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The confidence limit is a standard measure of the accuracy of the result in any statis-
tical analysis. Most of the confidence limits are derived as follows. The data are first
divided into subsections and then, under the ergodic assumption, the temporal mean
is substituted for the ensemble mean. Next, the confidence limit is defined as a range
of standard deviations from this mean. However, such a confidence limit is valid only
for linear and stationary processes. Furthermore, in order for the ergodic assumption
to be valid, the subsections have to be statistically independent. For non-stationary
and nonlinear processes, such an analysis is no longer valid. The confidence limit
of the method here termed EMD/HSA (for empirical mode decomposition/Hilbert
spectral analysis) is introduced by using various adjustable stopping criteria in the
sifting processes of the EMD step to generate a sample set of intrinsic mode func-
tions (IMFs). The EMD technique acts as a pre-processor for HSA on the original
data, producing a set of components (IMFs) from the original data that equal the
original data when added back together. Each IMF represents a scale in the data,
from smallest to largest. The ensemble mean and standard deviation of the IMF
sample sets obtained with different stopping criteria are calculated, and these form a
simple random sample set. The confidence limit for EMD/HSA is then defined as a
range of standard deviations from the ensemble mean. Without evoking the ergodic
assumption, subdivision of the data stream into short sections is unnecessary; hence,
the results and the confidence limit retain the full-frequency resolution of the full
dataset. This new confidence limit can be applied to the analysis of nonlinear and
non-stationary processes by these new techniques. Data from length-of-day measure-
ments and a particularly violent recent earthquake are used to demonstrate how the
confidence limit is obtained and applied. By providing a confidence limit for this new
approach, a stable range of stopping criteria for the decomposition or sifting phase
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(EMD) has been established, making the results of the final processing with HSA,
and the entire EMD/HSA method, more definitive.

Keywords: empirical mode decomposition; EMD/HSA; Hilbert spectral analysis;
Hilbert–Huang transform (HHT); nonlinear data analysis; non-steady data analysis

1. Introduction

The two-step method of empirical mode decomposition (EMD) and Hilbert spectral
analysis (HSA) introduced by Huang et al . (1998a, 1999a, hereafter referred to as
H98 and H99) has proved to be a powerful procedure for analysing non-stationary
and nonlinear data. During the years since its introduction, many applications have
been found (Huang 2001; Huang et al . 1998b, 1999b, 2000, 2001; Gloersen & Huang
1999; Wu et al . 1999; Loh et al . 2001; Hu et al . 2002) that include analysing acoustic,
biological, ocean, earthquake, climate and mechanical vibration data. As versatile as
it has proved to be, the method still needs further clarifications and improvements.
An aspect in need of development and clarification is the definition and analysis of
a confidence limit for the resulting intrinsic mode functions (IMFs) and the Hilbert
spectrum.

The confidence limit is a standard measure for results from statistical analysis.
Ideally, it should be derived from an ensemble of observations and computed using
the ensemble mean and standard deviation from this mean. Assuming the error is
normally distributed, the confidence limit is usually defined as a range of values
near this mean: one standard deviation is equivalent to 68%, and two standard
deviations are equivalent to a 95% confidence limit. For practical reasons, however,
only a few of the many statistical analysis studies follow this rule. Most of the studies
used a confidence limit computed from one set of observations only, instead of an
ensemble; the mean and the standard deviation are actually computed by invoking
the ergodicity, assuming that the data are linear and stationary, and the data can
be subdivided into statistically independent subsections. The temporal mean from
these subsections is then used to approximate the ensemble mean.

The ergodic rule seems straightforward, but there are certain difficulties involved
that are consistently overlooked. The first difficulty is that there may not be enough
data values to allow subdivision of the dataset into enough subsets so that each will
have enough data to represent the process and allow a realistic mean to be computed
within each subset. And the more troublesome hurdle is that the data may not be
stationary or from a linear process. Once the stationary assumption is abandoned,
the ergodicity can no longer be assumed to compute the mean and standard devia-
tion from different subsections of the same given dataset; a true ensemble mean is
required. Unfortunately, in the real world, only one realization is available, which
gives only one dataset: no one can demand and achieve a repeat of a natural process
even once, much less so enough for an ensemble average.

The most serious objection is that natural processes are not only non-stationary
but also nonlinear, which involves sensitivity to the initial conditions and reactions to
feedback. Thus, most of the underlying physical processes make the ergodic assump-
tion inapplicable, if not irrelevant. Therefore, a statistical measure of the result can-
not simply be established by resorting to spatial and temporal averaging; yet finding
an alternative is a grand challenge.
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With the new two-step method of EMD/HSA, there are many possible selections
of free parameters, such as the maximum number of sifting times and the stopping
criteria for extracting each intrinsic mode function (IMF). Each of the parameters
can be selected independently of the others, and there are few, if any, solid guidelines
to follow in the selection of these parameters. The obvious (yet critical) question is
which set of the many possible choices of sifting parameters gives a meaningful result.
This also leads to further questions: how can the goodness or the reliability of any
result be measured? Can these different free parameters be used in some way to
generate a random sample set of results, and even define a confidence limit on the
sample?

The intent of this paper is to suggest a method to establish just such a confidence
limit for this new approach as a statistical measure of the fidelity of the result with-
out invoking the ergodic assumption. The EMD (the first step of the EMD/HSA
method) can generate infinitely many IMF sets from a given set of data by chang-
ing the starting conditions for the first-step processing. This capability will be used
to generate a simple random sample set. To obtain the sample, the sifting param-
eters will be judiciously selected so that the members of the sample set still retain
physically meaningful characteristics. By this means, a simple random sample set
is obtained from a single data realization. A mean of the sample set is then found,
which will also still be a function of time. The non-stationary characteristics of the
data are thus fully preserved in the results.

As the method for establishing a confidence limit depends on variations of the
sifting parameters, the sifting procedures are first discussed in some detail, including
the stopping criteria, the maximum number of siftings, intermittence, sifting meth-
ods, the nomenclature needed for the confidence limit, and how the results from the
first step of the processing are carried into the second step of HSA. These procedures
will then be applied to the length-of-day (LOD) dataset with an emphasis on the
selection of the various sifting parameters that will create the simple random sample
set of sifted results, which will lead to the establishment of the proposed confidence
limit. The results are then used to find the mean of the simple random sample set
and the deviation of individual cases to establish an optimal range of sifting param-
eters, sampling strategy and optimal stopping of the first-step processing for IMFs.
To demonstrate the techniques for more general data without fixed cycles, data from
an exceptionally powerful earthquake are used.

By establishing a confidence limit for the EMD/HSA approach as well as outlining
procedures to optimize this two-step process, the method is made more robust and
useful for the many applications already underway in the study of nonlinear and
unsteady processes.

2. The sifting process (EMD) and the selection of sifting parameters

There are infinitely many ways to decompose a given dataset. The EMD is one
method that can generate infinitely many and different IMF sets through different
sifting parameters. As discussed in Huang et al . (1996), H98 and H99, the EMD
method is the procedure needed to generate the adaptive IMF basis. An IMF is
defined as any function satisfying the following conditions:

(i) in the whole dataset, the number of extrema and the number of zero crossings
must either equal or differ by at most one;
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(ii) at any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

Thus, an IMF represents a simple oscillatory mode as a counterpart to the simple
harmonic function of the Fourier series method, but it is much more general, for it
is a function with both amplitude and frequency modulations. To extract the IMF
from a given dataset, the sifting process is implemented as follows. Identify all the
local extrema, and then connect all of the local maxima by a cubic spline line as
the upper envelope. Repeat the procedure for the local minima to produce the lower
envelope. The upper and lower envelopes should cover all the data between them.
Their mean is designated m1, and the difference between the data and m1 is h1, i.e.

X(t) − m1 = h1. (2.1)

The detailed procedure for this is illustrated in more detail in H98. Ideally, h1

should be an IMF, for the construction of h1 described above should have forced the
result to satisfy all the definitions of an IMF by construction. Yet, after the first round
of sifting, a local hump near an inflection point (which is not an extremum in the
original rectangular coordinates) may become a local maximum and minimum when
the coordinate system is changed to the curvilinear one with m1 as the zero reference.
New extrema generated in this way are necessary to recover the intrinsic modes lost
in the initial examination. Therefore, the function h1 can only be designated as a
proto-mode function (PMF). The PMF has to be processed further to yield the
true IMF through repetitive processing. We term these repeated processing steps as
‘sifting’, due to the order in which the components emerge: the smallest scales first,
followed by larger scales that increase with each ‘sifting’. The challenge, therefore, is
to determine a rigorous stopping criterion to produce a physically meaningful IMF.

The sifting operations implemented in the first-step processing of the EMD/HSA
technique contain the following parameters: the stopping criteria for producing an
IMF component, and the maximum number of sifting steps to be allowed. Further-
more, a decision is needed on whether or not to invoke the intermittence test. Finally,
the choice of whether to use local extrema or curvature extrema as the basis to define
the envelopes must be made. These choices are explained in detail in the following.

(a) The stopping criterion for producing an IMF

The ‘stopping criterion’ actually determine the number of sifting steps to produce
an IMF; it is of critical importance in the successful implementation of the EMD
processing. As described above, the PMF needs to be further refined. Therefore, the
sifting process has to be repeated as many times as necessary, to eliminate all the
riding waves. To start the subsequent sifting process steps, h1 is treated as the data.
Then

h1 − m11 = h11, (2.2)

where m11 is the mean of the upper and lower envelopes of h1. This process can be
repeated up to k times; h1k is then given by

h1(k−1) − m1k = h1k. (2.3)

After each processing step, checking must be done on whether the number of zero
crossings equals the number of extrema.
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Figure 1. The daily LOD data, extracted from the comb2000 daily.eop
series constructed by Gross (2001).

The sifting process actually serves two purposes: to eliminate riding waves and
to make the wave profiles more symmetric with respect to zero. If eliminating rid-
ing waves and forcing the mean to be zero are the only requirements, sifting should
be done as many times as needed to satisfy them. Unfortunately, in the process of
achieving these goals, the sifting process also produces a side effect: to make the
neighbouring wave have more even amplitudes. While the former two effects are
essential for computing instantaneous frequency through the Hilbert transform, the
side effect actually decreases the range of variations in the IMF by smoothing the
amplitudes. As simple as the procedure described here really is, the implementa-
tion is far more subtle: the effects of sifting must be balanced with its side effects.
Therefore, two conflicting requirements must be addressed. To eliminate the riding
waves and to force a local zero, sifting as many times as possible is needed. On the
other hand, too many sifting steps will reduce the IMF to be a constant-amplitude
frequency-modulated function, which would obliterate the intrinsic amplitude vari-
ations and render the results physically less meaningful. To preserve the natural
amplitude variations of the oscillations, sifting must be limited to as few steps as are
mathematically permissible; the choice must be selected judiciously. What exactly
the stopping criterion should be is a difficult decision. Two possibilities have been
proposed. The first one, used in H98, is the Cauchy-type convergence criterion, where
the sifting is carried to the point when the difference between the successive sifted
results is smaller than a preset limit. The major flaw of that approach is that it is
unrelated to the definition of the IMF; it only requires the successive PMFs to be
approximately equal. Thus, something better was needed.

The second criterion was proposed by H99, where the sifting is stopped when the
number of zero crossings and extrema is the same number for S successive sifting
steps. The first task in this approach is to determine a number S. Thus, the stopping
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Figure 2. The Fourier spectrum of the LOD data (with its magnitude shifted by three decades
for easier viewing) and the subdivided data to produce the confidence limit.

criterion provides a soft boundary for the sifting procedure; slightly different results
from a given set of data can be obtained by adopting different S values. It is this
variation of S that will be used to generate a simple random sample set of IMFs
with the following procedure: first select different S values and get different resulting
IMF sets. For example, if S1 is selected as the stopping criterion (that is, the sifting
stops when S1 successive sifting steps produce the same number of extrema and zero
crossings; for example, let the sifting stop at the kth sifting), then

c1 = h1k (2.4)

is designated as the first IMF component from the data. Overall, c1 should contain
the finest-scale or the shortest-period component of the signal corresponding to this
stopping condition.

In the next trial, another number for the stopping criterion is selected as S2,
resulting in sifting to the mth step to satisfy the definitions of an IMF, and, of course,
h1m may not necessarily equal h1k. Many S values are thus selected and produce as
many sets of IMFs. They all represent the truth approximately, while some might
be closer to the truth than others; there is no objective way to determine which one
of the IMF sets is the best. The orthogonal index (OI) can be used as a criterion to
reject those IMF sets that are grossly non-orthogonal. Within the acceptable range
of the OI, each set must be treated equally. In this way, a simple random sample
set can be generated from the equally valid IMF sets. From such a sample set, the
mean and standard deviation can be computed as a statistical measure of the sifting
results.

In general, the higher the S number selected, the higher the total number of sifting
steps required. As over-sifting can have a detrimental effect on the results, do not
select too high a number for the stopping criterion. Typically, a value of 3 � S � 5
has proved successful as the default stopping criterion.
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Figure 3. The 3D view of the OI variations as a function of the
maximum sifting times and the stoppage number.
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Figure 4. Multiple cuts of the 3D view given in figure 3 of OIs along fixed
maximum sifting times, with each curve shifted 0.01 downward for easier viewing.

Once c1 is obtained, it can be separated from the rest of the data by using

X(t) − c1 = r1. (2.5)

Since the residue, r1, still contains longer-period components, it is treated as the
original complete input data and subjected to the same sifting process as described
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above. This procedure can be repeated for all the subsequent rj values, and the result
is

r1 − c2 = r2,

...

rn−1 − cn = rn. (2.6)

The sifting process should continue until the residue, rn, becomes a constant value,
a monotonic function or a function with only one extremum from which no more
IMFs can be extracted. Even for data with a zero mean, the final residue can still
be different from zero. If the data have a trend, the final residue will be that trend.
By summing equations (2.5) and (2.6), it follows that

X(t) =
n∑

j=1

cj + rn. (2.7)

The sifting processes are finished and a set of IMFs has been produced. Next, the
stopping criterion is changed to S3, which produces another set of IMFs. This can
be repeated as many times as needed, and thereby can produce a simple random
sample set from the IMFs.

(b) The maximum number of siftings

Selecting a maximum number of siftings, M , serves two purposes: to guarantee
that over-sifting does not occur, and to prevent the sifting procedures from locking
in a never-ending loop. The former concern can be eliminated by selecting a low
enough S; the latter concern has never been a problem. The selection of this number
will be shown not to be as critical as the stopping criterion. However, this number
should be set large enough to guarantee that the selected S is fully implemented.

(c) Intermittence

The intermittence criterion has been discussed in great detail in H99. Due to its
importance, it will be reviewed briefly here. Intermittence is a signature of turbulence
in the fluid motion (see, for example, Frisch 1995); therefore, it is natural to encounter
data with intermittent variations. As discussed in H99, the existence of intermittence
can produce mode mixing, a phenomenon caused by having different time-scales (or
spatial scales) mixed in a single IMF component, which will introduce additional, but
fictitious, variations in the resulting IMFs and, hence, in the instantaneous frequency
values. The intermittence criterion requires the selection of a number such as n1.
This number represents the number of data points that correspond with a chosen
data limit: only the waves shorter than this limit are to be included in a given
IMF. If the distance between the successive extrema is larger than n1, the mean is
used to replace that data point. This criterion requires that only when the distance
between the extrema is less than n1 will the upper and lower envelopes and the
mean be available to extract the IMFs. This criterion is difficult to set a priori,
unless there is a strong theoretical basis to establish a distinct scale length. Even
in such cases, a priori judgment could still eliminate interesting physical variations
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Figure 5. The IMF components from extrema-based sifting without intermittency testing.
(a) An individual case, CE(100, 2). (b) An individual case, CE(100, 10).
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Figure 6. The Hilbert spectra constructed from the CE series of siftings with 7 × 7 smoothing:
(a) the individual case for the Hilbert spectrum based on CE(100, 2); (b) the mean Hilbert
spectra of 11 different siftings based on the CE series.

in the data. As in the example shown in § 4, when a special scale exists but is not
separated from the rest of the data properly, there is the risk of a loss of focus on the
underlying process. In that example case, the process with the special scale would be
fragmented with many added amplitude variations distributed into several different
IMF components.

Proc. R. Soc. Lond. A (2003)



A confidence limit for empirical mode decomposition 2327

0

0.1

0.2

0.3

0.4

0.5

0.6

fr
eq

u
en

cy
 (

cy
cl

es
/y

ea
r)

1965 1970 1975 1980 1985 1990 1995 2000
0

5

10

15

20

25

30

35

40(c)

Figure 6. (Cont.) (c) The standard deviation of the Hilbert spectra from
11 different siftings based on the CE series.

To avoid the above difficulties, we start by processing all data without invoking the
intermittence criteria. If serious mode mixing is detected, we invoke the intermittence
test by setting a criterion to ignore waves (or other data scales) with a period longer
than a preset length. By doing this for the successive IMF components, all the
oscillatory signals of a similar length can be included in a single IMF. This procedure
is similar to filtering in temporal space; it rejects signals of drastically different length-
scales. It is an effective step to extract a signal of a given length-scale, as will be
illustrated later in the example of the LOD data.

(d) Curvature- or extrema-based sifting

As discussed in H99, the extrema points can be used as a basis to establish the
upper and lower envelopes for sifting. But the extrema basis will miss the gentle
humps characterized as hidden scales. By computing the curvature, it is possible to
get one step further in extracting the fine-scale signal from a given data. By the same
token, higher and higher derivatives can be taken, and thus we get finer and finer
scale signals. Where should the processing stop? H99 proposed to stop at the curva-
ture with the justification that if the data represent the displacement, the curvature
is equivalent to the acceleration. Within the framework of Newtonian mechanics,
derivatives higher than this will cease to have any physical meaning. Of course, not
all data represent displacement; therefore, higher derivatives may still be meaningful
in some cases. If that is true, the situations must be examined individually. But a
more practical limitation still needs to be heeded: all data contain noise, and dif-
ferentiation is a noise amplifier, if not a noise-generating mechanism. Therefore, the
result from high-order differentiation would be unavoidably contaminated by noise.
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It must be noted that, by choosing a curvature-based sifting, the meaning of the
data is totally different from that for the extrema-based sifting. For example, consider
the function

x(t) = cos(ωt + ε sin 2ωt) (2.8)

for small ε; this is an IMF already based on extrema. According to the classical
wave analogy, this signal should be just a frequency-modulated oscillation with the
time-varying frequency given by

Ω = ω(1 + 2ε cos 2ωt). (2.9)

If curvature-based sifting is selected, the form will be very different, as the second
derivative of the data will become

x′′(t) = −(ω + 2εω cos 2ωt)2 cos(ωt + 2ε sin 2ωt) + 4εω2 sin 2ωt sin(ωt + 2ε sin 2ωt).
(2.10)

In this form, the curvature-based sifting will produce more than one time-scale in
different IMF components. For this case, this result is not necessarily better. In fact,
it actually masks the clear representation of the frequency modulation given in the
expression of equation (2.9). Therefore, the selection of the envelope base should be
made with great care. Experience recommends using the extrema-based sifting as
a first trial. The curvature or higher-order-derivative-based siftings should only be
invoked for special cases when the result suggests too many hidden scales.

(e) Nomenclature of the decomposition and confidence limit

With all the above possibilities of parameter selections, there are almost infinitely
many possible combinations, giving an infinite number of possible decompositions
from a single set of data. To identify them, the choice of all the parameters involved
in the sifting process should be specifically identified. As a way to designate the
results, the following nomenclature is proposed: CE(M, S), for extrema-based sift-
ing (Components from Extrema, CE), with M as the maximum number of sifting
steps allowed, and S as the stopping criterion; CC(M, S), for the corresponding
curvature-based sifting; CEI(M, N ; n1, n2, . . . ), for the extrema-based sifting with
intermittency testing, while the wavelength for the first, second, and following (. . . )
components are set at n1, n2, . . . ; and CCI(M, N ; n1, n2, . . . ), for the corresponding
curvature-based sifting with intermittence. When the same intermittence criterion,
say n2, is used repeatedly for k times, this will be denoted as a repeated application
of n2 by nk

2 as a shorthand notation.
The various IMF sets from different sifting criteria are equally valid represen-

tations of the data, provided their OIs are within a preset limit, 0.1 say. Collec-
tively, they form an ensemble of samples. Therefore, a simple random sample set
can be obtained, along with the mean and standard deviations, all without invoking
the ergodic assumption. Consequently, the special conditions required for ergodicity
would be irrelevant here. But we do have to make sure that the sampling strategy is
a fair one.

There is only one difficulty in carrying out the averaging: the IMF sets may not all
consist of the same number of components. Under such conditions, it is possible to
implement the averaging to the Hilbert spectra, which can have the same number of
bins in frequency and temporal space pre-assigned. For simplicity, plus and minus one
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standard deviation for the 68% confidence level has been adopted (or plus and minus
two standard deviations for the 95% confidence level) in the subsequent illustrations.
Having thus established the confidence interval of the sifting process, the optimal
number for S will be delayed until after the examples.

(f ) Hilbert spectrum

Once the decomposition is complete, the data are represented in terms of the adap-
tive basis function as in equation (2.7). In this form, the data are still in temporal
space. To transform this temporal-space data to time–frequency space, a Hilbert
transform is performed on each IMF component, and the amplitude and instanta-
neous frequency for every IMF at every time-step is computed. This result can be
projected on the time–frequency–energy space, with energy defined as the amplitude
squared. The resulting time–frequency–energy representation of the data is defined
as the Hilbert spectrum. In performing the Hilbert transform, the last residual is
normally omitted, as it is not an IMF. Under special conditions, however, it could
be included, if the physical conditions require it.

The Hilbert spectrum presents a different view of the data. It is very useful in
regrouping the decomposed data in the time–frequency space. For example, when a
dataset is decomposed into different IMF sets with different total components and
severe mode mixing, the Hilbert spectrum will still assign the energy to the correct
time–frequency location, albeit with some alias at the mode transition locations. A
time integration of the Hilbert spectrum is a reduced frequency–energy representa-
tion and is defined as the marginal spectrum. This is only the projection of the true
three-dimensional (3D) full representation; therefore, it should not be used routinely.
However, it does provide a convenient form for comparison with the conventional
Fourier spectrum representation.

3. An example: analysis of the length-of-day data

Having established the sifting procedures, the EMD/HSA two-step method will now
be applied to the LOD data as an example to illustrate the procedures. This two-step
method is also referred to as the Hilbert–Huang transform (HHT). The daily LOD
dataset was produced by Gross (2001), covering the period from 20 January 1962 to
6 January 2001, for a total of 14 232 days. The raw data are from independent Earth-
orientation measurements taken by the space-geodetic techniques that include lunar
and satellite laser ranging, very-long-baseline interferometry, the Global Positioning
System and optical astrometric measurements. These data are combined using the
Kalman filter. The solid Earth and oceanic tides were first removed and later rein-
troduced by using the models of Yoder et al . (1981) for the solid Earth tides, and
Kantha et al . (1998) for the oceanic tides without the semidiurnal and diurnal com-
ponents. A detailed discussion of the LOD data can be found in Gross (1996, 2000,
2001) and Gross et al . (1998). These data are available at ftp://euler.jpl.nasa.gov/
keof/combinations/2000. The data, shown in figure 1 and used here to illustrate the
EMD/HSA method, are taken from the comb200 daily.eop series from the above Web
site.

First, these data will be examined using Fourier spectral analysis. The result is
given in figure 2, where the Fourier spectra from the total dataset (with its magni-
tude lower by three decades), the mean spectrum and confidence limit from seven
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Figure 8. All 11 marginal Hilbert spectra for the CE series, and their mean
(shifted down two decades) with the two-standard-deviation confidence limit.

subsections are given. The smoothing processes cause the magnitudes of the spectral
peaks to decrease and the frequency band to widen. These changes are all governed
by the uncertainty principle. By taking the subsections, however, the information in
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Figure 9. The OI variations as a function of the stoppage number for CEI cases.

the low-frequency range can never be recovered, a consequence again governed by
the uncertainty principle.

Next, the same data will be processed by the EMD/HSA method. As recom-
mended, the data are first passed through the sifting processes without invoking the
intermittence test. Using extrema-based sifting with nine different combinations of
sifting criteria, results were obtained with the variation of the OIs summarized in
figure 3. By examining the OI as a function of S, it is evident that OI is not a func-
tion of M as long as M is larger than a critical number for each S. Or, more simply
put, if a large enough S is used, then the resulting IMF sets depend only on S. Here
the result of the OI is presented as a function of M and S. It can be seen that the OI
for S = 1 is uniformly poor at −0.253. A different view of these results is presented
as a series of cuts at specific M values. The results are presented in figure 4, with
the values of each cut offset by 0.01 for easier visualization. For the S numbers up to
10, there is no difference between M equal to 100 or 1000. If M is now decreased to
50, however, the process cannot be fully completed when S is larger than six. For M

less than 40, the S number cannot be larger than three. For an optimal S number,
M is set to 100 for the subsequent discussion. This selection is equivalent to setting
no upper limit for the maximum number of siftings, and then letting the stopping
criteria solely determine the final results. A total of 11 S numbers are selected: 2, 3,
4, 5, 6, 7, 8, 9, 10, 15 and 20.

To examine these results in detail, the IMFs from the two extrema cases, CE(100, 2)
and CE(100, 10), are given in figure 5a, b. As can be seen, they do not have the same
number of components, which makes averaging the IMF components impossible. In
each IMF set, the main underlying mechanisms in the data are clear. The oscil-
lations are dominated by the tides of both lunar and solar origin: c1 denotes the
semi-monthly tides; c2, the monthly tides; c3, the quasi-bimonthly tides; c4, the
semi-annual cycle; c5, the annual cycle; c6, the quasi-biennial cycle, and so on. But
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by examining the result more carefully, the mode mixing can be easily seen, i.e. there
are signals of the quasi-bimonthly cycle mixed into the annual cycle, and there are
signals of the annual mixed into the quasi-biennial cycle. These mode mixings will
not improve by more sifting, as shown in the comparison between CE(100, 2) and
CE(100, 10). Actually, more mode mixing occurs with more siftings, as shown in
CE(100, 10). As a result, the component representing the annual cycle is no longer
continuous. The annual-cycle signal is distributed in as many as three IMF compo-
nents (c5, c6 and c7). Furthermore, the semi-monthly tidal component in CE(100, 10)
is not continuous in the range from 1995 to 2001, which is the main cause of the sub-
sequent mode mixing. Mode mixing was discussed in H98, and it was accepted as
a consequence of sifting. The justification offered then was that once the IMFs are
transformed into the Hilbert spectrum, the energy would find its proper place in the
time–frequency plane. Yet, as also reported in H99, the mode mixing will introduce
some fictitious variations in amplitude, and hence cause aliases in the instantaneous
frequency, especially in the transitional region.

The most serious shortcoming for the uncontrolled sifting is that the number of
IMF components obtained might be different with different choices of stopping cri-
teria. Coupled with the mixed modes in any given IMF, this will cause the mean of
the IMFs to be meaningless. This difficulty can be overcome partly by forcing the
Hilbert spectra to have the same number of bins in time–frequency space and effect
a mean in the Hilbert spectrum, even with different numbers in the final IMF sets
from sifting criteria as in the CE series.

After averaging the Hilbert spectra, the individual case CE(100, 2), the mean and
the standard deviation of the Hilbert spectra are given in figure 6. From casual exam-
ination, there is very little difference between them. The individual spectrum and the
mean are similar, and even the standard deviation spectrum is very similar to the
mean. In order to show the difference between the mean and the standard deviation,
their marginal spectra are shown in figure 7. As can easily be seen, their magnitudes
are drastically different. The similarity in the time–frequency presentation only indi-
cates that the deviations occur where the energy is also concentrated.

Next, the marginal spectra of all 11 cases are plotted, together with the mean and
two standard deviations about the mean offset by two decades lower for clarity, in fig-
ure 8. From the marginal Hilbert spectra, all the pertinent features of the underlying
mechanisms can be identified: the monthly and annual cycles of the Earth–Moon–
Sun interactions. The standard deviation ranges are reasonably low; therefore, there
is a high degree of confidence in any of the 11 different trials.

To eliminate the mode mixing and examine the effects of using the intermittence
test, sifting with the intermittence criterion is now invoked. For this example, the
previous 11 different combinations of stopping criteria and the uniform intermit-
tence criteria are selected as (4,−13, 452,−10). The first value, ‘4’, means that
half-cycles of four days are used as a criterion to filter any short-period phenom-
ena produced by storms, for example. This four-day half-cycle is safely separated
from the half-monthly tide. The next, −13, means that, for the next three com-
ponents, no intermittence criterion is invoked. Thus, the sifting will simply follow
the extrema produced by the half-monthly, monthly and bi-monthly tidal compo-
nents, which are all very strong signals. The ‘452’ means that the intermittence
test criterion of 45 data values was applied twice to remove any oscillation with
a half-wave period less than 45 days, so that the semi-annual, annual and longer-
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Figure 11. The Hilbert spectra constructed from the CEI series of siftings with 7×7 smoothing.
(a) An individual case for the Hilbert spectrum based on CEI(100, 2; 4, −13, 453, −10); (b) the
mean Hilbert spectra of 11 different siftings based on the CEI series.

period cycles would not be contaminated. Finally, the intermittence criterion was
stopped for the rest of the IMF components (indicated by ‘−10’, which here has
no other meaning beyond a recognized decision-switch value in the processing).
The OIs for all the cases are shown in figure 9. Using OI alone, it cannot be
determined which case is better. These properties will need study through other
means.
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The IMFs in two extrema cases are next examined for the effects of sifting with the
intermittence test, CEI(100, 2; 4,−13, 453,−10) and CEI(100, 10; 4,−13, 453,−10) as
given in figure 10a, b, respectively. With the intermittence test, all siftings produce
twelve IMFs even with different sifting criteria. As can be seen, the main underlying
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mechanisms in the data are much clearer than in the corresponding CE series: c1 rep-
resents all the variations with periods of less than eight days. The logical explanation
is the perturbation of the Earth’s rotation introduced by the perturbation of short-
period storms, as studied by Clark et al . (1998). Then c2 denotes the semi-monthly
tides; c3, the monthly tides; c4, the quasi-bimonthly tides; c7, the semi-annual cycle;
c8, the annual cycle; c9, the quasi-biennial cycle, and so forth. There are two compo-
nents, c5 and c6, of unknown causes, at present representing intermittent oscillations
with periods less than 90 days. Their generating mechanisms need to be explored
in the future but, to ensure the continuity of the known semi-annual and annual
components, they have to be eliminated at present. The difference between the CEI
and CE cases is also clear: there are almost no mode mixings in the semi-monthly,
the monthly, the semi-annual, the annual and the quasi-biennial cycle components,
except in the CEI(100, 2; 4,−13, 453,−10) case. Otherwise, the results of even the
two extrema cases look almost identical. All IMF sets have the same numbers of
components up to S = 15. Even when the IMF component number increases by one
for S = 20, the average and the standard deviation of the IMFs for the components
up to c9 can still be computed. Furthermore, the mean for the Hilbert spectrum for
the CEI series can be obtained.

The Hilbert spectrum of an individual case, the mean and the standard deviation
are given in figure 11. Again, it is hard to distinguish either the individual case from
the mean, or the mean from the standard deviations. Surprisingly, the difference
between them and even among the CEI and CE series is not that obvious. Only
through careful scrutiny can the more subtle variations be detected: first, the energy
distribution for the quasi-bimonthly tide is much more diffuse. Second, and even more
significantly, the annual and the quasi-biennial cycles are continuous and smooth in
the CEI case in figure 11, but fragmented for the CE series in figure 6. This is
the consequence of the mode mixing. While the Hilbert spectral representation has
indeed alleviated the difficulties caused by the mode mixing through assigning energy
to its proper time–frequency location according to its instantaneous frequency value
as discussed by H98, there are unavoidable aliases caused by switching back and
forth in the time–frequency space induced by the mode mixing. Such a frequency
alias near the switching points can be seen most clearly in the period covering 1990–
2000. On the other hand, the nearly continuous annual cycles in the CEI series speak
powerfully for the sifting with the intermittency test: if the existence of a specific
frequency is known a priori or suggested by extensive mode mixing, the intermittence
test should be invoked.

When considering the results in time-frequency presentations as in figure 11, it can
be noted that the standard deviation values are in general very small, except for the
first three IMF components in the period covering 1990–2000. This almost suggests
that the data quality is changing for that period, as will be discussed presently. The
higher standard deviation suggests that more-detailed data might have been used in
the construction of the LOD dataset. The marginal spectra for both the mean and the
standard deviation are given in figure 12. Compared with figure 7, the difference can
be seen between the mean and the standard deviation for the case with intermittence
more pronounced. The individual and the mean marginal spectrum are given in
figure 13. Again, the dynamical range of the marginal spectrum is improved for the
cases with intermittence over the cases without the intermittence test. Comparisons
can also be made between the marginal Hilbert and Fourier spectra. As discussed
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in H98 and H99, the difference is clear: while the Fourier spectrum gives sharply
defined peaks, they represent only the mean frequency. The Fourier spectrum gives no
indications of the temporal variations of the amplitudes at the particular frequency
band in the natural processes. All deviations from the few mean-frequency bands
are represented by the harmonics and the broad-base energy distribution. When the
confidence limit is computed, the data must be subdivided into short subsections. As
a result, longer-period phenomena cannot be resolved. The marginal spectra of the
Hilbert spectrum with confidence limits, however, use the full-length data; therefore,
they still retain all the resolution power over the range of all the frequencies.

As the CE-series have different numbers of IMFs, averaging of the IMFs component
by component is thus impossible. But for the CEI cases, the average of the IMFs can
be obtained. A more detailed comparison of the IMFs is given in figures 14 and 15.
In figure 14, the mean and the standard deviation of each IMF component are given.
Obviously, for the annual component, c8, the standard deviation has two visible
local maximum ranges over 1965–1970 and 1990–1995, other than the end zone.
In figure 15, the individual and mean envelopes of the annual-cycle component are
plotted for all 11 CEI cases. The mean clearly shows a fluctuation. Interestingly, each
of these envelope peaks corresponds to a recognized El Niño event. This should not be
a total surprise, for the effect of tidal and El Niño events on the rotation speed of the
Earth has been reported previously by Chao (1989) and Clark et al . (1998). What is
new about this approach is that the variations come out here as a result of the sifting
process. Furthermore, the more intriguing feature of the sifting process used is that
the larger-than-average standard deviations occur over the ranges 1965–1970 and
1990–1995 in figure 15. Both of these periods coincide with anomalies of the El Niño
sequence: the equatorial waters show continuous weak warming events according to
the El Niño summary by the National Oceanic and Atmospheric Administration of
the US Government. Therefore, the sifting process identifies not only the El Niño
events, but also the anomalies: a surprising result testifying to the power of this new
approach.

It is interesting to note that the magnitudes of the LOD variation are not in direct
proportion to the strength of the El Niño events. This might be caused by the fact
that the influence of the El Niño events on the rotational speed is primarily from
the angular momentum changes induced by the variations of the atmospheric system
(Chao 1989), while the strength of the El Niño events is traditionally measured by
the sea-surface temperature anomalies (Philander 1990). Therefore, this result only
tentatively implies that the oceanic signature of El Niño is only weakly and indirectly
coupled with the atmospheric dynamics. This could be used as an indication that the
oceanic El Niño events are primarily oceanic events, and the atmospheric dynamics
features are consequences of the oceanic changes coupled nonlinearly and dispropor-
tionately. The coupling, nevertheless, is strong enough to trigger such atmospheric
disturbances as to change the rotational speed of the Earth. As the causal relation-
ship between oceanic and atmospheric dynamics in the El Niño event is a critical
but unsettled issue, it needs to be explored further in light of the present results.

The LOD data have been used to illustrate the applications of the EMD/HSA
(or HHT) method. Newly added to the analysis was a statistical measure of the
confidence limit. This study shows that, when the EMD is applied with various sifting
criteria, the same dataset can be used to produce a statistical mean and confidence
limits without invoking the ergodic assumption. All that is remaining is to prove that
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Figure 13. All 11 marginal Hilbert spectra for the CEI series, and their mean
(shifted down two decades) with the two-standard-deviations confidence limit.

the sampling strategy used is a fair one. In the next section, the sampling strategy
will be examined and a range of stopping criteria that will give the optimal sifting
criterion will be derived from it.

4. The sampling strategy and the optimal stopping criteria

In the above discussions, the ensemble mean used to derive the confidence limit was
based solely on the selection of different stopping criteria. From the OI indices check,
it can be seen that each selection of the stopping criterion indeed produces a distinct
IMF set. In order to have high confidence in the result, the ensemble of samplings
must be shown to cover all valid variations. As there are infinitely many selections of
stopping criteria, the range of choices must be limited. A limitation can be established
by considering the effects of the sifting. Based on the discussions here, there are two
beneficial effects: to eliminate the riding waves, and to force symmetry. But there
is also the side effect of smoothing the amplitudes of the neighbouring oscillations.
Indeed, through examination of the individual envelopes of the annual-cycle IMFs,
the envelope for the CEI(100, 20) case was found to be much smoother than that
for the CEI(100, 2) case. The smoothness effects appear in two ways. Firstly, the
amplitude variation is smaller, and, secondly, the absolute values of the peaks are
also more even. Both of these trends tend to obliterate the natural perturbations
caused by El Niño. Therefore, even if the OIs of all the cases are equally acceptable,
a range of valid IMFs has been established when the stopping criterion approaches 20.

An examination of the variations of the deviation of the individual cases from
the mean will be considered next, to see if there is a range of stopping criteria that
produces relatively stable results in either the IMFs or the Hilbert spectrum. This

Proc. R. Soc. Lond. A (2003)



A confidence limit for empirical mode decomposition 2339

c1 0

1965 1970 1975 1980 1985 1990 1995 2000

time (year)

c2

c3

c4

c5

c6

c7

c8

c9

−0.1

0
0.4

−0.4

0
0.5

−0.5

0
0.4

−0.4

0

0.1

0
0.4

−0.4

0
0.5

−0.5

(b)

(a)

c10 0
0.4

−0.4

c11 0
0.5

−0.5

c1

c2

c3

c4

c5

c6

c7

c8

c9

0.15

0.05

0

0

0.2
0.1

c10 0.2

c11 0.2
0.4

0.1

c12

0.4

0.2
0.1

0.2
0.1

0.3
0.1

0.1

0.2
0.1

0.15
0.05

0

0.05

2.0
1.5

c12

0
0.2

−0.2

0

0.1
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can be accomplished by first computing the mean from the samples of any quantity,
V (S), as a function of the stopping criterion, S:

〈V 〉 =
1

N

N∑

j=1

V (Sj). (4.1)

The squared deviation of each individual case can be computed from this mean
by using

sd(Sj) = [V (Sj) − 〈V 〉]2. (4.2)

Figure 16a shows the sd(S) values for the annual cycle. There is a clear range
of minimal sd(S) values covering the S choices from 4 to 10. Over this range, the
IMFs are relatively stable. Beyond this range, the sd(S) values are seen to increase.
This increase of sd(S) values for higher S values also coincides with smoothness of
the envelope obtained in the processing. For the lower S values, a failure to sift out
a continuous annual cycle is seen in the processing. Figure 16b presents the sd(S)
values for the semi-monthly tidal cycle. There is again a clear range of minimal sd(S),
covering the S values from 5 to 10. Over this range, the IMFs are relatively stable
with similar increasing trends at both ends. Such trends suggest that the range 5–
10 is a good choice for the stopping criteria, where the result will have a minimal
difference from the computed mean.

The deviation squared, sd(S), variation for the Hilbert spectra will be examined
next. Figure 16c plots the sd(S) values for the CEI cases. Here a relatively flat region
of sd(S) can be seen for S choices from 3 to 8. The corresponding result for the CE
cases is given in figure 16d. Although there is an extended range of relatively low
sd(S) values, the range 4–8 is still a good choice for stable minimal sd(S) values.

The deviation squared value, sd(S), for the annual and semi-monthly tidal cycle
IMFs, and the Hilbert spectra for the CEI and CE cases are plotted in figure 16.

Up to now, only the case with known fixed cycles has been examined. To test the
approach for general cases, an earthquake data record was examined. The data are
taken from Station TCU129, located near Chi-Chi, Taiwan. The earthquake event
occurred on 21 September 1999. This case has been studied in some detail by Huang
et al . (2001). Here only the east–west component is used to illustrate the effect of
the stopping criteria. This is a very severe earthquake, for the maximum acceleration
reaches almost 1g, as indicated in the data given in figure 17. As there is no fixed
time-scale, the intermittence test is irrelevant. Sifting without an intermittence test
results in the sd(S) values as shown in figure 18. A minimal sd(S) range 2–10 is
easily seen.

5. Discussion

The results presented imply that the selection of S used is uniform and covers the
full valid range of possible choices. Therefore, the mean obtained is valid, from the
point of view of a simple random sample. Because the mean is an ensemble one,
the averaging process is simply the sum of the random variables multiplied by its
individual probability density function. Each case is treated as equal; consequently,
the mean is a simple arithmetic average, an estimate. The condition for validity for
this case is very much different from that under the ergodic assumption. According
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to Halmos (1956), the ergodic assumption can only be true when the data are from a
linear and stationary process, and the data have to be decomposable (that is divided
into n-independent subsections). However, the full data stream can be used here and
the processing reveals all the possible scales the original data represent, because the
ergodicity was not invoked.

A statistical measure in the form of a confidence limit has been defined based on
the IMFs generated by different stopping criteria. This result is interesting in itself,
for the confidence limit has been derived without invoking the ergodic assumption.
Rather, various sifting criteria have been used to obtain an ensemble of IMF sets,
all from the same data. Furthermore, the confidence limit is still a function of time
and frequency. The confidence limit can be applied to individual IMF components,
if the number of IMF components in the ensemble is the same. The confidence limit
can be also applied to Hilbert spectra whenever the number of the IMF components
is not the same in different IMF sets. In the examples presented here, the stopping
criteria chosen for the sifting are in the general range 4–8. This is reasonably close
to 5, the value that has been used the most.

It should be pointed out that the confidence limit as discussed here is specific to the
methodology used. This is true for the Fourier spectral methods in use as well. Other
forms of a confidence limit can also be defined. If, instead of a stopping criterion, a
different spline was used in the sifting operation, then another ensemble of samples
may be obtained. How such a confidence limit would vary from the present one is
a totally different problem. The spline fitting has been extensively discussed in H98
and H99. Experience has indicated that the natural spline is the most reasonable
one to select; therefore, the present confidence limit as presented here is offered as
both reasonable and the one to adopt.

Finally, an added advantage of the EMD/HSA method should be considered. Due
to its superior time–frequency resolution, the method can reveal the changing char-
acteristics of the data in two aspects. The first is on the data quality. As has been
seen in the Hilbert spectral representation of the LOD data, the energy distribution
pattern shows very different characteristics over the time-span: the distribution is
very diffuse over the period covering 1990–2000, indicating that the data quality
might have undergone certain changes. Furthermore, if the envelope of the c1 IMF
component from the mean CEI series in figure 12 is examined, the envelope character-
istics are seen to change, starting around 1985, and the variations become even more
prominent after 1995. Do these changes in the data represent part of the underlying
physical changes? It is impossible to say, for the underlying mechanism is only the
interaction of the Earth, Moon and Sun with minor perturbations of the atmospheric
processes. Therefore, the change here should most logically be attributed to a data
quality change. It could be the result of including more-detailed measurements, new
data sources, or more model results, for example. No other data-analysis methods
can reveal these changes as readily as the EMD/HSA method did in this study. This
is clearly another advantage of the EMD/HSA approach. The second aspect to con-
sider concerns the natural processes. It is totally unexpected to find that the large
standard deviation on the annual cycle of the IMF from the CEI cases coincide with
the uncertainty of the El Niño events over the mid 1960s and early 1990s. The results
therefore show that the EMD/HSA method with various stopping criteria should be
explored further to see if more information can indeed be extracted from a given
dataset.
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Figure 15. The mean annual-cycle IMF from the CEI series and its envelope and the standard
deviation. Notice that each peak of the envelope corresponds to an El Niño event, and the high
values of the standard deviation during the periods of the mid 1960s and early 1990s.
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Figure 16. The squared deviation of the individual cases from the ensemble mean for the fol-
lowing quantities as functions of stoppage number: (a) IMF annual cycle, CEI series; (b) IMF
semi-monthly cycle, CEI series; (c) Hilbert spectra, CEI series; (d) Hilbert spectra, CE series.
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Figure 17. The east–west acceleration record of the earthquake event at station TCU129,
Chi-Chi, Taiwan, 21 September 1999.
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Figure 18. The squared deviation of the individual cases from the ensemble mean for
11 Hilbert spectra from the earthquake record given in figure 17.

6. Conclusions

Sifting is a general method of decomposing a given dataset into underlying scales of
various sizes. By varying the chosen parameters in the sifting process, infinitely many
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IMF sets can be generated, or at least as many as needed. In this paper, these features
of the EMD/HSA method have been used in a constructive way to examine data by
introducing a statistical measure of the confidence limit from a single set of non-
stationary and nonlinear data without invoking the ergodic assumption. With the
help of the newly introduced confidence limit, a stable range of stopping criteria for
the first step of the EMD/HSA method (the EMD-sifting operation) has also been
established. This statistical measure has helped to make the EMD/HSA method
more definitive. The scale parameters for the intermittence test are phenomenon
dependent. Typically, a decomposition of the data (the first step, EMD) should be
first made without the intermittence test. If mode mixing is clearly seen to occur,
the scales should be determined from that result, and the selection made based on
the time-scale for the intermittence test, so that each IMF can contain results of one
narrow time-scale range. In the case of LOD, the decision is an easy one, for there
are definite cycles. For other phenomena, it might not be so apparent. An indication
of the scales present can also be determined from the marginal spectrum obtained
through the EMD/HSA method applied without intermittence by identifying the
peaks in that spectrum as an indication of the existence of relatively narrow band
periodic variations. The scale parameter can be determined accordingly.

With these additions and improvements, we have increased the rigour of the
EMD/HSA method, and thus also made it more robust and useful.
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