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ABSTRACT

In many real world applications, the same item may be described by

multiple sources. As a consequence, conflicts among these sources

are inevitable, which leads to an important task: how to identify

which piece of information is trustworthy, i.e., the truth discov-

ery task. Intuitively, if the piece of information is from a reliable

source, then it is more trustworthy, and the source that provides

trustworthy information is more reliable. Based on this princi-

ple, truth discovery approaches have been proposed to infer source

reliability degrees and the most trustworthy information (i.e., the

truth) simultaneously. However, existing approaches overlook the

ubiquitous long-tail phenomenon in the tasks, i.e., most sources

only provide a few claims and only a few sources make plenty

of claims, which causes the source reliability estimation for small

sources to be unreasonable. To tackle this challenge, we propose a

confidence-aware truth discovery (CATD) method to automatically

detect truths from conflicting data with long-tail phenomenon. The

proposed method not only estimates source reliability, but also con-

siders the confidence interval of the estimation, so that it can effec-

tively reflect real source reliability for sources with various levels

of participation. Experiments on four real world tasks as well as

simulated multi-source long-tail datasets demonstrate that the pro-

posed method outperforms existing state-of-the-art truth discovery

approaches by successful discounting the effect of small sources.

1. INTRODUCTION
Big data leads to big challenges, not only in the volume of data

but also in its variety and veracity. In many real applications, mul-

tiple descriptions often exist about the same set of objects or events

from different sources. For example, customer information can

be found from multiple databases in a company, and a patient’s

medical records may be scattered across different hospitals. Un-

avoidably, data or information inconsistency arises from multiple

sources. Then, among conflicting pieces of data or information,
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which one is more trustworthy, or represents the true fact? Facing

the daunting scale of data, it is unrealistic to expect a human to

“label” or tell which data source is reliable or which piece of infor-

mation is accurate. Therefore, an important task is to automatically

infer data trustworthiness from multi-source data to resolve con-

flicts and find the most trustworthy piece of information.

Finding Trustworthy Information. One simple approach for this

task is to assume that “majority” represents the “truth”. In other

words, we take the value claimed by the majority sources or take the

average of the continuous values reported by sources, and regard it

as the most trustworthy fact. The drawback of this simple approach

is its inability to characterize the reliability levels of sources. It re-

gards all sources as equally reliable and does not distinguish them,

and thus may fail in scenarios when there exist sources sending

low quality information, such as faulty sensors that keep emanating

erroneous information, and spam users who propagate false infor-

mation on the Web. To overcome this limitation, techniques have

been proposed to simultaneously derive trustworthy facts and esti-

mate source reliability degrees [8, 9, 16, 18–20, 23–26, 31, 34–37].

A common principle to the techniques is as follows. The sources

which provide trustworthy information are more reliable, and the

information from reliable sources is more trustworthy. In these ap-

proaches, the most trustworthy fact, i.e., the truth, is computed as

a weighted voting or averaging among sources where more reli-

able ones have higher weights. Although different formulas have

been proposed to derive source weights (i.e., reliability degrees),

the same principle applies: The source weight should be propor-

tional to the probability of the source giving trustworthy informa-

tion. In practice, this probability is simulated as the percentage of

correct claims of the source. The more claims a source makes, the

more likely that this estimation of source reliability is closer to the

true reliability degree.

Long-tail Phenomenon. However, sources with very few claims

are common in applications. The number of claims made by sources

typically exhibits long-tail phenomenon, that is, most of the sources

only provide information about one or two items, and there are only

a few sources that make lots of claims. For example, although there

are numerous websites containing information about one or several

celebrities, there are few websites which, like Wikipedia, provide

extensive coverage for thousands of celebrities. Another example

concerns user participation in survey, review or other activities. On

average, participants only show interests to a few items whereas

very few participants cover most of the items. Long-tail phenom-
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ena are ubiquitous in real world applications, which bring obstacles

to the task of information trustworthiness estimation.

Recall that identifying reliable sources is the key to find trust-

worthy information, and source reliability is typically estimated by

the empirical probability of making correct claims. The effective-

ness of this estimation is heavily affected by the total number of

claims made by each source. When a source makes a large num-

ber of claims, it is likely that we can obtain a relatively accurate

estimate of source reliability. However, sources with a few claims

occupy the majority when long-tail phenomenon exists. For such

“small” sources, there is no easy way to evaluate their reliability

degrees. Consider an extreme case when most sources only make

one claim to one single item. If the claim is correct, its accuracy

is one and the source is considered as highly reliable. If the claim

is wrong, its accuracy is zero and the source is regarded as highly

unreliable. In some sense such an estimate based on one single

claim is totally random. When weighted voting is conducted based

on the estimates of source reliability, the “unreliable” estimation of

source reliability for many “small” sources will inevitably impair

the ability of detecting trustworthy information. We illustrate this

phenomenon and its effect on the task of truth discovery with more

details in Sections 2 and 4.

Limitation of Traditional Approaches. One may argue that one

way to tackle the issue of insufficient data for accurate reliability es-

timation is to remove sources that provide only a few claims. How-

ever, this simple strategy suffers from the following challenges.

First, we need a threshold on the number of claims to classify

“small” or “large” for sources. Second, as the majority of sources

claims very few facts, the removal of these sources may result in

sparse data and limited coverage. An alternative strategy could be

drawn from Bayesian estimation in which a smoothing prior can be

added [36, 37]. We can add a fixed “pseudo” count in the compu-

tation of source accuracy so that the estimation can be smoothed

for sources with very few claims. When there are many sources,

typically a uniform prior is adopted, i.e., the same “pseudo” count

applies to all sources. How to select an appropriate pseudo count

is an open question. Moreover, a uniform prior may not fit all the

scenarios, but setting a non-uniform prior is difficult when there is

a large number of sources.

Summary of Proposed Approach. In this paper, we propose a

confidence-aware approach to detect trustworthy information from

conflicting claims, where the long-tail phenomenon is observed in

data. We propose that source reliability degree is reflected in the

variance of the difference between the true fact and the source in-

put. The basic principle is that an unreliable source will make errors

frequently and have a wide spectrum of errors in distribution. To

resolve conflicts and detect the most trustworthy piece of informa-

tion, we take a weighted combination of source input in which the

weight of each source corresponds to its variance. Since variance

is unknown, we derive an effective estimator based on the confi-

dence interval of the variance. The chi-squared distribution in the

estimator incorporates the effect of sample size. The overall goal is

to minimize the weighted sum of the variances to obtain a reason-

able estimate of the source reliability degrees. By optimizing the

source weights, we can assign high weights to reliable sources and

low weights to unreliable sources when the sources have sufficient

claims. When a source only provides very few claims, the weight

is mostly dominated by the chi-squared probability value so that

the source reliability degree is automatically smoothed and small

sources will not affect the trustworthiness estimation heavily. We

apply the proposed method and various baseline methods on four

real world application scenarios and simulated datasets. Existing

approaches, which regard small and big sources the same way, fail

to provide an accurate estimate of truths. In contrast, the proposed

method can successfully detect trustworthy information by effec-

tively estimating source reliability degrees.

In summary, we make the following contributions in this paper:

• We identify the pitfalls and challenges in data with long-tail

phenomenon for the task of truth discovery, i.e., detecting the

most trustworthy facts from multiple sources of conflicting

information.

• We propose to combine multi-source data in a weighted ag-

gregation framework and search for the best assignment of

source weights by solving an optimization problem.

• An estimator based on the confidence interval of source re-

liability is derived. This estimator can successfully estimate

source reliability, and discount the effect of small sources

without the hassle of setting pseudo counts or priors.

• We test the proposed algorithm on real world long-tail datasets,

and the results clearly demonstrate the advantages of the ap-

proach in finding the true facts and identifying reliable sources.

We also provide insights about the method by illustrating its

behavior under various conditions using simulations.

In the following section, we first describe some real world ap-

plications and the collected datasets to illustrate the challenge of

long-tail phenomenon in truth discovery tasks. Then, in Section 3,

we formulate the problem and derive the proposed method. In Sec-

tion 4, various experiments are conducted on both real world and

simulated datasets, and we validate the effectiveness and efficiency

of the proposed method. Related work is discussed in Section 5,

and finally, we conclude the paper in Section 6.

2. APPLICATIONS AND OBSERVATIONS
In this section, we present a broad spectrum of real world truth

discovery applications where the long-tail phenomenon can be ob-

served. Although the long-tail phenomenon is not rare in truth dis-

covery tasks, it does not receive enough attention yet.

Web Information Aggregation. When the Web becomes one of

the most important information origins for most people, it is crucial

to analyze the reliability of various data sources on the Web in order

to obtain trustworthy information. The long-tail phenomenon is

common on the Web. Only a few famous big data sources, such as

Wikipedia, may offer plenty of information, but most websites may

only provide limited information.

We introduce two specific truth discovery scenarios for web in-

formation aggregation: truth discovery on city population and on

biography information. For these tasks, we are interested in ag-

gregating the population information about some cities at differ-

ent years and people’s biography respectively. Two datasets1 were

crawled by the authors in [23]. The information can be found in

the cities’ or persons’ Wikipedia infoboxes, and the edit histories

of these infoboxes are examined. As Wikipedia pages can be edited

by any user, for a specific entity, multiple users may contribute to

it. The information from these users is not consistent, and some

users may provide more reliable information than the others.

Social Sensing. Social sensing is a newly emerged sensing sce-

nario where the collection of sensory data are carried out by a

large group of users via sensor-rich mobile devices such as smart-

phones. In social sensing applications, human-carried sensors are

the sources of information. For the same object or event, differ-

ent sensors may report differently due to many factors, such as the

1
http://cogcomp.cs.illinois.edu/page/resource_view/16
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(a) City Population Dataset
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(b) Biography Dataset
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(c) Indoor Floorplan Dataset
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(d) Game Dataset

Figure 1: Long-tail phenomenon is observed with real world datasets.

quality of the sensors and the way in which the sensor carrier per-

forms the sensing task. Truth discovery techniques can be useful

for social sensing to improve the quality of sensor data integration

by inferring the sources’ quality. In many social sensing applica-

tions, only a few sensors are incessantly active while most of others

are activated occasionally, which causes the long-tail phenomenon.

A representative example of social sensing is the construction of

indoor floorplans [1, 28]. This research topic has recently drawn

a growing interest since it potentially can support a wide range

of location-based applications. The goal is to develop an auto-

matic floorplan construction system that can infer the information

about the building floorplan from the movement traces of a group

of smartphone users. The movement traces of each user can be de-

rived from the readings of inertial sensors (e.g., accelerometer, gy-

roscope, and compass) built in the smartphone. Here we are inter-

ested in one specific task of floorplan construction, i.e., to estimate

the distance between two indoor points (e.g., a hallway segment).

We develop an Android App that can estimate the walking distances

of a smartphone user through multiplying his/her step size by step

count inferred using the in-phone accelerometer. When App users

are walking along the hallways, we record the distances they have

traveled. For the same hallway segment, the estimated distances

given by different users are inevitably different due to the varieties

in their walking patterns, the ways of carrying the phones, and the

quality of in-phone sensors.

Crowd Wisdom. The wisdom of the crowd can be achieved by in-

tegrating the crowd’s answers and opinions towards a set of ques-

tions. By carefully estimating each participants’ abilities, the ag-

gregation among the crowd’s inputs can often achieve better an-

swers compared with the answers given by a single expert. Cur-

rent technologies enable convenient crowd wisdom implementa-

tion, and truth discovery provides an effective way to aggregate

participants’ input and output accurate answers. The long-tail phe-

nomenon happens in the crowd wisdom applications because many

participants only show interests in a couple of questions, while a

few participants answer lots of the questions.

In this application, we design an Android App as a crowd wis-

dom platform based on a popular TV game show “Who Wants to

Be a Millionaire” [2]. When the game show is on live, the An-

droid App sends each question and four corresponding candidate

answers to users, and then collects their answers. For each ques-

tion, answers from different users are available, and usually these

answers have conflicts among them. We can then create a super-

player that outperforms all the participants by integrating answers

from all of them.

Due to page limit, we only introduce three applications, but there

are more than we can list. In these applications, we observe the dif-

ference in information quality of various sources which motivates

truth discovery research. Long-tail phenomenon is ubiquitous in

these truth discovery tasks. In the following, we demonstrate the

long-tail phenomenon using the four truth discovery datasets we

experiment on. The four datasets are introduced in the above dis-

cussions and more information can be found in Section 4. Their sta-

tistical information is summarized in Table 1. We count the number

of claims made by each source and Figure 1 shows the distribution

of this statistic. The figures witness a clear long-tail phenomenon:

Most sources provide few claims and only a small proportion of

sources provide a large number of claims. In order to demonstrate

the long-tail phenomenon clearer, we further fit the City Popula-

tion, Biography, Indoor Floorplan and Game datasets into power

law function, a typical long-tail distribution2. Figure 1 shows that

the fitting curves closely match the data, which is a strong evidence

of long-tail phenomenon.

Table 1: Statistics of real world long-tail datasets

City Population Biography Indoor Floorplan Game

# Sources 4107 607819 247 38196
# Entities 43071 9924 129 2169
# Claims 50561 1372066 740 221653
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Figure 2: The percentage of coverage decreases and MAE increases

as more sources are removed.

As discussed in Section 1, removing the sources that provide few

claims might be a possible solution. The main shortcoming of this

solution is that a large proportion of the whole dataset is discarded.

Figure 2 demonstrates two consequences caused by this problem

using City Population dataset. All the sources are ordered based on

the number of claims they provide. At the very beginning, we con-

sider all sources, and then gradually remove sources starting from

the smallest ones. One consequence is the sacrifice of coverage

(Figure 2a). If we regard “small” sources as those whose claims are

less than 1% of the number of claims made by the biggest source

and remove them, the percentage of coverage is 88.07%. In ad-

dition to the low percentage of coverage, we lose 10491 claims

counting for 20.74% of all claims, which leads to another conse-

quence: performance degrading. Figure 2b shows that the mean

absolute error (MAE) increases as more sources are removed (de-

tail of the measure is introduced in Section 4.1). After removing

2Note that we use power law distribution as an example of long-tail phenomenon, but

long-tail phenomenon is a general scenario and some other distributions, such as Burr

distribution and log-normal distribution, can be used to describe long-tail phenomenon

too.
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the small sources, the number of claims for each entity will shrink

dramatically, which causes the problem that the information is not

sufficient to estimate trustworthy output.

Smoothing prior or “pseudo” count, as mentioned in Section 1,

is another possible solution. The difficulty of this solution lies in

setting the “pseudo” count. As Figure 1 illustrates, the numbers of

claims made by sources are significantly different. It is unfair to

use the same “pseudo” count for all sources. However, with thou-

sands or even hundreds of thousands sources, to assign individual

“pseudo” count to each source is unrealistic and impossible to tune.

3. METHODOLOGY
In this section, we describe the proposed method, which tack-

les the challenge that most of the sources only provide information

about few items. We model the truths as weighted combination of

the claims from multiple sources and formulate the weight compu-

tation as an optimization problem. Some practical issues are dis-

cussed at the end of this section.

3.1 Problem Formulation
We start by introducing terminologies and notations used in this

paper with an example. Then the problem is formally formulated.

DEFINITION 1. An entity is an item of interest. A claim is a

piece of information provided by a source about a given entity. A

truth is the most trustworthy piece of information for an entity.

DEFINITION 2. Let C = {c1, c2, . . . cC} be the set of claims

that can be taken as input. Each claim c has the format of (n, s, xs
n),

where n denotes the entity, s denotes the source, and xs
n denotes

the information of entity n provided by source s.

DEFINITION 3. The output X is a collection of (n, x∗
n) pairs,

where x∗
n denotes the truth for entity n.

Table 2: A sample census database

Entity Source ID Population (million)

NYC Source A 8.405
NYC Source B 8.837
NYC Source C 8.4
NYC Source D 13.175
DC Source A 0.646
DC Source B 0.6
LA Source A 3.904
LA Source B 15.904
... ... ...

Table 3: X and the ground truths for the sample census database

X Ground truths

Entity Population Entity Population

NYC 8.423 NYC 8.420
DC 0.645 DC 0.646
LA 4.291 LA 4
... ... ... ...

EXAMPLE 1. Table 2 shows a sample census database. In this

particular example, an entity is a city and a claim is a tuple in the

database. Source A states that New York City has a population

of 8.405 million, so its corresponding xs
n = 8.405. Note that in

this example, xs
n is a numerical value, but we do not limit xs

n to

be continuous data type only. Discussions on categorical values

can be found in Section 3.2.4. Table 3 shows the output X using

the proposed method and the ground truth for this sample census

database. Comparing with the ground truths, every source may

make some mistakes on their claims, but some sources make fewer

errors than the others. For example, source A’s claims are closer to

the ground truths than source B’s claims, which means the former is

more reliable than the latter, so source A deserves a higher weight

when inferring the truth. Source C seems to be reliable, but based

on one claim, it is hard to judge. The proposed method achieves

very close results comparing with the ground truths by accurately

estimating the source reliability degrees.

Given input C, our task is to resolve the conflicts and find the

most trustworthy piece of information from various sources for ev-

ery entity. In addition to the truth X , we also simultaneously infer

the reliability degree of each source ws based on input informa-

tion. A higher ws indicates that the s-th source is more reliable and

information from this source is more trustworthy.

Table 4 summarizes all the notations used in this paper. σ2
s and

u2
s will be introduced in the next subsection.

Table 4: Notations

Notation Definition

C set of claims (input)
N set of entities
n the n-th entity
S set of sources
s the s-th source
Ns the set of entities provided by source s

Sn the set of sources that provide a claim on entity n

xs
n information for entity n provided by source s

X set of truths (output)
x∗
n the truth for entity n

ws weight for source s

σ2
s error variance of source s

u2
s upper bound of variance σ2

s

3.2 CATD Method
In this section, we formally introduce the proposed method, called

Confidence-Aware Truth Discovery (CATD), for resolving the con-

flicts and finding the truths among various sources. The proposed

method can handle the challenge brought by the long-tail phenomenon

that we observe.

3.2.1 Truth Calculation

Here we only consider the single truth scenario, i.e., there is only

one truth for each entity although sources may provide different

claims on the same entity.

The basic idea is that reliable sources provide trustworthy in-

formation, so the truth should be close to the claims from reliable

sources. Many truth discovery methods [8,16,19,20,23,23–26,31,

34–37] use weighted voting or averaging more or less to achieve

the truths, which overcome the issue of conventional voting or av-

eraging schema that assumes all the sources are equally reliable.

We propose to use the same weighted averaging strategy to ob-

tain the truths. Since sources are usually consistent in the quality

of its claims, we can use source weight, i.e., the source reliability

degree, ws as the weight for all the claims provided by s:

x
∗
n =

∑

s∈Sn

ws · x
s
n

∑

s∈Sn

ws
. (1)

However, the source reliability degrees are usually unknown a

priori. Therefore, the key question we want to explore next is how

to find the “best” assignment of ws.
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3.2.2 Source Weight Calculation

In this paper, we assume that all sources make their claims in-

dependently, i.e., they do not copy from each other. We leave the

case when source dependence happens for future work. We can re-

gard that each source’s information is independently sampled from

a hidden distribution. Errors, which are differences between the

claims and the truths, may occur for every source. The variance of

the error distribution reflects the reliability degree of this source: if

a source is unreliable, the errors it makes occur frequently and have

a wide spectrum in general, so the variance of the error distribution

is big. We believe that none of the sources make errors on purpose,

so the mean of the error distribution, which indicates its bias, is 0.

We propose to use Gaussian distribution to describe errors, which

is widely adopted in many fields. For each source, its error follows

a Gaussian distribution with mean 0 and variance σ2
s , i.e.,

ǫs ∼ N(0, σ2
s).

Since we have the source independence assumption, the errors

that sources make are independent too. We can then compute the

distribution for the error of the weighted combination in Eq.(1) as:

ǫcombine ∼ N

(

0,

∑

s∈S w2
sσ

2
s

(
∑

s∈S ws)2

)

, (2)

where ǫcombine =
∑

s∈S wsǫs∑
s∈S ws

. Without loss of generality, we con-

strain
∑

s∈S ws = 1.

For a Gaussian distribution, the variance determines the shape

of the distribution. If the variance is small, then the distribution

has a sharp and high central peak at the mean, which indicates a

high probability that errors are close to 0. Therefore, we want the

variance of the ǫcombine to be as small as possible. We formulate

this goal into the following optimization problem:

min
{ws}

∑

s∈S

w
2
sσ

2
s

s.t.
∑

s∈S

ws = 1, ws > 0, ∀s ∈ S. (3)

Usually the theoretical σ2
s is unknown for each source. Inspired

by sample variance, the following estimator can be used to estimate

the real variance σ2
s :

σ̂2
s =

1

|Ns|

∑

n∈Ns

(

x
s
n − x

∗(0)
n

)2

, (4)

where x
∗(0)
n is initial truth for entity n (such as the mean, median or

mode of the claims on entity n), |Ns| is the number of claims made

by source s. Another interpretation of Eq.(4) is that σ̂2
s represents

the mean of the squared loss of the errors that source s makes.

However, this estimator is not precise when |Ns| is very small,

so it can not accurately reflect the real variance of the source. As

we observed the long-tail phenomenon in Section 2, most of the

sources have very few claims. Then estimator σ̂2
s may lead to an in-

appropriate weight assignment for most of the sources, and further

cause inaccurate truth computation. In order to solve this problem

brought by the long-tail phenomenon in the dataset, we should not

only consider a single value of the estimator σ̂2
s for each source,

but a range of values that can act as good estimates of σ2
s . There-

fore, we adopt the (1−α) confidence interval for σ2
s , where α, also

known as significant level, is usually a small number such as 0.05.

As we illustrate above, the difference between xs
n and x

∗(0)
n fol-

lows a Gaussian distribution N(0, σ2
s). Since the sum of squares

of standard Gaussian distribution has chi-squared distribution [17],

we have:

∑

n∈Ns

(

xs
n − x

∗(0)
n

)2

σ2
s

=
|Ns|σ̂2

s

σ2
s

∼ χ
2(|Ns|).

Thus we have:

P

(

χ
2
(1−α/2,|Ns|) <

|Ns|σ̂2
s

σ2
s

< χ
2
(α/2,|Ns|)

)

= 1− α,

which gives the (1− α) confidence interval of σ2
s as:







∑

n∈Ns

(

xs
n − x

∗(0)
n

)2

χ2
(1−α/2,|Ns|)

,

∑

n∈Ns

(

xs
n − x

∗(0)
n

)2

χ2
(α/2,|Ns|)






(5)

Comparing with Eq.(4), Eq.(5) is more informative. Although

two sources with different numbers of claims may have the same

σ̂2
s , the confidence interval of σ2

s for these two sources can be sig-

nificantly different as shown in the following example.

Table 5: Example on calculating confidence interval

Source ID # Claims ˆσ2
s Confidence Interval (95%)

Source A 200 0.1 (0.0830, 0.1229)
Source B 200 3 (2.4890, 3.6871)
Source C 2 0.1 (0.0271, 3.9498)
Source D 2 3 (0.8133, 118.49)

EXAMPLE 2. Suppose from Example 1 we obtain the statistics

and sample variance for source A, B, C, and D as shown in Table

5. Both source A and C have the same σ̂2
s = 0.1, but source C has

only 2 claims while source A makes 200 claims. The confidence

interval of source C shows that the σ̂2
s is rather random and the

real variance may be much bigger than the sample variance for

the small sources. In contrast, the confidence interval for source

A is tight, and the upper bound of its confidence interval in this

case is close to its σ̂2
s . Similarly, source B and D provide different

numbers of claims, but they have the same σ̂2
s = 3. These two

sources are not as reliable as source A and C because the sample

variances are bigger, which indicates that claims made by these two

sources are far from the truths. The confidence intervals for source

B and D show similar patterns as source A and C. It is clear from

this simple example that the confidence interval of σ2
s carries more

information than σ̂2
s , and thus this confidence interval is helpful to

estimate more accurate source weights.

We propose to use the upper bound of the (1−α) confidence in-

terval (denoted as u2
s ) as an estimator for σ2

s instead of using σ̂2
s in

the optimization problem 3. The intuition behind this choice is that

we want to minimize the variance of ǫcombine by considering the

possibly worst scenario of σ2
s for a given source, i.e., minimize the

maximum possible loss. The upper bound u2
s is a biased estimator

on σ2
s , but the bias is big only on sources with few claims. As the

number of claims from a source increases, the bias drops.

We can substitute the unknown variance σ2
s in Eq.(3) by this up-

per bound u2
s and rewrite the optimization problem Eq.(3) as:

min
{ws}

∑

s∈S

w
2
su

2
s

s.t.
∑

s∈S

ws = 1, ws > 0, ∀s ∈ S. (6)
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This optimization problem is convex, so the global minimum

guarantees that we can find the best weight assignment under this

scenario [6]. The closed form solution is:

ws ∝
1

u2
s

=
χ2
(α/2,|Ns|)

∑

n∈Ns

(

xs
n − x

∗(0)
n

)2 . (7)

The weight computation (Eq.(7)) indicates that a source’s weight

is inversely proportional to the upper bound of the (1 − α) confi-

dence interval for its real variance. In Eq.(7), the chi-squared prob-

ability value will dominate the weight when a source only provides

very few claims; on the other hand, if a source provides sufficient

claims, the chi-squared probability value is close to |Ns| and has

small bias on the estimator. In this way, the proposed method au-

tomatically adjusts weights for sources with different numbers of

claims. The following example illustrates the weight computation.

Table 6: Example on calculating source weight

Source Weight Source Weight

Source ID ˆσ2
s u2

s (based on ˆσ2
s ) (based on u2

s)

Source A 0.1 0.1229 0.4839 0.9385
Source B 3 3.6871 0.0161 0.0313
Source C 0.1 3.9498 0.4839 0.0292
Source D 3 118.49 0.0161 0.0010

EXAMPLE 3. Based on Example 2, we compute source weights

and show the results in Table 6. If we calculate the source weights

based on σ̂2
s , source A and C have the same high weights because

they both have low sample variances. However, if we calculate

the source weights based on u2
s, source A has a higher weight than

source C. The latter weight assignment is more reasonable because

source C, which provides insufficient amount of claims, may have

a real variance that is much bigger than the sample variance, and

therefore, should not be assigned a high weight; source A, on the

other hand, may have a real variance that is close to the sample

variance, so it is worth having a high weight. Similarly, source B

should have a higher weight than source D. Comparing source A

and B, since source A is more reliable than source B, source A has

a higher weight than source B. Similarly, source C has a higher

weight than source D. This example demonstrates that the upper

bound of confidence interval successfully incorporates both source

reliability degrees and the number of claims made by a source.

Therefore it can give more accurate source weight estimation.

3.2.3 Algorithm Flow

So far we have described how to compute the truths and source

weights. Here we summarize the overall flow for the proposed

CATD method in the following two steps:

Step I: Computing Source Weights. With the initial truths {x∗(0)
n },

we first compute the source weights based on Eq.(7).

Step II: Computing Truths. At this step, we have the weight ws

of each source, and we compute the truth for each entity by the

weighted combination of the claims as shown in Eq.(1).

The pseudo code of the proposed CATD method is shown in Al-

gorithm 1. Note that outliers should be removed before applying

the proposed CATD method as the truth computation may be sen-

sitive to outliers.

3.2.4 Practical Issues and Time Complexity

Here we discuss three techniques to make the proposed method

more general and practical. At the end of this section, we analyze

the time complexity of the proposed CATD method.

Algorithm 1 : CATD

Input: set of claims C, significance level α.

Output: set of truths X = {(n, x∗
n)}.

1: Remove outliers in claims;

2: Initialize truths {x∗(0)
n };

3: Compute source weights {ws} according to Eq.(7) based on

the initial truths {x∗(0)
n };

4: for each n ∈ N do

5: Update the truth x∗
n according to Eq.(1) based on the

estimation of source weights;

6: end for

7: return (n, x∗
n) pairs;

In the proposed CATD method, we use Gaussian distribution to

describe the error of each source. For continuous data, the error is

defined as xs
n − x∗

n. For categorical data, we compute the error in

the following way. We propose to represent categorical data using

vectors. For example, for an answer to a multiple choice question

(say four choices), choice “A” can be coded as (1, 0, 0, 0) , choice

“B” can be coded as (0, 1, 0, 0), and etc. Formally, if entity n has

m possible values and xs
n is the l-th value, then the claim vector ~xs

n

for xs
n is defined as ~xs

n = (0, . . . ,
l
1, 0, . . . , 0)T . In this way, a cat-

egorical type claim is represented by a vector. In order to compute

the variance in Eq.(4), we can use the square of L2-norm to indi-

cate the difference between the claim vectors and the initial truth

vectors.

Another important issue is the scale of entities. As illustrated

in the weight computation, we model the errors as Gaussian dis-

tributed. If different entities have significantly different scales, the

errors on the entity that has larger scale may be significantly bigger

than errors on other entities. To solve this issue, we can normalize

the claims of the same entity so that the scale on all the entities falls

into the same range.

In Algorithm 1, source weights are estimated only once and then

the truths are computed as weighted combination of the claims. To

achieve a more accurate result, we can adopt an iterative procedure

on both source weights and truth computation. In each iteration,

the proposed CATD method improves the variance estimation using

the latest truths, so that the weight assignment is more appropriate.

Then the truths are updated based on the current weight assignment.

We stop the procedure until termination criterion is met, which can

be set as the maximum number of iterations or a threshold for the

similarity between truths from current computation and the truths

from the previous computation.

The time complexity of the CATD method is linear with respect

to the total number of claims, i.e. O(|C|), where |C| is the input

size of the proposed method. If the aforementioned iterative proce-

dure is adopted, the time complexity of the CATD method is then

changed to O(|C| ∗ m), where m is the number of iterations. The

time complexity is experimentally validated in Section 4.5.

4. EXPERIMENTS
In this section, we test the proposed CATD method on four real

world applications and various simulated datasets. The experimen-

tal results show that the proposed method outperforms state-of-the-

art truth discovery methods when confronting the challenge that

data present long-tail phenomenon. We first discuss the experiment

setup in Section 4.1, and then validate our assumption that source
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errors are Gaussian distributed in Section 4.2. We present exper-

imental results on the aforementioned City Population, Biography

and Indoor Floorplan datasets in Section 4.3, and on Game dataset

in Section 4.4. Finally in Section 4.5, the proposed method is tested

on different scenarios of simulated datasets.

4.1 Experiment Setup
In this part, we introduce the performance measures for different

data types and the baseline methods.

Performance Measures

In the experiments, we have two types of data: continuous and cat-

egorical. To evaluate the performance of various truth discovery

methods, we adopt the following measures for these two data types:

• MAE: For continuous data, we report the mean of absolute

error (MAE) which measures the mean of absolute distance

from the approach’s output to the ground truths.

• RMSE: For continuous data, we also report the root of mean

squared error (RMSE). This measurement penalizes more on

the large distance and less on the small distance comparing

with MAE.

• Error Rate: For categorical data, we measure the Error Rate

by computing the percentage of mismatched values between

each approach’s output and ground truths. For continuous

data, we also report error rate, where a “mismatch” is defined

as the case when the distance from the ground truth is greater

than a threshold (e.g. 0.1% of the ground truth values).

As a lower measurement value means that the method’s estimation

is closer to the ground truths, for all measures, the lower the value,

the better the performance.

Baseline Methods

All baseline methods that we use in the experiments are conducted

on the same input set in an unsupervised manner. The ground truths

are used only in evaluation. They are compared on both contin-

uous and categorical data unless otherwise specified. The base-

line methods include some state-of-the-art truth discovery meth-

ods: GTM [36], TruthFinder [34], AccuSim [8], Investment [23],

3-Estimates [16], and CRH [18]. More detailed summary of these

methods can be found in Section 5. We also compare with naive

conflict resolution methods: Mean (the truth for each entity is the

mean of the claims), Median (the truth for each entity is the median

of the claims), and Voting (the truth for each entity is the claim that

stated by the most sources). Note that GTM, Mean, and Median

only apply to continuous data type and is not used in the experi-

ments on Game dataset (categorical data type).

Note that some algorithms have extended versions which take

into account source dependency, but they are not compared in the

experiment because we do not consider source dependency in this

paper but leave it for future work. Parameters for the above meth-

ods are set according to the suggestions by their authors. For the

proposed method, iterative procedure is applied and the signifi-

cance level α is set as 0.05.

4.2 Assumption Validation
Since we have Gaussian assumption on source error distribution,

we first conduct normality tests to validate this assumption. We use

the aforementioned City Population, Biography and Indoor Floor-

plan datasets for this purpose.

Figure 3 shows the error distributions (left column) of sources

from City Population, Biography and Indoor Floorplan datasets re-

spectively. Gaussian distributions are fitted and the mean is ap-

proximate 0. We use Q-Q plot, a well-known graphical technique
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Figure 3: Source error distributions.

for normality testing, to further validate the error distributions. In

Q-Q plots (right column), data points are plotted against a theoret-

ical Gaussian distribution (the line in the plot) and an approximate

straight line indicates strong normality. Figure 3 proves that the

source errors are indeed Gaussian distributed.

4.3 Experiments on Long­Tail Datasets
In this section, we show the experimental results on three real

world datasets: City Population dataset, Biographic dataset and In-

door Floorplan dataset, which contain numerical data. Some dis-

cussions about these datasets can found be in Section 2. Compar-

ing with the baseline methods, the proposed CATD method shows

the power of finding more accurate truths on datasets with long-tail

phenomenon.

City Population Dataset [23, 36]. City Population dataset con-

tains Wikipedia edit histories of some cities’ population in a given

year. A subset of the entities (308 out of 43,071) are randomly sam-

pled and labeled with ground truths. The following preprocessing

steps are applied on this dataset: First, since the data is Wikipedia

edit history, a source may have multiple claims on the same entity.

Considering sources may update their claims to correct previous

errors, we only keep the latest claims of each source on one en-

tity. Second, we observe some unreasonable claims such as 0 and

6.5979 × 1018 for a city’s population. Therefore, we adopt the

same preprocessing from [36].

Biography Dataset [23, 36]. This dataset contains Wikipedia edit

histories about people’s biographic information. Similar to City

Population dataset, the ground truths are available for some entities

(2,685 out of 9,924) and the same data preprocessing is conducted.

Note that City Population and Biography datasets (both data and

ground truths) are provided by the authors of [23, 36] and more

details about the data can be found in the papers.
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Indoor Floorplan Dataset. Indoor Floorplan dataset contains the

distance estimates from users’ smart phones for indoor hallways.

We manually label the ground truths of each hallways distance (129

out of 129) by measuring tapes.

In Table 7, 8, and 9 we summarize the performance of all meth-

ods in terms of MAE, RMSE and Error Rate. We can see that

the proposed CATD method achieves the best performance on all

datasets comparing with the baseline methods.

Table 7: Comparison on City Population dataset

Method MAE RMSE Error Rate

CATD 1203.28 8075.56 0.1423

Mean 10368.54 126199.76 0.6058
Median 10241.81 126198.86 0.3577
Voting 10327.20 126217.98 0.5255
GTM 1498.59 8339.99 0.1606

TruthFinder 1633.60 8824.09 0.1715
AccuSim 1626.52 8718.10 0.1642

Investment 1617.40 8797.43 0.1679
3-Estimates 1640.83 8822.50 0.1569

CRH 1425.46 8569.44 0.1679

Table 8: Comparison on Biography dataset

Method MAE RMSE Error Rate

CATD 211.54 4727.36 0.0361

Mean 253.41 4860.28 0.0528
Median 244.04 4854.90 0.0377
Voting 237.35 4847.80 0.0366
GTM 228.19 4831.53 0.0366

TruthFinder 278.08 4905.71 0.0371
AccuSim 267.62 4844.46 0.0366

Investment 369.04 5380.71 0.0439
3-Estimates 237.35 4847.80 0.0366

CRH 244.17 4832.20 0.0377

Table 9: Comparison on Indoor Floorplan dataset

Method MAE RMSE Error Rate

CATD 0.9960 1.3845 0.1240

Mean 1.7851 2.2846 0.3488
Median 1.3797 1.7860 0.2326
Voting 1.6029 2.1153 0.3023
GTM 1.2845 1.6823 0.2403

TruthFinder 1.4754 2.0467 0.2713
AccuSim 1.3964 1.9191 0.2481

Investment 1.7243 2.5803 0.3256
3-Estimates 1.7417 2.6075 0.3101

CRH 1.1929 1.5955 0.1783

On City Population dataset, there are many entities with very

few claims, which makes Mean, Median and Voting’s performance

not satisfactory. The truth discovery methods can achieve better

performance than the naive baselines. TruthFinder and AccuSim

achieve nice results by additionally considering the influence be-

tween claims. CRH and GTM, which take into account the char-

acteristic of continuous data for truth discovery tasks, also obtains

good results. CATD method makes further improvement in terms

of MAE, RMSE and Error Rate by taking into account the long-

tail phenomenon in the dataset. The improvement is over 18% on

MAE, 3% on RMSE, and 10% on Error Rate comparing with the

best baselines.

On Biography dataset, since there are more claims for each en-

tity in general, Mean, Median and Voting perform well even with-

out considering source reliability. Truth discovery methods that ig-

nores the impact of long-tail phenomenon in the data cannot learn

the source reliability correctly, and thus obtains similar or even

worse results comparing to the naive baselines. Among all the

baseline methods, GTM provides competitive results, but the pro-

posed CATD method further improves the results in terms of MAE,

RMSE and Error Rate by 7.9%, 2.2% and 1.4% respectively by

considering the long-tail phenomenon in the dataset.

On Indoor Floorplan dataset, the proposed CATD method con-

sistently provides the best results in terms of MAE, RMSE and

Error Rate comparing with other baseline methods. The improve-

ment over the best baseline method is 19.8% on MAE, 15.3% on

RMSE, and 43.8% on Error Rate. By outperforming the baseline

methods on all real world datasets, the proposed CATD method

demonstrates its power on modeling source reliability accurately

even when the sources make insufficient claims.

Since all the truth discovery methods and the proposed CATD

method use weighted voting or averaging to calculate truths, the es-

timated source reliability is the key to obtain accurate truths. There-

fore, we further examine the source reliability degrees on Biogra-

phy dataset given by each method in the following.

As different methods adopt various weight computation, we nor-

malize the source weights into the range [0, 1] by dividing the max-

imum weight to make a fair comparison. In order to illustrate

the problem brought by the long-tail phenomenon, sources are di-

vided into two groups: Group 1 contains sources with less than five

claims and Group 2 contains sources with five or more claims. This

threshold is set so that the ratio of group sizes is not too extreme.

Intuitively, Group 1 sources should have small weights, because

each of them provides only few claims. Group 2 sources may have

large weights or small weights depending on the sources’ reliabil-

ity. Figure 4 shows the weight distributions of these two groups of

sources for GTM, TruthFinder, AccuSim and CRH baseline meth-

ods and the proposed CATD method. We choose these three base-

lines here because the other truth discovery baselines are designed

for categorical data only, so the weights learned by those methods

on numerical claims are not representative. As we can see in the

figures, GTM distinguishes Group 1 and Group 2 sources to some

extent, but due to the setting of the prior on source reliability, the

difference is small and it overestimates the reliability degrees for

Group 1 sources. The problem for TruthFinder and AccuSim is

that the weight distribution of Group 1 sources is polarized. The

number of Group 1 sources which have weights as high as 1 stands

out. Each Group 1 source only makes a few claims, and if the

claims are correct, then its accuracy is high, so TruthFinder and

AccuSim assign a large weight to this source. If the few claims are

wrong, the corresponding source’s accuracy is low, so it is assigned

a small weight. Although TruthFinder and AccuSim have reason-

able source reliability estimation on big sources, the inaccurate es-

timation on large amount of small sources discounts their perfor-

mance. The same observation can be found on CRH, which also

ignores the difference between big and small sources, and assign

source weights purely based on accuracy without considering the

sample size. Only the proposed CATD method is aware that when

the claims made by a small source happen to be accurate, it does not

confirm that this small source is reliable; and for big sources, the

bias on source reliability estimation is low. From Figure 4e, we can

see that Group 1 sources have relatively low weights. For Group 2

sources, some of them have low weights whereas others have big

weights. Thanks to the accurate source reliability estimation, the

proposed CATD method provides more accurate truths.
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(a) GTM (b) TruthFinder (c) AccuSim

(d) CRH (e) CATD

Figure 4: Comparison of source weights on Biography dataset.

Table 10: Comparison on Game dataset

Error Rate

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Overall
(303) (295) (290) (276) (253) (218) (187) (138) (99) (44) (2103)

CATD 0.0132 0.0271 0.0276 0.0290 0.0435 0.0596 0.0481 0.1304 0.1414 0.2045 0.0485

Voting 0.0297 0.0305 0.0414 0.0507 0.0672 0.1101 0.1016 0.3043 0.3737 0.5227 0.0980
TruthFinder 0.0693 0.0915 0.1241 0.0942 0.1581 0.2294 0.2674 0.3913 0.5455 0.5455 0.1816

AccuSim 0.0264 0.0305 0.0345 0.0507 0.0632 0.0963 0.0909 0.2826 0.3636 0.5000 0.0913
Investment 0.0330 0.0407 0.0586 0.0761 0.0870 0.1239 0.1283 0.3406 0.3838 0.5455 0.1151
3-Estimates 0.0264 0.0305 0.0310 0.0507 0.0672 0.1055 0.0963 0.2971 0.3737 0.5000 0.0942

CRH 0.0264 0.0271 0.0345 0.0435 0.0593 0.0872 0.0856 0.2609 0.3535 0.4545 0.0866

4.4 Experiments on Game Dataset
In this section, we test the generalizability of the proposed CATD

method on discrete data. Game dataset [2] collects multi-source

answers based on a TV game show, details of which can be found

in Section 2. Different from the other three datasets used in this

paper, Game dataset contains categorical type of claims. Therefore,

we encode the claims into vectors and then apply CATD method.

We use error rate as the evaluation metric on this dataset.

The ground truth information is provided by the TV game show.

In addition, the show gives each question a difficulty level. We use

the ground truth information for 2103 out of 2169 questions. The

remaining questions’ difficulty levels are missing and are excluded

in the evaluation. Table 10 shows the number of ground truths for

each level of questions (number in parentheses) and error rate of

the proposed CATD method and baseline methods on all question

levels. We can see that CATD method is more accurate than the

baseline methods on every level. Overall, we reduce the error rate

by almost half comparing with the state-of-the-art truth discovery

methods. The first seven levels have low error rates on all methods

because those questions are relatively easy; for the last three levels,

as the questions get harder, the error rates for all baseline meth-

ods increase dramatically. The error rates for the proposed CATD

method also increase slightly on the last three levels, but show a

large advantage over all baseline methods. On the hardest question

level, CATD method still has error rate as low as 0.2045, while the

baselines have error rates greater than 0.4. TruthFinder and Invest-

ment perform worse than Voting because both methods model the

probability of each claim being correct given the source reliabil-

ity degrees without considering complement vote. However, under

this application scenario, complement vote should be considered

because if a player votes for choice A, it naturally means he/she

votes against other choices.

Similar to the source reliability analysis that we conduct on Bi-

ography dataset, we explore the weight distribution of Game dataset

on two groups of sources: Group 1 contains sources with fewer than

10 claims and Group 2 contains sources with 10 or more claims.

The threshold is set so that the group sizes are comparable. Figure

5 shows the weight distributions of these two groups for the truth

discovery baseline methods and the proposed CATD method. We

can see that TruthFinder and AccuSim have many Group 1 sources

with weights either very big (close to 1) or very small (close to 0),

which presents a similar polarization distribution as they present on

Biography dataset. Because both methods apply Bayesian analysis,

the effect of long-tail phenomenon causes similar problem when

estimating source reliability on small sources. Investment method

presents the same weight distribution on both groups, which indi-

cates that they do not realize that the number of claims made by

each source can be an influential factor for source reliability esti-

mation. 3-Estimates is too optimistic and overestimates the source

reliability degrees on both groups. Although TruthFinder and 3-
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(a) TruthFinder (b) AccuSim (c) Investment

(d) 3-Estimates (e) CRH (f) CATD

Figure 5: Comparison of source weights on Game dataset.

Estimates present similar pattern of weight distribution, 3-Estimate

does a slightly better job on distinguishing Group 1 and Group

2 sources, which leads to a better performance than TruthFinder.

CRH overestimates the source reliability on small sources, which

is caused by the long-tail phenomenon in the data. The proposed

CATD method is able to take the number of claims made by a

source into consideration, and obtains appropriate weight assign-

ment. The advantage of the proposed CATD method in source

weight assignment is demonstrated in Figure 5f. We can see that

Group 1 sources have relatively low weights while Group 2 sources

have weights distributed over the entire interval. It is desired be-

cause only when sources have sufficient claims it is meaningful to

estimate their reliability; for small sources, we hope they do not

affect the truth estimation heavily. That is the reason why the pro-

posed CATD method performs better than baseline methods.

4.5 Multi­source Long­tail Simulations
In this section, we first simulate different scenarios involving

various distributions of source reliability and test the effectiveness

and necessity of the confidence interval estimator in the proposed

method. Last but not least, we use the simulated data to test the

efficiency of the proposed CATD method.

We generate datasets containing 200 entities. Each source chooses

a subset of entities randomly and makes claims. Here we use power

law function to create the long-tail phenomenon and the parameter

is set as #sources = #claims−1.5 · e7. Totally 2712 sources are

generated and for each source, we generate claims from a N(µ, σ2
s)

distribution and set the ground truths for all entities as µ. In the fol-

lowing experiments, we simulate four different scenarios which can

be found commonly in real world applications by varying source

reliability distributions, i.e., distributions of σ2
s . To reduce the ran-

domness from a single dataset, we generate the datasets and run the

experiments for 100 times and report the average of the results. The

measurements for the results include MAE, RMSE and Error Rate.

In order to test the effectiveness and necessity of using upper

bound u2
s in Eq.(6), CATD-0 is compared, where CATD-0 uses the

same framework as CATD but with estimated variance σ̂2
s (Eq.(4))

instead of the upper bound. The comparison between the proposed

CATD method and this baseline can demonstrate the importance of

considering source size in source reliability estimation. CATD-0

only uses sample variance to estimate source reliability, and thus

it cannot accurately estimate small sources’ reliability degree. In

contrast, the proposed CATD method takes sample size into con-

sideration when estimating sources’ weights via the usage of vari-

ance upper bound. Median, GTM, and CRH, the top three base-

lines on our simulated data, are used as a performance reference.

Due to space limit, other baselines are omitted here. From the ex-

periments, GTM and CRH show their strength when handling nu-

merical values, but the performance of CATD is still consistently

the best, which illustrates the importance of considering long-tail

phenomenon in truth discovery tasks.

Scenario 1: σ2
s ∼ Uniform(0, 3). The uniform distribution of

source reliability implies that we have equal amount of sources

with various reliability degrees. We can see from Table 11 that

CATD improves CATD-0 by taking the long-tail phenomenon into

consideration.

Table 11: Comparison on simulated datasets: Scenario 1

Method MAE RMSE Error Rate

CATD 0.0287 0.0365 0.0117
CATD-0 0.0471 0.0657 0.1082
Median 0.0525 0.0709 0.1381
GTM 0.0434 0.0546 0.0684
CRH 0.0454 0.0619 0.0962

Scenario 2: σ2
s ∼ Folded Normal(µ = 1, σ2 = 1). This distri-

bution generates more reliable sources than unreliable ones. Com-

paring with Scenario 1, the unreliable sources here have a larger

variance. Table 12 shows the results that CATD method still has a

big advantage over other methods, whereas CATD-0 loses its ad-

vantage over Median.

Scenario 3: σ2
s ∼ Gamma(k = 1, θ = 1.5). Under this setting,

the Gamma distribution is equivalent to an exponential distribution,
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Table 12: Comparison on simulated datasets: Scenario 2

Method MAE RMSE Error Rate

CATD 0.0217 0.0274 0.0012
CATD-0 0.0369 0.0518 0.0647
Median 0.0373 0.0507 0.0557
GTM 0.0312 0.0391 0.0125
CRH 0.0319 0.0438 0.0330

which implies that most of the sources are reliable with small vari-

ances, whereas a few sources are very unreliable with large vari-

ances. Table 13 shows the results for this scenario. Note that the

performance of Median is now better than CATD-0. It is because

that when there are some very unreliable sources, CATD-0 may

underestimate the variances of those sources, and thus lead to inap-

propriate weight estimation. CATD method, on the other hand, is

not affected and outperforms other methods.

Table 13: Comparison on simulated datasets: Scenario 3

Method MAE RMSE Error Rate

CATD 0.0228 0.0289 0.0014
CATD-0 0.0463 0.0674 0.1084
Median 0.0309 0.0427 0.0305
GTM 0.0354 0.0444 0.0268
CRH 0.0253 0.0354 0.0131

Scenario 4: σ2
s ∼ Beta(α = 0.5, β = 0.5). The Beta distribution

that we choose has a “U” shape, which implies that most of the

sources are either reliable with small variances or very unreliable

with large variances. Table 14 shows the results for this scenario.

Note that the performance of Median is better than CATD-0, and

the reason is the same as we describe in Scenario 3. CATD method

is still the best and outperforms the other methods.

Table 14: Comparison on simulated datasets: Scenario 4

Method MAE RMSE Error Rate

CATD 0.0507 0.0668 0.1168
CATD-0 0.1059 0.1695 0.3349
Median 0.0562 0.0953 0.1823
GTM 0.1440 0.1809 0.5753
CRH 0.0656 0.0987 0.1658

The experiments on simulated datasets demonstrate that if long-

tail phenomenon in the data is ignored and small sources are treated

the same as big sources, the estimation of source reliability based

on sample variance cannot help or even harm the performance.

Estimator based on the confidence interval of source reliability in

CATD helps the method perform robustly under different source re-

liability distributions on long-tail data, because it takes both source

reliability and source size into consideration.

Efficiency is an important aspect of truth discovery tasks. Here

we generate different numbers of claims for the simulated data and

test the computational complexity of the CATD method. Figure

6 shows strong linearity between the running time and the num-

ber of claims. To further prove the linearity, we compute Pearsons

correlation coefficient, a commonly used metric to test linear rela-

tionship between variables. The closer it is to 1 (or -1), the stronger

positive (or negative) linear relationship the variables have. In our

experiment, the Pearsons correlation coefficient for running time

and the number of claims is 0.9991, indicating that they are highly

linearly correlated.
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Figure 6: Running time of CATD w.r.t. number of claims.

5. RELATED WORK
Improving data quality has been studied in the database commu-

nity for years [12,13]. As an important aspect of this area, research

on resolving conflicts from multiple sources [4,5,10,22] arise vari-

ous ways to handle conflicts in data integration. A common method

is to conduct voting or averaging–for categorical data, the informa-

tion with the highest number of occurrences is regarded as truth;

for continuous claims, the mean is taken as the true value. This ap-

proach regards sources as equally reliable, and thus may fail when

there exist sources containing low quality information.

To address the problem voting or averaging may face, truth dis-

covery has received lots of attention recently and many methods

are developed to handle various challenges. The truth discovery

problem is first formally formulated by Yin et al. [34], in which a

Bayesian based heuristic algorithm is proposed. It computes the

probability of each claim being correct given the estimated source

weights and the influences between claims. Then Pasternack et

al. propose methods to incorporate prior knowledge, such as con-

straints on truth and background information, into truth discovery

tasks [23, 24]. The methods adopt the idea that sources “invest”

their reliability on the claims they provide. The concept of diffi-

culty of getting the truth when computing source weights is mod-

eled in [16], which also adopts the idea of complement vote. Algo-

rithms proposed in [8] targeted to handle source dependency prob-

lem in truth discovery tasks. The basic idea is that if two sources

make the same incorrect claims, they are likely to be correlated.

Bayesian analysis and the idea of complement vote are adopted.

Note that the method compared in Section 4 does not consider

source dependency, but considers the influences between claims. A

semi-supervised graph learning is proposed in [35]. It models the

propagation of information trustworthiness from the known ground

truths. Zhao et al. adopt probabilistic graphical models in truth

discovery tasks [36,37]. The existence of multiple truths for single

entity is considered in [37] where source reliability is modeled as

two-sided: sensitivity and specificity. Later, a model specially de-

signed for numerical data is proposed in [36]. Recently, Dong et

al. model source selection in the truth discovery tasks based on the

idea of “gain” and “cost” [11, 27]. Li et al. aim to minimize the

weighted deviation of claims and truths, so an optimization frame-

work is adopted and applied on heterogeneous data, in which dif-

ferent data types can be modeled jointly [18].

Another related field is learning from crowd of wisdom, also

known as crowdsourcing, in which researchers investigate how to

infer true labels from the labeling efforts of a crowd [3, 15, 29, 30,

32, 33, 38]. These approaches focus on learning true labels or an-

swers to certain questions, where the input and output space are

usually limited to specific sets of labels or questions. Truth discov-

ery tasks, on the other hand, can deal with more than categorical

data type comparing with crowdsourcing tasks.

Long-tail phenomenon has attracted attentions in many fields

[7, 14, 21] for theoretical and practical reasons. However, it is not
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identified by any existing truth discovery work. To the best of our

knowledge, we are the first to analyze the effect of this ubiquitous

phenomenon and propose an effective solution.

6. CONCLUSIONS
Truth discovery is important for effective data integration be-

cause it can automatically identify reliable sources and trustwor-

thy information from multiple sources. We observe long-tail phe-

nomenon in many real world applications, i.e., most sources only

provide very few claims and only a small amount of sources makes

plenty of claims. This phenomenon causes the problem that the

existing work cannot appropriately estimate source reliability from

insufficient information. In this paper, we propose a confidence-

aware truth discovery (CATD) method to resolve the conflict on

data with long-tail phenomenon by adopting effective estimators

based on the confidence interval of source reliability. These esti-

mators can successfully discount the effect of small sources and

accurately reflect the real source reliability. Experiments are con-

ducted on four real world applications as well as simulated datasets

with various source reliability distributions. The results demon-

strate an advantage of the proposed CATD method over existing

truth discovery approaches in finding truths on long-tail data.
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