
September 1992 LIDS-P-2133

A Conflict Sense Routing Protocol

and its Performance for Hypercubes'

by

Emmanouel A. Varvarigos and Dimitri P. Bertsekas2

Abstract

We propose a new switching format for multiprocessor networks, which we call Conflict Sense Routing

Protocol. This switching format is a hybrid of packet and circuit switching, and combines advantages of

both. We initially present the protocol in a way applicable to a general topology. We then present an imple-

mentation of this protocol for a hypercube computer and a particular routing algorithm. We also analyze

the steady-state throughput of the hypercube implementation for random node to node communications.

Research supported by NSF under Grant NSF-DDM-8903385 and by the ARO under Grant DAAL03-86-

K-0171.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. Introduction

1. INTRODUCTION

There are two general switching formats, circuit switching and packet switching, that are used in

network communications. Circuit switching combines many well-known advantages, but is seriously

inefficient. The inefficiency is related to the allocation of a link to a message for more time than

required. Packet switching on the other hand is efficient in terms of link utilization since a link is

used whenever there is a packet that wants to cross it, but has a number of drawbacks especially

when the buffer space per node is limited and packets must occasionally be dropped.

A solution that has been proposed is deflection routing (see [GrG86], [GrH90], [Var90], [HaC90],

[Haj91], [Bra91], and [Var92]). With deflection routing packets are misrouted instead of dropped.

This works well for several networks (for example, hypercubes, Manhattan street networks), but not

for all (for example, its throughput for the shuffle exchange network is low; see [Max89]). Networks

not having enough path redundancy will most probably be unsuitable for deflection routing. Cut-

through routing ([KeK79]) and, its variation, wormhole routing ([DaS87]) have also been proposed

for multiprocessor systems, but many theoretical problems are still unresolved. The possibility of

deadlock cannot be ruled out for both deflection and wormhole routing, unless special precautions

are taken. In practice, most data networks and multiprocessor systems currently use packet or circuit

switching. However, for many applications, it is unclear which one of them is preferable, since each

has relative advantages at exactly the same areas where the other has disadvantages.

In this paper we introduce a new switching format, which we call Conflict Sense Routing Protocol

(or CSR protocol), and is a hybrid of circuit and packet switching. According to it, a packet can

enter the network only after having reserved its route (links and buffer space). This resembles

circuit switching. A packet, however, reserves a resource only for the slot (or slots) during which

the resource will be used. In particular, a link on a packets's route can be used by other packets

while the given packet is using other links on its route. This resembles packet switching since the

links and the buffer space are used on a demand basis.

The CSR protocol is more efficient than circuit switching, because in circuit switching the entire

path of a packet is reserved as the packet is travelling on any one link of the path, and additional

overhead is needed to "tear down" a circuit after all packet transmissions of the circuit have been

completed. A major advantage of the CSR protocol over packet switching is that it avoids the

waste of resources due to the dropping of packets which have been transmitted for several hops. In

multiprocessor systems with thousands of processors the buffer space per node is going to be small,

making the dropping of packets a serious problem when packet switching is used. To deal with

2

1. Introduction

the possibility of dropped packets it is necessary to use some acknowledgement system. In parallel

computers it is typically impossible to piggyback acknowledgements on the opposite direction traffic

(in a network of thousands of processors a particular pair of processors rarely communicates), while

the use of separate acknowledgement packets increases the network load significantly. To make

things worse acknowledgements may themselves be dropped increasing the delay and complicating

the implementation. The CSR protocol that we will propose does not use acknowledgements as a

feedback mechanism.

Still another advantage of the CSR protocol is that it provides a "built-in" flow control mechanism.

Flow control is necessary in packet switching to slow down transmissions when congestion arises.

Flow control protocols in a multiprocessor computer cannot be the same with the ones of a general

data network, where the nodes are bigger and the buffering is cheap. Such protocols will not work

well for massively parallel computers with little buffer space per node. For example, a transmission

window of small size is inefficient when the roundtrip delay is large relative to the transmission time

of a packet. On the other hand a window of large size requires too much buffer space for the storage

of unacknowledged packets, which is a scarce commodity in parallel computers, and an estimate of

the roundtrip delay, which is not always easy.

In contrast to packet switching, in the CSR protocol, a packet learns before entering the network

if it will be dropped, in which case it does not enter the network (at the present slot). The protocol

guarantees that packets are not dropped even when the buffer space is minimal. Furthermore, the

processor gets to know very quickly if the packet will eventually arrive at its destination, which is

important for "send and wait" type of commands.

We initially present the CSR protocol in its generality. The description that we give is independent

of the network topology, the routing algorithm used, and the buffer space available. We then

specialize the CSR protocol to the case of a hypercube network of processors with buffer space only

for the packet being transmitted. We focus on a particular routing algorithm, where packets traverse

the hypercube dimensions in descending order. The node switches assumed by this routing algorithm

are simple and inexpensive blocking switches, instead of cross-bar switches. The throughput of the

unbuffered case is evaluated for various traffic loads through an approximate analysis, and is found

very satisfactory. For the routing algorithm and the buffer that we assume, the protocol guarantees

that every packet that enters the network arrives at its destination after exactly d slots, where d is

the diameter of the hypercube.

The organization of the paper is the following. In Section 2 we describe the CSR protocol in

its generality. In Section 3 we describe a particular CSR implementation for a hypercube network

of processors. In Section 4 we evaluate the throughput of this implementation. In Section 5 we

3

2. Description of the CSR Protocol

compare the CSR hypercube implementation to other switching formats and routing schemes, we

discuss implementation issues, and we conclude the paper.

2. DESCRIPTION OF THE CSR PROTOCOL

In this section we present the CSR protocol for a general topology, and describe the data structures

that are necessary for its implementation. A pair (s, I) will represent the Ith link of processor s, and

d will represent the diameter of the network. We assume the existence of a routing algorithm which,

for each source s and destination v, finds a path leading from s to v, and provides a way to resolve

conflicts among packets requiring the same link. The only property that the routing algorithm

has to satisfy is that the links traversed by a packet P, and the time instants these links are used

do not depend on packets that entered the network after P. We call such a routing algorithm

future oblivious. Future oblivious algorithms can be deterministic, probabilistic, distributed, or even

adaptive. For example, an algorithm that gives priority to a given packet over packets that entered

the network earlier is not future oblivious, while one that gives priority to a packet over packets that

entered later is future oblivious.

Each link (s, I) of the network is assumed to have a link buffer and an entry buffer, denoted by

Qs and q respectively. Entry buffers form the interface of a processor with its router and can store

only new packets. A packet enters (or is accepted to) the network when it moves from an entry

buffer to the corresponding link buffer. A link buffer can be used only by packets already accepted

to the network, and can hold up to KIt packets, in addition to the packet being transmitted. We

assume that all packets require one time unit for transmission over a link, and a single buffer space

for storage.

Following the terminology of [Dal90] we define a flit (from "flow control unit") as the smallest

number of bits which can contain routing information, or else the minimum number of bits which

can be accepted or rejected by a link buffer. A typical size of a flit is 64 bits. Flits are used in

parallel computers that support wormhole routing (for example the J-machine, see [Dal90]), and

are similar to the set-up messages used in circuit switching. We assume that a node has a way to

distinguish control flits from actual data.

A packet stored at an entry buffer sends a flit before entering the network in order to reserve

the resources that it will need. This flit reserves a resource (link or buffer) only for the slots during

which it will need it. A flit generated at an entry buffer follows the same path that the packet

would follow, that is the path provided by the underlying routing algorithm of the network. Flits

4

2. Description of the CSR Protocol

are treated one at a time by a link, and conflicts concerning the order in which they are considered

are resolved in a manner determined by the routing algorithm, for example at random. Flits that

fail to reserve a link are blocked on the spot.

Let 3/2 be an upper bound on the time required for a flit to travel a distance of d links, where d

is the diameter of the network. We can take

3 = 2kdi +) , (1)

where F is the length of a flit in bits, W is the bandwidth of a link measured in bits per unit of time,

7 is an upper bound on the propagation and processing delay of flits, and k is the buffer size for

packets per link. This is because if a flit is not blocked, it can be delayed by at most k - 1 other flits

on a particular link. The parameter /3 is of critical importance, and it will be seen in what follows

that the CSR protocol makes sense primarily when ,3 is small relative to the transmission time of a

packet.

The time axis is divided into alternating control intervals of length 3 units of time, where flits

are routed and reservations are made, and transmission intervals of length equal to one unit of time

where packet transmissions actually take place. A control interval is divided into a forward and a

backward phase, each of length //2. During the forward phase flits travel from their source to their

destination, reserving links and buffer space. After /3/2 time units all flits have either arrived at

their destination or have been blocked. In the backward phase flits travel in the opposite direction,

carrying feedback information to the source. A way to ensure that flits will not collide on links in

the backward phase, is to transmit a flit on a link at time (2kd - i - 1)(F/W + y) in the backward

phase, if it was transmitted on the same link (in the opposite direction) at time i(F/W + 7) in the

forward phase, for i = 0, 1,..., kd - 1. In this way the feedback is 100% reliable. For a general

network, and a general routing algorithm storage space for kd flits per link is required (to also store

blocked flits). For the hypercube CSR implementation that we will give in Section 3, we will see

that storage space for just one flit per link is adequate.

Flits that have been blocked carry negative acknowledgements (or NACKs for brevity), while

flits that have made all the necessary reservations carry positive acknowledgements (or ACKs).

A NACK prevents the packet from entering the network during the transmission interval of the

current slot. This saves bandwidth since such a packet would be dropped, if transmitted, at exactly

the same link where the flit was blocked. This is the reason we call the protocol conflict sense

routing protocol: it senses a conflict before it actually happens. The control interval serves as a

"microscopic", inexpensive rehearsal of what would happen if the packet was transmitted. In this

way, after a feedback delay of /3 time units, each entry buffer knows whether the packet (if any) that

it holds can be transmitted without being dropped, or not.

5

2. Description of the CSR Protocol

The way the reservations are made and the data structures required for this purpose are described

next. For every link queue QI there is a list £, called reservation list, whose elements represent

future transmission intervals. The first element represents the next transmission interval. At the

end of a transmission interval, the first element of the list is deleted. The element of C, which

corresponds to the tth transmission interval (transmission intervals are counted with respect to the

present control interval) is denoted by £~[t], and is composed of two fields, denoted by £[[t]_link

and l£[t]_buffer. In case there is no buffer space at the links except for the packets currently under

transmission, the two fields collapse into one. The field £l[t]_link is equal to one if the link (s, 1) has

already been reserved for the tt h transmission interval, and zero otherwise. The field Cl[t]_buffer

takes integer values between zero and the buffer size K,. It is equal to the number of buffer spaces

of Q[already reserved for the tt h transmission interval.

Each flit f carries with it a counter, denoted by cf. The counter of a flit generated at an entry

buffer is originally set to one. In the forward phase of a control interval the flit travels on the path

provided by the routing algorithm from the source to the destination. Let El be the reservation list

of link (s, 1), respectively, at the time when f is considered by link (s, I), where (s, l) is a link on the

path of f. We define T as the minimum integer that satisfies

Cf < T,

£1;[T]link = 0,

and

1£[t] buffer < K, for all t E {Cf,Cf + 1,.. .,T- 1}.

If such a T exists, the link (s, 1) is reserved for the Tth transmission interval by f. A buffer space

at QI is also reserved for the intervals cf up to T - 1. At the same time the reservation list of (s, I)

and the counter of f are updated according to

f := T+ 1,

C£[t]_link := 1,

and

£[[t]_buffer := 12[t].buffer + 1 Vt E {Cf, cf + 1,...,T- 1}.

If a T that satisfies the previous relations does not exist, the flit is blocked, and the reservation

fails. During the backward phase of the control interval such a flit returns to its source entry buffer

by using the reverse path, carrying a negative acknowledgement (NACK) and freeing the links and

buffer space it has reserved in the forward phase. A packet which receives a NACK does not enter the

6

3. A Hypercube CSR Protocol

network at the next transmission interval and will retry to make the necessary reservations at some

subsequent control interval. If on the other hand a flit manages to reach its destination reserving

all the necessary resources, then at the backward phase it returns to its source entry buffer as a

positive feedback. The corresponding packet will enter the network at the immediately following

transmission interval, and will arrive at its destination after several transmission intervals by using

the links and buffer space already reserved for it. If a packet that receives a NACK always retries at

the next control interval, then the protocol preserves the order of the packets sent from a particular

entry buffer to a destination node.

A last issue that has to be dealt with is the method of recording which packet reserved a link for

a particular slot. One way is to store that information at the intermediate nodes, by having a third

field at rl[t] which will record the sequence number of the packet that reserved (s, 1) for the t t h slot.

A different approach is to have the bookkeeping information attached to the packet. This is done by

having the flit record the sequence of values c(i) that it takes after each hop i (or, even better, the

differences c ')- C('-=)). In the case where there is buffer space only for the packet being transmitted

the book-keeping information is not needed. Note that it is not necessary to know which packet

reserved which particular buffer space, since buffer spaces can be organized as a pool.

We finally note that the CSR protocol shares with other reservation schemes a generic drawback:

for light load and large P it has larger delay than packet or circuit switching. For a packet that has

to travel k hops this delay is nearly equal to k units of time with packet switching, k + 3 with circuit

switching, and k(1 + 3) with the CSR protocol. For heavy load or small A3, the CSR protocol is

expected to have smaller delay than circuit or packet switching, because it uses links more efficiently

(which means higher throughput and smaller input queueing delay).

3. A HYPERCUBE CSR PROTOCOL

In this section we will describe a hypercube implementation of the CSR protocol. We introduce

a particular routing algorithm, which is future oblivious, and superimpose on it the CSR protocol.

This algorithm assumes simple inexpensive switches for the nodes, instead of cross-bar switches. We

start by describing the model assumed for a hypercube node, and the routing algorithm used.

7

3. A Hypercube CSR Protocol

3.1 The Hypercube Node Model and the Routing Algorithm

Each node of an N = 2d-node hypercube is represented by a unique d-bit binary string Sd-1 Sd-2 * so.

There are links between nodes whose representations differ in one bit. Given two nodes s and t,

s E t denotes the result of their bitwise exclusive OR operation and is called the routing tag between

the two nodes. A link connecting node s to node s e e,, i = 0, 1,.. ., d - 1, is called a link of the ith

dimension. Note that if the i th bit of the routing tag of a packet is equal to one, then the packet

must cross a link of dimension i in order to arrive at its destination.

Each link of a node has an entry buffer, which can hold one new packet. The entry buffer of

link i of node s is denoted by £,(s). The entry buffer is ready to accept a new packet only if the

previous packet has reserved the links it will need, and positive feedback has been received. A packet

that receives a NACK retries to make the reservations at the next control interval. An entry buffer

holding a packet for which no positive feedback has been received is said to be backlogged. New

packets arrive at the entry buffer of a link. New packets arriving at backlogged entry buffers are

discarded.

Each node s has d link queues, each of them associated with a link of the node. The link queue of

link i of node s is denoted by Qi(s). A link queue is composed of two buffers which can hold only one

packet each. The first buffer is called forward buffer, denoted by Ql(s), and is used only by packets

which must cross the ith dimension. The second buffer, denoted by Q°(s), is called internal buffer,

and is used only by packets which do not need to cross the ith dimension. The queues of the nodes

are linked in the following way; the internal buffer Q°(s) is connected to link queue Q(i-_])odd(s) of

the same node and the forward buffer Q! (s) is connected to queue Q(,i-1)mdd(s E ei) of the neighbor

node s E ei (see Fig. 1). This router organization results in node switches which are simpler, faster,

and less expensive than cross-bar switches (see the comments on the node model in Section 5).

The routing algorithm is the following. A new packet generated at a node selects a link, say link

1, with equal probability independently of its destination and competes for one of the two buffers

of the Ith link queue, QI(s) or Ql(s), depending on whether it must use the Ith dimension or not.

The packet traverses the dimensions in descending (modulo d) order, starting from the random

dimension i. In particular, consider a packet which arrives at queue Q,(s) of node s, either from

buffer Q(+l)modd(s) of s, or from buffer Q(,+l)odd(S D e,+l) of the neighbor node s E ej+l, or from

the entry buffer C£(s). The ith bit of its routing tag is checked, and depending on whether it is equal

to one or zero, the packet claims buffer Q1(s) in order to be transmitted to queue Q(-,1)modd(s De,)

of the neighbor node s E e,, or it claims buffer Q°(s) in order to be internally passed to the next link

queue Q(,-)moadd(s) of the same node. If two packets require the same link and there is not enough

8

3. A Hypercube CSR Protocol

4 \ ~~~node ~s anode s+e

N () s node se

/ < a(s) ink I

entry buffers

Figure 1: Two neighbor nodes of a ,->dimensional hyperelibe.

buffer space at the link, one of them is dropped. We will only analyze the case where each link

buffer has space for only one packet, the one being transmitted. Note that when the CSR protocol is

superimposed on the routing algorithm, packets are not dropped due to collisions: the flit of one of

the packets that collide returns to its source carrying a NACK, preventing the packet from entering

the network.

3.2 Superimposition of the CSR Protocol on the Hypercube Routing Algorithm

In this subsection we describe how the CSR protocol is superimposed on the hypercube routing

scheme of the previous subsection. The unit of time is taken as the time required for the transmission

of a packet over a link. The parameter s here is the time (in units of time) required by a flit to travel

a distance of 2d links (recall our assumption that each link has buffer space for only one packet, so

,i is given by Eq. (1) with k = 1). The time axis is divided into slots, each of which has duration

1 + p units of time. During the first 3 time units, the flits are transmitted to make reservations for

the new packets that want to enter the network. During the remainder of the slot the old packets

and the new packets that have made the necessary reservations are transmitted one hop.

An entry buffer holding a packet that wants to enter the network (a new packet or one that is

being retransmitted) sends a flit to the packet's destination, containing the packet's routing tag. A

- -- ----~~~~~~~~~~~~~~

3. A Hypercube CSR Protocol

flit originated at link I is transmitted during the ith step of the forward phase, i = 0,1,. , d - 1,

over the I - i mod d dimensional forward (or internal) link of a node, if the (I - i mod d)th bit of its

routing tag is a one (or a zero, respectively), provided that this link has not been reserved by another

packet. At the same time the flit makes a reservation of that link for the ith subsequent transmission

interval. When two flits try to reserve a link at the same time and for the same transmission interval,

one of them is selected at random to make the reservation, and the other is blocked. Flits that find

a link already reserved are also blocked.

When all flits have been blocked or have arrived at their destination, which happens after at

most 3/2 time units, a backward phase begins. In the backward phase each flit which was blocked

follows the reverse route to its origin carrying a negative acknowledgement (NACK), and freeing

the links that it had reserved. The NACK will prevent the corresponding packet from entering the

network during the transmission interval of the current slot. Flits which reserve all the links to their

destination, return in the backward phase to their origin following the reverse path than the one

followed in the forward phase, and carrying a positive feedback (ACK). A flit is transmitted over a

link at step 2d - i - 1 in the backward phase (i = 0, 1,..., d - 1) if it was transmitted on the same

link at the opposite direction during step i in the forward phase. In this way there are no conflicts

between flits in the backward phase. After a packet enters the network, it follows its path knowing

that it will not collide with any other packet; the only information it needs is its routing tag. If

an entry buffer receives a negative feedback, it tries to make the necessary reservations at one of

the next control intervals. If we require only ACKs to return to their origins (in this case after a

constant delay of / time units, a NACK is assumed and blocked flits can be discarded), then even

with storage for just one flit per link, ACKs never get lost.

The preceding hypercube implementation indicates some of the typical advantages of a CSR pro-

tocol. First, packets that are going to be dropped are not allowed to enter the network. This prevents

congestion from feeding on itself. Second, the feedback is obtained as soon as possible. This makes

the use of a window of size one possible and efficient at the same time, and the storage of packets

not yet acknowledged minimal. All packets accepted to the entry buffer (router) arrive at their

destination with constant delay. Whenever a packet is successfully transmitted, the corresponding

entry buffer enables the processor to insert a new packet, if it has one. Resources are reserved for

as long as they are needed and yet all the advantages of circuit switching are maintained. The

hypercube CSR protocol example indicates that by using capabilities available in multiprocessor

systems, namely the possibility to efficiently route flits through the knowledge of the topology, the

flow control mechanism becomes easy and efficient.

Note that the control flits can also be transmitted "off" channel. In a VLSI implementation of

10

4. Performance Analysis of the CSR Protocol for Hypercubes

1 slot

I i I I

1 unit of time

Figure 2: The time axis divided into slots.

parallel computers, there are usually many wires for each link, and the bandwidth of the link is pro-

portional to the number of these wires. In such systems several bits are transmitted in parallel over

a link during a clock cycle. In an implementation of the CSR protocol, one would probably choose

to dedicate one of these wires to the control flits in order to simplify the design. This corresponds

to a kind of FDMA multiplexing as opposed to a TDMA multiplexing of control information and

data.

4. PERFORMANCE ANALYSIS OF THE CSR PROTOCOL FOR HYPERCUBES

In this section we present an approximate analysis of the throughput of the hypercube CSR

protocol described in the previous section. We assume that packets having a single destination are

generated at each node, and the destinations of the packets are uniformly distributed over all the

hypercube nodes. Packets are being generated over an infinite time horizon, and require one unit

of time for transmission over a link. We are interested in the average throughput when the network

reaches steady state. We are also interested in the associated stability issues. We will limit our

attention to the case where the link buffers have space only for the packet being transmitted.

Assuming that both the control flits and the data packets use the same channel, a slot is defined

to be equal to 1 + 3 units of time. The probability that the entry buffer of a link tries to insert

a new packet during a slot is called attempt rate and is denoted by p0. The attempt traffic is the

result of the merging of newly generated packets and retransmissions. Let m be the steady-state

average value of the ratio of the number of backlogged entry buffers to the total number of entry

buffers. Let also q. be the probability of a new packet arrival at an entry buffer of a link, and q, be

the probability with which a blocked packet retries to enter the network (by making the necessary

I~~~ -- -- c I- -- --~~~~~~~1

4. Performance Analysis of the CSR Protocol for Hypercubes

reservations) during a control interval. Then the attempt rate is

po(m) = (1 - m)qa + mq,

If retransmissions are sufficiently randomized, it is plausible to approximate the process of attempted

reservations from an entry buffer, by an independent Bernoulli process with parameter po(m). If

retransmissions are not attempted from the same entry buffer, but from another available entry

buffer of the same node, then more randomization is added, and the Bernoulli approximation is

expected to be more accurate even for q, = 1. This approximating assumption is reminiscent of

the approximating assumption used in the analysis of various multiaccess systems (for example the

Aloha protocol, see [BeG87]), where the aggregate traffic of new arrivals and retransmissions is

modelled as a Poisson process.

The system that we analyze has some similarities with a multiaccess system (for example, an

Aloha system). Conflicts over links or buffer space correspond to collisions in a multiaccess system.

An important difference is that packets in the CSR protocol collide when they request the same

link for the same slot, while in Aloha whenever two nodes transmit simultaneously there is always a

conflict. Another difference is that in our system whenever a conflict occurs, one of the conflicting

packets is granted the link (or buffer), while in Aloha whenever a collision happens all transmissions

are destroyed. The feedback in our system requires / time units, while in multiaccess systems it

is usually assumed instantaneous. The CSR protocol also has similarities with the Carrier Sense

Multiaccess protocol, since they both "sense the channel" before transmitting, in order to avoid

collisions.

It is possible that a flit reserves a link 1 during some control interval and frees it later in the

same control interval due to its failure to reserve the remainder of its path. We will refer to such a

reservation as a ghost reservation, as opposed to a confirmed reservation where the flit after reserving

link 1, it also reserves the rest of its path. Let p(t - i + 1,t : I), i = 1, 2,.. ., d, be the probability

that a particular link I is reserved (by a confirmed or a ghost reservation) on the t - i + 1th control

interval for the t th transmission interval. Assuming that the system eventually reaches steady state,

the following limit exists and is independent of 1:

pi = lim p(t-i + 1, t':), i = 1, 2,..., d.

Thus p, is the steady-state probability that in a given control interval a link is reserved for the ith

subsequent transmission interval. Note that we have pi+l < pi, for all i E {0, 1, 2, ... , d- 1}. Note

that p(t - i + 1, t: 1) is independent of I for any t (and not only in steady state); we use the index 1

to clarify the meaning of some of the subsequent calculations, but we will also sometimes omit it.

12

4. Performance Analysis of the CSR Protocol for Hypercubes

Consider two flits fl and f2 corresponding to packets P1 and P2, which try to make the necessary

reservations during control intervals tl and t2, starting from entry buffers of dimensions dl and d2,

respectively. Packets 1Pi and P 2 may request link I for the same slot t [t > max(tl, t2)] only if I is on

their path, all links needed prior to slot t have been reserved, and t1 + di mod d = t2 + d2 mod d.

If tl < t 2 then Pl is not affected by the presence of P2, since its attempt to make the reservations

is made at a control interval prior to P2's arrival. In this case, f2 can reserve link I only if fl fails

to reserve all of its path. If tl = t 2 (and di = d2) then fi and f2 will claim the same link provided

that it is on their path and they have reserved all other links they need prior to 1. If the link is free,

then it is allocated to one of them arbitrarily.

il Q 1S(1k-l

Qk(S)

1k2, ae,,L 12

k+ s+e k+ I Qk I(s+e k)

Figurc 3: A link 1, and the two links leading to it.

We want to calculate pi for i > 1. Let 11 and 12 be the internal and forward links, respectively,

that lead to 1. Link l may be reserved either by a flit fl coming on 11, or by a flit f2 coming on

12. Link I can be reserved during the t - i + 1th control interval for transmission interval t by a flit

coming on 1l only if:

* a reservation was made for l for the t - 1 transmission interval during control interval t - i + 1;

this happens with probability p(t - i + 1,t - 1: ll),

* link l is on the flit's path (given that 11 is on the flit's path); this happens with probability 1/2,

* no confirmed reservation has been made for I during a previous control interval, and no reservation

(confirmed or ghost) has been made by a flit coming on 12 during the same control interval for

13

4. Performance Analysis of the CSR Protocol for Hypercubes

transmission interval t.

Thus,

p(t - i+ 1,t :) = 2p (t - i+ 1,- 1 (1 - Pr(A I B)), i = 2,3,...,d, (2)
2

where A is the event that a confirmed reservation has been made for link I for transmission interval t

during a previous control interval, or a reservation has been made during the current control interval

for transmission interval t by a flit coming on 12, and B is the event that fi reserved link 11 for the

transmission interval t - 1 during control interval t - i + 1.

The factor 2 in Eq. (2) accounts for the fact that l can be reserved either by a flit coming on 11,

or by a flit coming on 12. Given that event B occured, we know that no confirmed reservation has

been made for I for the transmission interval t by a flit coming from 11. Therefore, the probability

of the event A is equal to the (conditional on B) probability that some flit f2 reserved 12 for the

transmission interval t - 1 during control interval t -j + 1 with j = i + 1, ... , d, it chose link 1,

and its reservation was finally confirmed. Ignoring the conditional on B, this probability can be

approximated by

1 a- p(t j+l1t l121)P(t-j + l, t-j + d) (3)

The ratio

p(t - j + 1,t - j + d)/p(t - j + 1, t)

in Eq. (3) is the probability that the reservation of I by f2 was finally confirmed.

The probability that a flit f2 claims link 1 during the same control interval t - i + 1 with fl, and

for the same transmission interval t, and it is granted the link can also be approximated, ignoring

the conditional on B, by

lp(t- i+ 1,t- 1: 12). (4)

The factor 1/4 is the probability that f2 requests link I (given that it reserved 12), and it is selected

instead of fl. Combining Eqs. (3) and (4) we get

1 ~d p~-j+lt-j +d) 1

Pr(A I B) = - p(tt- j +t 12) + (t- i+ 1,t - 1 : 12)-

The preceding equation, together with Eq. (2) gives

p(t - i + 1,t : I) =p(t- i + 1,t - 1 : ll)

1 E p(t-j+ l,t - j + d) p(t - i + l, t - l : 12) i=2,3, d.
p(t - j + 1,t) 4

14

4. Performance Analysis of the CSR Protocol for Hypercubes

CSR Protocol (di 1)
0o

Ail 2.0

0 .· Throughput R per node

;_ ·.Load line (qa=0.0 5, =1)

1.5

0 0.00 O.5 0.5

o 0.0 0.2 0.4 0.6 0.8 1.0

P0 P=(-m)qa+mqr

Figure 4: Throlghplut and stable point of the hypercube implementation of the CSR protocol for
d = 11. The probability with which a new packet is available at the entry buffer during a slot is qo, and the
probability of a retrial is q,. The fraction of hacklogged entry qulees to the total number of entry quenes is

denoted by m. The throulghpult per link cannot be greater than min(2,2dq.) (=1.1 for q, = 0.0.3).

Taking the limit t - oo and using the symmetry with respect to the links we obtain from Eq. (5)

that

1 p- $pi Pd pi-i
Pit-Pi (1-2Z pj - 4) for i = 2,3, ,d, (6)

which yields

d-I d-1 2

pi-, = 2-Pd p j
l 2- Pd E p j - 4pi for i = 2, 3,..., d. (7)

j=i PJ+ j=,

To relate pi and po we first observe that at the beginning of a control interval, the steady-state

probability that a link is reserved for the ith subsequent transmission interval, i = 1,2,... , d- 1, is

equal to Pd (note that these are confirmed reservations, since all ghost reservationsof previous control

intervals have been cancelled, and that no reservations for the dth subsequent transmission interval

have been made yet). Thus the probability that a link is unreserved is 1 - (d - 1)pd, and, therefore,

A = po (1 - (d - 1)pd) (8)

15

4. Performance Analysis of the CSR Protocol for Hypercubes

For a particular value of Pd, we can use Eq. (7) to find pi in terms of p+l, ... , Pd for each i, and

then Eq. (8) to find the corresponding po. Repeating this for various values of pd we obtain a curve

that gives Pd as a function of the attempt rate po. It is possible to prove inductively that Pd is a

monotonically increasing (and 1-1) function of po.

Figure 4 illustrates the results obtained for d = 11. The horizontal axis corresponds to both

the fraction m of backlogged entry queues and the attempt rate po, which are related through the

linear equation po(m) = (1 - m)qa + mq,. The vertical axis corresponds to the throughput per node

(curve), which is

R = 2dpd,

and the arrival rate of new packets per node (straight line). The throughput and the arrival rate are

measured in packets per 1 +/3 units of time. For each value of the probability of a new arrival q,, the

maximum throughput is obtained for retransmission probability q, = 1 (modulo the approximating

assumptions). From Fig. 4 we see that there is a single stable point in a CSR system, which

corresponds to quite high throughput. The straight line corresponds to qa = 0.05, which represents

rather heavy load.

We have performed simulations in order to assess the accuracy of the analysis. The simulation

results obtained for d = 7, together with the corresponding analytical results, are shown in Table 1.

The relative difference between the simulation and the analytical results is less than 2%.

po Throughput/node (analytical) Throughput/node (simulations)

0.011666 0.140000 0.142795

0.027465 0.280000 0.283746

0.048996 0.420000 0.418328

0.078620 0.560000 0.558200

0.119931 0.700000 0.693059

0.178584 0.840000 0.831379

0.263852 0.980000 0.965929

0.391796 1.120000 1.104581

0.592309 1.260000 1.242851

0.927213 1.400000 1.388006

1.000000 1.422100 1.409178

Table 1: Simulation and analytical results for the hypercube implementation of the CSR protocol

for d= 7.

16

5. Comparison with other Switching Formats and Routing Schemes

5. COMPARISON WITH OTHER SWITCHING FORMATS AND ROUTING SCHEMES

The CSR protocol can be applied to various topologies and routing algorithms as a way to perform

scheduling and resource management in a synchronous multiprocessor computer. In this section we

will compare the hypercube CSR implementation of Section 3 to some other switching formats

and schemes. The results concerning these switching formats and schemes are not always directly

comparable. Therefore, the comparison is not intended to be a rigorous one, but we believe it will

give insight into the relative advantages and disadvantages of each scheme.

The routing schemes that will be compared are the following:

(1) The hypercube implementation of the CSR protocol.

(2) The simple and the priority deflection schemes described in [Var92]. In these schemes each node

has a queue which can hold up to d packets. When conflicts over a link arise, then packets are

misrouted instead of being dropped. During each slot the nodes transmit all the packets that they

hold, either by transmitting them on links that take them closer to their destination, or by simply

transmitting them on any available link. When assigning packets to links, the priority deflection

scheme gives priority to packets which are closer to their destination (see [Var92], Section 5.5).

A common characteristic between deflection schemes and CSR schemes is that they do not drop

packets.

(3) The unbuffered simple and priority schemes introduced in [Var92], Sections 5.3-5.4. The switches

used by these schemes are the same with those assumed for the hypercube implementation of the

CSR protocol (see Fig. 1). The results for these two schemes are directly comparable to those of

Section 4 because the feasible switching assignments are in both cases the same; one can use the

results to see the improvement obtained by using the CSR prrotocol instead of packet switching.

The priority scheme differs from the simple scheme in the way that contention over buffer space is

resolved: in the priority scheme, packets that have been in the network longer have priority.

We will refer to the saturation point of a routing scheme as the ratio of the maximum throughput of

the scheme for uniformly distributed traffic over the maximum possible throughput that the network

can sustain. In other words, the saturation point is the maximum fraction of the capacity of the

network that performs useful work, where the maximum is taken over all possible loads. A link is not

doing useful work when (1) it is idle, (2) the packet transmitted on it will be eventually dropped, (3)

the packet transmitted on it is being deflected, or it had previously been deflected on a link of the

same dimension. Figure 5 indicates the saturation point for the hypercube implementation of the

CSR protocol (Sections 3 and 4), the simple and the priority deflection schemes ([Var92], Section 5.5),

17

5. Comparison with other Switching Formats and Routing Schemes

the unbuffered simple scheme ([Var92], Section 5.3), and the unbuffered priority scheme ([Var92],

Section 5.4) for various dimensions d of the hypercube.

In order to interpret Fig. 5 the following comments are necessary:

CSR Protocol: The saturation point for each hypercube size is obtained from the approximate

analysis of Section 4 (which is within 2% from simulation results), and correspond to the unbuffered

implementation of Section 3. The routing algorithm on which the CSR protocol is superimposed

assumes a very simple switch at the nodes. Other implementations would probably give a higher

saturation point, but they would require more expensive nodes (see the comments below on the node

cost).

Deflection Routing: The results of Fig. 5 on the simple and the priority deflection schemes have been

obtained through simulations. For the evaluation of the saturation point of both deflection schemes

we have taken the probability of access p0 to be equal to one, that is, we have assumed that packets

are always available and enter the hypercube whenever there is an available empty slot. This does

not necessarily result in the maximum possible throughput, but the difference is of the order of 2-3%

(see [Var92]), which is within the statistical error of our simulations, and is in any case negligible.

Simple and Priority Schemes: The results of Fig. 5 for the simple and the priority schemes have

been obtained from an approximate analysis of [Var92]. The approximate analysis is in very good

agreement with simulation results.

The remainder of the section is devoted in examining advantages and disadvantages of each scheme

when applied to the hypercube network, and to other topologies.

Saturation Throughput, and Congestion

The schemes that are the most interesting in terms of saturation throughput are the two deflection

schemes (especially the priority deflection scheme), and the CSR scheme. One reason the CSR

scheme does not achieve 100% utilization of the capacity of the network even for heavy load is

source blocking: if a packet fails to make the necessary reservations, then the corresponding entry

buffer is backlogged and the packets behind it do not have access to the network. A second reason

is related to the "segmentation" of the available link capacity: some links may be free, but if put

together they may not form a whole path (d links may form a path only when their link dimensions

appear in descending order). This segmentation is not inherent in the CSR protocol, and is mainly

due to the simple node switches assumed, which are not cross-bar switches, and do not permit

arbitrary switching assignments. The saturation throughput of the CSR scheme shown in Fig. 5 has

18

5. Comparison with other Switching Formats and Routing Schemes

1.0

r.w _ ' priority deflection

0.8

0

X simple deflection
.o 0.6

A CSR (one implementation)

* priority scheme
.~ 0.4
0

L 0.2 O simple scheme

0.0 -

2 4 6 8 10 12 14

Hypercube dimension d

Figure 5: The saturation point as a function of the dimension of the hyperculhe for: (1) the hypercube

implementation (Section 3) of the CSR protocol for 7j = 0 (for other values of fl the saturation point should he

divided by I + j?), (2) the priority deflection scheme, (3) the simple deflection scheme, (4) the unhuffered priority

scheme, and (5) the uinbiffered simple scheme.

to be divided by 1 + 3, since each slot is equal to 1 + / units of time. For example, if /3 = 0.5 then the

curve that corresponds to the CSR protocol has to be multiplied by 2/3. It is, however, important

that the CSR protocol does not require additional acknowledgement packets, while the simple and

the priority schemes do require. The two deflection schemes also require the use of acknowledgements

for reasons to be explained later, but to a lesser extent. Therefore, for all the schemes examined

there is some overhead not taken into account in Fig. 5 (one can view the parameter /3 as the cost

of the acknowledgements).

A disadvantage of the unbuffered simple scheme is that, after some point, increasing the offered

load decreases the throughput (see [Var92]). This makes necessary the existence of a mechanism

for controlling the transmission rate of the nodes. This is less of a problem for the priority scheme

19

5. Comparison with other Switching Formats and Routing Schemes

(buffered or unbuffered), the buffered simple scheme, and the simple deflection scheme. In the

latter schemes the throughput at the saturation point is somewhat smaller than the throughput

when the attempted traffic is the maximum possible, but this difference is small (less than 5% for

hypercube dimension less than 13; see [Var92]). The simulations of the priority deflection scheme,

and the approximate analysis of the CSR scheme have indicated that their throughput increases

monotonically when the offered load increases.

The results of Fig. 5 assume uniform traffic. If the traffic is not uniform then congestion may

become a serious problem, especially for deflection routing, as results in [Max9O] indicate. Congestion

feeds on itself since it forces packets to take longer paths, increasing the utilization, and making

other packets to take even longer paths. If the topology is not regular, congestion may become an

even more serious problem. Even in regular topologies which have a severe penalty for deflections

(for example, the shuffle exchange network; see [Max89] and [Max90]) deflection routing can be very

inefficient in terms of throughput. The CSR protocol behaves better in congestion, and is apparently

least affected by the choice of the topology.

Node Cost

Deflection routing requires a d x d cross-bar switch with EO(d2) wires at each node of a hypercube.

The simple and the priority schemes, as well as the hypercube implementation of Section 3 of the CSR

protocol require a much simpler switch. This switch, which we call descending-dimensions switch, is

illustrated in Fig. 6 (see also Fig. 1). The number of wires of a descending-dimensions switch is only

O(d). A cross-bar router is larger and slower, and results in a slower network (the processing time

at a node and the clock cycle is larger). The switching assignments possible with the descending-

dimensions switch are of course more restricted, and suffer from internal message collisions (the

collisions on the internal links of the node model of Fig. 1). This results in a degradation in

performance, which in the case of the CSR protocol was not severe. Since the descending-dimensions

switch uses simple 2:2 switch/merge switches, it can be made to operate very quickly, which may

offset the degradation in the performance due to the restrictions in the routing algorithm (see

[Dal90]). If the CSR protocol were used with a cross-bar switch, it would probably outperform

deflection routing (for small enough 3); however, we believe that the improvement would not be

worth the additional cost. An advantage of the CSR protocol is that it performs well even with

simple switches.

20

5. Comparison with other Switching Formats and Routing Schemes

dxd crossbar switch dxd ascending-dimensions switch

- -I -I - - - _ _S/M -

-I MS/ S: 1:d switch

M: d: I merge

S/M3_nl, ~r ~ S/M: 2x2 cross-bar

, ____________ S/M

I…

Figure 6: A d x d cross-hbar switch, a d x d descending-dimensions switch, and the modules out of which
they are composed.

Live-lock

This problem is unique to deflection routing (see [Max90]). It occurs when packets are transmitted

continuously without any chance of reaching their destination. This problem cannot be removed

by an end-to-end control, since such packets do not reach their destination. If routing decisions

are made deterministically then scenaria can be found where a live-lock persists forever. Possible

solutions to the live-lock problem exist (see [Max90O]), but complicate the implementation. The other

switching schemes examined do not suffer from this problem.

Fairness

The priority scheme and the priority deflection scheme, can cause the system to operate unfairly.

The first source that has access to the empty slots takes all the slots that it requires, while the

source that follows takes what is left over. Figure 7 illustrates how a source can be locked out with

the priority deflection scheme (even with randomized decisions). The CSR protocol is fair because

if two nodes try to insert packets during a control interval, and are claiming the same link for the

same slot, then the conflict is resolved randomly.

21

5. Comparison with other Switching Formats and Routing Schemes

,, , , ,,,,,1,

00 " 10

Figure 7: Node 00 continulously sends two packets per slot to node 1 1, and node 11 I sends two packets
per slot to node 00. Then if the priority deflection scheme is l.sed, hoth nodes 01 and 10 cannot insert any packets.
The situation where only some (instead of all) of the links of a node are blocked arises even more frequently.

Packet Resequencing

The CSR protocol can easily guarantee that packets arrive at their destination in sequence. On

the other hand, the need for resequencing packets is inherent in deflection routing, and cannot be

avoided. An implication of that is that resequencing buffers may overflow, dropping packets, and

making the use of acknowledgements necessary.

Processing at the Nodes

The simple and the priority schemes are the easiest to implement. The hardware required for these

schemes is very simple (see Fig. 1 for the node model). Deflection routing requires more processing

at each node, especially if we want to address the live-lock and the fairness problems. Also, a cross-

bar switch is slower than a descending-dimensions switch. The priority deflection scheme requires

slightly more processing time at the nodes than the simple deflection scheme. The CSR protocol

can be implemented fairly easily in a synchronous system. In the unbuffered case, the state of each

link can be described by a binary number of length d (at any time reservations may exist for the

next d slots at most), which should not be a problem.

Synchronization

The CSR scheme, the priority scheme, and the two deflection schemes are best suited for syn-

chronous systems. The simple scheme can also be implemented in an asynchronous system. Syn-

chronous systems have a number of advantages which have resulted in an almost universal use (see

22

References

[Dal90]). Asynchronous systems are potentially faster (the slower component does not have to dom-

inate the speed of the system), and avoid the problem of the distribution of the clock to all the chips

with as small a clock-skew as possible, at the expense of a much more complicated implementation.

REFERENCES

[BeG87] Bertsekas, D. P., and Gallager R., Data Networks, Prentice-Hall, 1987.

[Bra91] Brassil, J. T., Deflection Routing in Certain Regular Networks, Ph.D. Thesis, UCSD, 1991.

[Dal90] Dally, W. J., "Network and Processor Architecture for Message-Driven Computers," in R.

Suaya, and G. Birtwistle (Eds.), VLSI and Parallel Computation, Morgan Kaufmann Publishers,

San Mateo, CA, pp. 140-222, 1990.

[DaS87] Dally, W. J., and Seitz, C. L., "Deadlock-Free Message Routing in Multiprocessor Intercon-

nection Networks," IEEE Trans. Computers, Vol. C-36, pp. 547-553, 1987.

[GrG86] Greenberg, A. G., and Goodman, J., "Sharp Approximate Models of Adaptive Routing in

Mesh Networks," in J. W. Cohen, O. J. Boxma and H. C. Tijms (Eds.), Teletraffic Analysis and

Computer Performance Evaluation, pp. 255-270, Elsevier, Amsterdam, 1986, revised 1988.

[GrH90] Greenberg, A. G., and Hajek, B., "Deflection Routing in Hypercube Networks," to appear

IEEE Trans. Communications, June 1989 (revised December 1990).

[HaC90] Hajek, B., and Cruz, R. L., "On the Average Delay for Routing Subject to Independent

Deflections," submitted to IEEE Trans. Information Theory, June 1990.

[Haj91] Hajek, B., "Bounds on Evacuation Time for Deflection Routing," Distrib. Comput., 5:1-6,

1991.

[KeK79] Kermani, P., and Kleinrock, L., "Virtual Cut-Through: A New Computer Communicating

Switching Technique," Comput. Networks, Vol. 3, pp. 267-286, 1979.

[Max89] Maxemchuk, N. F., "Comparison of Deflection and Store-and-Forward Techniques in the

Manhattan Street and Shuffle-Exchange Networks," in INFOCOM '89, Vol. 3, pp. 800-809, April

1989.

[Max90] Maxemchuk, N. F., "Problems Arising from Deflection Routing: Live-lock, Lock-out, Con-

gestion and Message Reassembly," Proceedings of NATO Workshop on Architecture and High Per-

formance Issues of High Capacity Local and Metropolitan Area Networks, France, June 1990.

[Var90O] Varvarigos, E. A., Optimal Communication Algorithms for Multiprocessor Computers, MS.

Thesis, Report CICS-TH-192, Center of Intelligent Control Systems, MIT, 1990.

23

References

[Var92] Varvarigos, E. A., Static and Dynamic Communication in Parallel Computing, Ph.D. Thesis,

MIT, August 1992.

24

