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1. Introduction and Background

The social sciences attempt to explain and predict the behavior

of individuals. In practice, this often requires that they predict

individual decisions or choices. In many situations, choices are made

over a continuum of possibilities; for example, "how much" to spend or

how much to work. But in many other situations, choices are made from

a limited number of possibilities or alternatives; the possible alternatives

are "discrete" or "quantal." Indeed, many decisions made in the public

sector could be considered to be informed only if knowledge of the deter-

minants of discrete choices by individuals were available. Examples

of these kinds of choice are whether or not to work, where to live,

where to work, mode of transportation, and size of family. Knowledge

of the determinants of such decisions is important to the policy maker

in designing, for example, income maintenance programs, urban renewal

projects, medical education programs, public transportation networks,

and child care facilities.

Logit and probit analysis are the most widely used methods for es-

timating the relationship between choices on the one hand and attributes of

alternatives and individual decision makers on the other in binary choice,

or two alternative, situations (e.g., Cox [1970]). In multiple alternative

situations the most widely used method is a generalization of logit

analysis, often called conditional logit analysis. Professor McFadden

has developed qualitative choice models based on the conditional logit

specification to a high degree of sophistication. He first applied

the model to the choice of urban freeway routes by state highway departments

[1975] and since has done extensive investigation of transit mode choice

by individuals [1974] . Others have applied the same model to college
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choice, plant location, occupational choice, and the choice of fuel for

electric power generators. Conditional logit analysis has been preferred

over other theoretical possibilities primarily because of computational

simplicity, a distinct advantage. The primary disadvantage of the func-

tional form providing the basis of conditional logit is a property termed

the "independence of irrelevant alternatives." This restriction of the

model is quite unrealistic in many situations. To date, attempts to cor-

rect for this shortcoming have been on an ad hoc basis and not generally

applicable.

This paper proposes a computationally feasible method of estimation

not constrained by the "independence" restriction and which allows for

a much richer range of human behavior than does the 'conditional logit

approach. An important characteristic of the model is the explicit

allowance for variation in tastes across individuals for the attributes

of alternatives. This gain in realism, though, is at the expense of com-

putational simplicity. To date, application of the model is limited to

choice situations with four or five alternatives. The example in this

paper uses only three. However, the increasing capacity of new generations

of computer facilities may be expected to broaden the applicability of our

approach.

The general problem that we are dealing with may be formulated as

follows. Consider an individual who faces J alternatives and must choose

one of them. Let the probability that he chooses the j— alternative
J

be P., where E P. = 1. Let the outcome be represented by a vector
J j=l J J

Y = (y-i .y^j • • -Yj) J where y. is either zero or one, and Z y. = 1.
J j=l -'

Then the probability that the first alternative is chosen is given by

the probability that Y = (1,0,...,0), where the probability of any Y
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^1 ^2 ^J
is given by P P ...P . For N identical individuals indexed by

i, the likelihood that Y^ = (y^^.y^^' • • • 'y^j) ' • • • ' "^ ^ "
^^il'^iZ' ' * "

'^iJ^ '

etc.... is given by the following likelihood function,

N y., y.„ y.

T

eL= n p/^1 ^2 •••Pj
•

i=l

If individuals face different numbers of alternatives, J must be indexed

by i, and if the i— individual is faced with R. repetitions of the

J.
1

same choice situation, then Z y.. = R., and the likelihood function

is given by,

L
N R^ y^^ y^2 ^^-^i

^ = .", ^il ^12 ^'y±J. ^ ^ ^2 ^
•••^J.

^'

1=1 1 1

A common statistical problem is to find the values of the P. that

maximize the value of this likelihood function. A more general problem

is to allow the selection probabilities to be dependent on attributes

of the alternatives in the choice set and on attributes of the individual

making the choice. That is, the probability that the i— individual

chooses the j— alternative is given by P . . = P(X..,a.), where X.. isJ 6 ' ij ^ ij '
i"^

' 13

a vector of attributes of the j— alternative faced by individual i and

a. is a vector of characteristics of the i— individual. Conditional

probit analysis differs from conditional loglt analysis in the stochastic

specification of the probabilities P . . The probit specification is based

on the multivariate normal distribution, while the logit formulation

rests on the univariate extreme value distribution. In turn, it is useful

to relate the selection probabilities, given the attributes of the alter-

natives and characteristics of decision makers, to underlying theories of
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consumer choice. While both models can be related to the idea of the

representative individual (explained below) , we will see that the different

stochastic formulations imply quite different theories of individual be-

havior and, in fact, lead to quite different predictions of selection

probabilities in some important choice situations. Even though both loodels

are likely to "fit the data" well — analogous to the similar results

obtained from logit and probit analysis in the binary case; ' the predicted

effect of the introduction of a new alternative based on one model is

likely to differ substantially from that of the other. This possibility is

investigated in the last sections of the paper.

Section 2 examines the general specifications of qualitative choice

models. The deterministic theory of the representative individual is

discussed and then a stochastic theory is formulated from which the

choice probabilities are derived. In Section 3 specific parametric

distributions are developed and conditional probit and conditional logit

models are discussed. Section 4 deals with maximum likelihood estimation

of the unknown parameters in the probit model and the formulation of statistics

to compare different model specifications. An empirical example of trans-

portation mode choice for commuters is analyzed in Section 5. Important

differences between the conditional probit and conditional logit models

are found. In Section 6 artificial data are used to compare forecasts

based on the two models when a new transit mode is introduced. One

of the important uses of conditional logit models has been in this situation;

1. We will see below, however, that our model will lead to a covariance
term, for each choice situation, that depends on the attributes of the
alternatives being compared — the choice set.
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thus, the comparative forecasts of the two specifications should be of

interest. Again, important differences are found. Finally, the treatment

of the "red-bus, blue-bus" problem by logit and probit models is discussed

in Section 7

.
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2. A Model of Individual Choice

While economic theory provides a well-determined axiomatic theory

of individual choice, use of this theory in econometrics is not always

straightforward. Even when observations on individual choices are avail-

able, two problems remain. The investigator observes and measures only

some portion of the factors that determine individual decisions. There are

unobserved attributes of the alternatives in the choice sets faced by

decision makers and unobserved attributes of the decision makers them-

selves. Also, the investigator usually lacks repeated observations on

choices made by any given individual, in particular, under changing condi-

tions. The usual situation in economics is that data is collected for many

individuals, but with only one (random) observation for each. The follow-

ing information is typically available: the observed attributes of the

alternatives in the choice sets faced by individuals, their observed at-

tributes, and their choices. In qualitative choice situations with ap-

propriate sampling techniques each trial is assumed to be a single drawing

from an independent but not identical multinomial distribution. The task

of the empirical investigator is to construct a model of individual be-

havior that is consistent with estimation of the probabilities in the

multinomial distribution. The estimation procedure can use only observed

data; but a very important aspect of any such model is the treatment of the

unobserved determinants of individual behavior.

A common procedure used in both economic theory and econometrics

is to assume the existence of a "representative" or "average" individual

who is assumed to have tastes equal to the average over all decision maker's

with given observed attributes. Suppose the representative individual i

faces alternatives X..(i = 1,...,J), where X,. is a vector of the observed
ij ij
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characteristics of alternative j , and he is described by a vector of

observed attributes a.. Then this representative person is assumed to
1

have a utility function U defined over alternatives X, often assumed

linear in parameters, such that,

(2.1) U. . = U(X.
.
,a.) = Z. .3,

where Z.. is a vector of arithmetic combinations of the elements of

X and a., and g is a vector of parameters. Note, the further assumption

has been made that U(') or, equivalently , 3 is common to the entire

population. This assumption is made necessary by the lack of individual

repetitions. If 6 is assumed constant only over subsets of the entire

population, the sample would be partitioned according to observed charac-

teristics and different utility functions would be estimated for each.

Once a functional fonn representing the behavior of the average

individual is given, a stochastic theory is used to describe unobserved

components that differentiate a particular individual from the average.

That is, the deterministic model, equation (2.1), is assumed to represent

average (e.g., mean) behavior, and a nondeterministic part to represent

(random) deviations from this average. A convenient parametrization

of the random utility of alternative j to person i is then

(2.2) U.. = U(X..,a.) + E(X..,a.) = Z . . 6 + e . .

,

where e is a random variable. Two possible explanations for the stochastic

term may be given. The first Is that individuals behave randomly, perhaps

due to random firing of neurons; so that faced repeatedly with the same

alternative set, the same Individual makes different choices. A more

attractive explanation is to assume that given the observed data (X. . ,a )

,
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a stochastic distribution is induced by unobserved data in each trial

of the experiment. That is, there are unobserved characteristics of

the decision maker (or random preferences) and unobserved attributes of the

alternatives. We will discuss this possibility in some detail below.

Given the specification of the utility function U.., the individual

is assumed to choose the alternative that maximizes his utility. Suppose

individual i faces three choices, J = 3. The probability that he chooses

the first alternative is.

(2.3) P., = pr[U., > U.„ and U., > U.„]
il il i2 il i3

i2 il i2 il i3 il i3 il

Similar expressions are obtained for P.„ and ?._. It is clear that
i2 i3

the P. . are well defined probabilities once we choose a joint density

function for the e... Let f (e . , ,e . „,e . «) = f.(e) be this density function
ij il i2 i3 1

and let F(k. ^ ,k „,k. t) be the corresponding distribution function. Then

J:he probability that person i chooses alternative 1 is

/-I /\ n / r 11 i2 Xl r ll l3 ll £, ^ J J J
(2.4) Pii = J J / ^(^il'^i2'^i3^ '^^i3*^"i2'^^il

—00 —CO —oo

" U. n+e., U. „+£.i
f /• 1,12 il r 1,13 il £, . , J ,

= / / / ' f(^il'^i2'^i3> ^"i3'^'i2'^^il
—OO —oo —oo

/ F^(e^^, U.^^2 + ^il' "i,13 + ^11^ '^^il

where U. ... is the difference in utility of alternatives j and j' to

the representative individual and F^ = 9F/9k, ^. It is sometimes more

convenient to look at equations (2.3) and (2.4) in differenced form.
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(The subscript i will be dropped and will be used only where needed

to prevent confusion.) Then the probability of choosing alternative

1 is,

(2.5) P^ = pr[n23^ < U^2 ^'^'^ "^31 <
^u'^'

where n..i = e. - e... This change of variables will induce a new ioint

density g-.(,r]„-.,r\^^) that depends on which probability is being considered

(i.e., g, (•) "f gn(')) . The new density g.(*) is easily derived from the
1. ^ J

density f(e) by a linear transformation with Jacobian equal to unity,

then from (2.5)

,

"l2 "l3
(2.6) p^ = / / g^(n2i,n33_) cin2idn23

—00 —CO

Two important points to note are that this transformation reduces the order

of integration by one, and because only subtraction is involved in going

from f(') to g.(*)> distributions which are closed under subtraction

or are transformed into mathematically convenient distributions by subtraction

may be desirable candidates for f(*)»

The specification of the density function f(e) will complete the

formulation of the model of individual choice. It then remains to estimate

the unknown parameters of U as well as any unknown parameters of f(e).

While mathematical convenience of estimation must be an important consid-

eration in choosing the density function f, because equation (2.6) contains

a J-1 dimension integral, a reasonable stochastic theory, represented by f (e)

,

is essential for a model that implies acceptable behavioral characteristics

of individuals. In the next section two stochastic parametrizations are

discussed which lead to convenient expressions for the basic probability

equation (2.6)

.
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3. Problt and Logit Models of Stochastic Choice

Beginning. with a general formulation, we will discuss first the

conditional probit model; then the familiar conditional logit specification

and its primary disadvantage. The focus of the latter discussion will be

on the parametric specification of the covariance matrix of the joint

density function f (e) . The goal is to develop a parametrization with

reasonable behavioral implications that is also computationally feasible,

and that overcomes the main shortcoming of the logit model. An important

property of the proposed random coefficients parametrization is explicit

allowance for a distribution of tastes among decision makers in the

population. For purposes of exposition, we will consider only three alter-

natives.

Following the discussion above, we assume that the values of the

three alternatives to the i— individual can be represented by.

(3.1a) U(Xj^,a^) = U(X^,a^) + £iX^,a^) = U^^ + e^^

(3.1b) U(X2,ap = U(X2,ap + e(X2,a^) = U^^ + ^12

(3.1c) U(X3,a^) = U(X3,a^) + e(X3,a^) = U^^ + e^^

We may assume, as is usual, that E(e..) = 0, because any nonzero term

would be absorbed in the mean function U...

a. The conditional probit model rests on the assumption that the

e. in equation (3.1) have a multivariate normal distribution. The normal

distribution provides a good approximation to many multivariate distribu-

tions, and has the advantage that n..i = e. - e.i is also distributed
JJ 3 J

normally. Suppose then that f .(e) is multivariate normal with covariance

matrix given by.



-11-

(3.2) E. =
X

a . ,

1.1

1,12 1,2

1,13 1,23 1,3

Consider the probability of selecting the first alternative. The covariance

matrix for r\ =£„-£•, and r\^ = e„ - e,, with density function g-.(.T]j,,T)^),

is given by

(3.3) a =

2 2

^1 " ^13 " "12 + °23 ^1 + ^3 " ^°13

'1,11

"1,12 "^1,22

where the index i has been suppressed. Note that g and 9, are subscripted

according to the alternative whose choice probability is being referenced.

Then the probability that the first alternative is chosen is given by.

(3.4)
—00

u^^V-i
2 2
+02 -2a^2 \,//o[2 2

+03 -2a^3

''l^^21'^31' ^1^ ^^^21^^31

where b^ is a standardized bivariate normal distribution with correlation

coefficient r^ = '^i,i2V"i,ii'^i, 22 = ^^1 " °13 " '^12 + ^23^^

2 2 2 2
(a^ +a„ -2a^ „) (a, +a„ -2a^_). A further transformation of variables

allows (3.9) to be written as

(3.5) ?! = / '

—00 13yw^^22^^"'^l ^ lyi-^i
2 dX,

where (|) is a unit normal density function and $ is a standardized normal

cumulative distribution function. The probabilities P„ and P„ are similarly

calculated. The stochastic specification is complete given a parametrization
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of the covariance terms, a. . ,^i » in (3.2). With no more than one observation

for each individual, the covariance can be estimated only through para-

metrization.

Of course, as mentioned in Section 2, a reasonable assumption may

be that the a., are independent. In that case ^^ , for example, has a

particularly simple form given by.

(3.6) fi^ =

'2^2 2 1
^1 +°2 °1

2 2,2
^1 °1 +°3

If the variances are assumed to be equal across alternatives, then the Q.

are identical for all j. And, because the variance terms can only be

determined up to a scale factor, we can set them equal to one. The matrix

Q then has twos on the diagonal and ones on the off-diagonal. This case

is sometimes referred to as the equi-correlated case. The independence

assumption eases the computation burden of evaluating the integrals in

equations (3.4) or (3.5) considerably. However, computational convenience

is only one criteria for choosing Z; thus, other specifications are also

considered. The problem then becomes one of choosing "good" parametrizations.

We will argue below that some rather simple functional forms imply quite

plausible behavioral assumptions about individual decision makers.

Consider again an individual facing a set of alternatives, each de-

scribed by a vector of measured characteristics X... As described above,

we consider the "worth" to him of each alternative to be composed of two

parts; the "average" worth of an alternative with measured characteristics

X. . , plus a deviation from this average, an "error" term. The average

is the average over all alternatives with measured characteristics X;



-13-

and, over the group of all decision makers, from which a particular individual

is selected at random. The deviation is thus assumed to be a function

of two factors: unobserved characteristics of the alternative together

with a deviation in the tastes of a given individual from average tastes,

those of the "representative" individual. We will argue that it may not

be reasonable to assume that these deviations or errors are uncorrelated

across alternatives in the choice set for a given decision maker. Indeed,

we will argue that the degree of correlation between any two errors might

be expected to depend on how "close" the corresponding alternatives are

in measured characteristics. We will first try to motivate this idea

in a heuristic manner. Then we will discuss possible metrics for measuring

"closeness." In particular we will propose a general parametrization of

the covariance matrix, simple cases of which are easily seen to capture

the idea of closeness.

For purposes of exposition, let us assume first that all relevant

characteristics of alternatives are measured; there are no unobserved

attributes. Then the deviation of the utility of any individual from

representative utility is due only to differences in tastes across the

population of decision makers. Assume that the preferences, U, of the

average or representative individual over characteristics X^ and X.

are represented by the solid lines in figure 1. The preferences of an

individual U are represented by the dashed lines. This individual is

assumed to have an "unusually weak" taste for characteristic X„, and thus

for the alternative indicated by point A on the graph. He is likely also

to have a "weak" taste for any point such as B that is "close" to A.

Knowing his preferences for A, however, may tell us much less about his

valuation of alternatives like C or D that are relatively "far" from A.
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Figure 1
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Because we don't know the "shape" of any individual's preferences —that

is, we don't know how any individual's preferences differ from the av-

erage — our ability to predict the relationship between any two deviations

decreases as the "distance" between them in attribute space increases.

Now assume that all decision makers have identical tastes; but

that not all characteristics of alternatives are observed. That is,

the "error" results from the values of unmeasured attributes; that for

a given alternative are the same for all individuals, but vary from one

alternative to the other. This is true even if measured attributes

of two alternatives, for example, are the same; there may be many values

of unobserved ones. We may expect unobserved attributes to be closer

together if observed attributes are closer than if they are distant from

each other.

A reasonable argument is based on the assumption that the set of

all relevant (to the decision maker) attributes of alternatives has a

multivariate distribution, say normal. If we assume in addition that

the covariances between observed and unobserved attributes are not all

zero, the expected value of unobserved attributes depends on the values

of observed attributes. In fact, the expected values of unobserved attributes

will be closer together, the nearer are observed characteristics. This

can be seen by considering the expected value of unobserved, given observed

attributes, when both groups are jointly normal.

But does this imply that deviations from representative utility

are closer together the closer are observed characteristics? Recall

that representative utility, U(X.) , is the expected value of U(X.), given

observed attributes. Unobserved attributes are "included" in U. The

relationships between deviations from U(X) and U(Y) should not depend
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on how close X and Y are. In fact, assuming that the rules of random

sampling are followed, the covariance of e(X) and e(Y) is zero.

Unobserved attributes, however, should be expected to affect the correla-

tion between deviations when tastes vary across individuals.

We will propose a rather general random utility formulation of

the model that captures the essence of these heuristic ideas. Special

cases of the formulation are then discussed. For convenience of exposition,

we assume that there are only two measured attributes, X^ and X„. The

analysis can easily be extended to more.

Let,

(3.7) U(X) = U(X,a) + e(X,a)

= (3^ + e^)x^ + (e^ + B2^^2 "^ ^

= e^x^ + B2X2 + ^i\ + ^2^2 "^ ^'

In this specification, U = B X + B^X., e(X,a) = B,X + B2X2 + Y, and

1. More formally, let X and Y be the observed attributes of two alternatives
c c

and let X and Y be unobserved. Assume the observed and unobserved

attributes have a joint multivariate distribution (e.g., normal).

Then

U(X) = EU(X) = EU(X,X |X) = / U(X,X )dX ,

X'^

and the covariance between e(X) and e(Y) by,

Cov[e(X),e(Y)] = E[U(X) - EU(X,X^ |X) ] [U(Y) - EU(Y,Y*^|y)] =

E[u(x)-u(Y)] - eu(x,x'^|x)-eu(y,y'^|y) = 0,

since E[U(X)-U(Y)] = EU(X,x'^|x)-EU(Y,y'^|y).
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g^ , g , and Y ^^^ assumed to be uncorrelated random terms. The random

variables 3 and 3^ may be thought of as random taste parameters repre-

senting the effects of unobserved attributes of individuals. The term y

may be considered to represent "purely" random components of utility —

unobserved characteristics of alternatives, or purely random behavior on

the part of individuals, for example.

Note that the taste parameters g and g are assumed to be uncorrelated.

An obvious reason for this is the saving in computation that it allows.

There is, however, a more fundamental rationalization. In some sense

we describe alternatives by their attributes to allow explicit description

of why one alternative may be preferred to another. If the tastes of

individuals for one "attribute" are correlated with those for another,

it must be that the two attributes have something "in common." If this

common component is in fact identifiable, then we would like to isolate

it by explicit consideration of it as a separate attribute. This would

presumably eliminate correlation between the new attributes — now more

precisely defined. In this sense, precise definition of attributes,

if successful, would lead to defined attributes for which individual

tastes are uncorrelated.

The variance of the error term corresponding to the j— alternative

faced by the i— individual is given by,

(3.8) Var(e. .) = a. .^ = a„ ^ X, , .
^ + CJ„

^ X„ . .
^ + a .

.^

,

ij ij g^ lij g^ 2ij YiJ

2
where a represents the variance in tastes across individuals relative

^1

to the measured characteristics, X , etc... The covariance between the

error terms corresponding to two alternatives, j and j', faced by the
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i— individual is given by,

(3.9) Cov(e..,e..,) = a„ ^ X, ..X, ... + a- ^ X„..X„. .,.
ij ij 3j^ lij lij &2 ^^J ^^J

Because the variance of e is identified only up to some arbitrary multiple,

2 2 2
we can fix one of the variances, a . a_ , or a , at an arbitrary

^1 ^2 ^

2 2
value. We have elected to set o . . =1. We must estimate only a„

YiJ 3,

2
and a . In general then the covariance matrix Y. is of the form,

^2

V 2 ^ 2 ^ 2

I \ \il ^ %il

(3.10) Z. = ^ a 2x^.^x^.2 ^a 'X^i2'-^V2'
k k k k

lX^\il\l3 1%J\±2\±3 I %J \i3^ ^ 'yt3'
k k k k k k

where the summation is over all measured characteristics. ' Note that

the y . are assumed to be independent across alternatives faced by a given

individual, as well as across individuals.

2
If tastes do not vary across individuals — that is, if a =0

'^k
2

for all k — and we assume that the a ., =1 for all j, then.

(3.11) E^ = 1

1

1. This specification thus allows an "alternative set" effect as used
by McFadden [ ] . The logit and Independent problt assume this effect
to be zero.
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and.

1 2

(3.12) Q. =
J 2 1

for all choices j. This is the independence case.

We mentioned above that the variance in the values, or utilities,

that different individuals assign to any particular alternative, or alter-

natives with the same measured characteristics, can be thought of as

resulting from two factors — differences in tastes across individuals,

and unobserved characteristics of the alternative. (This ignores the

possibility of purely random behavior.) Some idea of the relative im-

portance of these two factors can be had by comparing the estimates

2 2
of the normalized a„ with the normalized value of a , fixed at 1.

The number of parameters to estimate can be reduced and the model

2 2
simplified by constraining a to equal some constant variance a„

for all characteristics k. For this simplification to be at all reasonable

certainly requires that the variables X, be normalized, since the units

in which they are measured is completely arbitrary. We experimented

with this constrained model after normalizing measures on the X, by

dividing them by their respective sample standard deviations (determined

from measures across all alternatives and individual decision makers in

the sample)

.

We can constrain the covariance specification even further by assuming

that there are no unmeasured characteristics that affect individual de-

2
cisions and setting a =0. That is, we assume not only that the variance

in tastes is the same for all measured attributes of alternatives, but
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also that all the randomness in utility results from variation in tastes.

This formulation in fact allows a straightforward intuitive feeling for

the properties of the more general model. The relationship between

this specification and the loose idea of the correlation of errors de-

pending on "closeness" in attribute space is easily seen. In this case,

U(X) is given by,

(3.13) U(X) = B^X^ + 62^2 + ^i\ + ^2^2'

where U(X,a) = g^X^ + "^^X^, and e(X,a) = B^X^ + &^X^. If 6^ and 6^

have equal variances and are uncorrelated, the covariance between any

two errors, say for the alternatives X and Y, is given by: Cov[e(X) ,e(Y) ]
=

2
a (X,Y + X„Y ) . The correlation between the two is given by,

o^(X Y +X Y ) X Y + X Y

(3.14) p^ = - =
||
J

| iI y II

= cos(X,Y) .

Jo^iX^hx^^) Jo'^{Y^+Y^)

This formulation assumes that if A and B have the same measured char-

acteristics, a decision maker will treat them as identical; the deviation

of his valuation of A from that of the representative individual will equal

the deviation in his valuation of B. (See figure 2.) If there were no

unmeasured characteristics of alternatives, we would want precisely this

property. Identical alternatives are treated identically by a given de-

cision maker. ' (We will see below that under this formulation, adding

1. It also has the property that if A and B are orthogonal, or at right

angles to one another, so that A^B^ + A„B„ = 0; the corresponding devia-

tions are assumed to be uncorrelated. Finally, if two alternatives are in

the same direction, but different "distances" from the origin, like A and

D, they are assumed to have the same correlation as alternatives closer

together, like A and C, or two alternatives A.
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Figure 2
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an alternative identical to an existing one will not change the predicted

probability of choosing other alternatives. This represents the absence of

the unwanted "independence of irrelevant alternatives", property; however,

it is an extreme case, stronger than we would like to impose.)

In summation, we will experiment with three parametrizations of the

covariance matrix. The first constrains all off-diagonal elements to

be zero. We call this the independent probit case. The second assumes

that off diagonal elements are given by (3.9). We refer to it as co-

variance probit. And, third, we will use an intermediate parametrization

that constrains the taste variation parameters to be equal. The more

flexible parametrizations correspond to letting the data "choose" the

degree of association of e.. and e... conditional on how "close" the

observed alternatives are in attribute space.

These three parametrizations of the covariance matrix are all generali-

zations of the "probit" model used often in economic analysis. To date only

the independent probit model has been used in the binary choice case where

its properties are rather similar to the more commonly used logit model

because the distribution functions on which the models are based are sim-

ilar except in the extreme tails. However, with three or more alternatives

the behavior of the logit and covariance probit models is apt to differ

since the logit model is based on binary comparisons while the covariance

probit model is based on an n-way comparison with interdependent stochastic

terms. In particular, predicted effects of the introduction of a new

alternative are likely to differ substantially between the two models. But

before comparing results from the two models we will review briefly the

relevant aspects of the logit model.
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b. The conditional logit specification is based on the assumption

that the e. in (3.1) are independently and identically distributed with

extreme value density functions (Type I extreme value — Johnson and

Kotz, pp. 272 ff)

,

-c

.

-e . _ 1

(3.15) f(e.) = e ^ e
^

and distribution functions,

-k.

-e ^

(3.16) F(k.) = pr(e. < k.) = e

It is the limiting distribution (as n->^) of the greatest value of n in-

dependent and identically distributed random variables. While it is dif-

ficult to argue that the extreme value distribution is a particularly good

representation of the stochastic nature of the e., it turns out to be ex-
J

tremely convenient mathematically. The difference between any two random

variables with this distribution [e.g., n . .
« = £.. - e... in equations (2.5)

and (2.6)] has a logistic distribution function, that gives rise to the

binary logit model. For example, if only two alternatives are available,

the probability that the first is chosen is given by.

"l
(3.17) P^ ^—

"l "2
, , ^2 - "l

e + e 1 + e

The probability that the first is chosen from three alternatives is given

by.
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(3.18) P, = ^—
'

"l "2 "3
, ^ "2 - "l "3 - "1e+e+e 1 + e +e

which appears as a straightforward extension of the binary case. This

simple form arises because the relevant probabilities in equation (2.4)

are independent, as well as having convenient functional forms.

That is, Fj^(kj^.U^2 "^
'^l' ^13 "^ ^1^ " f(k^)-Pr(e2 1 U^2 "^ kj^)-Pi^(e3 1 Uj^3 + k^^)

= f(k,)'F(U + k )'F(U „ + k ). The integration in (2.4) is essentially

taking a weighted (by f(*)) average over the values of e^ , of the product

of binary comparisons, where the value of e, is fixed in each. Another

way to see that the model assumes that only binary comparisons need be

made is to rewrite (3.18) as the inverse of the sum of binary odds. That

is P can be written as,

"1 ^2 U3

(3.19) P = 1/ ^— + ^— + ^— .

^1 ^1 ^1
e e e

(The extension to a greater number of alternatives is straightforward.)

In fact, we can let any alternative be a "basis" for the set of alternatives,

and then write any probability P. in terms of binary comparisons with

it as.

1. McFadden [1973] has shown that a necessary and sufficient condition
for the random utility model with independent and identically distributed
errors to yield the conditional logit or "strict utility" model, is

that the errors have extreme value distributions.
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u. - c^

"l - "l "2 - "l "3 - "1
e + e + e

Thus all choices may be assumed to result from binary comparisons with

a basis alternative. Well defined probabilities are obtained by appropriate

U. - U^
transformation of these "comparisons" (differences), e , and normalization.

We emphasize the binary comparison aspect of this model because it is

integrally related to its primary shortcoming. This very powerful simplifica-

tion brings with it very restrictive assumptions on individual behavior.

As Luce and Suppes [1965], Marshak [1960], and McFadden [1973] have

pointed out, the relative odds of alternative j being chosen over alterna-

tive j' is independent of the number, or attributes, of other alternatives

in the set. This so called independence of irrelevant alternatives

assumption follows directly from equation (3.18)

.

While for many problems the logit choice model is adequate, for

some problems which contain alternatives that are close substitutes for

each other the specification is too restrictive. For example, consider

an individual with a choice of two residence locations , say Florida

and Vermont. Assume that he likes the sun in Florida; but he likes

equally the beautiful fall and winter skiing possibilities in Vermont.

This results in a 50-50 chance that he will choose Florida over Vermont;

P„T . , /P„ ^ = 1. Now assume that his alternative set is expanded
Florida Vermont

to include New Hampshire, which we assume to be identical to Vermont

in skiing opportunities and fall beauty; U(Vermont) = U(New Hampshire)

.

We would expect that the individual would still choose Florida with prob-

ability .5 and would choose Vermont o£ New Hampshire with probability .5
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and each of them with probability .25. Contrary to this expectation, the

conditional logit functional form constrains the odds of choosing Florida

over Vermont to remain at 1. The probability of choosing Florida, as

well as the probability of choosing Vermont, falls. The model predicts

that each state will be chosen with probability 1/3. In the empirical

application used later there are three alternatives for commuting to work:

drive alone, car pool, or bus; the characteristics of the first two alter-

natives are similar. Yet, if we had started only with the drive alone-bus

split and wanted to predict the effect of car-pooling, the relative odds of

the original choices would be constrained to remain the same, while it

seems likely that much more substitution exists between driving alone and

car pooling than between taking a bus and car pooling. These restrictions

essentially result from the assumption of independent errors in (3.1). The

goal of the conditional probit model is to allow relaxation of these re-

strictions.

The probit and logit models have been specified in terms of the theory

of a representative individual and a stochastic theory of the distribution

of "deviations" from the representative individual. On prior grounds it is

difficult to choose between them because a more general specification is

gained at the expense of computational convenience. After discussing the

estimation procedure for the probit model in the next section, an empirical

example is used to demonstrate differences between probit and logit models

in estimation and prediction. We might expect the independent probit and

the logit models to have similar properties and, in fact, they lead to

almost identical empirical results. Both assume Independence and after

normalizing the variances, the distributions that form the basis of the
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models — independent normal and extreme value respectively — are quite

similar. The independent probit is introduced to allow direct comparison

(nested hypothesis testing) with the covariance probit. Although we can

only make "precise" comparisons between the two probit models, the fact

that the independent probit and the logit models give almost identical

results allows us in practice to make implicit comparisons between the

logit and the covariance probit models.
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4. Estimation

Given a random sample of individuals, the unknown parameters are

estimated by maximum likelihood. A sample (without repetitions) may

be thought of as N independent drawings from a multinomial distribution

with log-likelihood function.

(4.1)

N
L = K + E

J

^ y
i=i j=i

. . log p.

.

where y. . = 1 if person i chooses alternative i, and y.. =0 otherwise.

Both the probit and logit likelihood functions have this same general

form, but have different specifications of the probabilities p... Estima-

tion of the logit model (equation 3.4) is discussed at length by MacFadden

[1973] and will not be described here. In the case of three alternatives,

the relevant probabilities for the probit model are given by equations

corresponding to (3.9) or (3.10) with the bivariate distributions having

the covariance matrices

,

(4.2)

a^ =

^2
=

2 2^2 2

%1 " %2 ^ .\%. ^\± - ^2i>
1=1 1

2

\i^ + %2^ "^ ^ ""e
^^^''^ ~ ^''^

i i
2i li^

v'-''°e.'^^2i-^ii)(^2i-Si)

2 2 '^ 2

y1 y3 ^^^ 3^ li - hi\

V'-'%3'-^^^6.'(^2i
'

' 1 1

X3.)

f^- =

^l' + ^3'-^^\'(Si-^li)'

%3^ "^ ^ % ^^^^^ " ^1-)^^-^- - ^o.)3i li' ^31 21'

2 2 2

y2 y3 ^ B^ 31 V
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The derivatives of (4.1) with respect to 3 yields,

„T N J y.. 9P..

k 1=1 j=l ij k

The derivatives of the P.. with respect to g have a simple form comprised

of standardized normal densities and distributions. For example, let us

rewrite equation (3.3) as

"l2 ^13
(4.4) ^1 ^

i" / h^(r\^^,r\^^; r^) ^1123^^1122^
—00 —00

~ - / 2 2 / 2
where U^^ = ^12''^°1 '^ '^2 ~ ^^^12 "

^^il~^i2^ S>/Ja^ +
2 2 ~

and likewise for U^_. Then the derivative has the formula

9Pi (Z,^6 - r Z 6)

(4.5) —^= 4)(Z,.B) $ ^"-^^^— L.k
3Bj^ 12 , 2 12

>/l-r^

Z 6 - r Zj^ 6 _

+ *(Z,3B) $ i Z^3j^ .

yi-r/

where <()(•) and $(•) are standard normal density and distribution functions

respectively. Thus, in the three alternative case the gradient involves

only univariate normal densities and distributions that are easily evaluated

on a computer. To obtain likelihood values requires evaluation of bivariate

normal distributions. This is done using a modification of an algorithm

first introduced by Owen [1956]. Each additional alternative past three

increases the order of the integrals in the derivatives by one. Thus

computation with many alternatives may be prohibitively expensive. To
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date, the specification has been used for three and four alternatives

and costs have been moderate. Significant cost reductions do accrue to

careful programming of the maximization routine. In the case of the un-

2
known a. entering the covariance matrix, the corresponding derivative

again has a simple form. For example, the derivative of P, with respect

2
to a. is given by,

^^1
^,~ ,

,
z e - r z e z e ^'^i^u

9a^_2 12 y
_ ^ 2 ^'"11 ^^6.2

Z, „3 ~ r.Z,„3 Z,o3 3(i)-| 99

/^ 22 ""3^

^12^ - ^iZi33 1 3r^

+ <i>(Zi33) * :===— • 7== • ^t:^ .

y^ - ^1' /i-'^i

where the last term may be written as.

2 3,

bT(ZT„3, Z,,3; rj
^"1,12 J^l ^'"1,11 Jl ^'"1.22

1' 12^' '^W' ^r J 9a- 2 2(x), ,, da. 2 2ui. .. 9a- 2

,22 ^i ' "i ' "i

The method used to maximize the likelihood function is that proposed

by Berndt, Hall, Hall, and Hausman [1974]. It requires only first derivatives,

each iteration is guaranteed to increase the value of the likelihood function

and, given an additional requirement likely to be satisfied (equation 2.1

of Berndt et. al.) , will converge to a stationary point. If a global

maximum of the likelihood function L* is assured, then under the usual

regularity conditions (see Cox and Hinckley [1974]) the maximum likelihood

estimates will be consistent and asymptotically normal. The asymptotic
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covariance matrix of the maximum likelihood estimates is equal to the

covariance matrix of the gradient of the likelihood function evaluated at

2
the maximum 6* = (gjO )*. The expression,

N ^(^ ^ij ^°S ^ij^ ^(^ ^ij '°^ ^j^
(4.7) Q(e) = Z -J-^^ -J-^^

,

1=1

has the same expectation in the limit as the covariance matrix of the

gradient and thus provides a consistent estimate of the inverse covariance

matrix of the parameters.

Given the covariance matrix of the estimates, large sample tests of

coefficient values can be made in the usual way. The diagonal elements of

the inverse of the covariance matrix of the gradient provide consistent

estimates of the variances of the unknown parameters. Tests on model

specification can also be constructed. One interesting test of the model

specification might be that 6 = (3, a) = 0. Then P. in equation (4.4)

equals — and the log likelihood function (4.1) takes the value

(4.8) L' = N log J
= N log ^ .

Hypothesis testing then follows the classical likelihood procedure with

2
-2(L'-L*) "^ XoTT.o . where K is the dimension of g. For the independent

2
covariance specification where o). = 1 and the a. =0 are assumed zero,11

2
the appropriate test statistic is -2(L'-L*) '^ Xxr •

K.

Unfortunately, in trying to test the probit against the logit specifica-

tion a problem arises. Although both model specificatons are intended

to estimate the same multinomial probabilities in the likelihood function

(4.1), neither model is a "nested" special case of the other. Thus,



-30-

classlcal likelihood ratio tests cannot be applied. While the two different

likelihood values give some indication of how successful the respective

models are with respect to the sample, no easy distributional theory can be

developed to choose between the specifications. However, since the

logit specification gives such similar results to the identity probit

specification which is a vested case of the more general covariance

specification, the relative likelihood values might be used in an "ap-

2
proximate" x test.

To test the two different classes of models a measure of fit against

the observed frequencies can be constructed. Let,

N J (y.. - p..(e))^
(4.9) Z = Z Z -^ ^

.

i=i j=i p^^(e)

N J
2

Then as I Z p.. becomes infinite for each j, Z approaches the x
i=l j=l ^J

distribution with N'J - (K+1) - N (because probabilities add to 1) degrees

of freedom.

An alternative interpretation of the measure is that under random

sampling each individual in the sample is given the same weight and the

proportion of decision makers selecting the j— alternative is estimated to

be,

(4.10) Pj=i j, Pij(^>-

We note that while predicted frequencies from both the logit and probit

models can be compared to the observed frequencies, this does not provide a

formal test of one model specification against the other. An associated

nondistribution test is to compare the Z statistics from the three models.
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Alternatively, the p. can be compared to the observed p. where p.. = 1

if individual i makes choice j and is zero otherwise. Since given correct

model specification the estimated empirical distribution function converges

to the underlying population distribution function, comparing the estimated

p. to the sample p. provides some guide to relative model performance.

In the next section both probit and logit are estimates, based on

transportation mode choice data, are presented. The models are compared on

the basis of both the formal and informal tests.
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5. Empirical Example: Transit Mode Choice

Disaggregate models of transit mode choice are widely used to analyze

factors that determine the type of transportation individuals use. The

models are important in answering two types of questions: patronage of

a new transit mode (e.g. new subways in San Francisco or Washington) and

effects on patronage of changes in existing modes (e.g. introduction of

off-peak fares in Boston) . To date, almost all such models have been

based on a conditional logit specification. The major weakness of such a

specification is that when a new mode is introduced or the characteristics

of an existing mode change, all predicted probabilities of choice are

constrained to change by the same proportion. This result follows from the

independence of irrelevant alternatives assumption. While on the micro

level of the individual, this property seems undesirable, it is not clear

that aggregate forecasts will be seriously wrong. Therefore, both probit

and logit specifications are used to estimate mode choice for commuters to

the central business district (CBD) of Washington, and in the next section

a forecasting example is discussed.

Three alternative transit modes are available in this example. * The

first mode is driving alone, the second is car pooling, and the third

is public transit (bus). The model analyzes the worker's choice of travel

mode from his home to his work place in the CBD. As the model of the

representative individual postulates, two types of factors are important:

1. We would like to thank Professors M.E. Ben-Akiva, F. Koppelman,
and S.R. Lerman for kindly providing us with the survey data used in this
empirical study.
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characteristics of the alternatives, x... and attributes of decision

makers , a .

,

1

The data used in the study are from the Washington Council of Govern-

ments Home Inter\fiew Survey described in [4] . The specification is similar

to that used by Koppelman and Watchnatada [1975]. Three mode character-

istics, and one personal attribute are used. The mode factors are cost of

trip divided by income (PINC) , in-vehicle travel time (INTIME) , and out-of-

vehicle travel time (OUTTIME) . Cost and travel time are typically found to

be the most important determinants of transit mode choice.

Three models are initially estimated. The first two are probit models

corresponding to independence and a covariance specification where the

2alternative specific variances are set to one (a . = 1) . Lastly, condi-

tional logit estimates are obtained for comparison purposes. One hundred

observations are used with the cost of computing being quite small (under

$10 in all cases) . Parameter estimates are presented in table 1. The

parametric estimates of the probit model are roughly similar and accord

with prior expectations with respect to sign. Note that the mean estimates

are quite different for the probit estimates depending on the specification

of the covariance matrix.

The hypothesis that 6=0, [L' = -109.89 — equation (4.7)] is re-

2jected at the 1% level by all the models using a x variate with 3 or

6 degrees of freedom. Another important test is a "saturated" model

specification referred to as the presence of "alternative specific effects"

by McFadden ([1973], p. 114) or as the "pure mode preference effect"

([1973], p. 131). This test entails inclusion of a constant for the

different choices representing choice characteristics which have been
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Table 1: Parameter Estimates, CBD Transit Mode Choice.

Variable

Probit Estimates (Standard Errors)

Identity Probit Covariance Probit

Logit
(Standard
Errors)

L*(e)

1. PINC

2. INTIME

3

.

OUTTIME

-103.0

-.411
(.135)

-.0549

(.0151)

-.0884

(.0723)

-99.4 -102.9

-1.05 -.531
(.369) (.186)

-.0651 -.0713
(.0416) (.0210)

-.0813 -.132
(.0729) (.132)

Covariance
Parameters

4. PINC, a
e.

5. INTIME, a.

6. OUTTIME, a.

3.07

(3.88)

.0331

(.105)

2.13

(5.15)

Degrees of
Freedom 97 94 97
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left out of the model specification, e.g., a "convenience factor" for

driving alone versus car pooling or taking transit. Besides providing

a check for correct model specification, this test is important since

forecasting the effects of the introduction of a new choice or altering

the characteristics of an existing mode are impossible if alternative

specific effects are present. The two saturated models which are tested

are first to include alternative specific constants for the second and

third choices in the identity probit specification (for choice one the

alternative specific effect is normalized at zero) and second in the co-

variance probit model to have two alternative specific effects and to

2 2 2
estimate a „ and o _ while normalizing a , =1. Neither saturated

y2 y3 yl

model provides a significant improvement over the corresponding unsaturated

model at the 10% level by a likelihood ratio test although some evidence

is present that there may be a specific effect for the transit choice.

Thus the model specifications would be appropriate to use in a forecasting

situation.
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Variable

L*(e)

1. PINC

2. INTIME

3

.

OUTTIME

4. Alt. Effect 2

5. Alt. Effect 3

Identity Probit Covariance Probit

-101.2 -98.9

-.107 -.187

(.230) (.722)

-.0379 -.0216
(.0282) (.0567)

-.139 -.246
(.073) (.877)

-.033 -.047
(.496) (1.11)

.483 .361

(.403) (.460)

Covariance
Parameters

6. PINC, a^ .098
(.529)

7. INTIME, a^ .0054

(.024)

8. OUTTIME, aJ" .204

(.782)

9. Alt. Effect 2, a ^ 2.02

(3.46)

10. Alt. Effect 3, a ^ 1.001
(8.42)

Degrees of Freedom 95 90

Unsaturated LR Statistic
Against Unsaturated Model 3.60 1.00
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The two unsaturated probit specifications can be tested against each

other in two ways. First a likelihood ratio test can be constructed.

2
Two times the likelihood ratio is distributed as x with three degrees

of freedom. This statistic has the value of 7.2 which is significant

at about the 7% level. The more general specification seems to provide

evidence of considerable variation in tastes for the first and third

mode attributes. A second test of the covariance specification as well

as the logit specification is to calculate the predicted sample frequencies

as discussed in Section 4.

Estimated Sample Frequency Distribution

Mode 1 Mode 2 Mode 3
2

X

Independent Probit .362 .218 .421 1.67

Covariance Probit .346 .197 .457 .281

Logit .363 .218 .419 1.73

Sample .34 .18 .48

Two findings should be noted. All model specifications do a good job

with the hypothesis of the predicted and empirical distributions not

being significantly different not rejected in all cases. Also, as expected,

the independent probit and logit specifications give virtually identical

population forecasts. The covariance probit specification, however,

2does better than either of the other models. Not only is the x statistic

lower, but also it never misses the sample frequency by more than .02.

Given the wide variation in transit mode choice, these results appear

promising for further development of the model.
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6. Forecasting Example: Introduction of a New Transit Mode

Disaggregate mode choice models are often used to forecast patronage

for a potentially new transit mode. Transit modes are described in terms

of their characteristics x... If a new mode is introduced its characteristic
ij

vector X. ^,, along with the individual attributes a, will be used to form
1 , J+1 ° 1

the representative utility U. ^
= Z. f,-,&' This utility will then

be compared with the utility of the other modes U. . (j = 1,J and i = 1,N) and

the probabilities of use by each individual will be predicted by the stochastic

model.

To ascertain if important differences between probit and logit forecasts

might be expected, a new mode was "created" and resulting effects were

predicted with the different specifications. The "new" mode is intended

to correspond roughly to a new subway mode. Cost divided by income (PINC)

is set at a mean value higher than the bus mode, the mean of in-vehicle

travel time (INTIME) is assumed to be lower than the bus mean, and out-of-

vehicle time (OUTTIME) is set at a higher mean. Two types of experiments

were carried out. In the first, all x.. for the new mode were set at the

mean values. In the second, not reported on here, a random number generator

assigns the x.. randomly according to normal or rectangular distributions.

Of course, in any actual forecast situation the design characteristics of

the new mode would be used to set x. ^.,

.

1, J+1

For the probit models the probabilities of taking the new mode follow

from equation (2.6) and are given by.

^41 ^42 "43
(6.1) P4 = / / / ^1(^14 '^24 '"^34^ '^''l4'^'^24'^34'

—00 —00 —00
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where h, (•) Is a trivariate normal density. For existing modes (say the

first mode) the probability in equation (2.6) changes with the addition

of a new dimension of integration. The new probability, P^ , will be less

than the former probability P, , but no fixed relationship between P.

and the old P. can be ascertained. It depends in a complex way on both

the U... and the covariance matrix of the normal distribution. On the

other hand, the new probability according to the logit specification is

(z^-z^)e

(6.2) I, =
^

4 4 (Z -Z )|

Z e ^

The old probabilities can be seen to change from equation (3.12) only

Pi Pi
in the addition of a new term in the denominator so that ^— = — , the

independence of irrelevant alternatives assumption. As discussed above,

many people find it unreasonable that for representative individuals the

same proportion will change from driving alone to the subway mode as will

switch from the bus mode. However, it is important to realize that this

assumption is a micro one and may not have an adverse effect on macro

(population) predictions.

Given the new alternative the macro forecasts that a transit planner

might use in designing the new mode are:

Aggregate Probabilities of Transit Choice

Mode 1 Mode 2 Mode 3 Mode 4

Independent Probit .335 .200 .391 .074

Covariance Probit .255 .181 .377 .187

Logit .334 .200 .386 .080
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The forecasts again demonstrate that the logit and identity probit specifica-

tions give very similar results. While the independence of irrelevant

alternative property holds only at the level of individual probabilities,

note that the logit specification forecast a ridership of 8% for the new

mode with the three existing modes losing ridership of from 7.9% to 8.3%.

Thus the independence property holds approximately at the macro level

in this example. The covariance probit forecasts differ in two ways.

First, a much greater ridership of 18.7% is forecast for the new mode.

Also, many of the new riders are from the existing transit mode and from

those people who currently drive alone. Current mode two which is car

pooling has a decline of less than half that of the other two modes.

Thus a differential response of the three existing modes to the new

mode is found. While this experiment cannot be validated since artificial

data is used, it does demonstrate that the different specifications may

lead to different forecasts. Furthermore, both the logit and independent

probit models suffer from the disadvantage that more people are forecast

to take existing mode two than currently do so in the presence of three

choices. These forecasts seem counterintuitive in the presence of an

enlarged choice set.
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7. Conditional Probit Specification and Random Utility Models

The stochastic specification of the utility function U.. in equation

(2.2) is sometimes called the random utility model. Block and Marschak

[1960] and Luce and Suppes [1965] discuss the model at length, and recently

Manski [1975] has given an interesting theoretical discussion of a special

case of this model — the independent and identically distributed random

utility model. By this terminology is meant that the stochastic terms

are I.I.D. and thus independent of x. . and a.. The logit specification,

being a particular case of this specification, is often criticized on

the following grounds. * (McFadden has called the problem the "red-bus

blue-bus problem".) Suppose in a transit choice problem the original

choice set consists of driving alone or taking a (red) bus. Next, an

additional alternative is added identical in all characteristics to the

red bus, except its color is blue. From equation (3.4) it can be seen

that the logit specification will "correctly" forecast equal probability

of use of the two buses; but, unfortunately, the decreased proportion

of car drivers must exactly equal the decreased proportion of red bus

riders. Thus, the odds of the first two choices must remain identical,

so if the original probabilities were 2/3 car and 1/3 bus, the new probabilities

are 1/2 for car and 1/4 for each type of bus. This counterintuitive

result has led to many attempts at "correction" of the logit specification

to remove the property.

Note that the independent probit specification of equation (3.5)

has a similar undesirable property. The original probability of driving

is

1. G. Debreu, to the best of our knowledge, was the first to point out
this property, although his example is less prosaic than ours.
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U //2
(7.1) ^1 = / *(^2i^ '^'^Zl

where <!)(•) is the standard normal density. When the blue bus is added,

the probability of driving falls to

U //2 U //2
(7.2) p^ = /

^^
/

^-^
b(n2i,Ti33^; 1/2) dn3^2'^nj^3

—OO —00

where U „ = U^ » since all characteristics are the same. While the exact

relationship between P and P depends on U^ „ and follows no simple

formula, as does the logit formula, the result is still counterintuitive.

The independent probit specification would not be appropriate in such

situations.

On the other hand, the covariance probit specification offers a

solution to the problem. Originally, the probability of driving is

U-„/(2+Za^ X 9^)^^

(7.3) ^1 = / *(^21^ '^'^21-
—OO

With the addition of an identical alternative the probability is

0^2/(2+1:0.^ ^12^^^ U^2/(2+Za.^ \2^^
(7. A) ^1 " / / ^^^21*^31' ^^ '^^21*^'^31'

—00 —00

The correlation is unity since in equation (3.8) oi^ ^^
= o)^ ^ » = co^ 07 ^^ ^^^

natural assumption is made that the unobserved characteristics are the

same for the red and blue buses and have covariance equal to their respective

variances. Because the limits of integration in equations (7.3) and (7.4)

are identical, P = P-i . The second integration is equivalent to the first

integration along the line rio, = no-, . Thus, the covariance specification

completely reproduces what our intuition desires. The probability of
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driving remains the same while P„ = P = 1/2 P„. * Thus the model

specification seems satisfactory in the "red-bus blue-bus problem".

1. Actually, the probabilities P„ and P„ are degenerate in one dimension,

so we adopt the convention of setting them equal.
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