A CONDITIONAL LOCAL LIMIT THEOREM AND ITS APPLICATION TO RANDOM WALK

BY W. D. KAIGH
Communicated by H. Kesten, November 6, 1973

1. Introduction. Let X_{1}, X_{2}, \cdots be a sequence of i.i.d. (independent and identically distributed) random variables defined on a probability space (Ω, F, P). In all that follows we assume that the X_{i} are distributed on the lattice of integers with $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2}<\infty$. For the recurrent random walk S_{n} with $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geqq 1$, define the stopping time T either to be the first time S_{n} returns to zero or to be $+\infty$ if no such n exists. We shall assume further that the random walk S_{n} is aperiodic. It is well known that T is finite with probability one and that $n^{1 / 2} P[T>n]$ converges to the limit $(2 / \pi)^{1 / 2} \sigma$ as n approaches infinity. It follows from a result of Kesten [4] that $n^{3 / 2} P[T=n]$ has limit $\sigma /(2 \pi)^{1 / 2}$ as n approaches infinity. In this paper we consider the asymptotic behavior of random walks conditioned by the events $[T>n]$ and $[T=n]$. Belkin [1] has obtained the result

$$
\lim _{n \rightarrow \infty} P\left[S_{n} / n^{1 / 2} \leqq x \mid T>n\right]=\int_{-\infty}^{x}\left(|y| / 2 \sigma^{2}\right) \exp \left(-y^{2} / 2 \sigma^{2}\right) d y
$$

We obtain a local limit theorem which is readily seen to be a generalization of this result. Our local version is then applied to obtain the weak convergence of a sequence of probability measures on $C[0,1]$ corresponding to a random walk conditioned by the event $[T=n]$. The limiting probability measure corresponds to a Markov process first introduced by Lévy [5] and subsequently entitled a Brownian excursion by Itô and McKean [3].
2. A conditional local limit theorem. Our main result is stated as

Theorem 1. Suppose the random variables X_{1}, X_{2}, \cdots are i.i.d. on the lattice of integers with $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2}<\infty$. Then

$$
\lim _{n \rightarrow \infty} \sup _{x}\left|n^{1 / 2} P\left[S_{n}=x \mid T>n\right]-\left(|x| / 2 \sigma^{2} n^{1 / 2}\right) \exp \left(-x^{2} / 2 n \sigma^{2}\right)\right|=0
$$

For any integer x define the hitting time $T_{\{x\}}$ either to be the first $n \geqq 1$ such that $S_{n}=x$ or to be $+\infty$ if no such n exists. Employing Theorem 1
and the facts that $P\left[S_{n}=x ; T>n\right]=P\left[T_{\{x\}}=n\right]$ and $n^{1 / 2} P[T>n] \rightarrow(2 / \pi)^{1 / 2} \sigma$ as $n \rightarrow \infty$, we obtain

Corollary 1. Under the hypotheses of Theorem 1,

$$
\lim _{n \rightarrow \infty} \sup _{x}\left|n P\left[T_{\{x\}}=n\right]-\left(|x| / \sigma n^{1 / 2}\right) \phi\left(x / \sigma n^{1 / 2}\right)\right|=0
$$

where $\phi(t)$ denotes the standard normal probability density function.
3. The weak convergence of random walk conditioned by the event $[T=n]$. On $C[0,1]$ with the uniform norm and the corresponding sigma field \mathscr{C} of Borel subsets, define a sequence of probability measures $\left\{P_{n}\right\}$ by assigning mass

$$
P\left[S_{1} / \sigma n^{1 / 2}=x_{1}, \cdots, S_{n} / \sigma n^{1 / 2}=x_{n} \mid T=n\right]
$$

to the polygonal line segment ξ such that $\xi(0)=0$ and $\xi(k / n)=x_{k}$ for $k=0,1, \cdots, n$.

As an application of Corollary 1 we obtain
Theorem 2. The sequence of probability measures $\left\{P_{n}\right\}$ on $(C[0,1], \mathscr{C})$ converges weakly to a probability measure P which corresponds to the Brownian excursion stochastic process.

The Brownian excursion is a Markov process with nonstationary transition density. Itô and McKean [3] discuss two alternative derivations of this process and provide explicit expressions for the transition density. Belkin [2] previously has obtained results analogous to Theorem 2 with the conditioning event $[T>n]$.

Proofs of these results will appear elsewhere.

References

1. B. Belkin, A limit theorem for conditioned recurrent random walk attracted to a stable law, Ann. Math. Statist. 41 (1970), 146-163. MR 41 \#6313.
2. -, An invariance principle for conditioned recurrent random walk attracted to a stable law, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21 (1972), 45-64.
3. K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren der math. Wissenschaften, Band 125, Academic Press, New York; Springer-Verlag, Berlin and New York, 1965. MR 33 \#8031.
4. H. Kesten, Ratio theorems for random walks. II, J. Analyse Math. 11 (1963), 323-379. MR 29 \#668.
5. P. Lévy, Processus stochastiques et mouvement Brownien, Suivi d'une note de M. Loève, Gauthier-Villars, Paris, 1948. MR 10, 551.

Department of Mathematics, University of Tennessee, Chattanooga, Tennessee 37401

Current address: 1306 Avenida Polar, Apt. B-8, Tucson, Arizona 85710

