
A Configurable Logic Architecture for Dynamic
Hardware/Software Partitioning

Roman Lysecky, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{rlysecky, vahid}@cs.ucr.edu

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
In previous work, we showed the benefits and feasibility of having
a processor dynamically partition its executing software such that
critical software kernels are transparently partitioned to execute
as a hardware coprocessor on configurable logic – an approach
we call warp processing. The configurable logic place and route
step is the most computationally intensive part of such
hardware/software partitioning, normally running for many
minutes or hours on powerful desktop processors. In contrast,
dynamic partitioning requires place and route to execute in just
seconds and on a lean embedded processor. We have therefore
designed a configurable logic architecture specifically for
dynamic hardware/software partitioning. Through experiments
with popular benchmarks, we show that by specifically focusing
on the goal of software kernel speedup when designing the FPGA
architecture, rather than on the more general goal of ASIC
prototyping, we can perform place and route for our architecture
50 times faster, using 10,000 times less data memory, and 1,000
times less code memory, than popular commercial tools mapping
to commercial configurable logic. Yet, we show that we obtain
speedups (2x on average, and as much as 4x) and energy savings
(33% on average, and up to 74%) when partitioning even just one
loop, which are comparable to commercial tools and fabrics.
Thus, our configurable logic architecture represents a good
candidate for platforms that will support dynamic
hardware/software partitioning, and enables ultra-fast desktop
tools for hardware/software partitioning, and even for fast
configurable logic design in general.

Keywords
Hardware/software partitioning, FPGA fabric, configurable logic,
synthesis, place and route, platforms, system-on-a-chip, dynamic
optimization, codesign, self-improving chips, just-in-time
compilation, warp processors, reconfigurable computing.

1. Introduction
Dynamic software optimization is becoming an increasingly
popular method of improving software performance and power. In
dynamic optimization, a user executes a standard binary program
on a processor system. The processor system itself then monitors
the executing binary, detects the frequently executed kernels, and
optimizes those kernels. Existing optimizations include dynamic
recompilation and caching of previous binary translation results
[3][12][18]. Dynamic optimizations can be carried out by extra
tasks sharing the processor and/or by extra hardware.

One advantage of dynamic optimization is that dynamic
optimization fits seamlessly into traditional software design
flows, requiring no special desktop tools and no special profiling

step. While designers familiar with hardware design flows may
not mind an extra tool or profiling step, the vast majority of
software design flows are solidly established and not open to such
changes. Further advantages include that dynamic optimization
can be based on real runtime data, large amounts of such data, and
changing runtime data, all of which represent additional benefits
compared to desktop-based optimization. A drawback is that the
optimization algorithms may have to be less powerful than
desktop algorithms. Nevertheless, dynamic optimizations
continue to increase in popularity.

Current dynamic software optimizations typically exhibit
performance and power improvements on the order of 10-20%.
However, with the advent of single-chip platforms having both
microprocessors and configurable logic on the same chip, like
Triscend’s E5 and A7 [29] platform, Altera’s Excalibur [1],
Atmel’s Field Programmable System Level Integrated Circuit
(FPSLIC) [2], and Xilinx’s Virtex-II Pro [33], a far more
powerful optimization has become possible. Re-implementing the
software kernels as a hardware coprocessor on the configurable
logic, known as hardware/software partitioning, can result in
overall software speedups of 200%-1000% [4][9][10][11][17]
[30], as well as reducing system energy [15][16][26][31].

Until recently, hardware/software partitioning has only been
implemented as a desktop CAD tool, typically incorporated into a
software compiler that partitions high-level code, like C or C++.
Recently, we showed [27] that desktop hardware/software
partitioning could be done starting from binaries rather than from
high-level code, with competitive resulting performance and
energy. Additionally, a recently introduced commercial tool
performs coprocessor synthesis from standard software binaries
[8]. Binary-level partitioning approaches can produce excellent
results by using decompilation techniques to retrieve most of the
high-level information typically lost at the binary level [7]. Such
binary-level partitioning opens the door to dynamic
hardware/software partitioning, in which an executing binary is
dynamically optimized by moving software kernels to
configurable logic – a process we call warp processing, since
performance and energy are automatically warped during
software execution.

Given the critical kernels of an application, dynamic
partitioning requires decompilation, compiler optimization,
behavioral synthesis, logic synthesis, and finally placement and
routing onto a configurable logic architecture. While
implementing all those tools on-chip for dynamic execution on a
lean processor may at first sound absurd given the long
computation times and huge resource usage of those tools’
desktop counterparts, we have previously shown the feasibility of
implementing many such tools on-chip [20][21][25]. The key is to
recognize that dynamic tools need only focus on speeding up

kernels, which typically consist of only a few dozen lines of code
and result in hardware consisting of only 10,000 to 30,000 gates.
Furthermore, dynamic tools map to only one target technology. In
contrast, desktop tools must handle much bigger designs and must
be much more general.

In [25], we presented the benefits and feasibility of dynamic
partitioning using prototype tools, executing on a lean embedded
processor and producing good results for a number of popular
embedded system benchmarks. However, our earlier work in
dynamic hardware/software partitioning used a very basic
configurable logic architecture as a proof-of-concept. That
architecture only supported combinational logic, could only
implement loops with sequential memory accesses, and incurred a
large routing overhead. Nevertheless, place and route was still the
most computationally expensive step (as is also true using desktop
tools) in dynamic partitioning – an order of magnitude more
expensive than all the other steps combined. Therefore, we set out
to design a new configurable logic architecture and underlying
configurable logic fabric, along with a modified place and route
algorithm, that together would support a much larger range of
benchmarks while requiring reasonable computation time and
memory resources.

In this paper, we present our warp configurable logic
architecture (WCLA) for dynamic hardware/software partitioning,
specifically targeted at speeding up critical loops of embedded
systems applications. We did so in part by evaluating digital
signal processors (DSP) and incorporating into our architecture
features from the DSP domain specifically designed at increasing
loop performance, such as data address generators and loop
control hardware. Additionally, we analyzed potential
architectural features of our configurable logic architecture with
regards to the impacts on place and route tools.

In this paper, we summarize related work, introduce our
WCLA, and provide results comparing our tools and architecture
to a commercial tool and configurable logic, showing that we
obtain similar speedups and energy savings, yet use orders of
magnitude less runtime, data memory, and code memory.

2. Previous Work
Many configurable logic architectures have been developed to
increase embedded software performance. These approaches use
Field-Programmable Gate Arrays (FPGAs), reconfigurable
computing, or even custom ASIC processors to achieve
improvements in software execution. Existing approaches for
improving embedded software performance can be classified as
general (FPGAs), fine-grained configurable systems, coarse-
grained configurable system, and custom ASIC processors.

Many techniques have been proposed for hardware/software
partitioning. One common method for implementing hardware in
such an approach is using traditional commercially available
FPGAs. However, traditional FPGAs are not well suited for use in
dynamic hardware/software partitioning. Traditional FPGAs are
typically designed to handle an extremely wide variety of designs
and are frequently used to prototype ASIC circuits. To support
these vastly different designs, FPGA vendors, such as Xilinx [33]
and Altera [1], design FPGAs with complex logic cells having
embedded sequential components, large routing resources, large
input/output resources, capabilities to support sequential logic,
etc. However, in a dynamic hardware/software partitioning
approach, traditional FPGAs provide more capabilities than are
needed. A configurable logic architecture for implementing

critical loops typically has a very simple interface to the main
processor and memory and thus does not require general
input/output capabilities of traditional FPGAs. Critical loops often
consist of simple combinational logic or small sequential circuits
and thus do not require large numbers of logic cells. Furthermore,
due to their complexity, traditional FPGAs require complex
synthesis, technology mapping, and place and route tools, which
are not targeted for very fast execution.

Many researchers have developed techniques using FPGAs or
fine-grained configurable logic in ways to improve software
performance through partitioning. DISC is a run-time
configurable system that dynamically swaps in hardware regions
into an FPGA when needed during software execution [32].
Chimaera is a similar approach that uses an FPGA as a
coprocessor tightly integrated into a processor’s datapath [13].
The Garp project couples an extended MIPS processor with a
reconfigurable coprocessor under direct control of the software
executing on the processor [14]. Although fine-grained
configurable systems have shown very good speedups, their use
in a dynamic hardware/software partitioning is limited by their
reliance upon complex FPGA architectures. Furthermore, with
respect to improving performance of critical loops, approaches
that tightly integrate the configurable logic within the datapath are
not able to eliminate loop overhead, consisting of branches,
comparisons, and memory address calculations.

Other approaches for increasing embedded software
performance rely upon coarse-grained configurable logic
architecture. MorphoSys is a reconfigurable computing platform
that incorporates a RISC processor with an array of
reconfigurable processing components [19]. The configurable
components are coarse-grained ALU-like components that
perform operations including two-operand logic functions,
arithmetic functions, and multiply-accumulate.

For accelerating the execution of critical software loops,
coarse-grained configurable logic architectures are limited in the
number of applications that can be mapped to them. To overcome
the limitations of coarse-grained configurable logic, some
approaches have proposed using heterogeneous configurable logic
consisting of coarse-grained units along with fine-grained
configurable logic. The Chameleon [24] project and the Pleiades
[31] project both propose using heterogeneous configurable logic
in conjunction with a general-purpose processor. These
approaches benefit from using custom designed coarse-grained
units to handle commonly used operations while supporting
custom operations, such as bit manipulation, using an FPGA.
However, we cannot include coarse-grained functional units to
support all operations frequently found within critical loops.
Hence, in developing a configurable logic architecture for warp
processing, specifically targeting speeding up critical loops, we
must carefully analyze the possible inclusion of any coarse-
grained units.

Tensilica has developed the Xtensa architecture that allows
designers to customize the Xtensa processor by adding custom
instructions using the Tensilica Instruction Extension (TIE)
language [28]. After describing the newly added instructions, a
designer is provided with a synthesizable description of the
extended processor along with the associated software
development tools. However, for optimizing the performance of
critical software loops within embedded applications, the Xtensa
processor suffers from the same drawbacks of tightly integrated
fine-grained configurable logic approaches.

3. Configurable Logic Architecture for
Dynamic Hardware/Software Partitioning
Our original dynamic-partitioning-oriented configurable logic
architecture (CLA) presented in [25] incorporated a configurable
logic fabric comprised of 3-input 2-output lookup tables
surrounded by routing resources. While the original CLA was
capable of supporting several embedded applications, the amount
of routing resources used for those applications was quite large.
Furthermore, some benchmarks with larger critical loops would
not route using that architecture. Table 1 presents the routability
and percent of routing resources used for 13 embedded
benchmarks from NetBench, MediaBench, EEMBC, and
Powerstone for our original CLA. While the original CLA was
developed as a proof-of-concept, the routability of such an
architecture is limited. The original CLA only supports five of the
13 embedded benchmarks, and on average routing for the five
routable benchmarks requires 57% of the total routing resources
available. Hence, we see a need to develop a configurable logic
architecture and underlying configurable logic fabric that can
support a larger range of applications while being simple enough
to allow for lean on-chip synthesis and place and route tools.

Figure 1 shows the overall organization of our proposed warp-
processor configurable logic architecture (WCLA) for dynamic
hardware/software partitioning, consisting of a data address
generator (DADG) with loop control hardware (LCH), three input
and output registers, a 32-bit multiplier-accumulator (MAC), and
our simple configurable logic fabric (SCLF). Our configurable
logic architecture handles all memory accesses to and from the
configurable logic using the data address generator, which is
capable of generating addresses for up to three distinct arrays.
Furthermore, the data retrieved and stored to and from each array
is located within one of the three registers Reg0, Reg1, and Reg2.
These three registers also act as the inputs to our configurable
logic fabric and can be mapped as inputs to the 32-bit (MAC) or
directly mapped to the configurable logic fabric. Finally, we
connect the outputs from our configurable logic fabric as inputs to
the three registers using a dedicated bus.

Since we are targeting critical loops that usually iterate many
times before completion, our WCLA must be able to access
memory and to control the execution of the loop. One approach to
handle memory accesses and loop control is to implement a finite
state machine (FSM). However, using a FSM would require a
configurable logic fabric supporting sequential logic circuits and
would further require more complex synthesis, technology
mapping, and place and route tools that must now consider
scheduling and timing constraints. Instead, we found that DSP
processors typically contain data address generators and loop
control hardware to achieve a zero loop overhead, meaning that
cycles are not wasted computing loop bounds and sequential
memory addresses. We include a DADG with LCH in our warp
configurable logic architecture to handle all memory accesses as
well as to control the execution of the loop. However, our DADG
is restricted to memory accesses that follow a regular access
pattern.

Loop control hardware found within DSPs typically is
capable of executing a loop for a specific number of iterations.
While we can determine the loop bounds for many critical loops,
loops can also contain control code within the loop that terminates
the loop’s execution. For example, in a C/C++ implementation to
perform lookup with an array, once we have found the desired
value, we will typically terminate the loop’s execution using a
break statement. Therefore, the loop control hardware within our
WCLA will control the loop’s iterations assuming a
predetermined number of iterations, but allows for terminating the
loop’s execution using an output from the configurable logic
fabric.

As mentioned earlier, we must carefully analyze the addition
of any coarse-grained hardware components within our warp
configurable logic architecture. We found that there are many
operations typically seen within critical software loops, including
addition, subtraction, multiplication, etc. Most of these operations
are easily implemented using fine-grained configurable logic.
However, multipliers that operate within a single cycle are large
and require many interconnects within the internal components.
Furthermore, while we often see multiplications in critical code
regions, they are often in the form of a multiply-accumulate
operation. Implementing a multiplier with a small configurable
logic fabric is generally slow and requires a large amount of logic
and routing resources. Therefore, we include a 32-bit multiplier-
accumulator within our configurable logic architecture to help
conserve resources while reducing technology mapping and place
and route execution times required for multipliers.

Table 1: Routability (Routable) and percent routing resources
used (% Routing) for the original CLA and our WCLA.

Original CLA SCLF
Benchmark

Routable % Routing Routable % Routing

brev yes 67% yes 12%
g3fax1 yes 76% yes 18%
g3fax2 yes 40% yes 14%

url yes 40% yes 14%
logmin yes 63% yes 14%
pktflow no yes 14%
canrdr no yes 14%
bitmnp no yes 12%
tblook no yes 47%
ttsprk no yes 47%

matrix01 no yes 61%
idctrn01 no yes 22%

g721 no yes 9%
Average: 57% 23%

Figure 1: Warp-processor configurable logic architecture
(WCLA) for dynamic hardware/software partitioning.

DADG
&

LCH

SCLF

To Memory/Processor

Reg1 Reg2Reg0

32-bit MAC

Figure 2(a) shows our SCLF consisting of an array of
combinational logic blocks (CLB) surrounded by switch matrices
(SM) for routing between CLBs. Each CLB is connected to a
single switch matrix to which all inputs and outputs of the CLB
are connected. We handle routing between CLBs using the switch
matrices, which can route signals in one of four directions to an
adjacent SM (represented as solid lines) or to a SM two rows
apart vertically or two columns apart horizontally (represented as
dashed lines).

Choosing the proper size for the CLBs is important, as the
CLB size directly impacts area resources and delays within our
configurable logic fabric. Several studies have analyzed the
impacts of CLB size on both area and timing [6][23]. These
studies have shown that look-up tables (LUT) with five or six
inputs result in circuits with the best performance, and LUTs with
less than three inputs result in significantly worse performance.
Another study analyzed the impacts on cluster sizes of CLBs on
speed and area of various circuits [22]. The cluster size of a CLB
is the number of single output LUTs with the CLB. Their findings
indicate that cluster sizes of 3 to 20 LUTs were feasible, and a
cluster size of eight produced the best tradeoff between area and
delay of the final circuits. However, while we would like to
incorporate large cluster sizes within our configurable logic
fabric, such clusters allow more flexibility during technology
mapping and placement phases during dynamic partitioning,
which in turn requires more complex technology mapping and
placement algorithms to handle the added complexity.

Figure 2(b) shows our combinational logic block architecture.
Each CLB consists of two 3-input 2-output LUTs, which provides
the equivalent of a CLB consisting of four 3-input single output
LUTs, and therefore should exhibit a reasonable trade-off
between area and delay. We chose 3-input 2-output LUTs to
simplify our technology mapping and placement algorithms by
restricting the choices our tools will analyze in determining the
final circuit configuration. Additionally, the CLBs are capable of
supporting carry chains through direct connections between
horizontally adjacent CLBs and within the CLBs through internal
connections between adjacent LUTs. Hardware components, such
as adders, comparators, etc., frequently require carry logic and so
providing support for carry chains simplifies the required routing
for many hardware circuits.

Finally, Figure 2(c) shows our switch matrix architecture.
Each switch matrix is connected using eight channels on each side
of the switch matrix, four short channels routing between adjacent
nodes and four long channels routing between every other switch
matrix. Routing through the switch matrix can only connect a

wire from one side with a given channel to another wire on the
same channel but a different side of the switch matrix.
Additionally, each of the four short channels is paired with a long
channel and can be connected together within the switch matrix
(indicated as a circle where two channels intersect) allowing
wires to be routed using short and long connections. Designing
the switch matrix in this manner simplifies the routing algorithm
by only allowing the router to route a wire using a single pair of
channels throughout the configurable logic fabric.

Commercially available FPGAs consist of similar routing
resources but typically are capable of routing between switch
matrices much further apart and often include routing channels
spanning an entire row or column. While such routing resources
are beneficial in terms of creating compact designs with less
routing overhead, the flexible routing resources require complex
place and route tools that are not amenable to on-chip execution.
Therefore, we chose to limit the complexity of routing resources
to allow for simplified place and route algorithms.

Finally, we developed a set of dynamic hardware/software
partitioning tools, the Riverside On-Chip Partitioning (ROCPAR)
tools, including synthesis, technology mapping, placement, and
routing, based on the algorithms presented in [25] for our WCLA.
While our tools still incorporate the same greedy algorithms of
the original tools, we updated the algorithms to take advantage of
the improved routing resources and larger CLBs within our SCLF.
By designing a configurable logic architecture specifically for
dynamic hardware/software partitioning, we have expanded the
range the applications that a dynamic hardware/software
partitioning approach can support. As shown in Table 1, our
WCLA uses much less routing resources, using an average of
22% of the routing resources available for the given examples.
Furthermore, for the five examples supported by the original
architecture, our WCLA uses on average only 14% of the
available resources, which corresponds to a 4X improvement over
the original CLA, for the same silicon area.

4. Results
We compare a dynamic hardware/software partitioning using our
WCLA with a typical hardware/software partitioning approach
targeting a Xilinx Virtex-E FPGA, comparing speedup and energy
reduction for 13 embedded systems benchmarks from NetBench,
MediaBench, EEMBC, and Powerstone. Our experimental
framework consists of an ARM7 processor executing at 75 MHz
coupled with either our WCLA or a Xilinx Virtex-E series FPGA.
Furthermore, our WCLA executes at a fixed frequency of 60 MHz
due to the current implementation of our MAC and DADG, while

Figure 2: (a) Warp processing simple configurable logic fabric, (b) Combinational logic block, and (c) Switch matrix architecture.

Combinational Logic Block Switch Matrix (SM)

LUT LUT

a b c d e f

o1 o2 o3 o4

Adj.
CLB

Adj.
CLB

0

0L

1

1L
2L

2

3L

3

0
1
2
3

0L
1L
2L
3L

0
1
2
3

0L1L2L 3L

0 1 2 3 0L1L 2L 3L

(a)

SM

CLB

SM

SM

SM

SM

SM

CLB

Configurable Logic Fabric
(b) (c)

the FPGA executes at the highest frequency possible for each
design when synthesized and mapped using Xilinx ISE 4.1 [33].
For each benchmark, we determined the single most critical loop
and partitioned the critical loop to hardware either using our
ROCPAR or synthesizing a custom VHDL implementation of the
critical loop. While partitioning a single critical loop produces
good results, the speedups would be even greater if we considered
multiple loops.

Figure 3 and Figure 4 highlight the speedup and energy
reduction of our WCLA and the Xilinx FPGA for all 13
benchmarks. In determining speedups of the two approaches, all
software execution times were determined using the SimpleScalar
simulator [5] ported for the ARM instruction set. Additionally, we
determined execution times for the hardware implementations
using a high-level simulator for our configurable logic
architecture and using VHDL simulations with the appropriate
clock frequency for each implementation determined during
synthesis. We calculated the energy required for each partitioned
application using the equations in Figure 5. We used the Xilinx
Virtex Power Estimator along with information provided by
Xilinx ISE to determine total power consumed by the FPGA when
active as well as the overall static power. The approach used by
the Xilinx Power Estimator consists of providing information
including the number of LUTs, number of flip-flops, average
switching within the FPGA, and clock frequency to determine the
power consumed by the FPGA. We implemented a similar
estimation approach to determine the power consumed by our
WCLA. We implemented a small version of our configurable
logic architecture in VHDL and synthesized the design using
Synopsys Design Compiler targeting the UMC 0.18 µm
technology library provided by Artisan Components. Using gate-
level simulations, we determined the power consumed by
individual components within our configurable logic architecture.

Although our WCLA is much simpler than the Xilinx FPGA,
on average our WCLA achieved a speedup of 2.1 with an average
energy reduction of 33.1%. These results are very close to the
average speedup of 2.2 and energy reduction of 36.2% achieved
using a Xilinx FPGA. We initially thought that while our
configurable logic architecture would not produce results better

than a general FPGA, our configurable logic architecture should
result in less overall energy consumption compared with an
FPGA. However, for several benchmarks, including tblook, ttsprk,
matrix01, and idctrn01, our WCLA had a higher energy
consumption than the Xilinx FPGA. We determined that for
matrix01 and idctrn01, the high energy consumption was mainly
caused by the use of our embedded multiplier, which has a higher
energy consumption than the dedicated multiplier support within
the Xilinx FPGA. Additionally, all four benchmarks had large
energy consumption resulting from a large usage of routing
resources, indicating the need to develop new place and route
algorithms that can run on-chip environment while producing
good results – a task we are working on.

We also evaluated our ROCPAR tools, comparing them with
Xilinx ISE 4.1. Table 2 displays the average data memory usage
and code size in kilobytes and the average execution times in
seconds of Xilinx ISE and ROCPAR executing on a 1.4 GHz
Pentium workstation. Table 2 also displays execution time in
seconds for ROCPAR executing on a 75 MHz ARM7 processor.
On average, executing our simplified tools in an embedded
environment requires less than 2 seconds, which is quite feasible.
Furthermore, the maximum data memory required was on average
less than 10 kilobytes. While Xilinx ISE was never designed to
execute on-chip, the large data memory requirements indicate that
the algorithms and data structures used by these tools are not
suitable for on-chip execution either. Thus, new synthesis,
technology mapping, and place and route tools are required for a
dynamic hardware/software partitioning approach.

5. Conclusions
Dynamic hardware/software partitioning represents a far more
powerful dynamic optimization than currently proposed dynamic
software optimizations, the former achieving 200%-400%
performance improvements rather than the typical 10%-20% of
the latter – with greater improvements easily possible by
partitioning more than one loop. The hardest step of dynamic
partitioning is placing and routing onto a configurable logic

Figure 3: Speedups for HW/SW partitioning using our WCLA
and a Xilinx Virtex-E FPGA.

Figure 4: Percent energy reduction for HW/SW partitioning
using our WCLA and a Xilinx Virtex-E FPGA.

Figure 5: Equation for determining energy consumption
after hardware/software partitioning.

totalstaticactiveHWHW

activeactiveARMidleidleARMARM

HWARMtotal

tPtPE

tPtPE
EEE

×+×=

×+×=
+=

)()(

Table 2: Average data memory usage (kilobytes), code size
(kilobytes), and execution time (seconds) of Xilinx ISE 4.1 and

ROCPAR executing on a PC and a 75 MHz ARM7.

 Data
Memory

Instruction
Memory

Execution
Time

Xilinx ISE (PC) 54384 58700 9.1
ROCPAR (PC) 6 57 0.2

ROCPAR (ARM7) 6 57 1.4

0
1
2
3
4
5

br
ev

g3
fa

x1
g3

fa
x2 ur

l
lo

gm
in

pk
tfl

ow
ca

nr
dr

bi
tm

np
tb

lo
ok

tts
pr

k
m

at
rix

01
id

ct
rn

01
g7

21
Av

er
ag

e

Benchmark

Sp
ee

du
p

WCLA
Xilinx Virtex-E

0%

20%

40%

60%

80%

br
ev

g3
fa

x1
g3

fa
x2 ur

l
lo

gm
in

pk
tfl

ow
ca

nr
dr

bi
tm

np
tb

lo
ok

tts
pr

k
m

at
rix

01
id

ct
rn

01
g7

21
Av

er
ag

e

Benchmark

En
er

gy
 R

ed
uc

t.
(%

)

WCLA
Xilinx Virtex-E

fabric. We have simultaneously designed a new configurable
logic architecture and simple configurable logic fabric along with
accompanying place and route algorithms specifically intended
for dynamic partitioning. Our architecture includes data address
generators for accessing up to three distinct arrays in memory,
loop control hardware to control loop iterations, a 32-bit
multiplier-accumulator, and a configurable logic fabric with
simple combinational logic blocks and routing resources. We
have shown that our architecture, fabric, and accompanying
algorithms result in place and route that is 50 times faster than
commercial tools, using 10,000 times less data memory and 1,000
times less code memory, and running in a reasonable time of just
a few seconds on a small embedded microprocessor. Yet, we also
showed that our architecture and lean tools still obtain comparable
speedups to commercial configurable logic and tools, with an
average software speedup of 2.1 and energy savings of 33% when
partitioning even just one loop – speedups and savings will be
even more when additional loops are considered. We are
continuing to improve our architecture, fabric, and tool set, to
handle a larger set of applications.

6. Acknowledgements
This research was supported in part by the National Science
Foundation (CCR-0203829, CCR-9876006) and by the
Semiconductor Research Corporation (grant CSR 2002-RJ-
1046G).

7. References
[1] Altera Corp. http://www.altera.com, 2003.
[2] Atmel Corp. http://www.atmel.com, 2003.
[3] Bala, V., E. Duesterwald, S. Banerjia. Dynamo: A

Transparent Dynamic Optimization System. Conf. on
Programming Language Design and Implementation, 2000.

[4] Balboni, A., W. Fornaciari and D. Sciuto. Partitioning and
Exploration in the TOSCA Co-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69, 1996.

[5] Burger, D., T. Austin. The SimpleScalar Tool Set, version
2.0. SIGARCH Computer Architecture News, Vol. 25, No. 3,
1997.

[6] Chow, P., S. Seo, J. Rose, K. Chung, G. Paez-Monzon, I.
Rahardja. The Design of an SRAM-Based Field-
Programmable Gate Array, Part I: Architecture. IEEE
Transactions on VLSI Systems, 1999.

[7] Cifuentes, C., M. Van Emmerik, D.Ung, D. Simon, T.
Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. Proceedings of the
Workshop on Binary Translation, 1999.

[8] Critical Blue, http://www.criticalblue.com, 2003.
[9] Eles, P., Z. Peng, K. Kuchchinski and A. Doboli. System

Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[10] Ernst, R., J. Henkel, T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design & Test of
Computers, pages 64-75, October/December 1993.

[11] Gajski, D., F. Vahid, S. Narayan and J. Gong. SpecSyn: An
Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE
Trans. on VLSI Systems, Vol. 6, No. 1, pp. 84-100, 1998.

[12] Gschwind, M., E. Altman, S. Sathaye, P. Ledak, D.
Appenzeller. Dynamic and Transparent Binary Translation.
IEEE Computer, Vol. 3, pp.70-77, 2000.

[13] Hauck, S., T. Fry, M. Hosler, J. Kao. The Chimaera
Reconfigurable Functional Unit. FPGAs for Custom
Computing Machines (FCCM), pp. 87-96, 1997.

[14] Hauser, J., J. Wawrzynek. Garp: A MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), 1997.

[15] Henkel, J. A low power hardware/software partitioning
approach for core-based embedded systems. Design
Automation Conference, pp. 122 – 127,1999.

[16] Henkel, J., Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth International Workshop on
Hardware/Software Codesign, March 1998, pp. 23-27.

[17] Henkel, J., R. Ernst. A Hardware/Software Partitioner using
a Dynamically Determined Granularity. Design Automation
Conference, 1997.

[18] Klaiber, A. The Technology Behind Crusoe Processors.
Transmeta Corporation White Paper, 2000.

[19] Lee, M., H. Singh, G. Lu, N. Bagherzadeh, F. Kurdahi, E.
Filho, V. Alves. Design and Implementation of the
MorphoSys Reconfigurable Computing Processor. Journal of
VLSI Signal Processing-Systems for Signal, Image and
Video Technology, 2000.

[20] Lysecky, R., F. Vahid. A Codesigned On-chip Logic
Minimizer. International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2003.

[21] Lysecky, R., F. Vahid. On-chip Logic Minimization. Design
Automation Conference (DAC), 2003.

[22] Marquardt, A., V. Betz, J. Rose. Speed and Area Trade-offs
on Cluster-based FPGA Architectures. IEEE Trans. on VLSI,
2000.

[23] Singh, S., J. Rose, P. Chow, D. Lewis. The Effect of Logic
Block Architecture on FPGA Performance. IEEE Journal of
Solid-State Circuits, Vol. 27, No. 3, 1992.

[24] Smit, G., P. Havinga, L. Smit, P. Heysters, M. Rosien.
Dynamic Reconfiguration in Mobile Systems. Proc. FPL,
2002.

[25] Stitt, G., R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. Design Automation
Conference (DAC), 2003.

[26] Stitt, G. and F. Vahid. The Energy Advantages of
Microprocessor Platforms with On-Chip Configurable Logic.
IEEE Design and Test of Computers, Nov/Dec 2002.

[27] Stitt, G., F. Vahid. Hardware/Software Partitioning of
Software Binaries. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), 2002.

[28] Tensilica, Inc. http://www.tensilica.com, 2003.
[29] Triscend Corp. http://www.triscend.com, 2003.
[30] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh,

W. Bohm. A Compiler Framework for Mapping Applications
to a Coarse-grained Reconfigurable Computer Architecture.
Conf. on Compiler, Architecture and Synthesis for
Embedded Systems (CASES 2001), 2001.

[31] Wan, M., Y. Ichikawa, D. Lidsky, L. Rabaey. An Energy
Conscious Methodology for Early Design Space Exploration
of Heterogeneous DSPs. Proc. ISSS Custom Integrated
Circuits Conference (CICC).

[32] Wirthlin, M., B. Hutchings. DISC: The Dynamic Instruction
Set Compiler. IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 1995.

[33] Xilinx, Inc. http://www.xilinx.com, 2003.

