 9;()

= [ |1¥(z, 00)||1>** f(ylz, 60)du(y) for some e > 0.



Assumption M1 requires that the conditional parametric df is differentiable in . This is a
weaker assumption than the requirement that the conditional parametric density f(y|z,0) is dif-
ferentiable in 6, since the integration of f(y|z, ) to obtain F(y|z, #) is a smoothing operation. For
example, a simple model for which f(y|z, #) is not differentiable in 6, but for which Assumption
M1 holds, is a linear regression model with double exponential errors. On the other hand, for
most models used in practice, f(y|z, #) is differentiable in 6. In such cases, it is easy to verify

Assumption M1 using the following sufficient condition:

AssuMPTION M1': (i) f(y|z,8) is twice continuously differentiable in 6 on a neighborhood N, of
00 Vz € RV+K.
(ii) The score function s(y|z,0) = %log f(ylz,0) satisfies [s;(z)dG(z) < 00 for k = 1,2,

where

51(2) / sup [|s(ulz, 0)[12f(ylz, 0)du(y) and
#eEN;

@) = [ sup | Frs(ulz,0)] £z, )eutv)

LEMMA 1: Assumption M1’ implies Assumption M1.
p

CoMMENTS: 1. Under Assumption M1/, Ag(z) can be written as

Ao(2) =/ (2" < 2)s(y"|2", 60) f(y"|=", Bo)du(y™)dG(") .

2. Assumption M1’ is satisfied by most generalized linear models (as defined by McCullagh
and Nelder (1983)) including probit, logit, and Poisson regression models under moment condition
on the covariates, because they are constructed from differentiable link functions and exponential
densities, which are differentiable in their parameters. Similarly, tobit (i.e., censored regression),
truncated regression, and sample selection models satisfy Assumption M1’ under a moment con-

dition on the covariates.

Assumption E1 requires the estimator g to be v/n—consistent and to have a linear expansion

cond’l on X wpl. This is not restrictive for samples with non-trending independent observations.



In the case of the maximum likelihood (ML) estimator, the function (z,8) is the conditional
score function g%log f(ylz,8) and the matrix Dy is the inverse of the asymptotic information
matrix [ [ & log f(ylz, 60) (5 log f(ylz, 60)) f(ylz, 60)du(y)dG(z).> The ML estimator satisfies
Assumption E1 in all the models mentioned in Comment 2 following Lemma 1 under a moment
condition on the covariates.

Under Assumptions D, M1, and E1, the test statistic C K,, has a limit distribution under the
null hypothesis. To specify that limit distribution requires the introduction of some additional

notation. Let

(3.7) H(z)

/H(y]z*)(z* < z)dG(z") and

F(z,6) /F(y]z*, 9)(z* < z)dG(z*) for z € RVYE .

H(-) is the unconditional df of Z;. F(-,8) is the unconditional parametric df of Z;. Under the
null hypothesis, F(-, o) = H(-). Under the alternative hypothesis, F(-,8) # H(-) for any 6 € O,
see Section 5 below.

Let

(3.8) Z =supp(H) C RVtK |

We show below that C K, has the same asymptotic distribution as C K,(Z), where
(3.9) CKA(2) = vnsup|Ho(2) - Fo(2,0)] -
ze2

The latter, in turn, has an asymptotic distribution that depends on that of the conditional em-
pirical process vy, (+, 6p).
Let = denote weak convergence (as defined in Pollard (1984, Ch. IV)). We show that under

the null hypothesis

(3.10) (;%(%(();z)) = (Vlfo)) cond'l on X wpl

as a sequence of processes indexed by z € Z. Here, (v(:), #})’ is a mean zero Gaussian process

with covariance function defined by

(3.11) E ("(zl)) (V(zz))' = C(z1, 22, b0, G) .

Vo )
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The sample paths of »(-) are uniformly continuous with respect to p (defined in (3.6)) on 2 with
probability one. This allows one to apply the continuous mapping theorem (see Pollard (1984,
Thm. IV.12)) to obtain the asymptotic distribution of functions of v, (-, 8), such as CK,(Z). Due
to the estimation of 6y by 8, the asymptotic null distribution of C K, also depends on Ag(2) and
Dy defined in Assumptions Ml and E1 respectively.

The asymptotic null distribution of CK,, is given in the following theorem.

THEOREM 1: Suppose Assumptions D, M1, and E1 hold. Then, under the null hypothesis,
(a) CKn(2) LN sup,cz |V(2) — Ao(2)' Dovg| cond’l on X wpl and

(b) CK, 4, sup,cz |/(2) — Ao(z)' Dowo| cond’l on X wpl.

CoMMENTS: 1. The asymptotic null distributions of CK,(Z) and CK,, are the same because
{Z; : i > 1} is a dense subset of Z with probability one.

2. The asymptotic null distribution of C K, is nuisance parameter dependent, since it depends
on fp and G(-). In consequence, asymptotic critical values for CK,, cannot be tabulated. Instead,
one can obtain critical values and p—values using the parametric bootstrap procedure described

in the next section.

4. BOOTSTRAP CRITICAL VALUES
4.1. Definition and Asymptotic Properties of Parametric Bootstrap Critical Values

When bootstrapping any test statistic, one is faced with the task of finding a bootstrap
distribution that mimics the null distribution of the data, even though the data may be generated
by an alternative distribution. For this reason, the empirical df H »(2) is not suitable for use as
a bootstrap distribution. On the other hand, the conditional df F(],a) is in the null hypothesis
and it mimics F(-|-, ) or F(:|-, 8;), both of which are in the null, depending on whether or not
the null hypothesis is true. For this reason, we consider the parametric bootstrap distribution of
the data in which the covariates are the same as in the observed sample and the response variables

are independent across ¢ with df’s F(-| X, 5) for i < n.



11

The idea of the bootstrap is to pretend that the null df of the data is the bootstrap distribution
and to obtain critical values by taking the appropriate quantile from the distribution of C K,, when
CK,, is computed from a sample that has the bootstrap distribution. This bootstrap distribution
of CK, is intractable. Thus, one has to approximate it by Monte Carlo simulation.

The bootstrap simulation is carried out as follows. One simulates B bootstrap samples each
of size n. The b-th bootstrap sample is denoted {Z} : ¢ < n} for b = 1, ..., B. The b-th

bootstrap sample contains the same covariate vectors {X; : i < n} as the original sample.
In consequence, Z} = (Y3, X;) for ¢ < n. Given Xj, one simulates Y} using the parametric
conditional density f(y|X;, 5) (or df F(yIX;,a)). This is repeated (independently) fori =1, ..., n
to give {Y;; : i < n}. Since Z} = (Y, X;), this yields the b-th bootstrap sample {Z} : i < n}.
One repeats this procedure for b = 1, ..., B.

Next, one computes the b~th bootstrap value of CK,, call it CK?,, by applying the definition
of C K, to the b-th bootstrap sample {Z% : 7 < n} in place of the original sample {Z; : i < n}.
Repeating this for b = 1, ..., B gives a sample {CK}, : b = 1, ..., B} of CK, values. This
sample mimics a random sample of draws of C K,, under a parametric null distribution. Thus,
its (1—a)-th sample quantile, denoted c,,ng(ﬁ), yields a critical value of significance level a for
CK,. This critical value is valid asymptotically provided B — o0 as n — oo by the results given
below. The p-value of the C K, test is obtained from the bootstrap values {CK}, : b= 1, ..., B}
by computing the fraction of C K, values that are greater than the observed value of CK,,.

Note that the parametric bootstrap procedure defined above uses the observed covariate val-
ues {X; : i < n} in each bootstrap sample that is simulated — only the response variables differ
across bootstrap samples. This makes the bootstrap samples mimic the actual sample as closely
as possible. It promises better finite sample performance of the bootstrap critical values than if
the covariate values for each bootstrap sample are simulated as being iid with df C:”n('). (Limited
Monte Carlo simulation of the bootstrap procedure substantiates quite clearly the better finite
sample performance of the “fixed covariates” bootstrap.) To justify the use of the “fixed co-

variates” parametric bootstrap, it is necessary to establish asymptotic results that hold not only
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unconditionally, but also conditionally on {X; : ¢ > 1} with {X; : 4 > 1} probability one, as is
done below.

We now provide the asymptotic justification of the parametric bootstrap. Let
(4.1) Lo(CK,L|X)

denote the conditional distribution (or law) of C K, given the covariates {X; : ¢ > 1} when the
sample is generated according to the null hypothesis with conditional df F(-|-,8). Let Pp(-|X)
denote conditional probability given {X; : ¢« > 1} under the null with conditional df F(:|-, §).

By Theorem 1 above,
(4.2) Lo, (CKn|X) —2> sup |u(z) — Ao(z) Dovo| wpl.
z€Z

We show below that, under suitable assumptions, for any sequence of non-random parameters

{6, : n> 1} such that 8, — 6y, we have
(4.3) Lo, (CK,|X) -5 sup [(2) - Ao(z)' Dovo| wpl.
z€

That is, L4, (C K,|X) has the same limit as Lg,(C Kn|X).

For fixed 6,, let con(f,) denote the level a critical value obtained from Ly, (C K,|X) for
a € (0,1). That is, Py, (CK, > can(8:)|X) = a. Note that cqn(6,) depends on {X; : 7 < n}.
Let cq(fo) denote the level a critical value obtained from the limit distribution of C' K. That is,
P(sup,¢z [v(2) — Ao(2)' Dovo| > ca(bo)) = a. Now, Py, (CKp > can(02)|X) = @ Vn, Py, (CKn >
¢a(00)] X) — a wpl, and absolute continuity of the limit distribution of C K, (which holds because
it is the supremum of a Gaussian process whose covariance function is nonsingular, see Lifshits
(1982)) imply that
(4.4) Con(0rn) — ca(Bo) wpl.
That is, for any sequence {, : n > 1} for which 6, — 6o and (4.3) holds, we have can(8,) —

co(f0) wpl. Note that this holds no matter what value 6 takes on within © provided Assumptions

M1 and E1 hold for all values 6 in ©.
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This result and the Skorokhod representation theorem (e.g., see Billingsley (1979, Thm. 25.6,

p. 287)) imply that if § -2 6, cond’l on X wpl, then
(4.5) can(g) £, ¢a(61) cond’l on X wpl

whether or not the null hypothesis is true.* By assumption, if the null is true, 8, equals the true

value . This implies that when the null is true, we have
(4.6) Pay(CHn > can(®)|X) = Poo(CKn + 05(1) > calBo)|X) = a wpl,

as desired. In addition, this implies that the asymptotic unconditional rejection probability of the

CK, test is a (see footnote 2):
(4.7) lim Py, (CKn > can(®)) = .
Provided Assumptions M1 and E1 and (4.3) hold for any 6y € ©, this gives

(4.8) sup lim Py, (CKyp > can(B) = a .
(]

That is, the asymptotic significance level of the C K, test with critical value com(a) is a, as desired.

Equations (4.5)-(4.8) justify the use of the bootstrap critical value can(a). The latter cor-
responds to the case where the number of bootstrap repetitions B equals co. If B < oo, but
B — o0 as n — o0, the differences between the approximate bootstrap critical values canB(a)
and the bootstrap critical values can(a) go to zero in probability and almost surely (a.s.) with
respect to the bootstrap simulation randomness, because sample quantiles of iid rv’s converge
a.s. to population quantiles. In consequence, the B < oo approximate bootstrap critical values
canB(B) ate asymptotically valid provided B — oo as n — oo.

It remains to show that (4.3) holds. To do this, we augment Assumptions M1 and E1 by the
following Assumptions M2 and E2. For brevity, we say that the sample is distributed “under
{6, : n > 1}” when the covariates {X; : i > 1} are iid with df G(-) and the response variables
form a triangular array of rv’s {Y; : i < n,n > 1} that are independent across observations in

each row with the df of Y; (= Y,;) given by the parametric conditional df F(-|Xj;, 6,) for i < n.
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AssuMPTION M2: (i) C(z1, 22, 8, G) is continuous in 6 at Oy Vz1, 2 € Z.

(ii) [ 1f(ylz, 8) - f(y]z, 60)|du(y)dG(z) — 0 as 6 — bo.

AssuMPTION E2: (i) For all non-random sequences {8, : n > 1} for which 6, — 6y, we have
v -86,) = ﬁz?ﬂ Dop(Z;, 6,) + 0p(1) under {6, : n > 1} cond’l on X wpl for Do and
¥(z,0) as in Assumption E1.

(ii) [ ¥§(2)dG(z) < oo, where ¥;(z) = supgen, [ 19(2,0)1* f(ylz,0)du(y) for some € > 0.

Assumption M2 does not require f(y|z,8) and ¥(z,0) to be continuous in . Nevertheless, if

they are, Assumption M2 is implied by the following:

AssuMPTION M2': (i) f(y|z, 8) and ¥(z,0) are continuous at 6o Vz € Z.

(i) [ ¥3(2)dG(z) < o0, where P3(z) = [ supgen, ([1¥(2,0)I1% + 1) f(ylz, 6)du(y).
LEMMA 2: Assumption M2' implies Assumption M2.

COMMENT: Assumption M2’ and, hence, Assumption M2 hold for all models mentioned above
and below Lemma 1 except for the double exponential regression model (since %(z,8) is not

continuous at  for all z € Z). Assumption M2 holds for the latter model by direct verification.

Assumption E2 is not overly restrictive. Most proofs of asymptotic normality of parametric
estimators can be altered straightforwardly to yield the triangular array linear expansion of As-
sumption E2(i). For example, Assumption E2 holds in all the models mentioned above and below
Lemma 1.

The validity of (4.3) is established in the following Theorem.

THEOREM 2: Suppose Assumptions M1, M2, and E2 hold. Then, for any non-random sequence
{8, : n > 1} for which 8, — 6y, we have
(a) CK,(2) < sup,ez |[¥(2) — Ao(2) Dovo| under {6, : n > 1} cond’l on X wpl and

(b) CK, LR sup,ez [V(2) — Ao(z)' Dovo| under {8, : n > 1} cond’l on X wpl.

Assumptions E1 and E2 specify the behavior of 8 under F(-|-, 6p) and F(-|, 8,) respectively.
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Its behavior for an arbitrary conditional distribution H(:|) is given by
AssumpTION E3: § -2 6y cond’l on X wpl for some 8, € © under Assumption D.

If H(-|-) equals F(-|-, fp), then by Assumptions E1 and E3, #; equals the true value 6. When
H(-|-) is not in the parametric model, 8; is often referred to as a “pseudo-true” value. If H(:|-)
is not in the parametric model and 8 is the ML estimator, #; is the value that maximizes
J [ log f(y|z, 0)dH(y|z)dG(z) over 6 € ©. That is, 8, is the value that minimizes the Kullback-
Leibler information distance between the true distribution of the data and the parametric model.

Now, Theorem 2 and (4.5)-(4.8) combine to give the desired asymptotic justification of the

bootstrap.

COROLLARY 1: (a) Suppose Assumptions D, M1, M2, and E2 hold, H(-|-) of Assumption D equals

F(:|-, o) (i.e., H(:|-) is in the null hypothesis), and B — oo as n — oo. Then,

canB(a) N ca(fp) cond’l on X wpl, Py (CKn(Z)> canB(§)|X) — a wpl, and

Py, (CKy > cang(a)]X) — a wpl.

(b) Suppose Assumption D holds, Assumptions M1, M2, and E2 hold for any value of 6p € O,

and B — oo as n — 0o. Then,

sup lim Py (CK, > canB(ﬁ)) =a.
0066 NnN—>00

(c) Suppose Assumptions D and E3 hold, Assumptions M1, M2, and E2 hold for any value 6y € O,

and B — oo as n — oo. Then,

canB(a) -2, ¢a(#) cond’l on X wpl.

COMMENTS: 1. The randomness of parts (a), (b), and (c) includes both the randomness of the
sample and the independent randomness of the bootstrap simulations.
2. Part (c) shows that even when the null hypothesis fails, the bootstrap critical value still

converges in probability to a finite constant c,(6;) under Assumption E3. This ensures that the

C K, has power (see Section 5 below).
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4.2. Simulation Performance of the Parametric Bootstrap
In this section, the performance of the parametric bootstrap is evaluated in a small simulation

experiment. We take the parametric family to be a trivariate logit model with
(4.9) P(Y; = ¢;) = exp(X{{00)/ i1 exp(X[{6) for j=1,2,3,

where e; = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, O, 1), X3 = (1, 0, Xi, Xiz, 0, 0),

2= (0,1, Xi3, 0, Xi4, 0, X5 = (0, 0, Xis, 0, 0, Xi)', Xi = (X1, -, Xis)' ~ iid N(0, 0% I¢),
and 6y = (1, ..., 1)’ € R®. Three values of 0% are considered: 1/2, 1, and 3. Four sample sizes
are considered: 25, 50, 100, and 250. The number of bootstrap repetitions is 299. The number of
Monte Carlo simulation repetitions is 4,000 for the smaller sample sizes and 2,000 for the largest.
Computational requirements prevented us from considering larger sample sizes and more boot-
strap repetitions. Such cases certainly are feasible in applications, however, since one need not
compute 2,000 or 4,000 simulation repetitions in any given application.

Table 1 provides the results. The numbers given in parentheses are asymptotic (as the number
of simulation repetitions goes to infinity) standard errors of the simulated rejection probabilities.
The results indicate over-rejection for most cases when the sample size is less than or equal to
100. For sample size 250, the results are quite good — the simulated true sizes are all within two

simulation standard errors of the nominal sizes.

5. CONSISTENCY OF THE CONDITIONAL KOLMOGOROV TEST
In this section, we show that the CK test is consistent against any conditional df H(-|-) in the
alternative hypothesis Hy. By definition, H(-|-) is in the alternative hypothesis if it satisfies
AssuMPTION H1: For each 8 € O, there exists y € RV for which
Pg(H(ylX) # F(y|X,0))>0,

where X ~ G and y may depend on 6.

Assumption H1 requires that H(-|z) differs from each parametric conditional df F(:|z,8) for

some value(s) z of the covariates that occur(s) with positive probability. Note that Assumption
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H1 is equivalent to:
(5.1) For each 6 € ©, H(z) # F(z,0) for some z € RV*K (where z may depend on 8).

Consistency of the conditional Kolmogorov test is established in the following theorem:

THEOREM 3: Under Assumptions D, M1, E3, and H1, for all sequences of tv’s {¢, : n > 1} with

¢n = 0,(1) cond’l on X wpl, we have

lim P(CKn(Z)> cy|X)=1 wpland lim P(CK, > c,|X)=1 wpl.
n-—-»00 N=—+00

CoMMENTS: 1. The bootstrap critical values discussed in Section 4 converge in probability
to constants cond’] on X wpl under the null and under the alternative, so they satisfy the
requirements of Theorem 3 on {¢c, : n > 1}.

2. There may be some combinations of conditional df’s H(-|-) and estimators 8 for which
Assumption E3 does not hold. For example, suppose 8 is the ML estimator and the Kullback—
Leibler information distance between the true df of the data H(z) and the parametric df’s
{F(-,8) : 8 € ©} is minimized not at a unique value #;, but rather, at a set of values ©; C ©.
In this case, 8 will not converge in probability to a constant ©;. But, the distance between 8 and
0, typically will converge in probability to zero. In consequence, canB(a) will be 0,(1) provided
SUPjeo, Ca(f) < 00. Theorem 3 can be extended to include conditional df’s H(:|-) and estimators
8 that exhibit such behavior. For brevity and because such behavior is relatively rare, however,

we do not do so here.

6. LOCAL POWER OF THE CONDITIONAL KOLMOGOROV TEST
In this section, we determine the power of the CK test against contiguous local alternatives to
the null hypothesis. The alternatives we consider are of distance 1/4/n from the null hypothesis.
Suppose one is interested in the power of the CK test for sample size ng against an alternative
conditional distribution of Y; given X; defined by the density ¢(y|z) with respect to the o-finite
measure . Since ¢(+|-) is an alternative density, ¢(:|) € {f(-|-,6) : 6 € ©}. Let Q(|-) denote the

df corresponding to g(-|).
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Let
(6.1) d(z) = v/no(q(ylz) - f(ylz, 6o)) .

Define the following sequence of local alternative conditional densities:

(6.2) g (ylz) = f(ylz, Oo) + d(2)/v/n for n=1,2, ...

Note that ¢,(y|z) is a proper density (at least) for all n greater than or equal to ng. Let Q,(-|+)
denote the df corresponding to gn(:|-). The sequence of local alternative distributions that we
consider is that of {Z; : i < n} when {Z; : i < n} are distributed independently with Y; ~
Qn(-|X;) and X; ~ G(-) for i < n and n > 1. In this case, we say that the observations are
distributed “under {@,(:|-) : n > 1}.” Note that the no—th distribution in the sequence is that of
{Z; : i < no} when {Z; : i < np} is distributed independently with ¥; ~ Q(:|X;) and X; ~ G(-),
as desired.

To ensure that {Q,(|) : n > 1} generates contiguous alternatives (C A) to F(:|-, 6p), we

assume:

AssumpTION CA: [ [ hi(y,z)du(y)dG(z) < oo for j = 1,2, where hi(y,z) = |[¥(y, z, 6o)|>**
q(y|z) for some constante > 0 and ha(y,z) = sup)po4 14(y,2)/(f(ylz, 80)+Ad(y, 2))[(f(ylz, bo)

+ q(y|z)) for some constant § > 0.
The asymptotic distribution of C K, under local alternatives is given in the following theorem.

THEOREM 4: Suppose Assumptions M1, E1, and CA hold. Then,
(a) CKn(Z2) <, M under {Qx(:]") : n > 1} cond’l on X wpl and
(b) CK, - M under {Qxr(+]") : n > 1} cond’l on X wpl,

where

=
0

sup [v(2) = Ao(2)' Dovo + u(2)],
u(z) = /no [/(Q(?le*) — F(y|z™, 80))(z* < z)dG(z")

— Ao()' Do / (=", 80)a("le")du(y )G ()| |
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and (v(-), vo) is the Gaussian process defined in Section 3.

CoMMENTs: 1. In Theorem 4, we create local alternatives by starting with an alternative df
Q(-|") and shrinking it to a df F(:|-, 6p) in the conditional parametric model. What is the most
appropriate choice of parameter value 6 to shrink @(:|-) towards? Note that the choice of this
value @, affects the asymptotic result. It makes no sense to choose f, to be the true value of
6o under the null, because the latter is undefined when null is not true, as is the case with local
alternatives. Instead, it seems natural to choose 8, to be the value in @ such that F(:|-, 6p) mimics
Q(-]-) most closely in terms of the behavior of 8. Let 6, denote the probability limit of 8 under the
fixed alternative Q(-|-). If we take 6y = 6y, then Q(:|) and F(-|-, 6p) are close in the sense that )
has the same probability limit under both distributions and /(8 — 8,) has the same asymptotic
distribution under the local alternatives as under F(:|-, o). Furthermore, when 8 is the (quasi-)
ML estimator, the choice of 8y = 6, corresponds to taking 8y to be the value in © that minimizes
the Kullback-Leibler information distance between Q(-|-) and the conditional parametric model
(when the covariates have df G(-)).

If one takes 6y = 6;, as suggested above, then [ [ (2, 60)g(y|z)du(y)dG(z) = 0, because the
latter are the asymptotic first order conditions of 8 under the fixed alternative Q(:|-). In this
case, the asymptotic distribution of C K, under the local alternatives {Qn(-|-) : n > 1} simplifies,

because p(2) simplifies to

(6.3) p(z) = x/%/(Q(ylz*) - F(y|z*, 60))(z" < z)dG(z7) -

2. Theorem 4 and Anderson’s Lemma (e.g., see Ibragimov and Has’minski (1981, Lemma
10.1, p. 155)) can be combined to show that the CKj, test is asymptotically locally unbiased. By

definition, the latter holds when

(6.4) n]im Py, (CK, > canB(g)) >a ( = sup lim Py (CK, > canB(g)) )

fpEQ@ VP

for all local alternatives {Q,(-|-) : n > 1}.

The proof is as follows. By Anderson’s Lemma, since v(2)— Ao(2)' Dovo has mean zeroVz € Z,
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for any finite set Z; ={z, ..., z;} C Z,

(6.5) P(zseug |v(2) = Ao(2) Dovo + 1(z)| > ca(b0))
2 P(swp [v(2) = Ao(2) Dovo| > cal(bo)) -

Z is totally bounded under the metric p (see the proof of Lemma A.5). Hence, Z is separable
and there exists a sequence of increasing finite sets {Z; : j > 1} whose union is dense in Z. In
consequence, the uniform continuity of Ag(-) and of the sample paths of v(-) with probability one,

the monotone convergence theorem, and (6.5) yield

(6.6) P(jlelg [v(2) = Ao(z) Dovo + p(2)] > ca(bo))
= P(zesgzj |(2) = Ao(2) Dovo + p(2)| > calbo))
= Jim P(sup |v(z) - Ao(2) Dovo + H(2)| > calfo))
> Jim P(sup ju(z) = Ao(2)' Dovo| > ca(fo))
= P( sup_ [u(=) - Ao(z) Dovol > ca(60))

2€US2 25

= P(zlelg |v(2) = Ao(2) Dovol > ca(0))

= a.
Since the left-hand sides of (6.4) and (6.6) are equal by Theorem 4, asymptotic local unbiasedness
of the C K, test is established.

3. A stronger property than asymptotic local unbiasedness is asymptotic local strict unbiased-
ness. This holds if (6.4) holds with a strict inequality. This property is more difficult to establish
than asymptotic local unbiasedness (because even if the inequality in (6.6) is strict for any fixed
§, which it is when p(z) # 0 for some z € Z;, it is not necessarily strict in the limit as j — oo).
Nevertheless, one can conjecture that if pu(-) # 0, p(+) is uniformly continuous with respect to p,

and Var(v(z) — Ao(2)'Dovo) > 0 for some z € Z for which u(2) # 0, then
(6.7) P(sug |v(2) — Ao(2) Dovo + p(2)| > calfo)) > P(sug |v(2) — Ao(2) Dovo| > calfh)) -
2€ 2€

If this conjecture is true and we choose 6y = 6, as discussed in Comment 1 above, then the CKp,

test is asymptotically locally strictly unbiased against all local alternatives {Qs(:|-) : n > 1} that
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are based on a conditional df Q(-|-) that satisfies Assumption H1 (which implies u(-) # 0) and
that satisfies Assumption CA (which ensures that p(-) is uniformly continuous with respect to p).
4. The asymptotic local power of the CK,, test against {Qn(:]-) : n > 1} is P(M > co(6p)).
In addition, @Qn,(-|-) = Q(+|]-). This suggests approximating the power of the CK test against
Q(-]-) when the sample size is ng by P(M > c,(6o)).
5. In contrast to Zheng’s (1993, 1994) tests, the CK,, test has non-trivial power against 1//n

local alternatives.



APPENDIX

In Section A.1 below, we introduce assumptions such that for a fixed (non-random) sequence
{X; : i > 1} the desired asymptotic results stated in the text hold. In Section A.2, we show
that these assumptions hold wpl if the covariates are iid with df G(-) and the corresponding
assumptions of the text hold. This establishes the results stated in the text. Lastly, in Section
A.3, we prove the fixed covariates results of Section A.l.

Note that the results of Section A.l can be used to establish the asymptotic validity of the
CK, test when the covariates are inid. In this case, the limit df G(:) of Section A.l equals
limyoo L 0, Gi(+), where X; ~ Gy(+) Vi > 1.

A.1. Fized Covariate Assumptions and Results

Definitions and notation used here are as in the text, except where stated otherwise.

For z € RVtK and ¢ > 0, let B(z,¢) = {z € RV*K : p(zn, z) < ¢}.

First, we provide assumptions under which C K, has the desired asymptotic null distribution

for the case of fixed (F) covariates:

AssuMpTION F.D: (i) {X; : i > 1} are fized, i.e., non-random.
(ii) {Y: : @ > 1} are independent with conditional df H(:|X;) of Y; given X; for all i > 1 for

some conditional df H(-|).

AssuMPTION F.C1: (i) Gu(z) — G(z) Vz € RE for some df G(-).
(ii) supp(Gr) C supp(G) Vn > 1.
(iii) sup,ervsx | [ [(2* < 2)f(y*]z*, 60)dp(y*)(dGn(z*) — dG(z*))| — 0.
(iv) C(z1, 22, 80, Gn) — C(21, 22, b0, G) V1, 22 € RVFK,
(v) [ [(z* € B(z, 1/k))f(y"|*, 80)dp(y*)(dGn(z*) — dG(z*)) = O for all integers k > 1, for

all z in a countably dense subset Z4 of RVtK (with respect to the metric p).

AssumpTION F.M1: (i) F(y|Xi, 0) is differentiable in 6 on a neighborhood Ny of o Vi > 1.

(ii) sup e pv+X SUPG||6—go [|<rn It ¥r, 5 F(y| X, 0)(Xi < z)—Ao(z)|| = 0 for all sequences of
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positive constants {r, : n > 1} such that r, — 0, where Ag(z) = [ ZF(y|z*,60)(z* < z)dG(z*).

(iii) sup,epv+x [|Ao(2)]] < 0o and Ao(+) is uniformly continuous on RV+X (with respect to p).

AssuMpTION F.E1: (i) /(8- 6y) = 71; S Do¥(Zi, 8o) + 0,(1) when the sample is generated
by the null df F(-|-, 6y), where Dy is a non-random L X L matriz that may depend on 6.

(i) ¥(z, 8) is a measurable function from RV+X x© to RL that satisfies (a) [v(z, o) f(y|z, bo)
du(y) = 0 Vo € supp(G) and (b) fimpook 10, ¥5(Xi) < 00, where P5(z) = [ ||9(z, 6o)[[***

f(y|z, 80)du(y) for some ¢ > 0.

AssuMpTION F.M1': (i) f(y|z,0) is twice continuously differentiable in § on a neighborhood Ny
of 6 Vz € RV¥K,
(ii) imp—oo L 30, s5(X;) < 00 for k =1, 2 and [ s}(z)dG(z) < oo.

(ifi) sup,epvsx | [ [(z* < 2)s(y*|2*, 60) f(y*|z*, B0)dp(y*)(dGn(c*) - dG(z*))| — 0.
LEMMA A.1: Assumption F.M1' implies Assumption F.M1.

THEOREM A.1: Suppose Assumptions F.D, F.C1, F.M1, and F.E1 hold. Then, under the null,
(a) CKn(2) -5 sup,cz |v(2) — Ao(2)' Dovo| and (b) CK, - sup,cz [v(2) — Ao(2)' Dovol.

CoMMENT: The convergence in distribution in Theorem A.1 is with respect to the randomness

in {Y; : ¢ > 1} only, since {X; : i > 1} are fixed.
Next, we provide bootstrap results for the fixed covariate case:

AssuMPTION F.C2: For all non-random sequences {6, : n > 1} for which 6, — 6y, we have
(i) C(z, 22, bn, C:‘n) - C(z1, 22, 0py, G) = 0V21, 22 € Z and
(i) [ f(z* € B(z, 1/k))f(y*|z*, 0,,)du(y"‘)(d@n(:c*) —dG(z*)) = 0Vz € 24, VE > 1, where

Z4 15 as in Assumption F.C1,

AssumPTION F.E2: (i) For all non-random sequences {6, : n > 1} for which 6, — 6y, we
have \/n(8 — 6,) = ﬁz?ﬂ Do(Z;, 6,) + 0p(1) under {6, : n > 1} for Do and ¥(z,8) as in
Assumption F.El.

(i) Impooo s Sy ¥5(Xi) < 0.
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In Sections A.1 and A.3, we say that the sample is distributed “under {6, : n > 1}” (“under
{@n(:]-) : n > 1}”) when the covariates are fixed and the response variables form a triangular
array of rv’s {Y; : i < n, n > 1} that are independent across observations in each row with the

df of Y; given by the parametric conditional df F(-|X;, 6,,) (Qn(:|X;)) for i < n.

THEOREM A.2: Suppose Assumptions F.C1, F.C2, F.M1, M2, and F.E2 hold. Then, for any
non-random sequence {6, : n > 1} for which 6, — 6y, we have

(a) CKn(2) R sup,ez [¥(2) — Ao(2) Dowvo] under {6, : n> 1} and

(b) CKy, < sup,ez [v(2) — Ao(z) Dowvo| under {8, : n > 1}.

The behavior of 8 for arbitrary conditional df H (¢]:) is given by
AssuMpTIiON F.E3: 8 -2 6, for some 6; € © under Assumption F.D.

Theorem A.2 and the discussion of Section 4 now yield:

CoroLLARY A.l: (a) Suppose Assumptions F.D, F.C1, F.C2, F.M1, F.M2, and F.E2 hold,
H(:|-) of Assumption F.D equals F(-|-, 6y), and B — 0o as n — oo. Then, canB(8) 2 ca(bo),
Ps,(CK(Z) > canp(8)) = a, and Po(CKn > canp(8)) — a.

(b) Suppose Assumption F.D holds, Assumptions F.M1, F.M2, and F.E2 hold for any value
6o € ©, and B — o0 as n — oo. Then, supy ce limpoo Py (C Ky > canB(a)) = a.

(c) Suppose Assumptions F.D and F.E3 hold, Assumptions F.M1, F.M2, and F.E2 hold for

any value 6, € ©, and B — 00 as n — oo. Then, canB(a) NN co(b1).
To obtain consistency of C' K, in the fixed covariates case, we assume:
AssUMPTION F.C3: (i) sup,cz | [ H(ylz*)(z* < 2)(dGa(z") — dG(z*))| — 0.
(i) [ [(|H(2) - F(z, 6:)] > 1/k)dH (yle)(dGn(z) - dG(z)) — 0 Vk > 1.
(iii) sup,epvax | [ [(2* < 2)f(y*a*, 61)dp(y*)(dGn(z*) - dG(z*)) — 0.
THEOREM A.3: Under Assumptions F.D, F.C3, F.M1, F.E3, and H1, for all sequences of rv’s
{cn : n > 1} with ¢, = Oy(1), we have lim,oo P(CKn(Z) > ¢p) = 1 and limp_,. P(CK, >

cn) =1



The local power results when the covariates are fixed assumes:

AssuMPTION F.CA: (i) Impoeod T, [ hi(y, Xi)du(y) < oo forj =1, 2.
(i) J [(d(2)/ f(ylz, 60))* (]2, 80)dm(y)(dCn(z) — dG(z)) = 0.
(ifi) sup.ez | [ [(z* < 2)q(y"|2*)du(y*)(dGn(z*) — dG(z*)) — 0.
() [ [ (2, 80)a(ylz)dp(y)(dGn(z) - dG(z)) — 0.

THEOREM A.4: Suppose Assumptions F.C1, F.M1, F.E1, and F.CA hold. Then,
(a) CKn(Z) -2 M under {Qu(-) : n > 1} and (b) CK, —> M under {Qn(-)) : n > 1}.

A.2. Proofs of Theorems 1-4 and Lemmas 1 and 2

To prove Theorems 1-4 and Lemma 1, we use the following:

LEMMA A.2: (a) Under Assumptions D, M1, and E1, Po({X; : i > 1} satisfies Assumptions
F.C1, F.M1, and F.E1) = 1. (b) Under Assumptions D, M1, and E2, Po({X; : i > 1} satisfies
Assumptions F.C1,F.C2, F.M1, and F.E2) = 1. (c) Under Assumptions D, M1, and E3, Po({X; :
i > 1} satisfies Assumptions F.C3, F.M1, and F.E3) = 1. (d) Under Assumptions M1, E1, and
CA, Pe({X; : i > 1} satisfies Assumptions F.C1, F.M1, F.E1, and F.CA) = 1. (e) Under

Assumption M1’, Pg({X; : i > 1} satisfies Assumption F.M1') = 1.

Theorems 1-4 now follow from Theorems A.1-A.4 and Lemma A.2(a)-A.2(d) respectively.
Lemma 1 follows from Lemma A.1 and Lemma A.2(e).

The proof of Lemma A.2 uses the following uniform strong law of large numbers:
LEMMA A.3: Suppose {X; : i > 1} are iid with df G(-). Let D, be a class of functions from
supp(G) C RK to R of the form D, = {d : d(z) = [ an(z)(z < z1)dJy(y|z) for some z € ﬁvﬂ(}
for some function an(z) : RV*X — R and some conditional df Jy(+|-), where R = R U {oc}.

(a) If [[sPpz1 J lan(2)ldJn(y]2)]dG(z) < oo, then supyep, |& Liey d(Xi) — Ed(Xi)| — 0

wpl.



(b) If [[supp>1 [ 1an(2)ldJn(y|2)]2dG(z) < oo, then

sup |~ S0 dy(Xi)do(X:) — Edy(X)dy(Xi)| — 0 wpl.
d1,d2€D, | T

Proor or LEMMA A.3: Let

(A1) a(e) = sup / lan(2)|dJn(y]2) ,
B, = {b:b(z) = an(z)(z < z1) for some z; € R—VJ'K} , and

I6u(2) = [ [ < asn(yla)abna").

i

Note that d(z) is an envelope of D, Vn > 1 and J@n(z) is a df. For ¢ > 0, let Ny(e, G, D,)
and Nq(e, JGhn, B,) denote the L! (@n) and Ll(Jén) cover numbers of D, and B,, respectively,

as defined in Pollard (1984, p. 25). If [ d(z)dG(z) < oo and
(A.2) ENj(e, Gn, Dp) < C. Ve >0

for some positive finite constants r and C, that do not depend on G, or n, then the result of part
(a) holds by an extension of Thm. I1.24 of Pollard (1984, p. 25). The extension is to let the class
of functions depend on n. Pollard’s proof goes through unchanged except for the added subscript
n on the class of functions and the failure of his reverse sub-martingale argument. The latter can
be replaced by an application of the Borel-Cantelli Lemma using the last inequality in his proof

and the summability of its right-hand side over n > 1 by (A.2) and the following argument:

(A.3) 2nz1 P(log Ny (e, G, Dn) > nK) = 3202, P(Ni(e, Gy Dy,) > k)

IA

¥, ENI(¢, Gn, D,)/e"F < 0

for any constant 0 < K < oo using Markov’s inequality.

To show (A.2), we establish that Ve > 0
(A.4) Ni(e, Gn, D,) < Ni(e, JGr, By) .

The inequality holds because a function b, approximates b; € B, in Ll(Ja’n) metric within ¢

implies that dy(z) = [ ba(2)dJa(y|z) approximates di(z) = [bi(2z)dJn(ylz) € Dy in LY(Gr)



metric within ¢:

dén(z)

(A5) [ lirte) = da(@)ldGie) = [ | [(01(2) = ba)asntole)
< / 1b1(2) = ba(2)|dJ(y])dCn(z) = / 1b1(2) = ba(2)|dJCn(2) < ¢ .
Next, we show that Ve > 0
(A.6) Ni(e, JGn, B) < My (e/ / lan(2)|dJGr(2), JGL, c)
~ -w - w
< A (e//|an(z)|dJG,,(z)) < AW (LTr,d(X:))" , where
C = {(z < z) : for some 2z € EVH(} ,
IG2) = [ < Nan( NG [ lon(IGHE)
and A, W are positive finite constants. Note that JGL(-) is a df. The third inequality of
(A.6) holds by definition of JG,(z) and d(z). The second inequality of (A.6) holds because C
contains indicator functions of a Vapnik-Cervonenkis class of sets. The first inequality of (A.6)
holds because if ¢;(z) approximates c(z) € C within ¢/ [ |an(2)|dJGp(2) in L(JGL) metric then
bi1(z) = an(2)c1(z) approximates bz(z) = an(2)cz(z) € By within ¢ in LY(JG,) metric by the
following inequality:
(A7) [ 142) = 02| a78uz) = [ lan(2)]-lex(2) = ex(2lad a2
= / |an(2)|dIGn(2) - / lex(2) — ea()|dIBL() < ¢ .

Combining (A.4) and (A.6) gives (A.2) with r = 1/W using the moment condition of part (a).
Next, we establish part (b). Let D,D,, = {did; : di € D,, d; € D,,}. By the generalization
of Thm. 11.24 of Pollard (1984) referred to above and the moment condition of part (b), it suffices

to show that for some positive finite constants r and C,,
(A.8) ENi(e, Gn, D,D,) < C. Ve >0.
We claim that Ve > 0
(A.9) Ni(e, Gn, DoD,) < N} (5/ / 2d(z)dGn(z), DGy, Dn) , where

DGy(z) = /(a:* < z)(_l(z*)d@n(:c*)//E(z*)dan(z*) .
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Note that DGy (-) is a-df. Equation (A.9) holds because if d;(z) and d}(z) approximate da(z) €
D,, and di(z) € Dy, respectively, within ¢/ [ 2d(z)dGn(c) in L'(DG,) metric, then di(z)dj(z)
approximates dy(z)d}(z) € DnDy, within ¢ in L1(G,) metric by the following inequality:

(A.10) [ 10x@)di(@) - da(e)di(@)ldn(z)

JA@(@) - dx(@ldGnte) + [Aa)idi(o) - di(@)ldCate)

[@@iGants) [ tir(z) - da(&)ldDGn2)

+ / d(2)dC(z) / |&:(2) - di(2)|dDCn(z) < ¢ .

IN

IN

Next, we have Ve > 0

(A.11) N? (e/ / 2d(z)dGr(z), DGy, Dn> < N? (e/ / 2d(z)dGp(z), JDGh, Bn>

N? (e/ ( / 2d(2)dCn() / lan(z)ldJDén(z)) L JDGL, c)

IA

IN

A(e/2)7Y ( / d(2)dG(z) / Ian(z)ldJDan(z)) 2w

A2 ™ (L3, P(x))" |, where

=1

IN

JDG,(2) = / (z* < 2)dJo(y*|z*)dDGy(z*) and
JDG\(z) = / (#* < 2)|an(2)|dT DGn(2")/ / |an(2*)|dJ DCn(=") .
Note that JDG,(-) and JDGL(-) are df’s. The first three inequalities of (A.11) hold by the

arguments establishing (A.4), (A.6), and (A.6) respectively. Combining (A.9) and (A.11) yields

(A.8) with r = 1/(2W) using the moment condition of part (b). O

PRrooF oF LEMMA A.2: First, we prove part (a). Assumption F.C1(i) holds wp1 by the Glivenko-

Cantelli Theorem. Assumption F.C1(ii) holds wp1l because
(A.12) Pg(supp(G,) C supp(G)) = Pa(X; C supp(G) Vi < n) = Pe(Xi C supp(G))" =1.

Assumption F.C1(iii) holds wpl by Lemma A.3(a) with Ja(ylz) = F(y|z, 6o) and an(z) = 1.
(When (2, 8p) is vector-valued, as it usually is, Lemma A.3(a) is applied repeatedly element

by element.) Assumption F.Cl(iv) holds wpl by several applications of Lemma A.3(a) with
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Ja(¥lz) = F(3l2, ), an(2) = 1, an(2) = $(z, bo), an(2) = [ (5", 2, 80)1(s" |z, Bo)du(y"), and
an(z) = [9(y*, 2, 00) f(y*|2, Bo)du(y*) [ ¥(v*, =, o) f(y*|z, 0)du(y*), and by one application
of Lemma A.3(b) with J,(y|z) = F(y|z, 6p) and a,(2) = 1. Note that a uniform SLLN is used
here, even though Assumption F.C1(iv) only requires pointwise convergence, because it ensures
that pointwise convergence holds for all 2z, 2; in a (possibly) uncountable set Z X Z on a single
set of realizations of {X; : ¢ > 1} that has probability one. Assumption F.C1(v) holds wpl by
the SLLN for bounded iid rv’s. Assumption F.M1 holds wpl by Assumption M1. Assumption
F.E1 holds wpl by Assumption E1 and the SLLN applied to 2 3", 93(X:).

Next, we prove part (b). Assumptions F.C1 and F.M1 hold wpl by the argument of part
(a). Assumption F.C2(i) holds wpl by the same argument as for Assumption F.C1(iv) above,
but with 6y replaced by @, throughout. Assumption F.C2(ii) holds by a countable number of
applications of the SLLN for triangular arrays of bounded inid rv’s. Assumption F.E2 holds wpl
by Assumption E2 and the SLLN applied to 2 37 | ¥§(X,).

We now prove part (c). Assumption F.C3(i) holds wpl by Lemma A.3(a) with J,(y|z) =
H(y|z) and a,(z) = 1. Assumption F.C3(ii) holds wpl by a countable number of applications of
the SLLN for bounded iid rv’s. Assumption F.C3(iii) holds wp1l by Lemma A.3(a) with J,(y|z) =
F(y|z, 6,) and a,(z) = 1. Assumptions F.M1 and F.E3 hold wpl by Assumptions M1 and E3.

For part (d), Assumptions F.C1, F.M1, and F.E1 hold by the argument above for part (a)
using Assumptions M1 and E1. Assumptions F.CA(i), F.CA(ii), and F.CA(iv) hold wp1l by Kol-
mogorov’s SLLN given the moment conditions specified in Assumption CA. Assumption F.CA(iii)
holds by Lemma A.3(a) with J,(y|z) = Q(y|z) and a,(2) = 1.

For part (e), Assumption F.M1'(i) holds by Assumption M1'(i), Assumption F.M1'(ii) holds
by Assumption M1'(ii) and Kolmogorov’s SLLN, and Assumption F.M1'(iii) holds by Lemma

A.3(a) with J,(y|z) = F(y|z, 6o) and a,(z) = s(y|z, 6o). O

PROOF OF LEMMA 2: Assumptions M2(i) and M2(ii) hold by the dominated convergence theorem
given the continuity at 8 of f(y|z, 6o), ¥(2, 6o), and F(y|z, 6p) Vz € Z and the moment condition

of Assumption M2(ii). O



A.3. Proofs of Lemma-A.1 and Theorems A.1-A.4
PROOF OF LEMMA A.1: Assumption F.M1(i) holds with & F(y|X;, 8) = [(y* < v)s(y*|X;, 6)
f(y*|Xi, 8)du(y*) by a standard argument using a mean-value expansion of f(y*|X;, 6) and finite-

ness of s7(X;) Vi > 1. Assumption F.M1(ii) follows from

(A.13) sup sup
2€RV+K 6:]|0—6p}|<rn

LY B FIXs, 6)(X: < 7) - Aof2)

IN

/ (=" <2)s(y"]2", 6) /(4" |", 6)

sup sup
2€RV+K 6:||0—06p||<rn

— s(y*|z*, 60) f(y*]z*, 60)]du(y*)dGr(*)
+ sup / (2" < 2)s(y*|z*,60) f(y"| 2", B0)dp(y*)(dGn(z*) — dG(z*))
zeRV+K

< LY (sH(X) + s3(Xa))rn + o(1) = o(1)

where the first inequality holds by the triangle inequality, the second inequality holds using a
mean-value expansion and Assumption F.M1'(iii), and the equality holds by Assumption F.M1(ii)
and the definition of »,,.

The first part of Assumption F.M1(iii) holds because sup,cpv+x [|Ao(2)|| < ([ si(z)dG(z))!/?
< 00 by Assumption F.M1/(ii). The second part of Assumption F.M1(iii) (i.e., uniform continuity

of Ag(+)) holds, because

(A14)  l18o(an) = Aozl = | [ (= < 2) = (= < sn)ls(ale, B0 (0o, ()G o)
1/2
< ([[t <2 - G < P10l to)ut0)G))
1/2
< ([ 1stulz, 0017 1(u12, b))

by the Cauchy-Schwarz inequality. The first multiplicand on the right-hand side equals p(2, z2)

and the second multiplicand is finite by Assumption F.M1'(ii). O

PRrooF oF THEOREM A.1l: The proof of Theorem A.l is the same as that of Theorem A.2 below
with 6, replaced by 8y throughout, which allows Assumptions F.C2(i) and F.M2(i), F.C2(ii) and

F.M2(ii), and F.E2 to be replaced by Assumptions F.C1(iv), F.C1(v), and F.E1 respectively. O

The proof of Theorem A.2 uses the following Lemmas.
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LEMMA A.4: Suppose Assumptions F.D, F.M1, and F.E2 hold. Then, for any non-random

sequence {0, : n > 1} for which 6, — 6y, we have

vnsup|Fu(z,0) — F.(z, 8,) — Ao(2) Do, (6,)] = 0p(1) under {6, : n>1}.
2€2

LEMMA A.5: Suppose Assumptions F.D, F.C1, F.C2, F.M1, F.M2, and F.E2 hold. Then, for
any non-random sequence {6, : n > 1} for which 8, — 6y, we have (\/"%‘(Ej;l)) = ("V(o)) under
{8, : n > 1}, where (Vn(-, 0n), VR ¥,(0n)") is a stochastic process indezed by z € Z and the

pseudometric p on Z is as defined in Section 3.

LEMMA A.6: Suppose (a) P(Z € A) > 0 for some A C RV*K and (b) LY P(Z,i € A)
— P(Z € A) for some triangular array {Z,; : ¢ < n,n > 1} of 1v’s that are independent within

rows. Then, P(Z,; € A for some i < n) — 1.

Proor oF THEOREM A.2: Theorem A.2(a) follows from Lemma A.4, Lemma A.5, and the
continuous mapping theorem, see Pollard (1984, Thm. IV.12, p. 70). The latter applies because
the function h(v(-), \) = sup,ez |[V(2) — Ao(2)’'A| is a continuous function of (v(-), A), where
X € RL and v(-) is an element of the space of uniformly continuous functions on Z equipped with
the sup norm, using the fact that sup,cgv+x [|Ao(2)|| < 0o by Assumption F.M1(iii).

Next, we prove Theorem A.2(b). Since Py, (Z; € Z Vi < n) = 1 by Assumption F.Cl1(ii),

-~

(A.15) lim Py, (max|va(Zi, 8)| > ) < lim Py, (sup |va(2,68)| > ¢)
n—oo i<n —00 2€2

il

P(sup |v(z) — Ao(z)' Dovo| > ¢)
z€2

for all ¢ € R, where the equality holds by Theorem A.2(a). It remains to show that (A.15) holds
with the inequality reversed.

We use Lemma A.6 to show that Vk > 1, Vz € 2, (defined in Assumption F.C1(v)),
(A.16) lim Py, (Z; € B(z, 1/k) for somei<n)=1.

Condition (a) of Lemma A.6 hold since Py, (Z € B(z, 1/k)) > 0. Condition (b) of Lemma A.6

holds by Assumption F.C2(ii) and F.M2(ii) and the triangle inequality: Vz € 24, Vk > 1,



(A.17) |2 r, Po.(Zi € B(z, 1/k)) - Py, (Z € B(z, 1/k))|
‘_1 P,.(Z; € B(z, l/k)) Py, (Z € B(z, 1/k))l

< |a

+ |Ps,(Z € B(z, 1/k)) — Pay(Z € B(2, 1/k))| = 0,

where Z ~ F(-, 8p) or Z ~ F(:, 8,) as indicated.

Equation (A.16) implies that for all £ > 1 and for any z; € Z4 for j =1, ..., J,

(A.18) JLim Ps, (max |va(Z;, 6)] > ¢)
= lePgn (max|1/n(Z,~, 8)| > e, n/_,(Z; € B(z;, 1/k) for some i < n))

> ) P inf *
2 nILII;O P0n(IJn<J zEBgl,fl/k) an(z7 o)l > c) (m<a}(z€B%z] l/lc)l (Z)l > c) 5

where v*(2) = v(z) — Ao(z)’ Dovo and the last equality uses the continuous mapping theorem and

Lemma A.5. Thus,

(A.19) nhTrgoPgn(rPStx]Vn(Z;, 6)l >¢)> D, where
D = sup su max P(m inf r'(z)| > ¢).
J)Il) k>Il) {z1,.25} (]<J 2€B(z;, l/lc)I ( )[ )
2;€Z4V5<T

It remains to show that D = P(sup,cz |[v*(2)| > ¢). We have

(A.20) D <sup max P(ma.xlv (z)] >¢) < P(sup lv*(2)| > ¢) .

{z1,-25
J>l ZJEZdV] J

To obtain the reverse inequality, we use the fact that RV*K and hence, Z is totally bounded
under the metric p (see the proof of Lemma A.5 below). In consequence, given any k > 1, Z can
be covered by a finite number of balls, say J balls, of radius 1/k centered at points zy, ..., z7 in
the countably dense subset Z; of Z. The sample paths of v*(-) are uniformly continuous (with
respect to p) almost everywhere. This follows because the same is true for v(-) by the functional
CLT of Pollard (1990, Thm. 10.6) applied in Lemma A.5 below and Ag(-) is uniformly continuous
by Assumption F.M1(iii). In consequence, by the bounded convergence theorem, given any > 0

there exists a k, > 1 such that P(Sup, ..oz, 5)<1/k, [V*(21) = ¥*(22)] > n) < 1. Thus, we get
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(A.21) P(sup [v*(2)] > ¢) = lim P(sup |v*(2)| > c+n)
2€2 10 ez
= lim P(max sup [v*(2)| > c+n)
10 IS 2eB(25,1/kn)

< lim[P(max sup *(z)|>et+n,  sup  |*(21) = v (22)| <)+ 7]
n—0 isd zeB<z,'1/kn) p(21,22)<1/ky

< li * <

- n-% (J<J zeB(z,,l/k,,) W (2 >e)< D,

where the first equality holds because sup,¢z [v*(2)] is a continuous rv (see Lifshits (1982)). O

Proor oF LEMMA A.4: By Assumption F.E2, \/ﬁ(a—- 6.) = Op(1), because the mean-squared
error of 2 3" | Doy(Z;, 0,) is O(1) under {6, : n > 1}.

Using Assumption F.M1(i), a mean-value expansion gives
(A.22) Fo(2,0) = Fil(z, 6:) + L X0, 2 F(1Xi, 0n(2))(X: < 2)(0 - 6)

where gn(z) lies on the line segment joining 8 and 6,,.
Now, § — 6, = 0,(1) implies that there exists a sequence of constants {ry : n > 1} such that
r* — 0 and P(||6—6o| > r) — 0. Given the definition ofan(z), this gives P(sup,¢z ||§n(z)—-00|| >

ry) — 0. Let

(A.23) R, = " ZF(ylXi, 6,(2))(Xi < &) — Ao z)| and

2€2
en = sup  sup LY, SF(IX 0)(Xi < 2) - Aol2)] -
2€2 0:||6-0o]|<r%
By construction, P(R, < €,) — 1. And, by Assumption F.M1(ii), &, — 0. In consequence,
R, = 0,(1).

We now obtain the desired result

(A.24) \/ﬁsgg |F(2,8) — Fo(z, 0,) — Ao(2) Do, (6,)]

IN

Vnsup |1 38, ao,F(y|X,, 8,(2))(Xi < 2)(6 — 82) — Ao(2)' Doy (65)
2€2

Ray/nll8 — 6, + sup |A0(2) (v/n(8 ~ 6,) — VDo, (6:))] = 0,(1) ,

IN

where the first inequality holds by (A.22), the second holds by the triangle inequality, and the

equality holds by the results above, Assumption F.M1(iii), and Assumption F.E2(i). O
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Proor oF LEMMA A.5: Using Theorem 10.2 of Pollard (1990), Lemma A.5 follows from (a) the
total boundedness of Z under the pseudometric p, (b) the stochastic equicontinuity (with respect
to p) of vy(+, 8,) on Z, and (c) the convergence in distribution of each of the finite dimensional
(fidi) distributions of (v, (-, 8,), v/7¥,,(65)) to the corresponding fidi distributions of (v(-), vo).
Conditions (a) and (b) above can be verified by using the functional CLT of Pollard (1990,
Thm. 10.6, p. 53) applied to vy(-, 8,), since total boundedness of Z is part of the conclusion of
Pollard’s Thm. 10.6 and since a functional CLT implies stochastic equicontinuity (see the converse
part of Thm. 10.2 of Pollard (1990)). Pollard’s functional CLT has five conditions (i)~(v). His
“manageability” condition (i) holds because {g(z) : g(z) = (z < z) for some z; € RVtK}
consists of indicator functions of sets in a Vapnik—Cervonenkis class of sets. His condition (ii)
holds by Assumptions F.C2(i) and F.M2(i). His conditions (iii) and (iv) hold since one can take
Fn; = 2/+/n Vi, n. His condition (v) requires that lim,_o pn(21, 22) = p(21, 22) V21, 22 € Z
and, for all deterministic sequences {z1, : n > 1} and {29, : n > 1}, if p(z1n, 22n) — 0 then

Pn(21n, 22n) — 0, where

~ 1/2
(A.25) pn(zl,m:(// [(2321)—(ZS22)]2f(y|1,on)dll(y)dGn(z)) .

Define p2(z1, 22) to equal p,(z1, z2) with 8, replaced by 6. Note that
(A.26) pu(21, 22)% = Fu(21, 0,) + Fo(22, 0,) = 2Fo (23, 6,,)

where z3 = min{z, 2;} (element-by-element). By the argument used to establish (A.24),

Sup,ez |F(2, 6,) — F,(z, 80)] = o(1). In consequence,

(A.27) sup _|pn(21, 22)2 - pS (21, 22)*| = o(1) .

z1,22€2
Assumption F.C1(iii) implies limy o0 p3(21, 22) = p(21, z2). This and (A.27) establish the first

part of Pollard’s condition (v). To establish the second part, assume p(21n, 22n) — 0. Then,

(A-28) Pn(zlm zZn) < |Pn(zlm ZZn) - Pg(zlm Z2n)] + ng(zlm ZZn) - P(zlna ZZn)I + P(Zlm zZn)

< sup |pn(21,22) = P21, 22)| + sup |pp(21,22) —p(21, 22)| + P(21n, 22n)

21,22€2 21,22€2

o1),
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where the equality uses (A.27) and Assumption F.C1(iii). Thus, Pollard’s condition (v) holds,
which completes the proof of the functional CLT for v, (-, 6,).

We now verify condition (c) above. We need to show that (v,(z, 8y,), ..., vn(2J, 0r),
\/ﬁan(ﬂn)’)l converges in distribution to (v(21), ..., ¥(25), ¥})' Vz; € Z,V¥j < J, VJ > 1. We
establish this result using the Cramer-Wold device and a CLT for triangular arrays of row-
wise independent mean zero rv’s, e.g., see Hall and Hyde (1980, Cor. 3.3.1, p. 58). It suf-
fices to verify (i) the Lindeberg condition and (ii) the convergence of covariance matrices, i.e.,
C(z1, 23, 6, @n) — C(21, 22, 00, G) V21, 22 € Z. Condition (i) holds using the boundedness of
indicator functions and the Liapunov moment condition on %(Z;, 6,) specified by Assumption

F.E2(ii). Condition (ii) holds by Assumptions F.C2(i) and F.M2(i). O

PRrOOF OF LEMMA A.6: Let v = P(Z € A) > 0 and p,; = P(Z,; € A®), where A° denotes the
complement of A. Let r,, be the number of p,;’s (for i < n) for which p,; < 1-v. By assumption
(b), %, pni = 1—7, and hence, 7, — co. In consequence, 1%, p,; < (1-7)™ — 0. Using this

result, we obtain

(A.29) nILn;o P(Z,; € A for somei<n)=1- nlingo P(NiL,(Zni C A%))

= 1- lim O} ,p,;=1. O
n—+00

PrOOF OF THEOREM A.3: Let H,(2) = 1 3"  H(y|X;)(X; < z). We have

n =1

(A.30) sup |Hn(2) — Hn(2)] = 0,(1), sup |Hn(2) — H(2)| = o(1),
z€2 262

sup | Fu(z,8) — Fo(z, 61)| = 0p(1), and sup |Fy(2, 6,) ~ F(z, 6;)| = o(1),
ze€Z2 ze€2

where the first result holds by an inid empirical process uniform weak LLN for a Vapnik-
Cervonenkis class of sets (i.e., the Glivenko—Cantelli Theorem for inid rv’s) since H,(z) = EH,(2),
the second and fourth results hold by Assumptions F.C3(i) and F.C3(iii), respectively, and the
third result holds by a slight alteration of the proof of Lemma A.4 with 8, replaced by 6, through-

out and Assumption F.E2 replaced by Assumption F.E3.
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Combining these results gives

(A31) JrCKn = max|Ha(Z;) - Fa(Z, B)
= max|[Ha(Z;) = Hn(Z;)] + [Ha(Z;) - H(Z;))
+ [H(Z;) - F(Z;,60)] + [F(Z;,61) — Fa(Z;,60)] + [Fn(Z;,61) - Fu(2;,0))|
= max|H(Z)) = F(Z;,01)| + 0,(1) .
By Assumption H1, there exists a point z € Z for which

(A.32) H(2) - Fle, ) = [(Hl") = FGla", 62)(a" < 2)d6(") 0.

This implies Py(H(Z) # F(Z, 6,)) > 0, where Z ~ H. In turn, this implies that 3k > 1 for

which Py(|H(Z) - F(Z, 61)| > 1/k) > 0. To see why, suppose not. Then, we get a contradiction:

(A33) 0 = lim Py(1H(Z)~ F(Z,6))| > 1/k) = / lim (1H(2) = F(z, 61)] > 1/k)dH(2)

[ = Fe 601 > 00 () = PuH(2) # F(2,61)

Now,let A = {z € RVtK : |H(2) - F(z, 6;)| > 1/k}. By the inequality above, Py(Z € A) >

0. And by Assumption F.C3(ii), 1 ¥°" , P(Z; € A) - Py(Z € A). Hence, by Lemma A.6,

=1

(A34) 1= Hrrgo P(Z; € A for some j <n)= lim P(m<ax|H(Zj) - F(Z;, 6,)| > 1/k) .
n— jsn

n—o00

Combining (A.31) and (A.34) gives the desired result:

(A.35) 1= lim P(CKn>1/k) < lim P(CKn>cy). O

ProoF oF THEOREM A.4: First, we establish that the distribution of {Z; : ¢ < n} when
{Y; : i < n} are independent with conditional distribution @, (-|X;) of Y; given X; and X; are
non-random is contiguous to the distribution of {Z; : i < n} when {Y; : i < n} are independent
with conditional distribution F(-]X;, 6p) of Y; given X; and X; are non-random. It suffices to show
that the log likelihood ratio LR, = Y i, (log gn(Y:i|X:)—log f(Yi| X, 6p)) converges in distribution

under F(:|-, 8) to a rv Z for which Eexp(Z) = 1. (For example, see Strasser (1985), Thms. 16.8
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and 18.11.) A two-term Taylor expansion of log ¢,(Yi|X;) = log(f(Y;|Xi, 60) + d(Z;)/+/n) about

log f(Yi| X, 6o) gives

(A.36) |LR, — T (1 S(Yil X, 80))d(Z:) [V + 5 Tiey (1 £(Yil X, 60))*d?(Z:) /|

< Y 2 2I1/(f(Y|Xn00)+/\d(Z))I3 ld(Z:)]/n3/? = 0,(1) ,

where the equality uses Markov’s inequality and Assumption F.CA(i).

Next, we have Epd(Z;)/f(Yi|Xi,00) = [ d(y, Xi)dpu(y) = 0 for all s > 1, where F abbre-
viates F(:|-,6p). In addition, the Lyapunov condition limn—cd 7, EF(d(Z:)/ f(Yi|Xi,600))°
< o holds by Assumption F.CA() and limg.eo i 7, Varp(d(Z:)/f(YilX:,600))
— Eg,(d(Z)/f(Y]X,0))? by Assumption F.CA(ii), where EF, denotes expectation when Z ~

F(-, 6p). In consequence, by the CLT for independent mean zero finite variance rv’s,

(A.37) = Ty d(Z)] f(Yi|Xi,80) = N (0, Er,(d(2)/ /(Y |X,60))?)

under F(+|-, 6p). Furthermore, by the WLLN for inid rv’s and Assumption F.CA(i),

(A.38) ~ on L (d(Z; ) F(YilX;,00))2 = -1Er,(d(Z)/f(Y]X,60))* .
Combining (A.36), (A.37), and (A.38) gives

(A.39) LRr = N (=3ER,(d(2)/ f(Y|X,00))% Er(d(Z)/f(Y|X,60))%)

under F(-|-, f). Since Eexp(Z) =1 when Z ~ N (—30?, 02), contiguity holds.
Now, to prove part (a) of Theorem A.4, we note that the result of Lemma A.4 holds under

{@Qx(-]) : n > 1} by contiguity. In place of Lemma A.5, it suffices to show that

a(- o) V() + s [(Q(1a*) ~ F(lz*, 0))(z* < )dG(z")
(4.40) (ﬁ@(%))ﬁ( vo+ vig | [ 9(z*, Bo)a(y*la*)du(y*)dG(z") )

under {Q,(+|-) : n > 1}. This follows by a modification of the proof of Lemma A.5. In particular,
8, is replaced by 8y and the data are distributed under {Qn(-|-) : n > 1} rather than under
{F(-)-, 8,) : n > 1}. Pollard’s condition (ii) with C(z1, 22, o, 6,,) defined with f(:|-, 6o) re-

placed by ¢, (:|-) is verified by Assumptions F.C1(iv) and F.CA(i) by straightforward calculations.
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Pollard’s condition (v) is verified with p,(z1, 22) replaced by p (21, z3), where p;(21, 22) equals

pn(21, 22) (defined in (A.25)) with f(y|z, 6,) replaced by ¢,(y|z). We have

(A1) sup |ph (2, 22)% ~ P21, 22)?] < / / 10 (31) — (312, B0)|du(y)dCn(z)

2,02€2

< V= [ [ 1atsle) - 101z, 80)ldu(w)dGua) < 2/ = o(1)

Using (A.41) in place of (A.27), the rest of the verification of condition (v) given in the proof of
Lemma A.5 holds.

Verification of condition (c) of the proof of Lemma A.5 requires the alterations that (1) the
limit of the means of v,(z, 6p) and /n¢,(fo) under {Q,(-|-) : n > 1} are \/ng [(Q(y|z*) —
F(y|z*, 60))(z* < z)dG(z*) and \/ng [ [ ¥(z, 00)q(ylz)dp(y)dG (), respectively, by Assumptions
F.C1(iii), F.CA(iii), and F.CA(iv), rather than zero, (2) the Liapunov condition holds by Assump-
tion F.CA(i), and (3) the covariances C(z, 22, 8o, Gr,) defined with f(-|-, 65) replaced by gu(:|-)
have the same limit as without this replacement by straightforward calculations. This completes
the proof of (A.40).

Combining the results of Lemma A.4 and (A.40) and using the continuous mapping theorem
(as in the proof of Theorem A.2(a)) establishes Theorem A.4(a).

Theorem A.4(b) holds given Theorem A.4(a) by the same argument as used to prove Theorem

A.2(b) with (A.17) replaced by

(A.42) |3 L1 Po.(Zi € B(2, 1/k)) — Py, (Z € B(z, 1/k))|
< |2 Xi[P.(Z: € B(z, 1/k)) — Poy(Zi € B(z, 1/k))]|

+ |10, Po(Z: € B(z, 1/k)) ~ Pyy(Z € B(z,1/k))| - 0,

=1

where Py, denotes probability when Y; given X; has df Q.(+|X;). The second summand on the

right-hand side of (A.42) is o(1) by Assumption F.C1(v). The first summand is o(1) because it is

less than or equal to £ % [|d(y, Xi)/v/nldu(y) < 2/ =o(1). O
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2This follows because lim,_,o, P(Tn € B|X) = P(T € B) with {X; : i > 1} probability one
implies limp—o P(T, € B) = P(T € B) by the bounded convergence theorem, where P(:|X)
denotes conditional probability given {X; : i > 1}, T and {7}, : n > 1} are random vectors, and
B is some measurable set. Thus, T, 4, T (or Ty, 2, 0) as n — oo conditional] on {X;:i>1}

with {X; : 1 > 1} probability one implies T}, LNy (T -2, 0) as n — oo unconditionally.

3More generally, if f(y|z,0) is not pointwise differentiable in 6, but the square-root density
o(y|z,0) = fY/2%(y|z,0) is L*(u) differentiable in 6 with L%(p) derivative p(y|z,0), as in “reg-
ular” parametric models, then %(z,8) is the score function 2p(y|z, 8)(p(ylz,0) > 0)/p(ylz,6) and
Dy is the inverse of the information matrix 4 [ [ p(y|z, 8)p(ylz,0)du(y)dG(z).

4To see this, note that the Skorokhod representation theorem guarantees the existence of a prob-
ability space and rv’s {0 : n > 1} on it such that C(Gan) = E(G |X)Vn > 1, where § = 8,, and
8, — 6o a.s. cond’l on X wpl. By (4.4), we have can(fn) — ca(00) a.s. cond’l on X wpl, which

implies can(ﬂ ) £ ca(ﬂg) cond’l on X wpl. Since can(ﬁ ) and can(e) have the same distribution,
this yields Can(a) £ ¢a(fo) cond’l on X wpl.
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TABLE 1

True Size of the Conditional Kolmogorov Test

Sample Nominal Significance Level

Size 1% 5% 10%

25 .016 .076 .143

(.002) (.003) (.005)

50 013 .059 119

(.002) (.003) (.005)

(a) 0% =1/2

100 .016 073 .137

(.002) (.003) (.005)

250 .006 .048 .101

(.002) (.005) (.007)

25 .013 073 .149

(.002) (.003) (.005)

50 .016 067 .136

(.002)  (.003)  (.005)

(b) a:‘;( =1

100 .011 .052 111

(.002) (.003) (.005)

250 .012 .056 102

(-002) (.005) (.007)

25 014 .052 .138

(.002) (.003) (.005)

50 .009 .063 .146

(.002)  (.003)  (.005)

(c)o% =3

100 .018 .064 122

(.002) (.003) (.005)

250 014 .051 114

(.002) (.005) (.007)




