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Abstract. On a Riemannian spin manifold, we give a lower bound for the
square of the eigenvalues of the Dirac operator by the smallest eigenvalue of the
conformal Laplacian (the Yamabe operator). We prove, in the limiting case,
that the eigenspinor field is a killing spinor, i.e., parallel with respect to a
natural connection. In particular, if the scalar curvature is positive, the
eigenspinor field is annihilated by harmonic forms and the metric is Einstein.

1. Introduction

In 1963 Lichnerowicz [12] proved that on a Riemannian spin manifold the square
of the Dirac operator 3) is given by

22 = Δ+S-> (1.1)

where Δ is the positive spinor Laplacian and s the scalar curvature. This formula
implies

Theorem [12]. On a compact Riemannian spin manifold (M,g) of positive scalar
curvature,

(i) there is no non-zero harmonic spinor, and
(ii) any eigenvalue λ of the Dirac operator satisfies

(1.2)
ML

Part (i) together with the Atiyah-Singer index theorem applied to the Dirac
operator for 4fc-dimensional manifolds, gives a topological obstruction - namely
the vanishing of the ,4-genus of Hirzebruch - for the existence of positive scalar
curvature metrics on a compact spin manifold.

Hitchin [7] extended Lichnerowicz' result of the vanishing of the KO-
characteristic numbers defined by Milnor [13]. By introducing the notion of
enlargeable manifolds and combining it with the spin condition, Gromov and
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Lawson [4-6] obtained beautiful results for the non-existence (and existence) of
positive scalar curvature metrics on certain compact (and non-compact) mani-
folds. It should be mentioned that in an earlier paper, Schoen and Yau [14] used
the technique of regular minimal hypersurfaces to prove that, in low dimensions,
certain manifolds do not support positive scalar curvature metrics.

2. Main Results

Theorem A. Let (M, g) be a compact Riemannian spin manifold of dimension n^3.
Any eigenvalue λ of the Dirac operator 2 satisfies

where μx is the first eigenvalue of the Yamabe operator L,

L=4^A+s, (2.2)

where Δ is the positive Laplacian acting on functions and s the scalar curvature of

Theorem B. Let (M, g) be a compact Riemannian spin manifold of dimension n ^ 3.
If there exists an eigenspinor field Ψx of the Dirac operator 3) for the eigenvalue λx,

with λ\= — ίτMi> then either i) or ii) holds:

i) μγ = 0, then there exists a function uγ satisfying

n-2

n — 2

«1

Use 2 =0

such that, with respect to the metric g = e2tiig and its corresponding connection V,
there exists a parallel spinor field Φγ. In particular, the manifold (M, g) is Ricci-flat.

ii) μί>0, then VλίΨ1=0, where for a real function /, a vector field X and a
spinor field Ψ, the modified connection Vf is defined by

V£ψ=VxΨ+-XΨ.

(Here, " " denotes Clifford multiplication.) In particular, the manifold (M,g) is
Einstein.

It should be pointed out that Friedrich [2] proved that

-l) M

and that equality gives an Einstein metric. One can easily see that μί^inϊs [see
M

Remark 5.8(b) below]. It is a well known fact [9] that the sign of μx is a conformal
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invariant. In Inequality (2.1), instead of μl9 one can put the Yamabe number which
is another conformal invariant. Let g be any metric in the conformal class of g and
denote by V its Levi-Civita connection. The basic idea in the proof of Theorem A is
to write the Lichnerowicz formula for a family of modified connections Vf, and
then to apply it to a spinor field lying in the kernel of the corresponding modified
Dirac operator.

Now, define a map

by

/ ίf

XeΨ9 (2.3)
ί=l

where (eu ..., en) is an orthonormal basis of the tangent bundle TM and 0ts is the
curvature form of a family of modified connections Vf and acting on the spinor
bundle ΣM.

Proposition C. Let (M,g) be a Riemannian spin manifold of dimension n^3. The
manifold (M, g) is Einstein with positive scalar curvature s if and only if for some
non-trivial real function f and for any tangent vector X, the endomorphism 0UJx is

non-ίnvertίble. In this case f2= — —s.
4(w-l)

In Sect. 3 we prove Proposition C and deduce that the existence of a non-trivial
^-parallel spinor field (what is called a Killing spinor in physics) implies that the

metric is Einstein and f2= — — s.
4(n-l)

In Sect. 4 we give the relation between the Dirac operators associated with two
conformally related metrics [7], and in Sect. 5 we give the proof of Theorem A.

In Sect. 6 we study the limiting case of Inequality (2.1). We start by proving
Theorem B, according to which Killing spinors are characterized as the eigen-
spinor fields associated with the limiting eigenvalues of the Dirac operator. Then
we give some geometric consequences. In particular, we prove that in the limiting
case, eigenspinor fields are killed by harmonic forms and even-dimensional
manifolds are Einstein non-Kahler. Finally, we give some rigidity results in
dimensions 4 and 6.

3. Spinor Characterization of Riemannian Positive Einstein Spin Manifolds

For an introduction to Clifford algebras and spin geometry we refer to [1,11]. We
start this section by the following computational lemma.

Lemma 3.1. Let α be an exterior k-form and Ψ any non-trivial complex spinor. Then,
the inner product

/ », ,™ . {purely imaginary for k=\ or 2 mod(4),
try . Us ψ\ 7C •/
1 ' ; {real for k = 3 or 4mod(4).
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Proof. Take α to be of the form (x = e1 -e2... ek, where (eue2, . . . ,O is an
orthonormal basis. Then,

fc(fc-l)

= (-1) 2 (ere2...ek-Ψ,Ψ). D

We consider a real function / on a Riemannian spin manifold (M,g) of
dimension n^3. We then define a family of modified connections Vf by setting

V£ψ=VxΨ+-XΨ (3.2)

for any vector field X and any spinor field Ψ, where V denotes the Levi-Civita
spinor connection and " " is the Clifford multiplication.

A direct computation using the definition of Vf and the compatibility of the
covariant derivative with the Clifford multiplication, gives for any tangent vector
X and any spinor Ψ the relation

8tά/(X® Ψ)=- ^Ric(X) ψ + 2(n~l^f2X - Ψ- -grad/ X Ψ-X(f)Ψ,

(3.3)

where 9Ucf is the zero-order operator defined by (2.3), Ric is the Ricci tensor viewed
as a map of the tangent bundle and X(f) is the Lie derivative of the function / in
the direction of X.

3.4. Proof of Proposition C. If for all vectors X one can find a non-zero spinor Ψ
such that

then by taking X = grad/ in Eq. (3.3) we get

f2 grad/- iRic(grad/)) Ψ= — |grad/|2<F. (3.5)
n2 " " " I " '/ n

Now, taking the inner product of this equation with Ψ and using Lemma 3.1 we get

|grad/| 2 =0.

The function / is then constant and Eq. (3.3) - applied, for each tangent vector X,
to the appropriate spinor Ψ ~ implies that

Λ n— 1 „,,

hence g is an Einstein metric and f2— — —s. D
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Corollary 3.6. // Ψ is a non-trivial spinor field with VfΨ = 0, then f is constant and

the manifold is Einstein with f2—γf TTS. In particular, if VΨ = 0, then the

manifold is Ricci-flat.

Remark 3.7. On a compact 4-dimensional manifold the existence of a non-trivial
parallel spinor field implies that [8] the manifold is either the flat torus or a K3
surface.

4. Dirac Operators of Conformally Related Metrics

In this section we consider a conformal change of the Riemannian metric. Using
the relation between the Levi-Civita connections on the tangent bundle corre-
sponding to two conformally related metrics, we relate the two canonical spinor
connections acting on two isometric spinor bundles. This enables us to compare
the Dirac operators.

4.1. Isometry of the Spinor Bundles
Associated with Two Conformally Related Metrics

Let (M, g) be a Riemannian spin manifold of dimension n ^ 3. Consider a metric g
pointwise conformal to g, i.e., g = e2ug for some real function u on M. We denote by
SOgM (respectively SOgM) the bundle of g-orthonormal (respectively
g-orthonormal) frames. Locally, to a section ε = (X l 5 . . . , Xn) of SOgM corresponds
a section ε = (e~uXu ...,e~uXn) oϊSOgM. This isometry will be denoted by Gu.

Let y be a spin structure on (M, g). We denote by SpinyM the Spinπ-princiρal
bundle associated with it which is fϊberwise a non-trivial double covering of SOgM.
Thanks to the isomorphism Gu one can define a spin structure γ on (M, g) in such a
way that the diagram

Gu

Spin M > Spin7M

SOgM - ^ SOgM

commutes.
To an irreducible representation Σn of Sρinπ one associates two isometric

spinor bundles ΣM and ΣM by taking the vector bundles associated with the
isomorphic Spinπ-principal bundles, SpinyM and Spin^M.

For any section Ψ of ΣM, we write Ψ = GUΨ. Clifford multiplication in ΣM is
given, for a vector field X and a spinor field Ψ, by
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4.2. Comparison of the Spinor Connections

Proposition 4.2.1. The Levi-Civita spinor connections V and V acting respectively on
the sections of ΣM and ΣM, are related, for any vector field X and any spinor field

Ψ-iX(u)Ψ, (4.2.2)

where X(u) is the Lie derivative of the function u in the direction of X.

Proof. Let ε = (Xί, ...,Xn) be a local #-orthonormal tangent frame field and
denote by ω and ώ, the connection forms corresponding to g and g. For all indices
i,j and k in {1,...,«}, we have

ώtj(Xk) = ω^Xύ + Xi(u)δkj - Xj(u)δki. (4.2.3)

Locally, the choice of ε in SpinyM of image ε in SOgM determines a local frame
field {σu...,σN) of ΣM, where N = 2[n/2\ such that for all indices ij and k in
{1,...,/?} and A in {1,..., N}, the spinor covariant derivative of σA is given [11] by

VXkσA = i Σ coaxal Xj σA. (4.2.4)

With respect to g, we get

VXkσA = i Σ (ωώXJ + XiMδu-X/uiδώXi X,

~ 2 2—1 -̂ *- i \M) ^- i ' ^ k ' A 2 2—1 -^ /Λ / k j ' A '

hence,

u-oA-\Xk{u)oA. D

4.3. Comparison of the Dirac Operators

Proposition 4.3.1. Let (M, g) be an n-dimensional Riemannian spin manifold. The
Dirac operators 2) and 2), respectively associated with the metrics g and g = e2ug and
acting respectively on the sections of the spinor bundles ΣM and ΣM, satisfy

n-l
-u —2 Ψ)=e 2 "3)Ψ (4.3.2)

for any spinor field Ψ of ΣM.

Proof. Take s = (X1, ...,Xn) to be a local section of SO^M and
e = (e~uXί,..., e~uXn) its image in SO^M under Gu. Locally, the Dirac operator Θ
is given by

k = i

Using Eq. (4.2.2) we get

n - l
gradtt iP . (4.3.3)
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On the other hand, for any real function /, one has

Ψ,
n - l

which, with Eq. (4.3.3) and for f=e 2 , gives Eq. (4.3.2). D

Remark. It is a classical result [7] that the dimension of the space of harmonic
spinors is a conformal invariant. Indeed, by Eq. (4.3.2), if £&Ψ = 0, then @Φ = 0

n-ί

where Φ = e 2 Ψ, and conversely.

5. Proof of the Basic Inequality (Theorem A)

It is clear that Inequality (2.1) is only of interest for the eigenvalues of 2) with the
smallest absolute value, and on a Riemannian manifold for which μx is non-
negative. This condition turns out to be equivalent to the existence of a
conformally equivalent metric with non-negative scalar curvature [10].

We first prove that for any positive function /z,

Y (5.1)^inf^^/
4(n—1) M \ n-2

then we take h = h1 to be an eigenfunction for the first eigenvalue of the Yamabe
operator μx (it is known that the eigenspace of μx is 1-dimensional and contains
functions which do not change sign) so we get

For n ̂  3, it is convenient to write the conformal change

4

e2u = hn~2 for a positive function h. (5.2)

It is well known that the scalar curvature s (= sh) of the metric g = e2ug [ = hn~2g)is
related to the scalar curvature s of the metric g by

shh"-2=4 -Ah + sh,

or equivalently

(5.3)

Now, let us consider the family of connections Vf defined by (3.2). The
associated family of Dirac operators 2ff acting on a spinor field Ψ, is given by
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Taking the square of this operator, one gets

{® -f)2Ψ = 2)2Ψ -2f@Ψ -gmdf - Ψ + f2Ψ.

By Lichnerowicz' formula (1.1) and a straightforward computation using the
definitions of Vf and the corresponding Laplacian Δf, we get

(@-f)2Ψ = ΔfΨ+ f | + ^ / 2 ) Ψ- — ( 2 / W + grad/ Ψ). (5.4)

We now consider a conformal change of metric, g = e2ug, and we take Ψ such that
= λΨ. By Eq. (4.3.2) we get

λe'uΦ, (5.5)

where
n-ί

φ — e 2 Uψ

Equation (5.4) written with respect to the metric g and applied to Φ gives, after
taking the g-global inner product on (M, g\ the equation

M
 9

 M ' 9
 M\4 n

n-\ _ -- _u -
n M

 9'

We choose / = λe'u, so that 2Φ=fΦ. The left-hand side of Eq. (5.6) is then zero
and by Lemma 3.1 the function ^(grad/ Φ,Φ) is purely imaginary, hence

% ( ^ ^ % , with f=λe-\ (5.7)

Since the first term in (5.7) is non-negative, the second term must be non-positive. A
necessary condition then is that, for any function u

which combines with (5.2) and (5.3) to give the desired result. D

Remark 5.8. (a) In fact, one can prove that indeed,

s u p m ϊ [ 4 ^
h>o M \ n — 2

(5.9)

To see this, take ht >0 to be an eigenfunction for μx of the Yamabe operator (2.2)
and consider for all functions h > 0, the number
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To prove that this number is non-positive, it is sufficient to prove that the integral
of (h~ 1Λh — hϊ 1Δh1) with respect to some positive measure v is non-positive. We
take v = hjvg, so that

ί (h-'Ah-h^Ah,) h\υg= - J
M M

(b) Taking h to be a constant in (5.9), one gets inf s < μl9 unless s is a constant in
which case one has equality. M

6. The Limiting Case of the Inequality

In this section we will be concerned with the properties of compact Riemannian
spin manifolds of dimension n ^ 3 , which admit Ψ± such that @Ψ1=λ1Ψί, with

6.1. Proof of Theorem B

Consider Eq. (5.7) for the metric g = e2Uίg, where uί is the function corresponding
to a positive eigenfunction hγ associated with the first eigenvalue μ1 for the

Yamabe operator (2.2). Since λ\ = — TΓ/̂ I? the second term in (5.7) vanishes,
hence 4(n-\)

P ' ^ Ξ Ξ O with ^ Ξ ^ - " 1 . (6.1.1)

Now two cases can occur:
(i) If μx = 0(λx = 0), then VΦX = 0. By Corollary 3.6, the manifold (M, g = e2uιg)

is Ricci-flat.
(ii) If μ1 >0(λx Φθ), again by Corollary 3.6, Eq. (6.1) implies that ux must be

constant. Using Eq. (4.2.2) we get

hence by Corollary 3.6, the manifold (M, g) is Einstein. •

Proposition 6.2. Let (M, g) be a compact Riemannian spin manifold of dimension

n ^ 3 . Let Ψt be an eigenspinor field associated with λί such that λ\=
then two cases can occur: \n~ Ό

(i) μί=0, then with respect to the metric g = e2uig, the space of harmonic
spinors is stable under Clifford multiplication by harmonic forms.

(ii) ^ ! > 0 , then any harmonic form kills the eigenspinor Ψv

Proof. Let β be a homogenous /c-form and Ψ a spinor field, then

hence
&(β 9) = ((d + δ)β) Ψ+ΣXcβ rXiΨ, (6.2.1)

where d is the exterior differential and <5 its adjoint.
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Case (i) μx=Q. We consider Eq. (6.2.1) for the metric g = e2uιg and apply it to the
_n— 1

spinor field Φx =e 2 "1Ψ1 and use Theorem Bi) in order to conclude (i).

Case (ii) μ1 >0. Then by Theorem Bii), for any vector field X, one has

VχΨi = -kχ.Ψί.

By a direct check one sees that for homogenous k-form β,

hence Eq. (6.2.1) applied to Ψ1 gives

If β is harmonic, then the spinor field β-Ψ1iϊ non-zero would be an eigenspinor

field for the eigenvalue ( - l)kλ1 I I J which, for λx + 0, has absolute value less
than λv Thus β Ψ^O. D \ n '

Remark. If β is a harmonic 1-form, then β-Ψ1=0 implies that β = 0, i.e., the first
Betti number is zero (this is a known result since the manifold is Einstein with
positive scalar curvature).

Proposition- 6.3. Let f be a non-trivial real function on an even-dimensional spin
manifold. If there exists a non-trivial Vs-parallel spinor field Ψ, then the manifold is
Einstein non-Kάhler.

Proof. By Corollary 3.6, VfΨ = 0 implies that the manifold is Einstein and

f2=zj? fr5> hence Ψ is an eigenspinor field of the Dirac operator for the

eigenvalue λl9 with λ\ = — -~μv

Suppose that the manifold is Kahler and denote by Ω its Kahler form. Since Ω
is harmonic, by Proposition 6.2(ii), we get Ω- Ψ = 0. It is a direct check that

Since Ω Ω Ψ = (Ω Λ Ω) Ψ = 0 and Ψ φ 0, there is a contradiction. D

On an even-dimensional spin manifold the spectrum of the Dirac operator is
symmetric about 0. In fact, in these dimensions, any spinor field Ψ splits as the sum
of a positive spinor Ψ+ and a negative spinor Ψ~~. So, if @Ψ = λΨ, then
ψ = ψ + - ψ - i s s u c h t h a t @ Ψ λ Ψ

Theorem 6.4. Let (M, g) be a compact Riemannian spin manifold of dimension 4. //

there exists an eigenspinor field Ψί for λx with λ\ = —- > 0, then the manifold (M, g)
is isometric to (S4, can).

This theorem has been proved by Friedrich [3] using a different method.
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Proof. By Theorem B(ii) we have that the Ricci tensor field is given by Ric = - Id.

We write Ψx = Ψf + Ψϊ and consider Ψx = Ψf - ¥7. The function f = (Ψu ΨJ
= \Ψΐ\2-\Ψϊ\2 satisfies

(the straightforward proof relies on the fact that VλίΨx = V'^Ψ^O).
Now, the Obata-Lichnerowicz theorem says that if on an rc-dimensional

compact Riemannian manifold there exists a non-zero function / and a positive
constant c such that,

Ric ^c Id and Af=-^cf,

then the manifold is isometric to (Sn, can).
In order to apply this theorem we need only to prove that the function

/ = (ψu ψx) does not vanish identically. One can see this as follows: using VλίΨ1

= V~λίΨ1=0, for any vector field X, one has

Let us consider now the R-linear injective map

TM->Σ~M, X-^XΨt, (6A1)

where Σ~M is the space of negative spinors. In a 4-dimensional spin manifold, one
has

hence TM is isomorphic to Σ~M and there exists Xή=0 such that

which implies that / φ θ . D

Proposition 6.5. Let (M, g) be a 6-dimensional compact Riemannian spin manifold. If
the eigenspinor space of λu with λl = γ$μί>Q, is 2-dimensional, then (M,g) is
isometric to (<S6, can).

Proof. As in Theorem 6.4 it is sufficient to prove that the function
f = \ψ+\2-\ψ~\2 is not identically zero, where Ψ1 is such that 2Ψ1=λ1Ψli with
λf = γQμ1>0. For a 6-dimensional manifold, we have dim€Z'~M = 4. If for all
vectors X, the spinor X Ψγ lies in a 2-dimensional complex space there will be a
contradiction with the fact that the map (6.4.1) is injective, so / φ θ . D
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