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Abstract. Let ~ "  be the cone of quadratic functions 

F1. f = fo + ~ f~xi + ~ fi.ix,xj, ~i = Jjl, 

on R" that satisfy the additional condition 

F2. f (z)  > O, z ~ Z ~, 

where Z denotes the integers. The coefficients and variables are assumed to be real 

and 1 < i, j < n. The extent to which information on the convex structure of ~"  can 

be used to determine the integer solutions of the equation f = 0 for f e ~ "  has been 

studied. 

The root figure of f ~ ~",  denoted Rf,  is the set of n-vectors z ~ 7/" satisfying the 

equation f (z)  = 0. The root figures relate to the convex structure of ~ "  in an obvious 

way: if R is a root figure, then 

FR = { q e # " t R q  = R} 

is a relatively open face with closure {q ~ #"lq(r) = 0, r e  R}. However, such formulas 

do not hold for all the relatively open and closed faces; this relates to some subtleties 

in the structure of .#". 

Enumeration of the possible root figures is the central problem in the theory of 

~". The group G(2~"), of affine transformations on R" leaving 2~" invariant, is the full 

symmetry group of #" .  Classification of the root figures up to G(Y")-equivalence 

* This research was supported by the Natural Sciences and Engineering Research Council of 

Canada and the Advisory Research Committee of Queen's University. 
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provides a complete solution to this problem, and this paper is concerned with some 
basic questions relating to such a classification. 

The ideas in this study closely relate to the theory of L-polytopes in lattices as 
developed by Voronoi EV1], IV2], Delone [Dell, [De2], and Ryshkov [RB]; 
L-polytopes, along with their circumscribing empty spheres (often referred to as holes 
in lattices), play a central role in the study of optimal lattice coverings of space. In 
addition, the theory of ~n makes contact with: (1) the theory of finite metric spaces, 

in particular hypermetric spaces [DGLI], [DGL2], and (2) a significant problem in 
quantum mechanical many-body theory related to the theory of reduced density 

matrices [E2]-EE4]. 

1. Introduction 

Suppose that E c R" is an ellipsoid. Then E will be called empty if its interior 

contains no integer points. If, besides being empty, E contains sufficiently many 

elements from Z" so that these elements uniquely determine this quadratic surface, 

E will be called perfect. 

An empty ellipsoid determines an entire ray of ~ ,  for let f be some quadratic 

function such that the interior of E is given by {x e ~"1 f (x)  < 0). Then f has 

nonnegative values on 7I" and the ray generated by taking all positive scalar 

multiples o f f  belongs to ~ ;  this ray is uniquely determined by E. If E is perfect, 

then the root figure E c~ Z ~ must contain at least N -  1 elements from 2~n; 

n + 2)  is the dimension of the linear of quadratic functions on ~". In 
N =  2 space 

/ 

the special case where E is perfect, f will be called a perfect element of ~". 

More generally, an element f e ~ "  will be called perfect if the subspace of 

quadratic functions given by 

Q(RI) = {q quadratictq(r) = 0, r e R;} 

is one-dimensional. Elements which are not perfect will be referred to as imperfect. 

The terms empty ellipsoid and perfect ellipsoid will often be used in the context 

of more general lattices F c R n, where dim F = 1, 2 . . . . .  These notions are 

generalized by substituting aft(F) (the affine hull of F) for R" and F for Z ~ in the 

original definitions. For  example, an empty ellipsoid in F is an ellipsoid in aft(F) 

containing no elements of F in its interior. Other notions, such as perfect element, 

can be generalized in a similar way. 

Proposition 1.1. f e ~n is perfect if and only if R s is a maximal, proper root fioure. 

A proper root figure is neither empty nor equal to Z". The root figures are 

partially ordered by containment and maximal refers to this ordering. It will be 

convenient to refer to maximal, proper root figures as perfect. Examples below 

show that perfect root figures can be either finite or infinite. 
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Proof Assume that f is perfect. Then the linear space S/spanned by 

[1, r I . . . . .  r., r~, 2fir z . . . . .  r~], Jr1 . . . . .  r . ] ~ R :  

h a s c ° d i m e n s i ° n ° n e i n t h e ( n + 2 )  " d i m e n s i ° n a l s p a c e ° f c ° e f f i c i e n t s ' I f z e ~ - " 2  

does not belong to R:, then 

s ~ = [ 1 ,  z 1 . . . . .  z,, z~, 2zlz2 . . . . .  z~] 

does not belong to this linear space, and the only vector orthogonal to S:, s~ is 

the zero vector. That is, the only quadratic function q satisfying the equations 

q(z) = 0 and q(r)= O, r ~ R:,  is the zero function with improper root figure 7/". 

Therefore R: is a maximal proper root figure. 

That a maximal proper root figure is the root figure of a perfect element follows 

from Theorem 2.3. [ ]  

An element f e ~"  is said to be extreme if whenever g, h e ~"  are such that 

f = g + h, then both O, h are nonnegative scalar multiples of f 

Proposition 1.2. The perfect elements of .~" are extreme. 

Proof Suppose that f is perfect and f = # + h with 9, h e ~". By property F2, 

R: c Rg, Rh. Since dim Q(R:) = 1, both 9 and h are scalar multiples of f.  In fact, 

nonnegative scalar multiples since g, h ~ ~". That is, f is extreme. [ ]  

There are perfect "ellipsoids" on the real line. An ellipsoid on R amounts to a 

pair of points; an empty ellipsoid to a pair of points with no integer points in 

between. All perfect ellipsoids on • consist of a pair of adjacent integer points k, 

k + 1; this follows from the fact that the linear space of quadratic functions on I~ 

that are zero valued at k, k + 1 is one-dimensional. 

Suppose that E is a perfect ellipsoid in Z". Let R = • "n  E. In order that 

Q(R) = {q quadraticlq(r) = 0, r ~ R} be one-dimensional, R must contain at least 

2 - 1 elements. However, the number of elements of R cannot exceed 2" 

by the following argument. The elements of ~" can be grouped into 2" equivalence 

classes depending upon the oddness or evenness of their n components. Two 

distinct elements from the same equivalence class cannot belong to R since their 

average is integer and interior to E, thus violating the condition that E be empty. 
Since, for n = 2, 3, 

n + 2)  _ 1 
2" < 2 

lattices having these dimensions cannot have perfect ellipsoids. 
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In fact, there are no perfect ellipsoids in R n when 2 <_ n _< 5 (Theorem 5.1). 

However, for n = 6, 7 there are examples of perfect ellipsoids (Theorem 5.3) which 

relate to the "deep holes" in the root lattices E 6 and E 7. The conditions for 

perfection are severe and perfect ellipsoids occur infrequently in lattices. I t  is this 

infrequent appearance of  perfect ellipsoids that adds regularity, making ~n amenable 

to investigation. 

Consider the function 

f ( x )  = (alxl  + "'" + anxn + k)(alxl + "'" + anx, + k + 1), 

where a 1, a 2 . . . . .  a,, k e Z and gcd{al, a s . . . . .  an} = 1. Since the coefficients are 

integer, the surface f = 0 is a pair of parallel hyperplanes with no integer points 

lying in between. That  is, this surface is a degenerate empty ellipsoid and f e ~n. 

Because of the arithmetic condition on the coefficients al, a2 . . . . .  an, the root figure 

consists of a pair of parallel sublattices of codimension one. It is an easy exercise 

to show that R :  is a maximal proper root figure. By Proposition 1.I, f is perfect. 

(In Section 2 the perfection of f is established by a different argument involving 

the main Theorem 2.1.) 

There are other classes of extreme elements besides the perfect elements. For 

example, by Theorem 2.1 the function 

f ( x )  = (x /~x l  + Xa + " "  + x .  + ~ ) 2  

is extreme. Since 1, x/~, x/~ are linearly independent over the integers, the root 

figure R:  is empty. 

For  each f e ~'*, let go/be the corresponding form. That is, 

g o f = Y ,  f t jx iXj  • 

Since f satisfies condition F2, the form go: satisfies the condition go:(z) > 0 for all 
z E Z  n. 

Proposition 1.3. (of is positive semidefinite. 

Assume that go: is positive definite and that R :  is finite and nondegenerate. (A 

root figure R is nondegenerate if the affine hull of R is equal to Rn.) Then f has a 

unique minimum at, say, c e R n, and by completing the square can be written 

f ( x )  = go:(x -- c) -- (go:(c) -- fo). 

Since R I was assumed nondegenerate 0 < go~(c) - fo = P2 and the surface f = 0 

is an empty ellipsoid in R*. However, if go: is considered to be the metricai form 
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for a lattice another interpretation is possible: the surface f = 0 is an empty sphere 
of radius p in a lattice F :  determined by q0r (for an expanded discussion of empty 

spheres see [ER]). By changing the metric, the ellipsoid becomes a sphere and the 

vectors z e 7:" become coordinate vectors for elements of a lattice F /wi th  the basis 

defined as follows. Write the coefficient matrix for ~0: as 

F = B'B, 

where B is an n x n matrix; then take the columns of B as the basis for F:  (the 

basis is determined by F only up to orthogonal equivalence). The matrix F is the 

Gram matrix for the basis B, and c is the coordinate vector for the center of the 

empty sphere referred to this basis. 

At the 1924 International Congress of Mathematicians in Toronto, Delone gave 

an elegant definition for L-0olytolm [Del]:  a polytope with vertices belonging to 

some lattice F (and having the same dimension as F) is called an L-polytope in F if  

it can be circumscribed by an empty sphere. Accordingly, R:  gives the coordinates 

of the vertices of an L-polytope in the lattice F :  with basis B. Voronoi introduced 

the notion of L-polytope in the second of his two famous m6moirs "Nouvelles 

applications des param6tres continus/t la th6orie des formes quadratiques" [V1], 

[V2]; these two papers formed the basis for later work on the theory of optimal 

lattice coverings. In their book Sphere Packings, Lattices and Groups Conway and 

Sloane refer to the empty spheres circumscribing L-polytopes as holes in lattices 

[CS]. 

All of the L-polytopes in lattices of dimension n = 1, 2 . . . . .  5 can be studied 

uniformly and efficiently with dual systems of integer vectors. For n _>_ 6 the family 

of L-polytopes that can be studied is large, but does not exhaust the entire set of 

L-polytopes. Dual systems were recently introduced in a series of three papers 

[RE3]-[RE5], the basic ideas and definitions being motivated by earlier work on 

the structure of : "  [El].  Details on how ~n relates to the method of dual systems 

are given in Section 6. This discussion is in the context of the more general question 

of how root figures and therefore : n  relate to the theory of L-polytopes. 

All of the L-polytol~s in lattices of dimension n < 4 have been described earlier 

using other methods [ER], but these polytopes can be studied more efficiently 

using dual systems [RE5]. 

There are two other applications of ~ '  which are worth mentioning. The theory 

of finite metric spaces and ~"  have recently been linked. In two interesting papers 

on hypermetrics and L-polytopes, Deza et al. establish a one-to-one corre- 

spondence between hypermetric spaces and L-polytopes [DGL1], [DGL2]. 

The study of ~ '  was originally taken up to shed light on a fundamental problem 

in quantum mechanical many-body theory. In his paper entitled "The structure 

of fermion density matrices," Coleman initiated the study of the mathematical 

properties of reduced density matrices [Col] (see also [Y]); the cone ~n was 

introduced to study some of the discrete geometric aspects of this theory [El].  

Additional details on how this physical theory relates to the cone : "  can be found 

in the literature [E2]-[E4] (see also IDa] and [DM]). 
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2. The Extreme Elements 

The main result on ~ is (a preliminary version can be found on p. 62 of  [El]) :  

Structure Theorem 2.1. An element f e ~ "  is extreme i f  and only if  it satisfies one 

o f  the three mutually exclusive conditions: 

El.  f is a positive constant. 

E2. f = (cqxl + ~2x2 + "'" + ct.x. + rl) 2 where ~ = [ct 1 . . . .  , a J  is not propor- 

tional to an integer vector. 

E3. f is perfect. 

I f  f is perfect its root f igure is necessarily o f  the form 

R¢ = R o + F, 

where 

R1. R o is the collection o f  lattice points lying on a perfect ellipsoid in some lattice 

F o c E"; 1 < dim Fo-<  n. 

R2. F is a second sublattice o f  E" which together with F o satisfy the conditions 

Z" = Fo + F, (F0 - Fo) n F = 0. 

Moreover, any subset o f  E" o f  the form R o + F, where R o, F satisfy conditions R1 

and R 2, is the root f igure of  a perfect element of  ~" .  

The proof  is left until Section 4. Condi t ion R2 ensures that elements z e E" can 

be written uniquely as z = 7o + 7 with Yo e Fo, 7 e F. 

If p is perfect, the surface p = 0 is the cartesian product  of a perfect ellipsoid 

in Fo with the subspace V = span F having dimension 0, 1, 2 , . . .  ; an ellipsoid, 

cylinder or  generalized cylinder, depending on the dimension of  V. The "axis" V 

of  this cylinder is also given by {x~ R"lq~v(x)= 0}, where q~v = ~ PijX~Xj is the 

associated quadrat ic  form. That  V has a basis consisting o f  integer vectors plays 

an impor tant  role in the following sections. 

Consider  again the function 

p(x) = (a lx  a + ""  + a , x ,  + k)(aax 1 + - "  + a , x ,  + k + t), 

where a I, a 2 . . . . .  a, ,  k e E and gcd{al,  a 2 . . . . .  a,} = 1. Choose  some transverse line 

L intersecting the parallel hyperplanes of  the surface p = 0 at, say, z 1, z2 E Z". Then 

R v = R o + F, 

where R o = {z 1, z2} and F = [a  1, a 2 . . . . .  a n ] i n  Z". However,  R o is a pair of 

adjacent lattice points in the one-dimensional  lattice F o = L c~ Z" and therefore a 

perfect "ell ipsoid" in F 0 (see the discussion in Section 1), but  Fo, F clearly satisfy 

condit ion R2, so by Theorem 2.1 p is perfect. 

The group G(E") ifiduees an act ion on ~ "  leaving it invariant, and the perfect 
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elements of  the form (a~xl + ".. + a , x ,  + k)(alx . + . . .  + a , x ,  + k + 1) all lie in a 

single orbit  under this action. This is a special case of: 

Corollary 2.2. For  a given n, there is a one-to-one correspondence between the 

G(7/n)-orbits o f  perfect elements and the G(7/k)-equivalence classes o f  perfect ellipsoids 

in lattices o f  dimension k = l, 2 . . . . .  n. 

There are several immediate consequence of  Theorem 2.1. 

Theorem 2.3. A n y  root f igure  R c 7/" can be represented as 

R = P l n P 2 c ~ . . . n P k ,  

where P~ is a perfect root figure. 

Proof  It is easy to show that ~ "  has a base consisting of  a compact  convex set. 

Carath6odory's  theorem [G, Theorem 1.7.1] can be applied and any element f e ~ "  

can be written as 

f = e 1 + e z + ' ' '  + e,., 

where el is extreme and m < n .  Assuming that it is not  empty the root  figure then 

has the form 

R :  = El  c~ E= c~ . . .  c~ Era, 

where E i is the root  figure of e i. 

Suppose that e 1, e 2 . . . . .  ep (p <_ m) are perfect. Let g be the sum of the remaining 

extreme elements, which by Theorem 2.1 have the form (alx 1 + ~2x2 + .-. + 

~,x, + r/) 2. When 9 is zero the theorem obviously holds with k = m = p. When O 

is nonzero the surtace g = 0 is a proper  affine subspace of  IR", and Rg is either a 

single point or a proper  sublattice of 7/". The root  figure Rg can then be represented 

as the set of integer solutions of  a system of linear equations, each of which has 

the form 

a l X  1 + a 2 x  2 + " "  + a . x .  + k = 0, 

where al ,  a2 . . . . .  an, k ~ 7/, gcd{al,  a 2 . . . . .  a,} = I. Since 

(a~x~ + . . .  + a . x .  + k) z = ~(a~x I + . . .  + a~x.  + k)(alx  1 + "'" + a . x .  + k + 1) 

+ ~(alx  1 + . . .  + a.x, ,  + k)(alx  1 + "" + a,,x.  + k - 1), 

Rg can also be represented as the intersection of  a finite number,  say q, of  perfect 

root figures. This finishes the p roof  since, then, R :  can be written as the intersection 

of k = p + q perfect root  figures. 1--] 
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The study of root figures quickly reduces to the study of nondegenerate 

root figures where dim R = n. For  suppose that R c Z" is a root figure and 

dim R = k < n. Write Z" as 7/k®Z "-k and let ? e G ( Z  ") be such that 

y(R) c 7/k ® 0 "-k. Then 7(R) can be interpreted as a nondegenerate root figure in 

Z k. The statement of Theorem 2.3 is easily strengthened when R is nondegenerate. 

Representation Theorem 2.4. Suppose that f e ~"  has nondegenerate root figure 

R I. Then f can be represented as 

f = Pl + P2 + ' ' '  + Pk, 

where Pi~ ~"  is perfect and k <_ n; R I has the corresponding representation 

Ry = P~ + P2 + "'" + Pk,  

where Pi is the root figure of Pi. 

Proof The proof  follows the same line as that for Theorem 2.3. The key point 

is that when f is written as a sum of extreme elements, each of these must be 

perfect. Among the extreme elements it is only the perfect elements that have 

nondegenerate root figures. The bound on k is a consequence of Caratheodory's 

theorem. [] 

Corollary 2.5 [ER, Theorem 2.1]. An arbitrary nondegenerate root figure R has 

the form 

R o +  F, 

where 

1. R o is the collection of lattice points lying on some empty ellipsoid in Fo c 2("; 

1 < dim R o = dim Fo -< n. 

2. F c Z" is a second sublattice of Z ~ which together with Fo form a direct sum 

decomposition ofZ"; Z" = 17 o + 17, (F o - Fo) n 17 = 0. 

R is finite if and only if dim 17 = 0. 

Proof By Theorem 2.4 an arbitrary nondegenerate root figure R is the root figure 

of an element 

P = P l  + P z + " ' + P k ,  

where Pi is perfect. Let q~v be the form associated with p and let qh be the form 

associated with pi (i = 1, 2 . . . . .  k). Only the case where ~0p is indefinite need be 

considered since the result trivially holds when ~0v is positive definite. 

By Theorem 2.1 the surface pi = 0 is a cylinder or generalized cylinder with 

"axis" Vi = {x e R"l~0,(x) = 0}, and V/has a basis consisting of integer vectors. The 
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(nonzero) subspace 

re = {x e ~"lq,  p(x) = 0} 

is equal to 1"1 n V 2 n . . .  n V k, so also has a basis consisting of integer vectors. 

Since p must satisfy condition F2 it follows immediately that p(x + v) = p(x) for 

vEV.  

Let F = 2~"n V and introduce a second sublattice Fo so that F o, F satisfy 

statement 2 of the theorem. The root figure R can then be written as 

R = Ro + F, 

where Ro = F o n  R. 

Since R was assumed to be nondegenerate, dim Ro = dim F o. Since V = 

span F, the surface p = 0 restricted to aft F o is an empty ellipsoid E. Since 

R o = E n Fo, Ro is as in statement 1 of the theorem and is finite. It  follows that 

R is finite if and only if dim F = 0. [ ]  

In the last step of the proof the following result was established. 

Corollary 2.6. Suppose that R s is finite and nondegenerate. Then q)s is positive 

definite. 

By Corollary 2.5 (and the discussion above) the study of root figures reduces 

to the study of finite nondegenerate root figures. By Corollary 2.6 and the 

comments in the introduction, this is equivalent to the problem of classifying 

L-polytopes in lattices. 

Density Theorem 2.7. The perfect elements of  ~ "  are dense in the extreme elements. 

Proof. By Theorem 2.1 all of the extreme elements which are not perfect have 

the form 

(~lXl + C¢2X 2 + . . .  + OtnX n + r/) 2. 

These can be approximated with arbitrary accuracy by perfect elements of the form 

~t(alx 1 + .. .  + a , x .  + kXalx l  + "'" + a . x ,  + k + 1), 

where ct e R, {al, a2 . . . . .  a. ,  k} c Z, and gcd{al, a2 . . . . .  a,} = 1. [ ]  

3. The Decomposition Lemma 

This section is about  two linear subspaces of R". Let 

v = { x s  R"l~oAx) = 0}, 
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where q~f is the form associated with a typical element f e ~". What  turns out to 

be crucial is whether V has a basis of integer vectors; if it does, V and 7/" c~ V have 

a common basis. The second subspace is V1, the minimal linear subspace contain- 

ing V that has a basis of integer vectors. The subspace V1 is uniquely determined 

by V, and using orthogonal complements can be written as 

V 1 = (Z"  ('~ Vi) i. 

Of course, if V has a basis consisting of integer vectors (or is 0) I/1 = V. 

Decomposition Lemma 3.1. Let f e ~ .  Then f can be written as 

f = g + h ,  

where 9, h e ~ "  and have the followino properties: {x e R " l % ( x )  = 0} = 1"1; h(x) > 0 

for all x e R". 

Some preliminary results are needed for the proof. 

Proposition 3.2. Let f e ~".  I f  V ~ O, then f is constant on the translates of  V by 

elements x e R": f ( x  + v) = f(x) ,  v e V. 

Proof Let B be the closed ball of radius p = x/n/2 centered at the origin and 

let M = maxx~ n f(x)- 

For  fixed x e R", the function f ( x  + v) - f ( x )  is linear on V. Therefore, if the 

conclusion of the proposition does not hold there are elements v e V, x e R" 

satisfying the condition 

M + f ( x  + v ) -  f ( x )  < O. 

Assume that this is the case. 

However, p is the covering radius for Z", so an element z e Z" can be chosen 

so that z - v e B and f ( z  - v) < M. The contradiction is achieved using the fact 

that f must satisfy condition F2: 

0 < f (z )  = f ( z -  v + v) = f ( z -  v) + f ( x  + v ) -  f ( x )  

<. M + f ( x  + v) - f ( x )  < O. 

(For the second equality the equation q~s(v) = 0 has been used.) [] 

Proposition 3.3. Let f e ~". Then 

M = { m e R n l f ( m )  ~ f ( m  + v), v e  Vl} 

is an affine subspace of  R n satisfying the conditions 

(M - M) c~ Vi = V. 

R " = M  + V1 and 
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Proof Let  x ~ R", v ~ V 1. By Taylor ' s  formula f ( m  + tv) = f ( m )  + t(Vf(m))'v + 

t2~oy(v) and m ~ M if and only if Vf(m) _L V v Being the solution set of a system of 

linear equations, M is an affine subspace of R". 

For  x e R" let Vx(x) be the translate, x + V r By Proposi t ion 3.2, the restriction 

o f f  to Vl(x) has a minimizing subset M(x) so Vl(x ) = M(x)  + V r By the definition 

of M, M(x)  ~ M so Vl(x) ~ M + V r Since the union of  all the translates V1(x ) 

covers R", R" = M + V r 

By Proposi t ion 3.2, M(x) is a translate of  V so V = M(x)  - M(x)  ~ M - M. 

Since V ~ V x, V ~ (M - M) c~ V I. N o w  choose v e (M - M) c~ I,'1 arbitrarily. I f  

m e M, t e R, then m + tv e M and the following two inequalities hold: 

f ( m )  <_ f ( m  + tv), 

f ( m  + tv) <_ f ( m  + tv -- tv) = f (m).  

Then f ( m  + tv) = f ( m )  for all real t and v ~ V. It follows that  (M -- M) n V 1 = V, 

which completes the proof  of  the proposition. [ ]  

Proposition 3.4. Let f ~ ~". Then f is nonnegative on the translates o f  V t by 

elements z ~ ~_": f (z + v) > O, v ~ Vt. 

To prove this statement the following result is needed. 

Lemma. Suppose that V is properly contained in VI. Let  

K(e) = {v E V1 [d(v, V) < e}, 

an infinite, closed convex set in V 1. Then translates o f  K(e) by arbitrary elements 

ve V 1 contain integer elements; {v + K(e)} c~ ~" ¢ ~ .  Here d(-,-) denotes the 

Euclidean distance. 

Proof of  the Lemma. Consider the lattice F 1 = Z" c~ I/"1. For  il > 0 the convex set 

//K(e) c Vj is symmetric about  0 and has infinite volume in V v Therefore, by 

Minkowski's celebrated Convex Body Theorem [GL,  p. 40], the intersection 

F 1 c~ ilK(e) contains at least one nonzero  element. The essential step of the p roof  

is to show that dim F 1 n ilK(e) = dim V r For  if this is true, an arbi t rary element 

ve V t can be expanded in a basis, {ul, u2 . . . . .  Uk} for V 1, chosen from F 1 c~ ilK(e): 

v = ~lu~ + ~2u2 + " "  + ~u~. 

If integers zl, z2 , . . . ,  z k are chosen so that [z~ - ~i[ -< ½, then 

and 
7 = zlul  + z2u2 + "'" + ZkUkeFl c Z ~ 

7 - v = (z 1 - ~x)ul + (z2 - ~2)u2 + "'" + (zk - ~k)Uke~ ilK(e). 

With il now set equal to 2/k, y ~ v + K(e) and (v + K(e)) c~ Z" ~ (25. 
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Assume that dim FI n ilK(e) < dim 1:1. Then V,, the subspace generated by 

the elements of F 1 c~ ilK(e) c 7/", is properly contained in V 1. Since V I is the 

uniquely determined minimal subspace containing V which is spanned by its 

integer elements, V cannot be a subset of V,. Choose a ~ V, a ¢ V. and consider 

the infinite cylinder C(a, 6) = {x ~ V 1 ld(x, I(a)) < 6}, where l(a) is the line through 

a and 0. Assume that 6 > 0 is chosen small enough so that C(a, 6) is contained in 

ElK(e) but contains no dements  of V, n 7/". A second application of Minkowski's 

theorem shows that C(a, tS) must contain at least one nonzero element of F r Then 

V. does not contain F 1 n K(e), and we have arrived at the contradiction. It follows 

that dim F 1 n ilK(e) = dim V r [] 

Proof  o f  Proposition 3.4. If V = V 1, the result is easily established by applying 

Proposition 3.2. If  V is properly contained in I/1, the lemma is applied showing 

that {v + K(e)} n Z" # ~ and hence that {z + v + K(e)} c~ 7/n # O,  when z ~ 2~", 

v e 1:1. Choose a sequence e~ > 0, i =  1, 2 . . . . .  converging to zero, and select 

z i e z  + v + K(ei). By Proposition 3.2 and the continuity of f ,  l i m ~  f ( z i )=  

f ( z  + v). Since f(z~) >_ 0 it follows that f ( z  + v) > 0 and the proof  is complete. [] 

Proof  o f  the Decomposition Lemma. If V = V 1 the Decomposition Lemma clearly 

holds: choose g = f a n d  h = 0. The other possibility, that V is properly contained 

in VI, requires more work. 

Because of the properties of M quoted in Proposition 3.3, there are many ways 

to choose an affine subspace N c M so that N, V 1 satisfy the conditions R n = 

N + V 1 and (N - N) n V 1 = 0. Assuming such a choice has been made, elements 

x e R n can be written uniquely in the form 

x = n + v ,  n e N ,  v e V l ,  

and functions PN, Pv on R" can be defined so that PN(x) = n, Pv(x) = v. It is easy 

to show that P~, Pv are affine. 

Consider the quadratic functions defined by 

g(x) = f(PN(x)), 

h(x) = (p /(Pv(x)). 

In the proof of Proposition 3.3 it was established that m e  M if and only if 

Vf(m) 3_ 1/1. Since N c M, 

f ( n  + v) = f (n)  + Vf(n)'v + qg:(v) 

= f (n)  + ~pAv) 

= g(x) + h(x). 

Being positive on R", h e 2".  That  g belongs to this cone can be seen as follows. 

Let z ~ Z" be chosen arbitrarily. Then g(z) = f(PN(z)) = f ( z  - Pv(z)) > O, the last 

inequality following from Proposition 3.4. 
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It is easy to see from the definition of g that 

V 1 = { X e  ~nl(tgo(X ) = 0}. 

This completes the proof  of the Decomposi t ion Lemma. 
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[ ]  

4. Proof of  the Structure Theorem 

Proceedings are initiated by noting that the Decomposi t ion Lemma implies that 

an extreme element f 6 ~ "  must satisfy at least one of the following two conditions: 

C1. f ( x )  > 0 for x e,J~", 

C2. V = V  v 

We first consider the extreme elements of ~"  that satisfy condition C1. For  this 

it is convenient to introduce the subcone ,P~ c ,~" of nonnegative quadratic 

functions on ~". The extreme elements of 9/'~ are easily shown to be the positive 

constants and functions of the form 

(~IX 1 _~ 0¢2X 2 nl - . . .  _~_ ~nXn _1_ ~])2, 

where c~ = [71, a2 . . . . .  c~,] ¢ 0. We must determine which from this list are extreme 

in ~". 

El. Suppose that f is a positive constant;  that is, f satisfies condition El in 

the statement of Theorem 2.1. If f = p + q, with p, q c / / " ,  then q)r = % = 0 

(see Proposit ion 1.3). By Proposit ion 3.2, p, q are nonnegative constant functions 

and therefore nonnegative scalar multiples of l: Therefore f is extreme. 

It is worth noting that the positive constants also satisfy C2. It will turn out 

that these are the only class of extreme elements satisfying both C1 and C2. 

E2, Consider f ( x )  = (alX~ + 0~2X2 .4- - ' '  Jr- ~nXn --~ ~])2 ~_ ((0~, X )  Av q)2, where 

= [cq . . . . .  ~,] is a nonzero integer vector with gcd{7~ . . . . .  :~,,} = 1. 

Choose k ~ 2~ so that k - ~ < r / <  k + ½. Then a short computa t ion  shows that the 

real constants a, b, c, defined by the equality 

f ( x )  = a((a, x )  + k)((~, x )  + k -- 1) + b((a, x )  + k)((a, x )  + k + 1) + c, 

are nonnegative. Therefore f is not  extreme. Since scaling by a positive number  

does not change this situation, (cqxl + ""  + c~,x, + r]) 2 is not  extreme if c~ is 

proportional to a nonzero integer vector. 

Now consider the case where ~ is not proport ional  to an integer vector; 

that is, f satisfies condition E2 in the statement of Theorem 2.1. Then I/1 = 

(~" c~ V-L) ± = (Z" n C0 ± = JR". Assume that f = p + q with p, q ~ ~". Let Vp, Vq be 

the subspaces where ~0~, % take the value zero. Since cp I = (Pp + %,  V c Vp, Vq and 

(Z" c~ V~) l = (Z" c~ V±) ± = ~". An application of Proposi t ion 3.4 shows that p, q 

are nonnegative and therefore elements of  ~ .  Since f is extreme in ¢/~, p and q 



400 R. Erdahl 

are nonnegative scalar multiples o f f .  It follows that f = (cqx I + ... + c~,x, + ~t) z 

is extreme in ~". 

E3. To complete the exhaustive description of extreme elements we consider 

the third mutually exclusive class. These are the extreme elements satisfying 

condition C2 but not C1, and turn out to be the perfect elements. The argument 

proceeds by establishing the truth of three separate statements which yield two 

alternative characterizations of the perfect elements. 

A. l f  f is extreme and satisfies C2 but not C 1, then 

R s = Ro + F, 

where Ro, F satisfy conditions R1 and R2 of the theorem. 

Let F = 2~" n V and introduce a second sublattice F o so that Z" = F o + F, 

(F o -  Fo) n F = 0. 

Let E be the restriction of the surface f = 0 to Vo = aff(Fo). Since f satisfies 

condition C2, V = span F, from which is drawn the following two conclusions. 

By Proposition 3.2 and the fact that f does not satisfy C1, there is a region of V o 

where f assumes negative values. Secondly, the surface E bounds this region and 

is necessarily an ellipsoid. By condition F2, E is an empty ellipsoid in Fo. By again 

using Proposition 3.2 it follows that 

R s = R o + F, 

where R o = E n F o is the collection of lattice points lying on the empty ellipsoid 

E in F o. 

To complete the proof of statement A it must be shown that E is perfect in F0. 

However, if E were imperfect there would be a second quadratic surface S ~ aft 

F o, distinct from E, such that R o c F o n S. Let g be a quadratic function on •" 

with the property that the surface g = 0 coincides with S + V. Then, with e > 0 

sufficiently smali, the two surfaces f + ~g = 0, f - eg = 0 are generalized cylinders 

bounding regions of ~" void of integer elements. (These surfaces are slightly 

disturbed copies of the original surface f = 0 which can be written as E + V.) Then 

f + eg, f - ~g ~ ~". Since 

f = ~(f  + ~9) + ½(f -- eg) 

it follows that f is not extreme. Since this contradicts one of our hypotheses, E 

must be perfect. 

B. I f  R = R o + F is a subset of Z" such that Ro, F satisfy conditions R1 and R2 

of the theorem, then R is the root figure of a perfect element of ~". 

Let E be the perfect ellipsoid in Fo containing R o and let V = span F. Choose 

a nonzero quadratic function f which has negative values only on the interior of 
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the generalized cylinder E + V. Since this region is void of integer elements, f ~ ~ .  

For statement B to hold, f must be perfect. 

Let q ~ Q(R), the linear space of quadratic functions which are zero valued on 

R. For arbitrary r ~ R o, ,/e F, the function q is zero valued on the line through r, 

r + )'. Since E is perfect in Fo, Ro has full dimension in F o. Therefore, for arbitrary 

x ~ aff(Fo), v e V, q is constant valued on the line through x, x + v. Therefore the 

dimension of Q(R) is equal to that of the linear space of quadratic functions on 

aff(Fo) which are zero valued on Ro. Since by hypothesis this linear space is 

one-dimensional, f is perfect, []  

C. The perfect elements o f  ~"  are extreme and satisfy condition C2, but not C1. 

By Proposition 1.2 the perfect elements of .~" are extreme. By the Decomposi- 

tion Lemma we infer that they must satisfy one of the conditions C1 or C2. We 

have seen that the extreme elements satisfying C1 also satisfy either condition El 

or E2. However, these classes have degenerate root figures and are therefore 

imperfect. Thus perfect elements satisfy condition C2 but not C1. []  

Statements A, B, and C can be used to verify the assertions of the theorem 

regarding the perfect elements. This completes the proof of Theorem 2.1. [ ]  

Suppose e is some element of a cone C c ~" with vertex at the origin. Then e 

is said to be exposed if there is a supporting hyperplane H such that H c~ C contains 

only the ray generated by e. Exposed elements are necessarily extreme, but extreme 

elements need not be exposed. By working in the space of coefficients, additional 

information can be obtained on the extreme elements of J.,~": The extreme elements 

belonging to class 1 and 3 o f  Theorem 2.1 are exposed. The extreme elements 

belonging to class 2 are exposed if and only if the corresponding root figure is not 

empty. (Details are given in [Eli . )  

5. Perfect Ellipsoids 

Theorem 5.1. There are no perfect ellipsoids in lattices o f  dimension 2, 3, 4, or 5. 

Since the proof  is long and uses ideas considerably different than those 

developed here it will be published separately. (The result for the case n = 4 is 

implicit in [ER];  see also Theorem 5 of [RE2].) As an immediate consequence, it 

follows that (see Theorem 2.1 and the discussion following): 

Corollary 5.2. When n <_ 5 all perfect elements are o f  the form 

f ( x )  = o~(alx 1 + "." + a,,x,, + k)(atxl  + "'" + a,,x,, + k + t), 

where ~ ~ ~ is positive, an . . . . .  a,, k ~ 7/, and gcd{al . . . . .  a,} = 1. 
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The remainder of this section is a report on initial efforts to study perfect 

ellipsoids for the cases n _> 6. The collection of integer points lying on a perfect 

ellipsoid is necessarily finite and nondegenerate, but by Corollary 2.6, and the 

comments immediately following it, such root figures can be studied by examining 

L-polytopes in lattices. We have investigated the indecomposable root lattices, 

searching for L-potytopes contained in perfect holes, that is, the L-polytopes 

circumscribed by empty spheres which are perfect. 

The deep holes in a lattice are those with maximum radius, all others are called 

shallow. It is the deep holes that are of greatest interest, the radii being equal to 

the covering radius of the lattice. (The center of a deep hole is a point at maximum 

distance from the lattice.) 

Theorem 5.3. With the exception of the deep holes in A 1, E6, E7 all of the holes 

in the indecomposable root lattices A. (n >_ 1), D. (n _> 4), E 6, ET, E s are imperfect. 

The perfect holes in E 6 and Ev contain L-polytopes with 27 and 56 vertices, 

respectively; these are the Gosset polytopes 221 and 321. 

The notation 22t, 321 for these Gosset polytopes was introduced by Coxeter: 

they are described on pp. 202-204 of Regular Polytopes [Cox2] (see also pp. 21, 

26 and 33 of [Cox4]). 
In their most recent paper [DGL2], et al, report perfect ellipsoids in dimensions 

15 and 16 related to the Barnes-Wall lattice and dimensions 22 and 23 related to 

the Leech lattice. 

We will need a description of the holes in the indecomposable root lattices A, 

(n 2 1), D. (n 2 4), E6, E7, E8. The development below is very close to that 

reported in [TD]; an alternate approach to obtain many of these results can be 

found in Chapter 21 of [CS]. For additional details on root lattices see Chapter 

4 of [CS]. 

For any lattice F, the holes can be classified using the L-polytopes they contain, 

holes being considered different if they contain isometrically distinct species of 

L-polytopes. The collection of all L-polytopes having a vertex at the origin is 

called the star of L-polytopes at the origin. Each species of L-polytope is 

represented in this star, the number of representatives being a positive integral 

multiple of the number of vertices. This follows since each vertex of a given 

L-polytope can be translated to the origin yielding distinct representatives; the 

positive multiple exceeds one only when there are translationally inequivatent 

representatives of the same species. 

The L-polytopes in the star at the origin fit together so that adjacent L- 

polytopes have a common facet. More generally, the collection of all L-polytopes 

form a tiling of space in which adjacent L-polytopes are glued together along 

common facets. These tilings are called L-decompositions. 
The centers of the empty spheres circumscribing the L-polytopes in the star 

have the following interesting characterization: they are the vertices c¢ the Voronoi 

potytope VofO. It is easy to show that this description of the Voronoi polytope is 

consistent with the usual one, that V is the portion of space as close to the origin 

as to any other lattice point. Translating Vby 7 s F produces the Voronoi polytope 
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of the lattice point ~,; the tiling formed by all the Voronoi polytopes is dual to the 

L-decomposition. 

If an integral lattice F, containing the origin, is generated by its vectors of 

squared length two it is called a root lattice. These minimal vectors are called 

roots, and the set of all roots • is called a root system. By the Cauchy-Schwarz 

inequality, roots e,/3, when 7 ¢ +_[L must satisfy the condition (~, [3)e {0, + 1}. 

The root system qb (and corresponding root lattice F) is decomposable if q) can 

be written as an orthogonal direct sum, • = ~ O q)2, of root systems q~l, q~2- If 

is not decomposable it is indecomposable. 

We will need the following result on root lattices: if F is a root lattice, then 

v = {x ~ ~"10 .<_ Is - xl ~ - I x l  ~, ~ ¢ } .  

By replacing ~ e qb by e e F this converts to the usual formula for the Voronoi 

polytope at the origin for a general lattice, but involves an infinite system of 

inequalities. The simplification for root lattices follows almost directly from 

Coxeter's celebrated characterization of the fundamental region of an indecompos- 

able reflection group as a simplex. (See the argument appearing on pp. 456-459 

of [cs].) 

Notice that since [c~ - x[ z - Ix l  z = I~1 z - 2(x, c~) = 2(1 - (x, 7)), x e  Vif and 

only if (x, ~) _< 1 for all ~ e q). Therefore V can be identified as the dual of the 

set of roots ~, and borrowing notation from convexity theory we write V = ~o. 

Let F be a root lattice, and let R be the vertex set of an L-polytope in the star 

at the origin. Denote by Fg the lattice generated by the elements of R. Then 

F R c_ F; if equality holds the L-polytope, or corresponding hole, will be called 

generating. 

Proposition 5.4. The edge vectors o f  cony R are roots, and Fn is a root lattice. I f  

F is indecomposable, then so is F R. 

Proof Let x be the vertex of V corresponding to the center of the empty sphere 

circumscribing R. Since V = qb °, x is also dual to the facet 

F = { a e @ l ( . , x )  = I} 

of ~. It is easy to see that conv R intersects conv q) in a pyramid with the apex 

at the origin and the base equal to conv F. This shows that the edges of conv R 

which emanate from the origin, are precisely the roots F. 

Additional copies of conv R in the star are generated by translating successively 

the nonzero vertices of R to the origin. Application of the above argument then 

shows that the edges emanating from any vertex, hence all edges, are roots. Since 

F~ can be generated by the edges of conv R it is necessarily a root lattice. 

We now consider the case where F is indecomposable. To establish that F R is 

also indecomposable we argue by contradiction, assuming that FR is decomposable 

and can be written F R = F~ @ F 2. There is then a corresponding decomposition 

for the facet F = R c~ q~: F = F 1 q? F 2. Since F was assumed to be indecomposable 
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there must be roots a e F t ,  /3EF2, )'E~P satisfying the conditions (~,7),  

(fl, 7) = - 1 .  By possibly replacing 7 by one of the roots - 7 ,  ~ -  7, [ I -  7, the 

signs of the scalar products can be adjusted so that (a, 7) = (/3, 7) = 1. If 6 is the 

root c~ +/3 - 7 (the squared length of this vector is two), then 

~ +/3) = ½(~ + 6), 

a formula showing that ~, fl do not generate an edge of conv ~. This is the 

contradiction that was sought: ~,/3 do generate an edge of F. It follows that Fg 

must be indecomposable. [] 

The dual lattice F* of a lattice F c ~" is given by 

Notice that if F is an integral lattice, for example a root lattice, then F c F*. 

Theorem 5,5. Assume that the n-dimensional root lattice F c ~" is indecomposable. 

Then x ~ 0 is a vertex o f  V if and only i f  x ~ A* n V, where 0 ~ A c_ F is some 

n-dimensional, indecomposable root lattice. I f  R is the vertex set o f  an L-polytope 

with such a center x ~ A* n V, then R generates A. 

Using this theorem useful information can be obtained on the vertices of the 

Voronoi polytope of an indecomposable root lattice F. For example, suppose that 

A c_ F (0 e A) is an indecomposable root lattice of  full dimension n. Since F c_ A*, 

the elements of A* may be grouped into F-translation classes 

E0], Eli, E2] . . . . .  E d -  1], 

the number of classes d being equal to the index of F in A*. The translation class 

[0] is equal to F and is uninteresting. If d > 2 the sets [1] n V, . . . .  [d - 1] c~ V 

are nonempty and by Theorem 5.5 are F-translation classes of vertices of V; each 

corresponds to a distinct F-translation class of L-polytope. By considering all such 

lattices A _c F, including F itself, all of the F-translation classes of vertices and 

L-polytopes are generated. 

If no such n-dimensional lattices A are contained properly in F, then all of  the 

holes o f  F are generating (see Proposition 5.4). On the other hand, if F is 

unimodular (and therefore equal to Es) none of  the holes in F are generating. 

Using some of the ideas in the following proof this last statement can be 

strengthened: /f F is integral, even and unimodular, then none o f  its holes are 

generating. A small but general deformation of such a lattice yields a general lattice 

in which all of the L-polytopes are simplicial. Since the resulting simplicial 

decomposition is a refinement of the L-decomposition for F, none of  these 

L-simplexes are generating. In other words, this establishes the existence of a 

remarkable type of general lattice in which none of the L-simplexes are standard. 

The edge vectors of the individual L-simplexes generate sublattices of index 2, 
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3 . . . .  and are conveniently referred to as L-simplexes with double, triple . . . .  volume. 

(A simplex of volume k has volume k/n! times that of a fundamental parallelo- 

piped.) 

Proof Assume that x is a vertex of V. If R is the vertex set of the corresponding 

L-polytope, then 7 e R must satisfy the equation 

1 7 -  xl 2 -  Ixl 2 = I i ' 12-  2(7, x~ : 0. 

Since F is even it follows that (),, x ) e  Z, which in turn implies that x ~ F,~. By 

Proposition 5.4 FR is an indecomposable root lattice containing the origin. So if 

A is taken equal to F R the only i f  side of the proof  is settled. 

Now assume that x 4 :0  belongs to V ¢~ A*, where A _ F is an n-dimensional, 

indecomposable root lattice containing the origin. Notice that if ~ e ~A (~A is the 

corresponding root  system), then (x, ~) ~ {0, + 1}. It will prove convenient to write 

(I) A = 40 + (I) o + ~ +, 

where ~+  = {~e~AI(X,  ~) = 1}, etc. Clearly, • = - ~ + ;  it is argued below that 

q~0 = ~+ - ~ + .  These formulas are significant because they establish that A is 

generated by @+. Therefore ~+  has full dimension n and x is a vertex of V. In 

addition, it follows that the L-polytope centered at x generates the lattice A. 

Suppose that 6 e qb o is not  or thogonal  to ~+ .  Then there is a root ~ e ~+  such 

that ](~, 6)1 = 1. In this case fl = c~ - (7, 6)6  is a second root belonging to ~+  

and the formula (~, 6)6  = ~z - fl holds. Therefore (c~, 6)`5, hence ,5 belong to the 

difference set qb+ - ~ + .  Since ~A was assumed to be indecomposable, it then 

follows that ~o < ~+  is empty and ~0 = ~ + - qb +. [ ]  

Suppose that R is the vertex set of an L-polytope in the star of  L-polytopes at 

the origin for some general lattice F. The following serves as a useful test to 

determine whether the hole R is imperfect. 

Proposition 5.6. Assume that the dimension o f  F exceeds one. I f  there is a vector 

6 e F* satisfying the condition (`5, p )  = 0, l for  all vertices p e R, then R is imperfect. 

Proof Since (6, x )  is integer valued for x e F, the quadratic function 

f ( x )  = (61xa + "'" + 6 ,x , ) (a lx  1 + "'" + 6 , x ,  -- 1) 

is nonnegative on F, and by hypothesis zero valued on R. Suppose that g is 

quadratic and such that the empty sphere circumscribing R is given by the equation 

y = 0. Then f ,  g are linearly independent (the hypothesis n > 2 is used here) and 

zero valued on R. The dimension of Q(R) = {q quadraticlq(x) = 0} is at least two 

and R is imperfect. [ ]  

It is now time to consider the details for the indecomposable root  lattices. 
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Lattice A , .  For n >_ 1 

A , = { x 6 Z " + l l x l  + x  2 + ' ' ' + x . +  l =0} ;  

n + l  coordinates are used to describe these n-dimensional lattices [CS, 

pp. 108-I 17]. There are no n-dimensional, indecomposable root lattices A properly 

contained in A,,. Therefore all the holes of A, are generating and the vertices of 

V are elements of A*. The lattice A,  has index n + 1 in A,* and representatives of 

the various A.-translation classes of A*, chosen in V, are given by 

1 1 
[0] = [0"+'] ,  [1] n + t [n, - 1 " ] ,  E2] ........... [ ( n -  1) z, - 2 " - t l  

n + l  ~' 

1 
[~]  = [ l " ,  - . ] .  

n + °~I 

When i ~ 0 the general formula is given by 

1 
[ i ] = ~ [ j i ,  _iJ], i + j = n + 1; 

n + l  

the vertices of the corresponding L-polytope are generated by independently 

permuting the first i and last j coordinates of 

[1 k, 0 i-k, _ 1 k, O~-k], 

where 1 __< k _< i, j. Any other L-polytope is translationally equivalent to one of 

these. 

As mentioned in the introduction, all of the holes in A 1, the one-dimensional 

lattice, are perfect. For  n _> 2 the vector 

1 1 
/5 - [n, - X"] = [1, 0 . . . . .  0] [1, 1, J] 

n + l  n + - I  " ' "  

belongs to the dual lattice A* (in fact, is a vertex of V). If p is a vertex of any of 

the representative L-polytopes listed above, then <6, P> = 0, 1, and by Proposition 

5.6 all of the holes in A,, n > 2, are imperfect. 

Lattice D,.  For n_> 4 

D, = { x e Z " l x l  + x2 + ' " +  x, even} 

[CS, pp. 117-120], [RS]). There are no n-dimensional, indecomposable root 

lattices properly contained in D,, so again all holes are generating and the vertices 

of V are given by the formula D* ~ V. The lattice D, has index 4 in D*, and 
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representatives in V of the various translation classes of the elements of D* are 

given by 

[ 0 ]  = [0"3, 

[23 = ½[1,1 . . . . .  - 1 3 ,  

[ 1 ]  = ½[1,  1 . . . . .  1] ,  

[3] = [0"-  ', 1]. 

The L-polytopes centered at [1], [2] are isometrically equivalent and correspond 

to deep holes. The vertices of the L-polytope centered at [1] are all (0, D-vectors 

whose entries have even sum; these 2"- '  vertices form the alternate vertices of an 

n-cube with edge length one. The other species of hole at [4] is shallow, the 

L-polytope being a cross polytope with 2n vertices given by 

[4] + e/ (i = 1 . . . . .  n), 

where ei = [0 . . . . .  0, 1, 0 . . . .  ,0]  is the unit vector along the ith coordinate axis. 

The vector 61 = [0"- ' ,  1] belongs to D* and satisfies the condition (61, p)  = 0, 

1 when p is a vertex of the L-polytope centered at [1]. Therefore this hole and all 

the deep holes of D, are imperfect, The vector 63 = ½[1, 1 . . . . .  1] belongs to D* 

and satisfies the condition <63, p)  = 0, 1 when p is a vertex of the L-polytope 

centered at [3]. Therefore the shallow holes, hence all the holes of D,, are imperfect. 

When n = 4 the radii of the deep and shallow holes coincide, both equaling 

one. The alternate vertices of a 4-cube are also the vertices of a cross polytope, 

and all of the L-polytopes in 0 4 a r e  isometrically equivalent. The L-decomposition 

of ~4 into copies of a single cross polytope is the regular honeycomb {3, 3, 4, 3} 

[Cox2, Sections 7.8 and 8.1]. The Voronoi polytope is the regular polytope {3, 4, 3} 

with 24 vertices and 24 octahedral facets; the 24-ce11. 

L a t t i c e  E, (n = 6, 7, 8). In his paper entitled "Extreme forms," Coxeter replaces 

Euclidean n-space with Minkowskian (n + 1)-space when describing the lattices 

E,, n = 6, 7, 8 [Cox 1, p. 4t9]. The Minkowski scalar product is given by 

( x , y )  = x , y  1 + x 2 y  2 + . . .  + x , y ,  - x , + l y . + , ,  

and E, can be realized by taking all the integer Minkowski vectors, x, satisfying 

the equation (t,  x ) =  q, where q is an integer and t is the time-like vector 

[1, I . . . .  ,1 ; 3]. It will prove convenient to use the copy of E, determined by the 
equation 

x l + x  2 + ' ' ' + x . - 3 x . +  1 = - 1 .  

The n vectors obtained by permuting the first n components of [ -  1 0"- '; 0] 
belong to E, and form the vertices of a regular (n - 1)-dimensional simplex S._ ,. 

This simplex forms the glue joint for a pair of neighboring L-polytopes in E.. 

Table 1 describes the L-polytopes lying to the "right" and "left" of S._ x; S,_ ~ is 

a facet of both. 
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Table 1. Typical holes in E.. 

Lattice E 6 E v E 8 

(the L-polytope to the left of S,_. ~ ) 

Center 1 6 x [ - 2  ; - 3 ]  ¼[-I ; - t ]  ~[-1 1", - 2 ]  
Radius 2/x/] 17 ~,~ 1 

Vertices [ - 2  -15; -2 ]  x6 I - IT :  -2 ]  x I [ - t  7 0: -2 ]  x8 
[ i l ~ 0 2  ; ] 1] x 15 

[ - 1  05; 0 ] x 6  [ -1  06; 0 ] x 7  [ -1  0v; 0 I x 8  
Description Gosset polytope 221 Simplex with double Cross polytope with 

volume double volume 

{the L-polytope to the right of S, ~t 

Center -~[I 6', 3] ~tlrlv, 3] 
Radius 2/x/3 V/~ - 
Vertices [ -1  05; 0] ×6 [ - 1  07; 0] ×7 

[04 t2; 1] x 15 [0 s 12; t] x 21 
[0 ls; 2] x 6 [02 15; 2] x 21 

[I 6 2; 3 ] x 7  
Description Gosset polytope 221 Gosset polytope 32~ 

J[08: I] 

[ - t  0~: 0 I x 8  

[is; 3] × 1 
Simplex with tripple 

volume 

The lattice E 6 is spectacular:  all of the holes are equivalent, each containing a 

copy of the Gosset  polytope  221 with 27 vertices. In the L-decomposi t ion these 

polytopes  glue together  a long facets which are either regular simplexes (as 

illustrated in the table) or  regular cross polytopes  (which can easily be checked); 

this Gosset  polytope  has 72 simplicial facets and 27 facets which are cross 

polytopes [Cox2, pp. 202-204]. 

The lattice E 6 has index 3 in E*, Since there is only one type of L-polytope,  it 

follows from Theorem 5.5 that  221 has its center in E* and is generating; more 

important ly,  the vertices of the Voronoi  polytope  belong to E~ and fall into two 

distinct E6-translation classes. (It is also possible to deduce from this theorem that 

there are no proper  six-dimensional sublattices in E 6 which are indecomposable 

root lattices.) Since 22t has 27 vertices, each translation class contains 27 elements; 

the L-polytopes  of  these two classes are related by inversion. The Voronoi  polytope 

is the reciprocal of  the polytope  122, described on p. 24 of [Cox4].  There are 54 

( =  27 x 2) Gosset  polytopes  in the star of  L-polytopes at the origin. 

There are two types of  holes in E 7. The deep holes contain copies of the Gosset 

polytope  321 with 56 vertices [Cox2, pp. 202-204]. Each Gosset  polytope  is glued 

to 126 equivalent  Gosset  polytopes  along facets which are regular cross polytopes 

(that these six-dimensional cross polytopes  serve as glue joints for a pair  of Gosset 

polytopes  is easily checked). In addition, each Gosset  poly tope  is glued to 576 

regular simplexes a long simplicial facets (as shown in the table). These simplical 

L-polytopes  are contained in the shallow holes of  E v. 

As is apparen t  from the table, the L-simplex generates a sublattice of  index two 

in E 7. Since the simplicial holes in A, are generat ing this sublattice can be identified 
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with A7 (see Theorem 5.5); these simplicial holes have minimal radius in A 7 and 

correspond to the translation classes [1], [hi in the discussion of A,. The total 

number of such L-simplexes in the star at the origin of Ev is given 

by IETt/fA6J = 576; A6 is the stability group of any one of these L-simplexes at 

the origin. Since each copy of A 7 accounts for 16 = 2 x 8 simplexes, there are 36 

distinct ways in which A7 appears as a subtattice containing the origin in Ev. 

The lattice E 7 has index two in E*. By Theorem 5.5 this accounts for a single 

translation class of generating L-polytope in the star of L-polytopes at the origin. 

This is the translation class of the Gosset polytope 321, and it follows that there 

are 56 such polytopes in the star at the origin. Since there is only one translation 

class it can be inferred that 321 has a center of symmetry. (This is also apparent 

from the representative of 321 recorded in the table.) 

The Voronoi polytope for E7 has 632 = 56 + 576 vertices and is the reciprocal 

of the polytope 231 [Cox4, p. 27]. 

The L-polytope lying in a typical deep hole of E 8 is a regular cross polytope. 

Each of these cross polytopes is glued to 256 regular simplexes along each of its 

simplicial facets (as shown in the table). These L-simplexes are contained in the 

shallow holes, the only other type of hole in Es. 

Each cross polytope generates a copy of D s with index two in E s. The star of 

L-polytopes at the origin contains IEsI/IDvI = 2160 such cross polytopes; there 

are t35 { = 2160/16) distinct copies of D8 containing the origin in E8. Each simplex 

generates a copy of A8 with index three in Es. There are tEsI/IA~I = 17,280 

L-simplexes in the star of L-polytopes at the origin: there are 96 (=  1728/16) 

distinct copies of A s containing the origin in E s. The Voronoi polytope is the 

reciprocal of the polytope 42~ [Cox2, p. 204], [Cox4, p. 36]. 

Since all of the holes in E 8 and the shallow holes in E v contain polytopes with 

( l) these are,mpe   c  an insufficient number of vertices < 2 

(That these holes are imperfect also follows from the discussion of A, and D,.) 

This leaves the deep holes in E 6 and E 7 a s  the only possible candidates for perfect 

holes. 

Both types of hole in Es and the shallow hole in E7 have been considerable 

upstaged in this discussion by the deep holes in El, and ET, but these underdog 

holes are also distinguished; the edge vectors generate proper sublattices. As has 

been pointed out, the edge vectors of the simplex in Ev generate a sublattice of 

index two (a simplex of double volume). The first instance of such an L-simplex 

is in five dimensions (see the discussion on p. 796 of Part ! of [ER] and Sections 

7 and 10 of [RB]), lattices in lower dimensions having only standard simplexes. 

There are examples showing that in dimension 2k + I (k >_ 2) there are lattices 

with L-simplexes which generate sublattices of index k; when k >_ 3 it is not known 

whether this dimension is lowest possible for this phenomena. There are no 

examples of cross polytopes generating sublattices of index two in dimensions less 
that eight. 

Completion of the proof of Theorem 5.3. We have just seen that, with the 

exception of the deep holes in A ~, E 6, and E v, all of the holes in the irreducible 
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root lattices are imperfect. Since there is only one type of hole in A~ and it is 

perfect, all that remains is to verify the perfection of the deep holes in E6 and ET. 

Notice that the restriction map establishes a linear isomorphism between the 

homogeneous quadratic forms on JR" + ~ and the quadratic functions on the plane 

X 1 " ~  X 2 + " ' "  - t" X n - -  3x,+ ~ = - 1 

(which contains the copy of E, under investigation). Then, R c E, is the vertex 

set of a perfect L-polytope if and only if the linear space of forms on ~q"~ ~ which 

are zero valued on R is one-dimensional. An equivalent characterization of 

perfection is that the matrices r'r, r e R  (with r a row vector, r'r is an (n + 1) x 

(n + 1) matrix), generate a linear space of codimension one in the space of real 

symmetric matrices. This last criterion is satisfied if the matrices r'r, along with 

the metric matrix M for the Minkowski metric, span this linear space. 

It is convenient to denote the vertex sets for the Gosset polytopes 221,321 by 

at,  a2 . . . . .  a,  with at = [ - 1  0"-1; 0]; 

b12,b13 . . . . .  b. 1, with b12 --- [12 0"-2; 1]; 

c l , c2  . . . . .  c6 with c I = [0 15; 2] (221 only); 

c12,c13, .- . ,%7 with c 1 2 = [ 0 2  lS; 2] (321 only); 

dl ,  d2 . . . .  , d  7 with d 1 = [2 16; 3] (321 only). 

Let Ekm , 1 _< k _< m _< n + 1, be the standard basis for the real symmetric matrices: 

Ek,. = {6 i ,@,  + '~i,.6ik}. 

Let 

B 

B 1 = 

C =  

C l =  

b'k,.bkm, 
k .< m 

b'k,.bkm, 
1 < k < m  

k~< , ~ C'km Ckm 

clc, 

l < k  

(221 only), 

(321 only), 

(221 only), 

(321 only). 
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Then the following formulas hold: 

E l l  = a ' l a l ,  

E . + 1 . . +  1 = - M  + ~ a'kak, 
k 

~'~[4B -- C - 5B1 + 5C1 - 15El~ - 6E77] 

El . .+t  = [~!0[10B _ C - 12BI - 3Ct - 45E~1 - 18E88] 

EI2 = b'12b12 - E l x  - E z z  - E.+I,.+ I - El. .+ 1 

(221 only), 

(321 only), 

- -  E2,n+ 1. 

By permuting the indices {1, 2 . . . . .  n} all of the basis elements are obtained. Thus 

the deep holes of E 6 and E7 are perfect. []  

That the deep holes in E 0 are perfect has been known for a long time [E l i ;  

the author is thankful to S. S. Ryshkov who was the first to notice that the deep 

holes in E7 are also perfect. 

6. Holes in Lattices 

The problem of classifying root figures reduces to that of classifying the finite, 

nondegenerate root figures (see Corollary 2.5). Suppose that R is such a root figure. 

Consider the relatively open face of g/" given by 

F a = { f e ~ Y " l R r  = R } .  

When f ~ Fn, q)f is the metrical form for a lattice for which R gives the coordinates 

of the vertices of an L-polytope (see Corollary 2.6 and the discussion in the 

introduction on L-polytopes). Define the domain of R, Oa, to be the cone of all 

such metrical forms. The linear mapping H: f - ,  q~s maps Fa into • n. In fact, H 

establishes a one-to-one correspondence between the elements of F n and • R. 

Suppose that (p e • R. If c is the coordinate vector of the center of the L-polytope 

with vertices given by R, and p is the radius, then 

f ( x )  = ~o(x - c)  - p 2  

belongs to F r and H is invertable. 

Affine equivalence played a fundamental role in Voronoi's theory Of L-types of 

lattices, the crowning achievement of his two m~moires [V2, Part  IV]. He showed 

that the cone of positive definite forms can be partitioned into disjoint, relatively 

open convex subcones of varying dimension, called L-type domains, with the 

following properties: 

A. On each of these subcones the affine structure of the L-decomposition of the 

corresponding lattices is constant. Subcones are arithmetically equivalent if 

and only if the affine structure of corresponding L-decompositions is 

identical. 
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n + 1) it is called general B. When the L-type domain has full dimension N = 2 

and the corresponding L-decomposition is simplicial. These domains are 

polyhedral. For  each value of n there are only a finite number of arithmetic- 

ally inequivalent general L-type domains. 

C. L-type domains of lesser dimension are called special and nonsimplicial 

L-polytopes appear in the corresponding L-decompositions. These are the 

faces of varying dimension of the general L-type domains, each being a face 

of two or more general domains. 

The domain • R is the union of all those L-type domains for which R gives the 

coordinates of the vertex set of an L-polytope in the corresponding L-decomposi- 

tion. In general, this union contains both general and special L-type domains. 

Lemma 6.1. OR is the union of a finite number of L-type domains. 

Proof By properties B and C the L-type domains of Ok are partitioned into a 

finite number of arithmetic classes. In turn, these classes can be partitioned into 

a finite number of R-equivalence classes which we now proceed to define. 

Suppose that (Pl, q)2 ~ (~R- If F 1, F z are lattices determined by these forms, then 

R gives the coordinates of the vertices of two L-polytopes, P I e  V 1, Pa ~ V2. Define 

qh to be R-equivalent to q~z, if there is an affine transformation 7", mapping V1 

onto F 2 preserving the structure of the L-decomposition, and such that T(PI) = 

P2- By property A, the notion of R-equivalence extends to the L-type domains of 

OR, and is a refinement of arithmetic equivalence for these domains. For any given 

lattice, there are only a finite number of L-polytopes inequivalent under the group 

of lattice translations. It follows that the arithmetic classes of L-type domains of 

• R partition into a finite number of R-equivalence classes. 

More can be said about the R-equivalence classes of • R. Suppose that qh, qh 

are R-equivalent and let T be as above, mapping P~ onto P2- Then this 

transformation induces an affine transformation of coordinate vectors for the two 

lattices, 9r, leaving R invariant. That is, gr  e G(Z") and gr(R) = R. Moreover, gr 

is equal to the identity transformation if and only if ¢~, ¢2 belong to the same 

L-type domain. The transformation gr belongs to the invariance group GR c G(Z") 

of R which must be finite, since by assumption R is finite and nondegenerate. It 

follows that the R-equivalence classes of L-type domains in • R are finite. Since 

there are only a finite number of R-inequivalent L-type domains in • R, there can 

only be a finite number of L-type domains in total. 

Theorem 6.2. Assume that R is a finite, nondegenerate root figure. Then the 

relatively open cones F R and • R are polyhedral and linearly equivalent. 

Proof That F R and • R are linearly isomorphic was argued above. That OR, hence 

FR, is polyhedral follows from Lemma 6.1 and statements B and C above. [~ 

By Theorem 2.4 the extreme rays of F R are perfect. Since FR is open and 

polyhedral, an arbitrary element f e FR can be written 

f =  E "~-eP, 
P~-R 
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where 2 v > 0. The summation is over the perfect root figures containing R. That 

is, over the perfect elements belonging to F R (P is the root figure of the perfect 

element p). The corresponding formula for elements of D R is given in: 

Corollary 6.3. Assume that R is a finite, nondegenerate root figure. Then an 

arbitrary form ~o ~ q~R can be written as 

(o = ~ 2vq) e, 
P~-R 

where 2;, > O. 

Suppose that R c Z" is some collection of integer vectors (for the moment  not 

a root figure). Define the dual of R, R* by 

R* = {r* ~ 7/"t0 < <r, r*)  < 1, r e  R}, 

where (r, r*) is the usual Euclidian scalar product. I fR satisfies the condition that 

R = (R*)*, 

then R, R* is called a dual system of integer vectors. It is convenient to say that 

the dual system is nondegenerate if both R and R* are nondegenerate [RE3]-  

IRE5]. 

If R, R* is a dual system, then both R and R* contain the zero vector. If the 

system is nondegenerate, then both R, R* must be finite. 

For each vector r e R, let q~r be the form given by 

qo~(x) = ( r t x  1 + r2x  2 + "'" + rnxn)2; 

~0, has unit rank. 

A finite nondegenerate root figure containing the origin gives the coordinates 

of the vertices of an L-polytope in the star of L-polytopes at the origin. 

Theorem 6.4. Assume that n < 5. Assume that R is a finite,  nondegenerate root 

figure containing O. Then R is one o f  the partners o f  a nondegenerate dual system 

and the domain q~R is the collection o f  all . forms 

r ~ R *  

~'here 2 r > O. 

Prooj~ By Theorem 2.4 and Corollary 5.2, when n _< 5, the extreme rays of F R 

are generated by the elements 

p(x) = (a lx  1 + . ' .  + anxn + k) (a lx l  + Ill + a"X~ + k + 1 ) 

satisfying the condition p(r) = O, r ~ R (a 1, a 2 . . . . .  a n, k ~ Z and gcd{al . . . . .  an} = 1). 
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Since 0 e R, k must equal 0 or - 1. However, the first of these cases converts 

to the second by the replacement a = [al . . . . .  a ,]  ~ - a .  Assuming that k = - 1 ,  

p(r) = 0 if and only if 0 < (a, r )  _< 1. Since this last condition must hold for all 

r ~ R, it follows that a e R*. From this correspondence between the extreme rays 

of FR and the elements of R*, it immediately follows that ~R is the collection of 

forms 

r~R* 

where 2r > 0. 

The condition r ~ R if and only if f (r) = 0, for f ~ F R, can now be restated as: 

r e  R if and only if0 < (a, r )  < 1 for all a c R*. That is, R = (R*)* and R, R* form 

a dual system. 

Since, for . f~  F R, q~y is positive definite (Corollary 2.5), R* is nondegenerate. 

Since R was assumed to be nondegenerate, the dual system R, R* is non- 

degenerate. [] 

This theorem serves as the basis for a new method to enumerate L-polytopes 

in lattices. When the dimension n satisfies the condition n _< 5 all of the possible 

L-polytopes can be determined by first establishing a list of the nondegenerate 

dual systems up to arithmetic equivalence. (If R, R* is a dual system and 

U E GL(n, Z), U * =  (U-1),, then UR, U 'R*  is an arithmetically equivalent dual 

system.) Such a program has been carried out for n _< 4 and the results are now 

available [RE4]. There are 16 arithmetically inequivalent, nondegenerate dual 

systems that can occur when n = 4. Each partner gives the vertex set of an 

L-polytope, but there is one self-dual case where R is arithmetically equivalent to 

R*. The 31 L-polytopes that result, are then grouped into 19 G(Y")-equivalence 

classes, representing the various species of L-polytope that can occur in four- 

dimensional lattices. 

Dual systems account for a large number of L-polytopes in higher-dimensional 

lattices. If R, R* is a nondegenerate dual system, then both R and R* give the 

coordinates of the vertices of an L-polytope no matter what the dimension. 

However, the formula of Theorem 6.4 for (I) R need not hold when n >__ 6. For all 

values of n, the L-polytopes in the root lattices A,, D, can be represented as 

partners of dual systems; the simplexes of double and triple volume in E7 and E8 

can also be represented as partners. The Gosset polytopes belong to the deep holes 

in E 6 and E~ are obvious examples of L-polytopes that cannot be represented as 

partners (see Theorem 5.3). The cross polytope of double volume in E8 is an 

example of an imperfect L-polytope which cannot be represented as a partner of 

a dual system (and will be reported on elsewhere). 
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