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Abstract

Very diverse research fields frequently deal with the analysis of multiple clustering results, which should imply an objective
detection of overlaps and divergences between the formed groupings. The congruence between these multiple results can
be quantified by clustering comparison measures such as the Wallace coefficient (W). Since the measured congruence is
dependent on the particular sample taken from the population, there is variability in the estimated values relatively to those
of the true population. In the present work we propose the use of a confidence interval (CI) to account for this variability
when W is used. The CI analytical formula is derived assuming a Gaussian sampling distribution and recurring to the
algebraic relationship between W and the Simpson’s index of diversity. This relationship also allows the estimation of the
expected Wallace value under the assumption of independence of classifications. We evaluated the CI performance using
simulated and published microbial typing data sets. The simulations showed that the CI has the desired 95% coverage when
the W is greater than 0.5. This behaviour is robust to changes in cluster number, cluster size distributions and sample size.
The analysis of the published data sets demonstrated the usefulness of the new CI by objectively validating some of the
previous interpretations, while showing that other conclusions lacked statistical support.
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Introduction

Clustering is frequently used to analyze data in many diverse

fields such as the life and medical sciences, computer sciences, social

sciences, economics and engineering. There are many different

approaches to clustering and one may use different sets of individual

characteristics to generate different classifications or clusterings. In

face of two different clusterings of the same set of individuals, one

can measure the extension of agreement between them and, if the

results are in agreement, it may be enough to collect data from a

single source. On the other hand, if the two clusterings disagree,

combining their results may offer additional information and

discriminatory power. Researchers in such diverse fields as

bioinformatics [1], computer science [2], psychology [3] and

ecology [4], have developed and applied methods to compare

clusterings. While some methods provide a global measure of

concordance between clusterings [3], that may also take into

account inter-cluster distances [1], others offer an asymmetric view

of concordance in which the agreement of clustering A with B may

be different of the agreement of B with A [5]. One of the latter

methods is the Wallace coefficient (W), which has recently been

successfully applied to the analysis of microbial typing data [6].

Microbial typing methods provide clinical microbiologists with a

fundamental tool for the epidemiological characterization of

microbial pathogens by allowing the distinction of diverse

organisms of the same species. These tools have been used to

identify particularly virulent strains, to measure their spread

between hosts and in general to clarify the evolutionary history

and population dynamics of microbial pathogens. A variety of

typing methods are available, targeting different phenotypic or

genotypic properties of microbial isolates. To be able to compare

or combine studies performed using different methods, it is

important to know if the various methods are identifying the same

relationships between strains. In other words, it is important to

determine the degree of congruence between the resulting

clusterings. A common framework for comparing and relating

multiple typing methods with objective measures has been

proposed [6] and applied in several subsequent studies to a

diverse array of typing techniques in different bacterial species

[7,8,9,10,11,12]. An online tool has been developed to allow the

easy application of these measures by the microbial typing

community (www.comparingpartitions.info) and scripts for the

popular Bionumerics software are also available [6].

One crucial analytical measure within this framework is W.

Given two clusterings A and B, W of the classification provided by

A to the classification provided by B is the probability that two

individuals are classified together using method B knowing that

they were classified together using method A. The intuitive

interpretation of the values of W and their directionality has

contributed to its successful use in microbial typing studies.
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In spite of the value of W to quantitatively evaluate the

congruence of the classifications of different clusterings, its use and

interpretation could be improved with two lacking features: 1)

estimation of the expected W value if the classifications are

independent (Wi) and 2) estimation of suitable confidence intervals

for W. The first feature is important because even high values can be

simply explained by chance agreement, or, reversely, low W values

can be significantly higher than the value expected under the

assumption of independence of classifications. The latter is a function

of the number and relative size of clusters produced by each of the

clusterings. Statistical confidence intervals are necessary to compare

the W calculated between different clusterings because the obtained

estimative of W can change with different samples of individuals.

Since we are interested in the more general problem of quantifying

the relationships between the classifications of different typing

methods and not only in that particular set of individuals, i.e., we

would like to estimate a population parameter using a given sample,

confidence intervals are necessary to indicate the reliability of our

estimate. Here we derive an analytical expression for the calculation

of a CI for W and evaluate its performance in simulated and

microbial typing data sets.

Results and Discussion

Derivation of CI expression
Consider a contingency table (CT) that contains the dual

classification of each individual entity in both clusterings A and B.

CT element mij is the number of individuals belonging to both clusters

Ai and Bj. ai is the sum of row i and bj is the sum of column j. W of A to

B is defined as the ratio of the number of pairs of individuals with the

same classification according to A and B over the number of pairs of

individuals with the same classification according to A:

WA?B~

Pr
i~1

Pc
j~1

mij mij{1
� �

Pr
i~1

ai ai{1ð Þ
ð1Þ

For each row of CT we can compute the Simpson’s index of diversity

[13,14] of the B clustering among elements of the Ai cluster as:

SIDB,Ai
~1{

Pc
j~1

mij mij{1
� �

ai ai{1ð Þ ð2Þ

The method to estimate both Wi and a confidence interval for W

stems from the observation that the W of the classifications under

method A to the classifications under method B is a weighted average

of one minus the Simpson’s index of diversity (1-SID) of the B

classification within each cluster of A:

WA?B~

Pr
i~1

ai ai{1ð Þ 1{SIDB,Ai
ð Þ

Pr
i~1

ai ai{1ð Þ
ð3Þ

If methods A and B produce independent classifications, it means

SIDB,Ai should be equal for each cluster Ai. Consequently, the

expected value of W when both classifications are independent is:

Wi A?Bð Þ~1{SIDB ð4Þ

Where SIDB is the Simpson’s index of Diversity of the B classification

considering all studied individuals.

To assess if the estimated W is significantly different from the

value expected under independence one could use a confidence

interval. If the expected value is within the confidence interval

boundaries, the null hypothesis of independence between

classifications cannot be rejected with the respective confidence

level. We deduced the confidence interval limits from the variance

of SID, originally presented by Simpson [13]:

var SIDB,Ai
ð Þ~

4ai ai{1ð Þ ai{2ð Þ
Pc
j~1

mij

ai

� �3

z2ai ai{1ð Þ
Pc
j~1

mij

ai

� �2

{2ai ai{1ð Þ 2ai{3ð Þ
Pc
j~1

mij

ai

� �2
 !2

ai ai{1ð Þð Þ2

ð5Þ

Where mij is the number of individuals belonging to both clusters

Ai and Bj, and c is the number of B clusters. Considering the size of

A clusters (ai) as constants and using three general properties of the

variance of the variable X:

var Xzcð Þ~var Xð Þ ð6Þ

var aXð Þ~a2 var Xð Þ ð7Þ

Where a and c are constants, and if X and Y are independent

variables:

var XzYð Þ~var Xð Þzvar Yð Þ ð8Þ

We arrive at:

var WA?Bð Þ~

Pr
i~1

ai ai{1ð Þð Þ2var SIDB,Ai
ð Þ

Pr
i~1

ai ai{1ð Þ
� �2

ð9Þ

Following the approach of Grundmann [14] we computed the

confidence interval limits assuming a Gaussian distribution.

Hence, for a 95% confidence interval, the limits are given by:

CI 95%ð Þ~WA?B+2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA?Bð Þ

p
ð10Þ

Analysis of simulated clusterings
We validated the performance of this confidence interval using

the simulation of random contingency tables representing the cross

classification of two hypothetical clusterings. The results are

presented in figures 1, 2, 3.

Analysis of figure 1 indicates that the proposed 95% confidence

interval for W approximates the desired coverage of 95% when W

is between 0.5 and 1. From 0.5 to 0, the coverage gradually

decreases, meaning that the W sampling distribution is diverging

from normality in this range. This behavior is quite robust to

changes in the number of clusters in each of the two classifications.

The change in table dimensions does not have a detectable impact

on interval amplitude for high W values. For low W values, the

interval amplitudes slightly increase for increasing row number.

The curved shape of the amplitude as a function of W value

ð5Þ

Wallace Confidence Interval
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Figure 1. Coverage and amplitude of 95% confidence intervals for Wallace coefficient obtained from simulated classifications. Each
dot represents a simulation with a particular set of parameters. The colors indicate the dimensions of the simulated contingency tables as indicated in
the figure legend, which correspond to the number of clusters in each of the two classifications. All simulated tables in this plot had n = 300 elements
and the distribution of row cluster sizes followed a Zipfian distribution with exponent a = 1.
doi:10.1371/journal.pone.0003696.g001

Figure 2. Coverage and amplitude of 95% confidence intervals for Wallace coefficient obtained from simulated classifications. Each
dot represents a simulation with a particular set of parameters. The colors indicate the number of elements n of the simulated contingency tables as
indicated in the figure legend. All simulated tables in this plot had 10610 dimensions and the distribution of row cluster sizes followed a Zipfian
distribution with exponent a = 1.
doi:10.1371/journal.pone.0003696.g002

Wallace Confidence Interval
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resembles the relationship between the amplitude of a confidence

interval for a simple proportion and the actual proportion value.

Indeed, W can be seen as a proportion of individual pairs classified

in the same cluster by both methods among the pairs classified in

the same cluster by the first method.

In Figure 2 we studied the impact of sample size. The plot of

interval coverage is similar to the one in Figure 1. For W values

below 0.5 it is possible to observe that larger sample sizes have

better coverage. There is also a clear impact of the number of

elements in the amplitude of the resulting confidence intervals,

with larger amplitudes for low sample sizes.

Finally, in Figure 3 we systematically change the distribution of

row cluster sizes from a uniform distribution (a = 0) to a very

skewed distribution where most of the elements are concentrated

in a single cluster (a = 3). The distribution of cluster sizes normally

found in microbial typing data, as well as in other biological data,

is closer to a skewed scenario than to the uniform distribution.

Interval amplitude is not significantly affected by these changes.

The decrease in confidence interval coverage for low W values is

stronger for cluster size distributions closer to uniformity.

Globally, the simulations performed show that the proposed

confidence interval has the required 95% coverage for W values

between 0.5 and 1 and non-uniform distribution of cluster sizes. This

result is robust to changes in number of clusters, cluster size

distribution and number of individuals sampled. The latter is the

main parameter influencing the amplitude of the confidence

intervals. The simulations also show that the confidence interval

does not have the desired coverage for low W values (especially

below 0.2) and this problem is more pronounced for uniform cluster

size distributions. This should not be a major concern since, we are

mainly interested in making comparisons between high W

coefficients, and, as previously stated, most naturally occurring

cluster size distributions in biology are not uniform. In this regard, it

is important to note that the creation of maps of type equivalences

proposed previously [6] would only be beneficial if the congruence

between classifications would be high and an arbitrary, but

reasonable, critical value would be W = 0.5. In the rare situations

where it is important to know if a low W value is still significantly

different from another value or from the independence hypothesis,

the confidence interval presented in expression 10 is not appropriate.

In the event that such situation is found, a possible approach would

be to compute bootstrapped confidence intervals.

Analysis of microbial typing data sets
To further demonstrate the usefulness of the proposed confidence

interval, we applied it to three previously published data sets

[6,9,10]. The results are presented in tables 1–5. These tables are

similar to the ones presented in the original publications, but present

two pieces of extra information: Wi for each column and the 95%

confidence intervals for each estimated W. An analysis of these two

values allows us to conclude if the information given by one typing

method is independent or unrelated with the information given by

the other method. We can reject this hypothesis (with 95%

confidence) if the CI for that pair of methods does not include the

Wi for the corresponding column in the table. For the typing

methods and data sets explored here, independence is an exception

that happens mainly when we probe the relationship between the

classifications of a low diversity method with the classifications of

others with very high diversities. This general dependence among

typing methods supports the validity of the concept behind the use of

typing techniques to infer relationships between microbial strains.

The usual assumption confirmed here is that the differences found in

Figure 3. Coverage and amplitude of 95% confidence intervals for Wallace coefficient obtained from simulated classifications. Each
dot represents a simulation with a particular set of parameters. The colors indicate exponent a of the Zipfian distribution determining the distribution
of row cluster sizes of the simulated contingency tables as indicated in the figure legend. All simulated tables in this plot had n = 300 elements and
10610 dimensions.
doi:10.1371/journal.pone.0003696.g003

Wallace Confidence Interval
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a particular gene, genomic region or phenotype chosen for typing

reflect in part the overall relationship between the strain genotypes.

But it is important to clarify the difference between the absence of

complete independence and the actual ability to predict the

classification produced by a given method from the results obtained

with another. For example, in the macrolide-resistant Lancefield

group A streptococci (GAS) dataset [6] (Table 1), the W between T

typing and Pulsed-Field Gel Electrophoresis (PFGE) type (of profiles

resulting from digestion with either SmaI or Cfr9I endonucleases)

(WTRPFGE = 0.56 [0.48–0.64]) is significantly higher than the

expected value under independence (0.19), but trying to predict

PFGE type from T typing would lead to high error rates (from 36 to

52% of errors among strain pairs with the same T type), whereas the

reverse (WPFGERT) leads to much lower error rates (from 13 to 24%).

The dataset of 160 invasive GAS isolates [9] is analyzed in Table 2

and the subset of 37 strains that where characterized by Multilocus

Sequence Type (MLST) originated Table 3. The comparison of the

two tables leads to two main observations. First, the confidence

intervals are wider in table 3 as compared with table 2. This was

expected and is explained by the lower number of strains analyzed in

table 3. Second, most of the confidence intervals for corresponding

W values in the two tables do not overlap, although all the strains

used in table 3 were also in the set studied in table 2. This apparent

contradiction reflects the fact that the 37 strains analyzed by MLST

were not randomly selected. Only a few strains from each PFGE type

were analyzed by MLST. This non-random selection of the sample

artificially increased the diversity of PFGE types (and indirectly of

other related typing methods) in the subset collection, resulting in

negatively biased W values.

With the availability of W confidence intervals we can

statistically validate some of the hypothesis posed in the original

studies. In the macrolide-resistant GAS study [6] the authors state

that PFGE types derived using profiles resulting from the digestion

with SmaI/Cfr9I had higher predictive power over other methods

Table 3. Wallace coefficients and respective 95% confidence intervals for the methods used to characterize 37 invasive GAS in (4)
including MLST.

Toxin profile T typing emm typing PFGE type ST

Wi
* 0.21 0.10 0.04 0.05 0.04

Toxin profile 0.17 [0.08–0.26] 0.19 [0.10–0.28] 0.16 [0.08–0.24] 0.17 [0.08–0.27]

T typing 0.37 [0.24–0.50] 0.28 [0.18–0.38] 0.2 [0.07–0.33] 0.28 [0.18–0.38]

emm typing 0.90 [0.79–1] 0.60 [0.44–0.76] 0.57 [0.40–0.73] 0.7 [0.57–0.82]

PFGE type 0.67 [0.52–0.81] 0.39 [0.22–0.57] 0.52 [0.34–0.69] 0.48 [0.33–0.64]

ST 1 [1–1] 0.75 [0.60–0.90] 0.88 [0.74–1] 0.67 [0.49–0.84]

*Expected Wallace Coefficient if the classification of the method in the column is independent of the classifications of the methods in the rows.
doi:10.1371/journal.pone.0003696.t003

Table 1. Wallace coefficients and respective 95% confidence intervals for the methods used to characterize 325 macrolide-
resistant GAS in (1).

T typing emm typing SmaI/Cfr9I 80% SfiI 68% T+emm

Wi
* 0.28 0.22 0.19 0.19 0.19

T typing 0.70 [0.62–0.77] 0.56 [0.48–0.64] 0.53 [0.45–0.61] 0.70 [0.62–0.77]

emm typing 0.86 [0.81–0.91] 0.80 [0.74–0.87] 0.72 [0.65–0.80] 0.86 [0.81–0.91]

SmaI/Cfr9I 80% 0.82 [0.76–0.87] 0.95 [0.93–0.97] 0.81 [0.74–0.88] 0.82 [0.76–0.87]

SfiI 68% 0.76 [0.71–0.82] 0.85 [0.80–0.90] 0.80 [0.74–0.86] 0.73 [0.67–0.79]

T+emm 1 [1–1] 1 [1–1] 0.80 [0.73–0.87] 0.72 [0.64–0.81]

*Expected Wallace Coefficient if the classification of the method in the column is independent of the classifications of the methods in the rows.
doi:10.1371/journal.pone.0003696.t001

Table 2. Wallace coefficients and respective 95% confidence intervals for the methods used to characterize 160 invasive GAS in
(4).

Toxin profile T typing emm typing PFGE type

Wi
* 0.18 0.12 0.08 0.08

Toxin profile 0.37 [0.31–0.44] 0.40 [0.34–0.47] 0.39 [0.33–0.44]

T typing 0.56 [0.47–0.66] 0.56 [0.46–0.66] 0.53 [0.43–0.62]

emm typing 0.90 [0.84–0.97] 0.83 [0.76–0.90] 0.89 [0.86–0.92]

PFGE type 0.87 [0.80–0.94] 0.78 [0.72–0.85] 0.89 [0.82–0.96]

*Expected Wallace Coefficient if the classification of the method in the column is independent of the classifications of the methods in the rows.
doi:10.1371/journal.pone.0003696.t002
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when compared with the use of profiles resulting from the

digestion with SfiI. In fact, the W of SmaI/Cfr9I PFGE type to emm

type is significantly higher than from SfiI PFGE type (0.95 [0.93–

0.97] and 0.85 [0.80–0.90] respectively). Although the trend is the

same, the difference does not reach significance for the prediction of

T type (0.82 [0.76–0.87] vs. 0.76 [0.71–0.82]) or T+emm types (0.82

[0.76–0.87] vs. 0.73 [0.67–0.79]). In the same study, the observation

that PFGE type could predict emm type to a greater extent than the

reverse is supported by non-overlapping 95% confidence intervals of

W (0.95 [0.93–0.97] vs. 0.80 [0.74–0.87]). These results reinforce the

importance of characterizing GAS using PFGE and the SmaI/Cfr9I

endonucleases to define GAS clones.

Tables 4 and 5 refer to a comparison of typing methods applied

to 116 Methicillin-Resistant Staphylococcus aureus (MRSA) and 82

Methicillin-Susceptible Staphylococcus aureus (MSSA) [10]. In the

original publication, the authors discuss the differences in

agreement between typing methods in the two populations.

Among other comparisons, the confidence intervals confirmed

that spa type was found to be a better predictor of PFGE type for

MSSA (0.92 [0.88–0.95]) than for MRSA (0.40 [0.30–0.51]).

Using only the point estimates of W the authors have concluded

that both PFGE type and subtype were able to predict BURP

group much better for MRSA (type: 0.83 [0.74–0.92]; subtype:

0.97 [0.94–1]) than MSSA (type: 0.69 [0.54–0.84]; subtype: 0.83

[0.75–0.91]) but this conclusion only has statistical support for the

PFGE subtype level. For MRSA strains, they observed that the

PFGE subtype-spa type combination performed better in the

prediction of SCCmec type (0.91 [0.84–0.97]) than PFGE subtype

alone (0.88 [0.82–0.94]), but again this difference is not statistically

significant with 95% confidence. Similarly, the higher perfor-

mance of PFGE type-spa type combination (0.71 [0.56 0.85]), as

compared with each technique alone (PFGE type: 0.47 [0.37–

0.57]; spa type: 0.54 [0.42–0.66]), in the prediction of SCCmec type

was not statistically supported, indicating that there is no

significant predictive power of spa type and PFGE type, either

alone or in combination, in relation to SCCmec type. Regarding the

prediction of eBURST group, we confirmed a better performance

of PFGE type-spa type combination (0.94 [0.90–0.97]) relatively to

the PFGE type-SCCmec type combination (0.85 [081–0.90]). On the

other hand, we could not validate the higher predictive power of

PFGE type-SCCmec type over BURP group (0.94 [0.87–1]) as

compared to the prediction of eBURST group (0.85 [0.81–0.90]).

In spite of the data discussed above, that question some of the

relationships between the results of typing methods discussed in

the original publication, the availability of a CI for W confirmed

the indication of using PFGE and spa typing as a cost-effective

combination of techniques for a detailed characterization of S.

aureus isolates.

The proposed 95% CI for W estimates allows a more powerful

analysis of the correspondence between the classifications of typing

methods. With this information in hand we can objectively detect

if one method is recovering part of the information obtained from

another method by comparing the confidence interval limits with

the expected W value assuming independence between classifica-

tions (Wi). The confidence intervals around the point estimate also

allow the distinction of discrepancies in W values that are due to

differences in the pattern of diversity of a given microbial

population or that are only a consequence of sampling variability.

Therefore, the availability of confidence intervals reinforces the

important role of W in generating maps of type equivalences

between typing methods. Such a tool allows not only for

comparison of typing results obtained by different methods but

also facilitates the joint analyses of multiple typing methods. The

application of this approach to already published data, while

confirming some of the prior interpretations based solely on W

point estimates, did not lend statistical support to others that need

further scrutiny. These findings strongly support both the necessity

and the increased value of applying the proposed W confidence

intervals, not only in microbial typing studies, but also in any field

where comparison of clusterings can be used as a study tool.

Methods

Numerical simulations
We randomly generated classifications from two hypothetical

methods A and B for sets of n individuals. This consisted in the

construction of a two-way contingency table CT with r rows and c

columns, meaning that method A produces r row clusters and

method B produces c columns clusters. CT was generated according

with the parameters n (sample size), r (number of rows), c (number of

columns), a (parameter determining the distribution of cluster sizes)

and b (parameter determining the approximate value of W).

Briefly, we generate the r cluster sizes obtained with method A

according to a Zipfian distribution with exponent a. This means

that if we rank the clusters by decreasing size, the number of

elements in the cluster with rank z is proportional to z2a. Then, for

each row cluster we randomly select a matching column cluster

and allocate the row elements such that the probability of being

Table 5. Wallace coefficients and respective 95% confidence intervals for the methods used to characterize 82 MSSA in (3).

PFGE type PFGE subtype spa type BURP ST eBURST
PFGE type
+spa type

PFGE subtype
+spa type

Wi
* 0.05 0.01 0.02 0.07 0.04 0.09 0.02 0.002

PFGE type 0.14 [0.06–0.22] 0.39 [0.24–0.54] 0.69 [0.54–0.84] 0.58 [0.45–0.72] 0.85 [0.73–0.98] 0.39 [0.24–0.54] 0.05 [0–0.11]

PFGE subtype 1 [1–1] 0.33 [0.15–0.52] 0.83 [0.75–0.91] 0.79 [0.68–0.90] 1 [1–1] 0.33 [0.15–0.52] 0.33 [0.15–0.52]

spa type 0.92 [0.88–0.95] 0.11 [0.01–0.21] 1 [1–1] 0.60 [0.42–0.78] 0.94 [0.91–0.98] 0.92 [0.88–0.95] 0.11 [0.01–0.21]

BURP 0.58 [0.44–0.72] 0.10 [0.03–0.17] 0.35 [0.21–0.50] 0.48 [0.39–0.59] 0.74 [0.64–0.85] 0.32 [0.18–0.47] 0.04 [0–0.09]

ST 0.79 [0.67–0.90] 0.15 [0.06–0.24] 0.34 [0.24–0.43] 0.78 [0.67–0.89] 1 [1–1] 0.32 [0.23–0.42] 0.06 [0–0.13]

e-BURST 0.48 [0.35–0.61] 0.08 [0.03–0.13] 0.22 [0.10–0.34] 0.50 [0.36–0.63] 0.42 [0.31–0.52] 0.22 [0.10–0.34] 0.03 [0–0.07]

PFGE type +spa type 1 [1–1] 0.12 [0.02–0.22] 1 [1–1] 1 [1–1] 0.62 [0.43–0.81] 1 [1–1] 0.12 [0.02–0.22]

PFGE subtype +spa
type

1 [1–1] 1 [1–1] 1 [1–1] 1 [1–1] 0.88 [0.75–1] 1 [1–1] 1 [1–1]

*Expected Wallace Coefficient if the classification of the method in the column is independent of the classifications of the methods in the rows.
doi:10.1371/journal.pone.0003696.t005
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assigned to the matching column cluster is b, and the probability of

being assigned to any other cluster is (1-b)/(c-1).

W coefficient from the row to column classifications and

corresponding 95% confidence interval was computed from CT

according to the expressions in the results section. Then, assuming

that the counts in each row of the table follow a multinomial

distribution, and using the row proportion of elements CT as the

multinomial distribution population parameters, we randomly

generated 1000 new tables rCTi. For each rCTi we estimated W

from row to column classifications. We then calculated the

confidence interval coverage as the fraction of W values of rCTi

that were between the limits of the confidence interval computed

from CT.

To evaluate the confidence interval performance under a range

of different conditions, all the five parameters used to generate CT

were systematically changed to produce multiple combinations of

sample size, number of clusters, cluster size distribution and W

range.
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