EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A congruence theorem for structured operational semantics
with predicates and negative premises

Citation for published version (APA):
Verhoef, C. (1993). A congruence theorem for structured operational semantics with predicates and negative
premises. (Computing science notes; Vol. 9318). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/47eda78e-d9e8-4e8b-9458-795b8be20eea

Eindhoven University of Technology

Department of Mathematics and Computing Science

A congruence theorem for structured operational
semantics with predicates and negative premises

by

C. Verhoef
93/18

Computing Science Note 93/18
Eindhoven, June 1993

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the
author.

Copies can be ordered from:

Mrs. M. Philips

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem
prof.dr.K.M.van Hee.

A congruence theorem for structured operational
semantics with predicates and negative premises

C. VERHOEF

Department of Mathematics and Compuling Science
Eindhoven University of Technology
P.O. Boz 518, 5600 MB Eindhoven, The Netherlunds
e-matl: chrisv@uin.tue.nl

ABSTRACT. We proposed a syntactic format, the panth format, for structured oper-
ational semantics in which besides ordinary transitions also predicates, negated predi-
cates, and negatled transitions may occur such that if the rules are stratifiable strong
bisimulation equivalence is a congruence for all the operators that can be defined within
the panth format. To show that this format is useful we took some examples {rom the
literature satisfying the panth format but no formats proposed by others. The examples
touch upon issues such as priorities, termination, convergence, discrete time, recursion,
(infinitary) Hennessy-Milner logic, and universal quantification.

Collation: pp. 22, ill. 2, tab. 7, ref. 24.

Key Words & Phrases: structured operational semantics, termn deduction system, transition sys-
tem specification, strong bisimulation, congruence theorem, predicate, negative premise, negated
predicate, stratifiable, stratification.

1980 Mathematics Subject Classification (1985 Revision): 68005, 68Q55.
CR Categories: 0.3.1, F.1.1, F.3.2, F.4.3.

Note: Full support received from the European Communities under CONCUR 2, BRA 7166.

A congruence theorem .. .: 1. Introduction

1. Introduction

In recent years, it has become a standard method to provide process algebras, process calculi, and
programming and specification languages with an operational semantics in the style of Plotkin [22].
As a consequence, the Plotkin style rules themsclves became un object ol researcli. A nuber of so-
called formats were proposed; a format is a syntactical constraint on the form of the rules. A central
issue in the area of structured operational semantics is to define formats ensuring that some important
property holds, for instance, that strong bisimulation equivalence is a congruence relation. Of course,
we want such a format to be as general as possible.

panth
7 %
rd N
/ ~
Vs ~

/. N
ntyft/niyrt path

N

GSOS yft/tyxt

N

positive GSOS

De Simone format
Figure 1. The lattice of formats

In this way a whole lattice of formats came into being. We depict this lattice in figure 1. An
arrow from one format to another indicates that all operators definable in the first format can also
be defined in the second one. If there are no arrows connecting two formats they are (syntactically)
incomparable. The most basic format originates from De Simone [23]. Yet it is already powerful
enough to define all the usual operators of, for instance, CCS or ACP. The GSOS format of Bloom,
Istrail and Meyer [8] allows negative premises but no lookahead and the fyft/tyzt format of Groote
and Vaandrager [15] allows lookahead but no negative premises. They both generalize the format of
De Simone. The positive GSOS format is, so the speak, the greatest common divisor of the GSOS
and the tyft/tyzt format. The niyft/ntyst format of Groote [14] is, in fact, the least common multiple
of the tyft/tyzt format and the G508 format: it allows both lookahead and negative premises. The
path format of Bacten and Verhocf [5] generalizes the tyft/tyzt format with predicates; path format
stands for “predicates and fyft/tyzt hybrid forinal”. In this paper we discuss the panth forinat, which
stands for “predicates and wiyfl/niyzt hybrid format”. The dashed arrows in figure 1 point to it. We
will not give the definitions of all the formats in the lattice except the definitions of the four formats
in the upper diamond.

The main result of this paper is a congruence theorem stating that if a so-called term deduction
system satisfies the panth format and is stratifiable then strong bisimulation is a congruence for all
the operators that can be defined within the format. First, we will briefly explain the italics. A
term deduction system is a generalization of a transition system specification [15): it allows not
only transitions but also (unary) predicates on states. The panth format is a syntactical constraint
on a term deduction system; still we may simultaneously use transitions and predicates and their
negations in the premises and the conclusion may be either a transition or a predicate. A term

A congruence theorem . ..: 1. Introduction

deduction system is stratifiable if the complexity of the conclusion of each rule is greater than the
complexity of its premises. This notion is based on Groote [14]. Strong bisimulation is based on
Park [21] but we require also that bisimilar processes satisfy the same predicates; ¢f. [5]. Now that
we have an idea of the significant notions occurring in the main result we briefly discuss its proof.
Baeten and Verhoef [5] already conjectured that this result could be proved in the same way as
their congruence theorem for the path format. Indeed, this turns out to be the case: we code each
predicate as a binary relation and we apply the congruence theorem of Groote [14] to the coded
system. Consequently, all the operators that can be defined in the panth format can alsoc be defined
in Groote’s ntyfi/niyzt format. This observation might give rise to the question if there is need for
the panth format at all. In the following, we will motivate the need for this new format.

An advantage of the panth format is that it provides more syntactic freedom than other formats
for defining rules since we can use transitions and predicates and negations of both, whereas in
other formats we either have predicates but no negative antecedents or negative antecedents but no
predicates. This is not just a theoretical advantage since there are examples of such operational
semantics in the literature in which the combination of transitions and predicates with negative
transitions and/or negated predicates occurs. We wil] sketch this in the next paragraph.

In the literature we see more and more thal operational rules in the siyle of Plotkin are deco-
rated with extra predicates on states to express matters like (un)successful termination, convergence,
divergence [1], enabledness [7], maximal delay, side conditions [20], etc. Baeten and Verhoef give
many examples of this kind of decorated transition rules in their paper on the path format [5]
thereby showing that there is a need for a general format describing such decorated rules. Another
phenomenon that we see in the literature is the use of negative antecedents in rules defining the
operational semantics. We mention negative antecedents to operationally describe deadlock detec-
tion [18], sequencing [8], priorities [4] probabilistic behaviour [19], urgency [10], and various real [17]
and discrete time [2] settings. Now it will not be very surprising that there are also hybrid rules using
both decorations and negative antecedents {we will treat some of them in the applications). This
is where the panth format comes into play, since these hybrid rules quite often turn out to satisfy
the panth format and are stratifiable. Now the advantage is that we immediately have that strong
bisimulation is a congruence for all the operators defined in this way, which is very practical in many
cases.

The above advantage is not only of practical value but also of intuitive value since encoding rules
to fit one of the known formats in order to get congruenceness in return often contraindicates the
intuitive character of the original rules. Another disadvantage of such a coding trick is that there now
are two transition systems that have to be shown equivalent. A fast solution to the latter problem
is to throw away the original transition system, which is inadvisable in our opinion. In fact, many
people prefer to use their own rules rather than encoded rules (that the reader has to decode) and
choose to verify the congruence property without a general congruence theorem. We think that our
panth format is very user-friendly in the sense that people immediately can apply our congruence
result to their own rules instead of first having to become coding experts.

There are also theoretical advantages to adding predicates to known formats. For instance,
Baeten and Verhoef observe that some negative antecedents can be expressed positively using pred-
icates and pose the question which negative premises can be written positively with predicates.
Vaandrager gives a partial answer: for any GSOS system there exists an equivalent positive G505
gystem over the same language, extended with positive predicates. Vaandrager and Verhoef proved
on a scratch paper that this result extends to the infinite case. However, in this paper we do not
dive into these theoretical issues.

Now that we have given some motivation for this paper we discuss the organization of it in the
remainder of this section. The paper consists of two parts: a practical and a theoretical part. This
is due to the fact that we pursue two communicative targets. The first target is that we want to
give rules of thumb accompanied with instructive examples for readers merely interested in applying
our congruence theorem. T'he second target is to formally treat our theory and prove the congruence
theorern; this part is for readers more interested in the theoretical side of this paper. We did not

A congruence theoremn ... : 1. Introduction

choose for a chronological ordering of our paper. In section 2 we start with the end: namely the
applications. At first sight this may seem a bit unlogical but there are good reasons for this ordering.
An important reason advocating this ordering is that (uninitiated) readers can see that it is not
at all necessary to go through all the theory to be able to apply the congruence theorem and that
mostly a few simple rules of thumb will do. Another reason justifying this ordering is that the area
of application is operational semantics, Operational rules often are easy to read and, moreover, they
can be understood without the theoretical part. The last and maybe most important reason for
this ordering is that the reader immediately can see if his or her operational semantics has a good
change to fit our format. If this is the case the time has come to read on and enter the theoretical
part of this paper. An additional advantage is that those readers already have a good impression
of the notions that will be made precise in the second part. This part starts in section 3 where
the notions stratifiable and term deduction system are made precise. Also in this section we do our
very best not to loose the reader by interspersing a running example among the abstract definitions.
Following Groote [14] we show that stratifiability is a sufficient condition on a term deduction system
to guarantee that there exists a transition relation that agrees with it. In section 4, we define the
panth format and the notion of strong bisimulation in the presence of predicates on states. Then
we state and prove our main result: the congruence theorem. The last section contains concluding
remarks and discusses future work.

2. Applica’ions

In this section we give some examples that we (mostly) took from the literature. These examples turn
out to satisfy the panth forinat and are stratifiable but do not satisfy formats earlier proposed. With
the aid of our congruence theorem we then find that strong bisimulation is a congruence. The exam-
ples include issues such as priorities, termination, convergence, discrete time, recursion, (infinitary)
Hennessy-Milner logic, and universal quantification (in particular, so-called weak predicates).

We use the first examiple to informally define the significant notions: the panth format and
stratifiability.

Priorities

The first example is an operational semantics of a basic process algebra with priorities BPAg that
originates from Baeten and Bergstra [4]; it can also be found in Baeten and Weijland [6]. In this
language we have alternative and sequential composition and a priority operator {denoted +, -, and
resp.) and a set A of atomic actions. There is also a partial ordering < on the set of atomic actions
to express priorities. For instance, if @ < b and b and ¢ are not related we have 8(a + &) = b
and 8(b +¢) = b+ ¢. We list the operational semantics of BPA, in table 1. This operational
semantics is a small one; still it contains besides transitions also (postfix) predicates -—-./ and both
their negations. So this example is particularly suitable to informally introduce our panth format.

a z—a! y——y
eV m e y—f-’*y'
_— vy _—
z—y/ r——z', {J:ﬁbb,r—b/-»\/ o> a} 22/, {2, 2= | b > 6}
zy—"y #{z)—-0(z") b(z)—~/

Table 1. A Transition system for BPAg.

There are two conditions that must hold for a transition system before we can apply our con-
gruence theorem. They are that the rules have to be in panth format and that the system has to be
stratifiable. We first list the conditions for the panth format.

A congruence theorem . ..: 2. Applications

Check for each rule the following. All the transitions in the premises must end in distinct
variables; denote this set by Y. If the conclusion is a transition {-2+¢' then either { = z for a
variable # ¢ Y or £ = f(21,...,2,) with 2,,...,2, distinct variables not occurring in Y. If the
conclusion is of the form Pt then we treat ¢ as above. Of course, f is an n-ary function symbol.

Now it is easy to verify that the rules of table 1 are in panth format but it will be even more
easy if we also list the things that we do not have to worry about.

There is no restriction on the number of premises. There is also no restriction on terms occurring
in predicates, negated predicates, and negated transitions in the premises. There is no restriction
on a term occurring in the lefi-hand side of a transition in a premise or in the right-hand side of a
conclusion.

As an example we treat the last but one rule of table 1. There is just one positive transition
ending in a variable z', for the negated predicates and negative transitions there is nothing to check,
since there are no restrictions on their terms. The conclusion begins with a term of the form f(z)
and z # z'. So this rule is in panth format. The other rules are treated likewise.

Now we give the rules of thumb for the stratifiability. This condition is a bit more involved:
we have to define a map, called a stratification, for which two conditions must hold for each rule
instantiated with closed terms. If a stratification exists for a sei of rules we call this set stratifiable.
Roughly, a rule is stratifiable if the complexity of the conclusion is greater than the complexity of
its premises. This complexity is measured with a stratification. The arguments that a stratification
takes are positive transitions and predicates; we call them positive formulas. A stratification measures
the complexity of its arguments in terms of numbers, so it ranges over numbers. To express that
the complexity of the conclusion may not exceed the complexity of the premises we also have the
following two conditions on a stratification S for every rule instantiated with closed terms. Let ¢
be the conclusion of a closed instantiation of a rule and let & be a positive premise of it. Then
we want that S(h) < S(¢). Now we treat the negative antecedents. Since S is only defined on
positive formulas we have to turn the negative formulas into positive ones. There are two cases: first
let t—7+ be a closed instantiation of a negative transition. Then we want that S(t—=+s) < S(c) for
all closed terms s. Secondly, let. = FP1 be a closed instantiation of a negated predicate P then we want
that S(Pt) < S{c).

Next, we will give a recipe for finding a stratification. In most cases we can find a stratification
(for which the two conditions hold) by measuring the complexity of a positive formula in terms of
counting a particular symbol occurring in the conclusion of a rule with negative antecedents.

As an example we give a stratification for the rules in table 1. The rules containing negative
antecedents have in their conclusion a . We define a map that counts the number of §’s as follows:
let ¢ be a closed terin with 2 oceurrences of #’s then S(i—-2+s) = S(t—=+/) = n. Now we check the
two conditions for the fast but one rule. Replace each @ and @' by closed terms ¢ and /. Since the
number of #’s occurring in #(t) is one greater than the number of é's occurring in ¢ we are done. The
other rules are equally simple.

Termination and convergence

The next example is an operational semantics originating from Aceto and Hennessy [1). It is an
operational semantics of a CCS like process algebra extended with a successful termination predicate
and a convergence predicate. Their approach is to first inductively define both predicates and then-
define the transition relation using one of the predicates. In this semantics they use a negative
premise to express unsuccessful termination. Baeten and Verhoef [5] showed that this operational
semantics can be written positively by explicitly defining a third unsuccessful termination predicate.
This approach is sonmietimes* less work than our approach, which is finding a stratification. In table 2
we list the rules for the (postfix denoted) termination predicate /.

With the aid of this predicate Aceto and Hennessy inductively define their convergence predi-
cate |; we list their rules in table 3. Note the negative premise in the last rule.

Finally, Aceto and Hennessy give the rules for the non-deterministic choice +, the sequential
composition ;, the parallel composition |, the binding constructor recz.., and the encapsulation

* Especially when only the negated predicate is important. See, for instance, [3] or [7].

A congruence theorem ... : 2. Applications

nily/ zv, 9V =/, 3/
(z +y)V (z; 1)V

v,y xy/ trecz.t/z]y/
(| vV A (z)V recz.ty/

Table 2. The rules of Aceto and Hennessy for the /.

61 nil | ulp € Act,

) t[recz.i/::] 1l zl,yl
On () | recz.t | @+y) |
zi,yl vyl ~(zv),z |
(zly)i (9] {z;9) |

Table 3. The rules for |.

operator dy (). We treat recursion in the same way as Groote and Vaandrager [15] by adding
process names recz.t to the signature for each t € O(Z) to obtain that the recursion rules fit our
format (we will do this in more detail in an example later on; see table 6). However, it would be a
better idea to incorporate recursion within our format as is done for the GSOS format [8] and De
Simone’s format [23].

T o 7

r—x r—T &L=
z +y-toz v+ 2zt vy y
v,y ! Y
2y z | ytoa! |y yletoy|a’
%! y-ty z-La t[rece.t/z]taz’

¢ H

Sl e 1Y Ou(2) Eedn (@) recz.t 2oz’

Table 4. The action rclations for each st € Act,.

It is easy to see that the operaticnal semantics consisting of the rules in tables 2-4 satisfy the
panth format, We will give a stratification. We already explained that the first thing to do is to look
at the rules with negative antecedents. In this case their is just one such rule. In the conclusion we
see the symbol |. Define a map S that counts the number of |’s occurring in a positive formula. It
is easy to see that this map is a stratification. We check the two conditions for the negative rule.
Replace each z and y by closed terms ¢ and s respectively. Since S(1v/) = 0 < 1 = S((t;8) 1) the
negative condition lolds. For the positive condition we have S(s]) = 1 € L = S§((£;8) |). The other
rules are also very simple.

Aceto and Hennessy are interested in rooted weak bisimulation instead of strong bisimulation, so
our theorem will not directly apply to their situation. However, Baeten and Verhoef {5] show for an
operational semantics of Van Glabbeek [13] for ACP with abstraction that rooted weak bisimulation
is a congruence with the aid of their congruence theorem for strong bisimulation. We leave as an
open problem whether a similar trick can also be applied for the CCS like process algebra of Aceto
and Hennessy.

Discrele time

The next example is an operational semantics of Baeten and Bergstra [2] describing a basic process
algebra with relative discrete time. In table 5 we list their rules. The g stands for the action a in the
current time slice and o4 stands for the discrete time unit delay. It is easy to see that the rules of
table 5 satisfy the panth format. Baeten and Bergstra apply a coding trick to obtain that their rules

A congruence theorem ...: 2. Applications

a / o ¥
a r——z L——s
g—/ — — T
ry—z'y zy—z'y
a a]
T— ’ z—z
@ ca(z)—z i 7 @
Ty—y r+y—r—ytz
g a,
T—— 22 yToyf sz’ y—+

z+y—Vey+e 4y +y sty Tyt

Table 5. BPA with discrete time.

satisfy the niyfi/niyzt format of Groote and give a stratification S with S(f——t') = n if the number
of function symbols of ¢ equals n. If we just add S(t-2+,/) = n with the number of function symbols
of equals n (and not encode the ruies) we are done. Baeten and Bergstra still have to show that
their transition system is equivalent to the encoded system.

{txlEYy=y {x|E}y {x|E)-SV (Ix]|E)SV
(X|E)—y (X1E)—y (XIE}——V/ (XIE)-V

Table 6. Recursion rules for BPA with discrete time.

Discrete time and recursion

We extend the above operational semantics with rules concerning recursion. The resulting example
will be particularly interesting, since it deepens our insight in the notion of a stratification. Before
we continue, we briefly explain some recursion terminology. We extend the signature with a set of
process names with typical elements X, Y, Z,.... A recursive specification E over a set V of process
names is a set of equations of the form X = ¢ such that ¢ is a closed term that may only contain
guarded occurrences of process names in V and X € V. An occurrence of a process name in a term is
guarded if it occurs in a subterm of the form a - s or o4(s). The intention of a recursive specification
is to (uniquely) specify the behaviour of infinite processes. The guardedness demand is to exclude
specifications that specify more than one process like X = X

Now (X|E} denotes the X component of a solution of the recursive specification E. The ex-
pression {tx|E)} is short-hand for the right-hand side of the equation belonging to X with every
process name Y replaced by {Y|E}. So, for example, if £ = {X = aX + o4(X)} the expres-
sion {aX + o4(X)|E) is short-hand for a{X|E) + o4{{X|E}). Il is casy to see with the rules of
tables 5 and 6 that {X|E)-24{X|E} and (X |E}-2=(X|E).

Qur recipe for finding a stratification was to count a particular symbol occurring in the conclusion
of a rule with a negative premise. In this case it is the + symbol. Since tliere can be any finite number
of + symbols in the premise of a recursion rule whereas in its conclusion there is not a single + symbol
our approach no longer works; so a fortiori the stratification of Baeten and Bergstra will not work.
We solve this by assigning to these dangerous conclusions the ordinal number w = wp. Define a
stratification S as follows. Let » be the number of unguarded occurrences of process names in ¢ and
let m be the number of + symbols that occur in t. Let S(t-2+t') = S{—>/) = w-n + m with a
either a or &. Now it is not hard to check that the two conditions hold for S. As an example, we
check a recursion rule: S({tx{E}—">y) = w - 0 + m, since we have forbidden unguarded occurrences
in right-hand sides. Now S{({X|E)—"-y) = w - 1 + 0. The other rules are also simple.

The reader can easily see that S could be chosen more minimal: it suffices to define S only on -
transitions and let S(t—-+t") = 0. However, the above stratification also works for all the extensions
that Baeten and Bergstra discuss in their paper whereas the minimal version only works for this
example. So for all their extensions we have that bisimulation equivalence is a congruence.

The ahove recursion problem also arises if we add recursion to our first example concerning
priorities. Fortunately, it can be solved in the same way; for more information on the combination
of priorities and recursion we refer to Groote [14]. In fact, we did not have this problem with the
exatnple of Aceto and llennessy since we there counted the symbol |. This illustrates that it is wise

A congruence theorem .. .: 2. Applications

not to count too much. For, if we had counted all function symbols we immediately ran into the
above recursion problem.

Hennessy-Milner logic

The next example concerning Hennessy-Miiner logic {16] is due to Frits Vaandrager [24]. This
example shows the expressive power of the panih format. The set of Hennessy-Milner logic formulas
over a given alphabet 4 = {a,b,...} is given by the following grammar: ¢ == Tlp A ¢|(a)e|~ep.
Suppose that we have a positive transition system specification, in say tyfi/iyzt format, defining
transition relations —— for cach a € A. With the four simple rules in table 7 we can define the
satisfaction relation |= within the panth format by defining postfix predicates _ = ¢ for all formulas .

With the aid of the fundamental result of Hennessy and Milner saying that two processes are
bisimilar if and only if they satisfy the same Hennessy-Milner logic formulas we also have that this
extension does not change the definition of bisimulation in the presence of the satisfaction predicates.

ez ' ke zEe zEY o(zkEe)
z | (a}p zlEQAY 2 g

z =T

Table 7. The satisfaction relation |= as postfix predicates _ |= .

Let S be a stratification given by S(t—=1') = 0 and S(t | ¢) = n (1,t' € C(T)) with n the
number of - symbols occurring in ¢. It is easy to see that the rules of table 7 together with our
positive operational semantics defining -—-- satisly the panth format and that they are stratifiable.

We can do the same with infinitary Hennessy-Milner logic formulas. Only the third rule of
table 7 changes to the {ollowing rule (7 is an index set of arbitrary cardinality)

lebpiziel}
1'}:/\90.'

iel

It is easy to see that this rule satisfies the panth format. We have to be careful with our choice of a
stratification. The above one will no longer work, since the addition of ordinals is not commutative.
The stratification that we now need measures maximal nesting of - symbols within a formula. For
mstance Sz = =T A -=T) = 2. We inductively define S on the postfix predicates . =

S ET)=0, S (0)e)= S ko),
S Nw) = sup S(z b= i), S(a b p) = S() +1.
icf :
Note that this stratification alsc works for the finite case.

Universal quantification
Some predicates that we find in the literature are defined with a universal quantifier in their hypothe-
ses. The purpose of this last example is to show the expressive power of the panth format by showing
that it is often possible to define such predicates within our format. We illustrate this with the weak
termination predicate f of Aceto and Hennessy [1]. A process p is weakly terminating (p4/f) if for
all ¢ that cannot perform any silent moves but are reachable from p with only (zero or more) silent
steps we have that ¢+/; sec table 2 for the termination predicate +/. Or in a Plotkin style rule:

Vq:p-—Sug,q-h =g/

v

Clearly, this rule does not. fit our format. This is due to the fact that our format is of an existentional
nature. However, the combination of an existentional quantifier and negation leads to a universal
quantifier. With this we can define the weak termination predicate +f of Aceto and Hennessy within

A congruence theorem .. .: 8. Term deduction systerna

our format. We mention that p——+¢ means that p evolves into ¢ by performing zero or more silent
actions, which can be easily defined within our format. We need an auxiliary predicate to define the
weak termination predicate. The first rule below defines this auxiliary predicate which holds if the
negation of the hypothesis of the above rule holds. The second rule defines the weak termination
predicate by simply negating the auxiliary predicate.

P9 (V) e
24 2
We can find a stratification with a cumulative application of our recipe: count the number of _/ sym-
bols plus two times the number of +/ symbols in a positive formula.
In this way we can also define Aceto and Hennessy’s weak convergence predicate and its param-
eterized version (and the resulting operational semantics is stratifiable). We recall that Aceto and

Hennessy are interested in rooted weak bisimulation instead of strong bisimulation. Moreover, we
think it would be a better idea to study a format that allows universal quantification.

3. Term deduction systems

The examples that we discussed in section 2 are term deduction systems. In this section we will
define this notion, which generalizes the concept of a transition system specification [15]). We will
also define the notion of stratifiability, which is due to Groote [14]. Following Groote, we prove that
being stratifiable is a suflicient condition to define a transition relation in the presence of predicates
- and negative antecedents. We intersperse a running example among the abstract definitions so that
the reader immediately has a concrete idea about them.

Before we continue with the definitions we will list some preliminaries for completeness sake.

We assume that we have an infinite set V' of variables with typical elements z,y,z,.... A (single
sorted) signature X is a set of function symbols together with their arity. If the arity of a function
symbol f € X is zero we say that f is a constant symbol. We restrict ourselves to signatures that
contain at least one constant symbol. The notion of a term {over X) is defined as expected: z € V
is a term; if ¢y,...,¢, are terms and if f € T is n-ary then f({1,...,1,) is a term. A term is also
called an open term; if i, contains no variables we call it closed. We denote the set of closed terms
by C(X) and the set of open terms by O(X) (note that a closed term is also open). We also want to
speak about the variables occurring in terms: let { € O(Z) then var(t) € V is the set of variables
occurring in .

A substitution ¢ is a map fromn the set of variables into the set of terms over a given signature.
This map can easily be extended to the set of all terms by substituting for each variable occurring
in an open term its o-linage.

Definition (3.1)

A term deduclion system is a structure (£, D) with I a signature and D a sel of deduction
rules. The set D = I(7},,7;) is parameterized with two sets, which are called respectively the set of
predicate symbols and the set of relation symbols. Let 5,¢, and u € O(Z), Pe€ T,, and Re T,. We
call expressions Ps,—Ps, tlu, and {— R {formulas. We call the formulas Ps and tRu positive and - Ps
and t- 1 negative. If 5 is a set of formulas we write PF(S) for the subset of positive formulas of §
and NF(S) for the subset of negative formulas of S.

A deduction rule d € D) has the form

H

o
with f a set of formulas and € a positive formula; to save space we will also use the notation H/C.
We call the elements of H the hypotheses of d and we call the formula € the conclusion of d. If the
set of hypotheses of a deduction rule is empty we call such a rule an axiom. We denote an axiom
“ ”n

simply by its conclusion provided that no confusion can arise. The notions “substitution”, “wvar”,
and “closed” extend to formulas and deduction rules as expected.

A congruence theorem ...: 8. Term deduction systems

Definition {3.2)

Let T be a term deduction system. Let F(T) be the set of all closed formulas over T. We
denote the set of all positive formulas over F(T) by PF(T) and the negative formulas by NF(T).
Let X C PF(T). We define when a formula ¢ € F(T') holds in X; notation X F 4.

XbFsRHt fsRte X,
XkFPs if Pse X,
XFksoRiUUVIEC(D) :sRtL g X,
XF-Psif Psg¢ X.

The purpose of a term deduction system is to define a set of positive formulas that can be
deduced using the deduction rules. For instance, if the term deduction system is a transition system
specification then a transition relation is such a set. For term deduction systems without negative
formulas this set comprises all the formulas that can be proved by a well-founded proof tree. If
we allow negative formulas in the premises of a deduction rule it is no longer obvious which set of
positive formulas can be deduced using the deduction rules. Bloom, Istrail, and Meyer (8] formulate
that a transition relation must agree with a transition system specification. We will use their notion;
it is only adapted to the framework of this paper.

Definition (3.3)

Let T = (£, D) be a term deduction system and let X C PF(T) be a set of positive closed
formulas. We say that X agrees with T"if a formula ¢ holds in X if and only if there is a deduction
rule instantiated with a closed substitution such that the instantiated conclusion equals ¢ and all
the instantiated hypotheses hold in X, More formally: X agrees with T if

¢€X <= IH/CeDand oV — C(I) such that ¢(C) = ¢ and Yh € H : X F a(h).

Not every term deduction system defines a set. of positive formulas that agrees with it. A term
deduction system can define more than one set of positive formulas that agrees with it. We show this
in the following two examples. Groote [14] gives similar examples with relations instead of predicates.

Example (3.4)

Let Tj be the term deduction system that consists of one constant symbol ¢ and one deduction
tule =Pc¢/Pec. For all X C PF(T}) that agree with 7] we have Pc € X <= Pc ¢ X. Clearly, such
an X does not exist.

Let T3 be the term deduction system that consists of one constant symbol ¢ and one deduction
rule Pe/Pc. Then @ and {Pc} both agree with T:.

Groote [14] formulates a sufficient condition for the existence of a transition relation that agrees
with a given transition system specification. We essentially follow Groote by formulating a similar
condition: we incorporate predicates in Lis notion. Indeed, this condition is sufficient for the existence
of a set of positive formulas for a given term deduction system. We obtain this result in a similar
way as Groote by extending his notions with predicates and by proving his results for these extended
notions.

Definition (3.5)

Let T = (X, D) be a term deduction system. The formula dependency graph G of T is a labelled
directed graph with as nodes positive formulas. For all deduction rules H/C € D and for all closed
substitutions ¢ we have the following edges in G: for all h € PF(H) there is an edge o(h)—Z+a(C);
for all s—=R € NF(H) there is for all £ € C(E) an edge o(sRt)——o(C); for all ~Ps € NF(H) there
is an edge o(Ps)——a(C). Il ¢ is an edge of G we denote this by € € G. An edge labelled with a p
is called positive and il it is labelled with an » it is called a negative edge. A set of edges is called
posiiive if all its elements are positive and negative if all they are all negative,

10

A congruence theorem ., .: 8. Term deduction systems

Example (3.6)

We depict in figure 2 the formula dependency graphs of the term deduction systems T;, Ty of
example {3.4), and the formula dependency graph of a new one: T3. The last term deduction system
consists of a constant symbol ¢ and for all n > 0 a deduction rule ~P,¢/P,42¢ and for all odd n a
deduction rule =P,¢/FPyc. The term deduction system T3 is based on an example of Groote [14].

n n n
Pic—p Prc——p Pyc——- Pro—- - - =

Pe 7t Pc P n.l /n i

Poc--—r-;ng(:——n-—P.gc—n-Pec— -—--

Figure 2. Three formula dependency graphs.

Definition (3.7)

A term deduction systemn is stratifiable if there is no node in its formula dependency graph that
is the start of a backward chain of edges containing an infinite negative subset.

A term deduction system is called strictly stratifiable if there is no node in its formula dependency
graph that is the start of an infinite backward chain of edges.

Definition (3.8)

Let T = (X, D) be a stratifiable term deduction system and let G be its formula dependency
graph. We inductively define a mapping | - | from the set of positive formulas of T to an ordinal o
that calculates the number of negative edges in G that can be reached with a backward chain of edges
beginning in ¢. Note that if G contains a cycle with a negative edge we cannot define this mapping.
However, we can define this mapping if G only contains positive cycles. Two formulas ¢ and ¥
are equivalent if they occur in a cycle of the formula dependency graph G or if they are identical;
notation ¢ ~ 1. We wrile [¢] for the equivalence class containing . Note that since T is stratifiable
there are only positive cycles. Define |- | : PF(T}/~ — « as follows

[l = sup({l[¥]l + 1 : v—"ox € G, [x] = [} U {I[¥]l : ¥=x € G, [¥] # [] = [x]}).

We assume that sup(#) = 0. Now define |¢| = |[¢]].

Example (3.9)

With the aid of figure 2 we see that T} is not stratifiable and that T3 and 73y are stratifiable. It
is not hard to see that for the term deduction system T3 we have [Py, 41| = n and [Popcl =w +n
for all n > 0.

Definition (3.10)

Let T = (X,) be a term deduction system. A mapping S : PF(T)}) — a for an ordinal a
is called a stratification for T if for all deduction rules H/C € D and closed substitutions ¢ the
following conditions hold. For all h € PF(H) we have S{a(h)) < S(e(C)); for all s=R € NF(H) we
have for all t € C(E) : S(e(sRt)) < S(a(C)); for all ~Ps € NF(H) we have S(a(Ps)) < §(a(C)).
A stratification is called strict if we in addition have that S(o(h)) < S{a(C)) for all h € PF(H).

11

A congruence theorem .. .: 4. Term deduclion systemns

Lemima {(3.11)

A term deduction systent is (striclly) stratifiable if and only if there exists a {strict) stratification
for it.

Proocf, First, we prove the lemma for the non-strict case. Assume that T is stratifiable. Then we
can define the mapping |- | : PF(T) — o for an ordinal a. It is not hard to see that |-]is a
stratification for T.

Assume that there exists a stratification 5 for a term deduction system T. Let G be the formula
dependency graph of T. We show that for all nodes ¢ in G with ${) = « there is no backward chain
of edges with an infinite negative subset. Suppose that this holds for all &« < 8. We prove it for 4.
Let ¢ be a node in G with 5(p) = § and suppose that there is a backward chain of edges containing
an infinite negative subset. Then there is a path ¢f—p1 Ly -+ L, 2 - - and for ¥ there is a
backward chain with an infinite negative subset. It is easy to see that 5(#) < § so with induction we
find that i has no backward chain containing an infinite subset, which contradicts our assumption
on .

Now we prove the lemma for the strict case. Suppose that T is strictly siratifiable. Let G be its
formula dependency graph. Since there is no node with an infinite backward chain of edges we can
define a map § that counts the number of incoming edges as follows

S(p) = sup{S(¥) +1: p—"Lsp € G}.

1i. is not hard to see that S is a sirict stratification.
The other direction is easy. It can be proved analogously to the non-strict case.

We need the next definition and letnma to construct a set of positive formulas that agrees
with a given term deduction system. We define a mapping, called the degree, that assigns to a
tern deduction system an ordinal number with a property (called regularity) that is proved in the
lemma. We assume that the axiom of choice holds for this definition and for the lemma, since we
we assume that the only cardinal numbers that exist are the natural numbers or X, for all ordinal
numbers a > 0. We recall that an ordinal number is a transitive set of transitive sets and that for all
ordinal numbers o > 0 the cardinality of the (initial) ordinal number w, equals R, (by definition).

Definition (3.12)

Let V be aset. If 0 < |V| < Ry we define d(V) = wy. If [V] = R, for an ordinal o > 0 we
define d{V') = wo41.

Let 7' = (X, D) be a term deduction system. The degree d(H/C) of a deduction rule H/C € D is
the degree of its set of positive premises: d(H/C) = d(PF(H)). Let wy = sup{d(H/C): H/C € D}.
The degree d(T') of a term deduction system T is wp if o = 0 and w, 4 otherwise.

Example (3.13)
Lel 73 be as in example (3.6}, It is easy to see that d(7T3) = wy.

The following lemma s inserted for the readers that are not familiar with the notion of regularity
of = cardinal number and thus with the fact that Ry and R, 4, are regular for all o > 0 (if we assume
the axiom of choice).

Lemna (3.14)

Let |I| < Ry with « an ordinal in {0} U {v+ 1 :v > 0}. Suppose that for alt i € I we have an
ordinal a; < w,. Then there is an ordinal number § such that foralli € [1 a; < 8 < we.
Proof. We assume the axiom of choice. Let 8 = sup{a; : 7 € [} + 1. Then we clearly have for
all ¢ € 7 that o; < B. So we only need to show that # < w,. The case & = 0 is triviai, so
let &« = v+ 1 for an ordinal v > @ and suppose that 8 > wq. Then |8] > Ryy1. It is easy to see
that |8] = |sup{a; : i € T}| < |1]-R, < B = N, < Ry 41. This contradicts our assumption so 8 < wa.

Next, we will define a set of positive formulas from which we will show that it agrees with a
given term deduction system.

12

A congruence theorem .. .: 3. Term deduction systems

Definition (3.15)

Let T = (X, D) be a term deduction system and let S : PF(T) — o be a stratification for an
ordinal number or. We define a set Ts C PF(T) as follows.

Ts = UTl.S| T'-s: U 'I"‘?;
i j<d(T)

We will frequently use unions over T} and T}7;; therefore, we define the following notations

uS=JT$i<a), US=J T (5 <dD).
i j'<i

We drop the superscripts 5, provided that no confusion arises. Now we define for all i < o and for
all j < d(T) the set T} ; = T,

T; ={p | S(p) =i, 3H/C € D and ¢ : V — C(T) with o(C) = ¢,

Vhe PF(H):Ui; UUs F o(h) and Yh € NF(H) : Ui F o(h)}.

Example (3.16)

Let T = T3 be the term deduction system of example (3.6). Let S : PF(T) — w2 be the strict
stratification that we defined in lemma (3.11). Note that S = || in this example; see definition (3.8).
We will calculate Ts so it suffices to caleulate T; ; for all i < o and j < d(T). Since there are no
positive premises we have that Tj o = T; ; for all j < d(T'). So T; = T; . It is not hard to verify that
for all n > 0 we have Tb,, = Tpaong1 = O, Tongr = {Pantac), and Tuyon = {Panc}. So we find
that TS = {.PQC, Pac, Pq(.‘, P7C, Pg(,‘, Pllc, .. }

Theorem (3.17)

Let T = (X, D) be a term deduction system and let S : PF(T) — a be a stratification for an
ordinal number a. Then Ts agrees with T.

Proof. First, assume that Ts b ¢. Then there are i < o and j < d(T) with ¢ € T; ;. So there is a
deduction rule H/C and a closed substitution ¢ with ¢(C) = ¢. It follows immediately that Ts + (k)
for all h € PF(H). Now let h € NF(H) then U; I o(h). Since S{a(h)) < S(o(C)) we also have
that o(h) € Ty for alli <7 < a. So Ts b a(h).

Now assume that there is a deduction rule [f /C € D and a closed substitution with Ts F a(h)
forall h € H. We show that Ts F o(C). Let i = S{o(C)). It suffices to show that there is a j < d{(T)
withT; ; F a(C). First, let h € NF(IT). Since Ts | o(h) and U; C T we also have U; F o(h). Second,
let h € PF(H). Since S(a(h)} < i we have o(h} € U; UT;. For alt h € PF(H) with o(h) € T; there is
a jn < d(T) such that a() € T; ;, . Since |[PF(H)| < [d(H/C)| < |d(T}| we find using lemma (3.14)
that there exisls a 7 < (T) with for all b € PF(H) : jn < j < d(T). So for all h € PF{H) we
have U; UU; j b o(h). By definition of T; ; we find that T; ; F o(C).

Theorem (3.18)

There exists a term deduction system with an agreeing set of positive formulas that is not
stratifiable.

Proof. See Bol and Groote [9]. They show that this is already the case for a term deduction system
without predicates.

13

A congruence theorem . ..: 8. Term deduction systems

Theorem (3.19)
Let T be a term deduction system and let S and S be stratifications for T. Then Ts = Ts.

Proof. Let T = (X, D) and let S and §’ be siratifications for T and suppose that Ts # Ts/. Let,
for instance ¢ € Ts \ Ts; the other case is treated analogously. Choose ¢ minimal in the following
sense: for all ¢ € Ts \ Tsr UTs: \ Ts we have S() < S(y). Let i = S(y). Then there is a j < d(T)
with ¢ € 'l"‘,sJ Choose this j minimal in the following sense: for all ¢ € Ts \ Ts: with S(¢) = ¢
we have that ¢ € i’}"?_,-, with j' > j. Since Ts agrees with T" there is a rule H/C € D and a closed
substitution o with ¢(C) = ¢ and Ts - o(h) for all h € H. If also T - o(h) for all h € H we
would have that ¢ € T/, so there is an h € H with Ts ¥ o(h). Il h € PF(H) then o(h) ¢ Ts
but also o(h) € Ufu U,'El"j, which contradicts the minimality of 4 with respect to i or j. If h = =R
there is an s’ € C(Z) with o(sRs’) € Ts:. Since S(o(sRs')) < 7 and o(sRs'} ¢ T this contradicts
the minimality of ¢ with respect to i, If A = —Ps, we immediately find a contradiction with the
minimality of ¢ with respect to ¢ since s(a(Ps)) <tand Ps¢Tg.

Theorem (3.20)

Let 7" be a strictly stratifiable term deduction system then there is at most one set of closed
positive formulas that agrees with T
Proof. Let T = (£, D) be a term deduction system and let .S : PF(T) — « be a strict stratification
for T. Suppose that X and Y agree with 7" and that X # Y, say ¢ € X \'Y; the other case
is treated analogously. Choose @ minimal in the following sense: for all ¥ € X \ Y UY \ X we
have i = S(¢) < S(¢). Since X agrees with T and X F ¢ there is a deduction rule H/C € D and
a closed substitution ¢ with o(C) = ¢ and X + o(h) for all h € H. Note that S(a{h)) < i for
all h € H since S is strict. I Y F a(h) for all h € H we would have ¢ € Y so there isan h ¢ H
with Y ¥/ o(h). If h € PF(H) we find that o(h) € X' \ 'Y, which contradicts the minimal choice of .
If h = s~R € NF(H) then there is a ' € C(E£) with o(sRs") € Y \ X, which also contradicts the
minimality of ¢. If h = ~Ps &€ NF(H) we have ¢(Ps) € Y \ X, which is also impossible.

Corollary (3.21)

If § is a strict stratification for a term deduction system T then Ty is the unique set of positive
formulas that agrees with 7.

Definition (3.22)
Let T and T’ be stratifiable term deduction systems. Let S and S be stratifications for T
and T7. Il T and T’ have the same signature and if Tg = T, we say that T and 77 are equivalent.

4. The congruence tlieorem

In this section we will formally define the panth format and other notions necessary to state the
congruence theorem and then we will prove it. We expect that this result can be proved by adapting
the congruence theorem of Groote to our situation. However, we prove a stronger result since we
moreover show that every term deduction system in panth format can be reduced to a term deduction
system in aiyft/ntyzt format. '

Definition (4.1)

Let T' = (X, D) be a term deduction system with D = D(T,,T;). Let in the following K,L, M,
and N be index sets of arbitrary cardinality, let sk, 4, #m,va, it €O(X) forallk e K,1€ L, me M,
and n € N, let Py, Pm, P € T, be predicate symbols forall k € K and m € M, and let R, R,,R€ T,
be relation symbolsfor all/ € L and n € V.

A deduction rule d € 3 is in paiyft format if it has the form

{Pesp ke N}u{tiRu 1€ LYU{=Ppu, me MU {v,~R, :n€ N}
f(ml--“:l'n)Rt

14

A congruence theorem ...: 4. The congruence theorem

with f € £ an n-ary function symbol and X UY = {zy,...,2,}U{yi : 1 € I} C V a set of distinct
variables. If var(d} = X UY we call d pure. A variable in var(d) that does not occur in X UY is
called free.

A deduction rule d € D is in patyzxt format if it has the form

{Pese : k€ KYU{tiRiy : 1€ L} U{~Pnvm :me M} U {va-Rn :n€ N}
chi

with X UY = {z}U{y:i : i € I} C V aset of distinct variables. If var{d) = X UY we call d pure. A
variable in ver(d) that does not oceur in X UY is called free.
A deduction rule is in patyf format if it has the form

{Pesi k€ K}YU{iRiy : 1 € LYU{=Prttm :m e M}U {v,~R, :n €N}
Pf(z1,...,z5)

with f € © an n-ary function symbol and {z;,...,z,} U {yi : § € I} C V a set of distinct variables.
The notions pure and free are defined as expecled.
A deduction rule is in patyz format if 1t has the form

{Pksk ke I\"}U{th;y; :lEL}U{ﬂPmum Tm e M}U{'U,,,HR,-,:TIE N}
Pz

with {z} U {y : ¢ € I} C V a set of distinct variables. The notions pure and free are defined as
expected.

We explain the names of the deduction rules. The p in the phrases pniyft, pniyzt, pnlyf, and pa-
tyz refers to the predicates occurring in the rules, the n refers to the presence of negative formulas
in the premises, the ty refers to the posttive relation part in the set of hypotheses, and the 1, z{, f,
and z refer to the various conclusions. The names ntyft and ntyzt are taken from Groote {14).

If a deduction rule d € D has one of the above forms we say that this rule is in panth format, which
stands for “predicates and niyft/ntyzt hybrid format”. A term deduction system is in panth format
if all its rules are. A term deduction system is called pure if all its rules are pure.

A term deduction system is in niyfl/ntyzt format il it 1s in panth format and its set of predicate
symbols is empty. The atyft/niyzi format originates from Groote {14]. A term deduction system is in
path format if it is in panth format and there are no negative formulas in the rules. The path format
originates from Baeten and Verhoef [5]. A term deduction system is in {yfi/iyzt format if it is in
path format and its set of predicate symbols is empty. The tyfi/tyzt format originates from Groote
and Vaandrager [15].

We need the technical notion of well-foundedness of a term deduction system, which will be
used in the proof of the congruence theorem. The notion of well-foundedness is taken from Groote
and Vaandrager (15], where it is also used in the proof of their congruence theorem. The same phe-
nomenon occurs in Groote’s paper [14] and in Baeten and Verhoef [5]. It is an open question whether
the requirement of well-foundedness is really necessary. Recent work of Fokkink [12] seems to show
that the well-foundedness is not necessary for the congruence theorem of Groote and Vaandrager [15]
and that this seems to generalize to our format. Therefore, we omitted the well-foundedness demand
in the examples we discussed in section 2, But all these examples are well-founded.

Definition (4.2)

Let T = (X, D) be a term deduction system and let F' be a set of formulas. The variable
dependency graph of F'is a directed graph with variables occurring in F as its nodes. The edge z — y
is an edge of the variable dependency graph if and only il there is a positive relation tRs € F
with z € var(1) and y € var(s).

The set F is called well-founded if any backward chain of edges in its variable dependency graph
18 finite. A deduction rule is called well-founded if its set of hypotheses is so. A term deduction
system is called well-founded if all its deduction rules are well-founded.

The following lemma and its proof are essentially due to Groote [14].

15

A congruence theorem . . .; 4. The congruence theorem

Lemma (4.3)

For every well-founded stratifiable term deduction system in panih format there is an equivalent
pure well-founded term deduction system in panih format.

Proof. Let T = (E,D) be a well-founded siratifiable term deduction system in panth format.
Let T = (X, D) be defined as follows. The deduction rules of D’ are the rules of D without
free variables plus for each rule with free variables a set of new rules. Let d €) be a deduction rule
with free variables then such a set of new rules is the set containing a new deduction rule for every
possible substitution of closed terms for the free variables in d. Clearly, T’ is pure, well-founded
and in panth format. Let 5 ;. PF(T) — a be a stratification for T, then S 1s also a stratification
for T, so T' 1s stratifiable. It remains to check that T and T' are equivalent. So we have to verify
that Ts = Tg.
It suffices to prove that
Vi<a:T; =T]. 8y

We prove (1) with transfinite induction on ¢. So suppose that (1) holds for all ' < #; we prove it
for i. Note that d(7T) = d(T”"). To prove (1) for 7 it suffices to show that

Vi <d(T): Ty =T)
We prove (2) with transfinite induction on j. So suppose that (2) is valid for all j* < j; we prove it
for j.

First, let p € T; ;. By definition of T5 ; there is a rule H/C € D and a closed substitution o
with 0(C) = . If h € PF(II) then U; ; UU; F ¢(h). With the induction hypotheses for ¢ or j we
find that U/, UU{ F a(h). Il h € NF(H) then U; - g(h). With the induction hypothesis on i we
also have tha.t U! + e(h). Now we only need to find an appropriate deduction rule d' € I¥. Let p
be the substitution with p(z) = o(z) for all free variables in d and let p(a) = z otherwise. It is easy
to see that o o p(x) = o(2) for all z € V and that p(H/C) € D'. So by definition of T} ; we find
that ¢ € T} ;.

Second, suppose that ¢ € T .. By deﬁnlllon of T} ; there is a deduction rule p(H/C) e D' and
a closed substitution ¢’ with ¢ o p(C) = . Let H/C’ E D be the original rule. With the induction
hypotheses for i or j we find for all h &€ PF(H) that U; j UU; F ¢’ o p(h) and using induction on i we
find for all h € NF(H) that {/; & ¢’ o p(h). So by definition of 7} ; we find that o' 0 p(C) = p € T} ;.

Next, we will define the notion of strong bisimulation, which is based on Park [21]. See also
Baeten and Verhoef {5)].

Definition (4.4)

Let T = (X, D) he a stratifiable term deduction system with stratification 5 and let D =
D(T,,T7). A binary relation B ¢ C(Z) x C(T) is called a (strong) bisimulation if for all s,t € C(X)
with s8¢ the following conditions hold. Fer all R € 7

V' e C(E) (Ts F sRs' = 3 € C(X) : Ts + tRt' A s'BtY),

VW elE) (TsHtRt = 3" € C(T): Ts + sRs’ A s'Bt'),
and for all P € 5,

TstF Pse Ts F PL.

The first two conditions are known as the transfer property. Two states s,t € C(X) are bisimilar if
there exists a bisimulation relation containing the pair {s,1). If s and ¢ are bisimilar we write 5 ~ ¢.
Note that bisimilarity is an equivalence relation.

16

A congruence theorem .. .: §. The congruence theorem

Theorem (4.5)
Let T = (I, I}) be a well-founded stratifiable term deduction system in panth format then strong
bisimulation is a congruence for all function symbols occurring in Z.

Proof. The structure of this proof resembles the proof of the congruence theorem of Baeten and
Verhoef [5].

Groote [14] proved this theorem in the case that the set of predicate symbols is empty, that is,
if the term deduction system is in niyfi/niyzt format. Our strategy o prove the non-empty case is
to construct from a term deduction system a new one without predicates with the property that two
terms are bisimilar in the old term deduction system if and only if they are bisimilar in the new one.
‘We make the new term deduction system from the old one by coding each predicate symbol in the
oid system as a special relation symbol in the modified one.

To begin with, we construct from a term deduction system a new one by extending the original
signature with a xenoconstant and moving the predicates of the original system to xenorelations.

Let T = (T, D) be a well-founded stratifiable term deduction system in panth format and suppose
that D = D(T,,T;) with T, # @. In accordance with lemma (4.3) we may assume that T' is pure. We
define a new term deduction system 77 = (X', IV'). Let £ be a constant [unction symbol that is strange
to £ and define &' = LU {£}. Let D' = D'(#, 7)) with T, = T, U {Rp | P € Tp} (disjoint union). A
relation symbol Rp for P € T, is defined as follows. For two terms s and ¢ over L’ we will have sRpt
if and only if Ps and ¢ = £. The set of deduction rules is D' = {d' | d € D} and a deduction rule &' is
constructed from an old rule d € 12 as follows. Let d = H/C. The set of hypotheses of d' is the set H
but with the positive predicates {Ps : k € I} replaced by {syRp zx : & € K} with {2z 1k € K} a
set of distinct variables disjoint with var(d) and the negative predicates {-=Ppu,, : m € M} replaced
by {um—Rp, : m € M}. If the conclusion of the old rule is of the form Pt then the conclusion
of the new rule is tRpé. Otherwise C remains the same. Note that T is pure, well-founded and
n nigfi/niyzl format.

Next, we stratify the xenosystem by assigning to each positive xenoformula the ordinal that a
stratification for the original system assigns to this positive formula with every £ replaced by a fixed
closed original term.

We verify that T’ is stratifiable. Let § : PF(T) — a be a stratification for T and let ¢ le
a closed term over . For all s € O(X’) we inductively define a term s{¢/c} € O(Z) as follows.
Let £[£/c] = c. If x € V is variable then 2{f/c] = 2. Let f € £ be n-ary, and let ¢;,...,t; € O(T')
then f(t1,...,tn){€/c] = F(t1[€/c],- .., tal€/c]). Now we can define S : PF(T') — « as follows.
Let 3,t € C(X’) and let R € T, and P € T}, then

S'(sRt) = S(sle/Rule/e]), S'(sRpt) = S(Psie/d]).

For all o' : V — C(E') we define a substitution o’[€/c] : V — C(Z) as follows. Define ¢'[¢/c](z) =
o'(x)[&/c} for all # € V. Note that the following holds for all s € O(E) and t € O(Z')

sléfc)=s, o'()€/c] = o'[&/c](tlE/<)). 3)

To show that S’ is a stratification for T’ we have to check the conditions of definition (3.10). Let d' =
H'/C' € D’ be arule and let d = H/C € D be its corresponding rule in the original system 7". The
deduction rule &’ is of the form

{s¢Rp, 2 ke KYU{yRy 1€ LYU {up—Rp, :me M}U {v,~R, :n€ N})
o)

Let ¢/ : V — C(X’) be a closed substitution and let & = ¢'[¢/c]. Note that with (3) we have for
all 5,1 € O(X) and v € O(T")

§'(o'(sRt)) = S(o(sht)), S§'(c'(sRpu)) = S{a(Ps)).

So for each type of conclusion we have §'(a’(C’')) = S{o(C)). We have four cases. First, we treat
the case sz Rp, z¢.

S'(a'(sk Rp, 21)) = S(a(Pesy)) < S(a(C)) = S (¢/(C")

17

A congruence theorem ... : 4. The congruence theorem

since S is a stratification. The case 3; Ry is treated analogously. We treat the negative premises.
Let v}, € C(X’)

S' (o' (um Rp,) = S(0(Prium)) < $(e(C)) = §'(¢'(C")
since S is a stratification. We treat the last case. Let v, € C(Z').
5 (' (v Rnvl)) = S{o(vn Ravl [E/])) < S(a(C)) = S'('(C")).
Again, we used that S is a stratification. So §' is a stratification and we find that 77 is stratifiable.

Now we will prove that two closed E-terms u and v are bisimilar in the xenosystem 7" if and
only if they are bisimilar in the original system T. In order to do this we use a number of properties
that are listed below.

Let PeT,, Re Ty, and u,v € C(E’) 2 C(Z) (unless otherwise specified) then the following
properties hold for all i < o and j < d(T') = d(T). (We denote the bisimulation relation in T by ~
and in T by ~'.)

(%) T ;FuRpv==%v=¢§

(#) w€eCE)T;Frullv=veCC(E)
(#41) wov€ C\D), T+ uRv =T, F wRv
(iv) ue C(E), T/ FuRpt = T; F Pu
(v) ue C(X),TiF Pu== T/ uRp§
{v1) w,v€C(X), T F uRv=T/F uRu
{vid) ue CE),TiF ~-Pu=T/Fu-Rp
(vii)) we C(E), T/ F u—Rp => T F ~Pu
(iz) ueCE),Titu-R=T/Fu-R
(z) weCE)LTIFu-R=T;Fu-R
(zi) y,vECE) = (u~v <= u~"v)

The proof of (i) follows directly from the definitions of T ; and the deduction rules in D’.

We prove (1) with transfinite induction on i. So suppose that (i) holds for all i < i. We show
the induction step for ¢ with transfinite induction on j. So suppose that it is valid for all j/ < j; we
prove it for j. By definition of 7} ; there isarule & = H'/C' € I¥ as in (4) with C’ = sRt and a closed
substitution ¢ with #(s) = v and o(t) = v. In particular, for all I € L we have U] U U’ Foo(ti Riy).
Since the deduction rules are pure we have that var(t) C var(s)U{y : 1 € L}. So it suﬁices to show
that o(y) € C(E) for all { € L since o(s) € C(X). We denote the set of all 3 by Y. Suppose that
there is an i, € Y with o(y,) € C("") \ C(X). This contradicts the well-foundedness of the rule d’,
for T!, b a(t;n)RIDrr(tn,,) for an &' < i or T} ;i b a(ty,) Rigo(yr,) for a j' < j so with the induction
hypot,heses for i or j we find that (i) € C(E’)\ C(X). Since 11, is a X-term, this must be the result
of a substitution. This can only be due to a variable y, € Y. With induction on the subsubscript we
find an infinite backward chain of edges y, «— y, «— ... in the variable dependency graph of d’.
This concludes the induction step for j so by definition of T we find that (it} holds for i, which
concludes the induction step for 1.

A simple example due to Fokkink [11] shows that for this property the well-foundedness cannot
be missed. Suppose that we have a signature thal consists of a single constant a. We have two rules:
the axiom zRz and the rule zRx/aSz. Clearly, this system is not well-founded. The xenosystem
has the same rules; only the signature is extended with the xenoconstant £. It is easy to see that we
can derive in this new system that aS¢.

We simultaneously verify (iiz)-(z) with transfinite induction on i. Suppose that they hold for
all ¥ < i; we prove them for by verifying the following four properties for all j < d(T") = d{T”)..

u, v € C(L), T,-"j Fultv = T;; F uRv (5)

18

A congruence theorem .. .: 4. The congruence theorem

uECE)T,’J}-uRPE:::>7}jI-Pu (6)

u€C(E),T;; F Pu=T]; F uRp{ (M
uw,v € C(E),Ti; F uRv => T,J FuRv {8)

We prove (5)—(8) with transfinite induction on j, so assume that they are valid for all 7’ < j then we
check them for j.

We begin with equation (5). Let u, v € C(E) and suppose that T} ; - uRv. By definition of T},
thereis a deduction rule d = H'/C' € D' of the form displayed in (4) w1th C' = sRt,s,t € C(T)and’ a
closed substitution ¢ with o(s) = u and o(t) = v. Moreover, we have U;UU] ; I a(skRp* zi), o (L Rayn)
for all £ € K and { € L and we have U/ o(uu~Rp_), 6(va—~Rn) forallm € M andn € N. In
order to use induction we have to know that terms like o(s;), o(3;), ... € C(E). It suffices to show
that o(y) € C(X) for all I € L. With (i) we find for all € L that o(y) € C(X) just like in the proof
of (i). Now we find using (7) and the induction hypotheses on 7 or j that U;UU; ; & o(Pisi), o(tiRiy)
for all k € i and{ € L. We find using the induction hypothesis on i that U; F (=P um), 0(va—Rn)
for all m € M and n € N. The deduction rule d = H/C € D with € = sRi that corresponds with &’
takes the form

{Prsy ke NYu{tyRyle LYUu{-Puup - me M}U{v,~R, n€E N}

= (©)

Define p : V. — C(E) with p(z¢) = z for all £ € K and p(x) = o(x) otherwise; in particular,
we have p(s) = w and p(i) = v. By definition of T;; we find that T;; F ullv; use (3) to see
that S'(uRv) = S(ults).

Equation (6) is treated analogously.

Now we treat equation (7). Let v € C(X) and assume T; ; + Pu. By definition of T;; there
1s a deduction rule d = H/C € D of the form (9) with C = Ps for some s € O(E) and there is
a closed substitution & with o(s) = w and U; UU;; F a(FPysi), o{tiflpn) for all k € K andl € L
and U; & o(~Puup),o(vy—-R,) for all m € M and n € N. Since 0 : V — C(L) we immediately
find with the induction hypotheses on 7 or j that U UU]; + a(sp Rp€),o(tiRyy) for all k € K
and ! € L and U] F olun—-Rp,), o(v,-R,) for all m € M and n € N. Letd = H'/C' € D
be the deduction rule that corresponds with d. It takes the form displayed in (4) with C’ = sRpé.
Define o' : V —s C(X) by ¢/(25) = € for all k € K and o'(z) = o(z) otherwise; note that o'(s)} = u.
Since S(Pu) = S’(uRp{;') use (3)) we find by definition of T} ; that T} ; - uRp¢.

Equation (8) is verified in the same way. Now (5)-{8) are valid for all 7 < d(T}, which implies
that (zi)~(vi) are valid for i. With this we can show that (wii}-(z) also hold for i.

We only treat (i) since the cases (v2ii)-(z) are treated in the same way. Suppose that v € C(E)
and T;—Pu. Suppose thal T/ i/ u~Rp then there is a v’ € C(Z') with T F uRpu’. With (i) we find
that w' = £ so with {iv) flor i we find that T; + Pu, which is a contradict,ion.

This concludes the induction step (on), so (3t1)—(z) are valid for all { < .

Now we verify (zi). Firstly, let u ~ v. Then there is a bisimulation relation B with uBv.
Define B’ = BUA’, with A" = {(,{) : t € C(Z')} the diagonal. We show that B’ is a bisimulation
with uB'v in the new system TY. Clearly, uB'v. Now let sB't. We distinguish two cases: s = ¢
and s # t. We verily that the conditions in definition (4.4) hold for the second case since the first
case is trivial. Since s £ ! we have 5,1 € C(E) and sBt. Since there are no predicates in 7' we only
have to verify both transfer properties of definition (4.4). For each transfer property we have two
cases: R and Rp. Now let R € T; and suppose T3, F sRs' for some s € C(X'). We find with (#)
that s € C(X) and with (#) that Ts + sRs’. Since s8¢ there is a ' € C(T) with Ts F tRY
and s’ Bt’. So we obtain s’ 't and with (v) that T%, + tRt’. The second condition in definition (4.4)
is verified analogously. We check the first condition for Rp. Let P € T, and suppose that 7§, - sRps’
for some &' € C(Z’). We find with (z) that s’ = £. So with (iv) we get Ts Ps. Since sBt we
find Ts - Pt and with (@) that T, - 1Rpé. Clearly € B’£. The second condition in (4.4) is checked
analogously.

Secondly, let w ~' ». Then there is a bisimulation relation B’ containing the pair (u,v). Let
B = B n(C(E) x ((X)). We show that B is a bisimulation with #Bv in the original system T.

19

A congruence theorem ... : 4. The congruence theorem

Since u,v € C(X) we clearly have uBv. Let sBi. We check the conditions of definition (4.4).
Let R € T, and suppose that Ts + sRs' for some s € C(E). With (v) we find T¢ b sRs'.
Since sB’t there is a t' € C(X') with T, + tRt' and §'B't’. With (i) we find t’ € C(X) so s'Bt’.
With (iit) we have Ts - tRt'. The second condition in definition (4.4) is verified analogously. Next,
we show that the last condition of (4.4) from left to right holds. The other direction can be shown
analogously. Let P € T, and suppose that Ts + Ps. With (v) we find T§, F sRp€ so since sB't
there is a ' € C(E') with Tg, tRpt’. With (i) we find t' = £ so with (iv) we find Ts + Pt. This
concludes the proof of {zi).

Now we are in a position to prove the congruence theorem. Let f € % be an n-ary function
symbol. Let u;,v; € C(Z) and w; ~ v; for 1 <7 < n. With (zi) we find u; ~' v forall 1 <i < n.
Since the term deduction system 77 is well-founded stratifiable and in ntyfi/ntyzt format we can
apply the congruence theorem of Groote [14] so f(uy,...,tun) ~' f(v1,...,vs). Since f(uz,...,un)
and f(vi,...,v,) are E-terms we find with (zi) that f(uy,...,us) ~ f(v1,...,va). This concludes
the proof of (4.5).

Corollary (4.6)

Every term deduction system in panth format can be reduced to a transition system specification
in niyft/ntyzt format. If the lerm deduction system is moreover well-founded and stratifiable then
bisimulation equivalence is preserved: two terms are bisimilar in the panth system ifl they arc bisimilar
in the niyfl/ntyzi system.

5. Conclusions and future work

In this paper we presented a syntactical format, the penth format, for structured operational semantics
with predicates and negative premises such that if the rules are stratifiable we have that strong
bisimulation 18 a congruence for all the operators that can be defined within this format. With
operational semantics mostly taken from the literature we showed that our format is useful: the
examples satisfy our format but no formats proposed by others. Moreover, with these examples we
informally explained the notions necessary to use our result thereby showing that it can be easily
applied without scrutinizing the abstract definitions, The examples include issues such as priorities,
termination, convergence, discrete time, recursion, (infinitary) Hennessy-Milner logic, and universal
guantification (in particular, so-called weak predicates).

We will briefly discuss [uture work. Since ithe stratification technique is not always satisfactory
(cf. (3.18)), Bol and Groote [9] proposed the more general reduction technique (for the less general
atyft/ntyzt format). A first possibility for future work could be to use their methods to generalize
our work. A second possibility is to incorporate recursion within our framework as is done for the
GSOS format [8] and De Simone’s format [23]. A third generalization could be to allow universal
guantification in the hypotheses.

Summarizing, we conclude that the penth format is useful, and that our congruence theorem is

practical.

Acknowledgements

Thanks to Jos Baeten, Inge Bethke, Frank de Boer, Roland Bol, Jan Friso Groote, Hans Mulder, and
Frits Vaandrager for valuable comments and interesting discussions.

6. References

(1] L. Aceto, M. lennessy, Termination, deadlock and divergence, Journal of the ACM, 39(1):147-
187, Januarl 1992,

20

2]

[3]

(4]
[5]

(6]
[7]

(8]

[9]

(10]

{11)
f12)
(13]

(14]

[18]

A congruence theorem ...: 6. References

J. C. M. Baeten, J. A. Bergstra, Discrele Time Process Algebra, Proceedings CONCUR. 92,
Stony Brook, LNSC 630, pp. 401-420, Springer-Verlag, 1992.

J. C. M. Baeten, J. A. Bergstra, Process algebra with a zero object, in: J. C. M. Baeten and
J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in
Computer Science, pp. 83-98, Springer-Verlag, 1990.

J. C. M. Baeten, J. A. Bergstra, Processen en Procesezpressies {In Duich), Informatie, 30(3),
pp. 214-222, 1988.

J. C. M. Baeten and C. Verhoef, A congruence theorem for siruciured operational semantics
with predicates, Technical Report CSN 93/05, Eindhoven University of Technology, Eindhoven
1993. Note: to appear in the proceedings of CONCUR’93, Springer LNCS 1993.

J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge Tracts in Theoretical Computer
Science 18, Cambridge University Press, 1990,

J. A. Bergstra, A. Ponse, J. J. van Wamel, Process algebra with backtracking, Report P9306,
Programming Resecarch Group, University of Amsterdam, 1993. Note: to appear in the pro-
ceedings of the REX workshop 1993, LNCS, Springer-Verlag.

B. Bloom, S. Istrail, and A. R. Meyer, Bisvnulation can’t be traced: preliminary report, In:
Proceedings 1544 ACM Symposium on Principles of Programming Languages, San Diego, Cal-
ifornia, pp. 229-239, 1988.

R. N. Bol and 1. F. Groote, The meaning of negalive premises in transition sysiem specificalions,
Report C5-R9054, CWI, Amsterdam, 1990 An extended abstract appeared in J. Leach Albert,
B. Monien, and M. Rodriguez Artalejo, editors, Proceedings 18th ICALP, Madrid, LNSC 510,
pp. 481-494, 1991

T. Bolognesi and F. Lucidi, Timed process algebras with urgeni interactions and a unique pow-
erful binary operator, In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors, Proceedings of the REX Workshop ”Real-time: Theory in Practice”, LNCS 600, pp.
124-148, 1992.

W. J. Fokkink, personal communicafion, January 1993.

W. J. Fokkink, The tyfi/iyzt format reduces to iree rules, In preparation.

R. J. van Glabbeek, Bounded nondeterminism and the approzimalion induction principle in
process algebra, In: Proceedings STACS 87 (F. J. Brandenburg, G. Vidal-Naquet, M. Wirsing,
eds.), Lecture Notes in Computer Scienee 247, Springer Verlag, pp. 336-347, 1987,

J. F. Groote, Transilion system specificalions with negalive premises, Report CS-R8950, CWI,
Amsterdam, 1989. An extended abstract appeared in J. C. M. Baeten and J. W. Klop, editors,
Proceedings CONCUR 90, Amsterdam, LNCS 4538, pp. 332-341, Springer-Verlag, 1990,

J. F. Groote and . W. Vaandrager, Structured operational semantics and bisimulation as a
congruence, Information and Computation 100(2), pp. 202-260, 1992.

M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, JACM 32(1),
pp. 137-161.

A. S. Klusener, Completeness in real timne process algebra, Technical Report C5-R9106, CWI,
Amsterdam, 1991. An extended abstract appeared in J. C. M. Baeten and J. F. Groote, editors,
Proceedings CONCUR 61, Amsterdam, volume 527 of Lecture Notes in Computer Science, pp.
376-392, 1991.

K. G. Larsen, Modal Specifications, Technical Report R89-09, Institute for Electronic Systems,
The University of Aalborg, 1989.

21

A congruence theorem . ..: 6. References

(19] K. G. Larsen, A. Skou, Compositional Verification of Probabilistic Processes, in: W. R. Cleave-
land, editor, Proceedings CONCUR 92, Stony Brook, volume 630 of Lecture Notes in Computer
Science, pp. 456-471, Springer-Verlag, 1992.

[20] F. Moller and C. Tofts, A Temporal Calculus of Communicaling Systems, in: J. C. M. Baeten
and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes
in Computer Science, pp. 401-415 Springer-Verlag, 1990.

[21] D. M. R. Park, Concurrency and automata on infinite sequences, In P. Duessen (ed.) 3th GI
Conference volume 104 of Lecture Notes in Computer Science, pp. 167-183, Springer-Verlag,
1981,

[22] G.D. Plotkin, A siructural approach to operational semantics, Report DAIMI FN-19, Computer
Science Department, Aarhus University, 1981.

[23] R. de Simone, Higher-level synchronising devices in MEIJE-SCCS, Theoretical Computer Sci-
ence 37, pp. 245-267, 1985.

[24] F. W. Vaandrager, personal communicaiion, April 1993.

22

In this series appeared:

91/01

91/02

91/03

91/04

91/05
91/06
91/07

91/08
91/09
91/10

91/11

91/12

91/13

91/14

91/15

91/16

91/17

D. Alstein

R.P. Nederpelt
H.CM. de Swart

J.P. Katoen

L.A .M. Schoenmakers

E. v.d. Sluis
A.F. v.d. Stappen

D. de Reus
K.M. van Hee

E.Poll

H. Schepers
W.M.P.v.d.Aalst

R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans

J. van der Woude

E. van der Sluis

F. Rietman

P. Lemmens
A.T.M. Aerts .
K.M. van Hee

A.JJ.M. Marcelis

A.TM. Aens
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A sutvey of the different logical analyses
"if...,then...", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.
SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.
Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12,

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18

91/19

91720

9121

91722

91723

91/24

91725

91726

91227

91728

91729

91/30

91/31

91/32

91/33

91/34

91/35

Rik van Geldrop
Erik Poll

A.T Eiben

R.. Schuwer

J. Coenen

W.-P, de Roever

J.Zwiers

G. Wolf

K.M. van Hee
L.J. Somers
M. Voorhoeve

A.TM. Aerts
D. de Reus

P. Zhou

J. Hooman
R. Kuiper
P. de Bra
(G.]. Houben
J. Paredaens

F. de Boer
C. Palamidessi

F. de Boer
H. Ten Eikelder
R. van Geldrop

J.C.M. Baeten
F.W. Vaandrager
H. ten Eikelder
P. Struik

W. v.d. Aalst

J. Coenen

F.S. de Boer
J.W. Klop
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Syste.us, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26. :

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for desigﬁing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15

Asynchronous communication in process algebra, p. 20.

92/01

92/02

92/03

92/04

92/05
92/06

92/07
92/08

92/09
92/10
92/11

92/12
92/13
92/14

92/15

92/16

92/17

92/18

92/19

92/20
92721

J. Coenen
J. Zwiers
W.-P. de Roever

J. Coenen
J. Hooman

J.C.M. Baeten
J.A. Bergstra

J.P.H.W.v.d.Eijnde

LP.H.W.v.d.Eijnde

J.C.M. Baeten
J.A. Bergstra

R.P. Nederpelt

R.P. Nederpelt
F. Kamareddine

R.C. Backhouse
P.M.P. Rambags

R.C. Backhouse
J.S.C.P.v.d. Woude

F. Kamareddine
F. Kamareddine
J.C.M. Baeten

F. Kamareddine

R.R. Seljée

W.M.P. van der Aalst

R.Nederpelt
F. Kamareddine

J.C.M.Baeten

J.A Bergstra
S.A.Smolka
F.Kamareddine

F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18,

Real space process algebra, p. 42.

Program derivation in acyclic graphs and relaied
probiems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshali/Floyd path algorithm, p. 14.
Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.
Set theory and nominalisation, Part II, p.22.
The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.
Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92722

92/23

92/24

92/25

92/26

92/27

93/01

93/02

93/03

93/04

93/05

93/06
93/07
93/08

93/09

93/10

93/11

93/12

93/13

R. Nederpelt
F.Kamareddine

F.Kamareddine
E.Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poll
T.H.W.Beclen
W.J.1.Stut
P.A.C.Verkoulen

B. Watson
G. Zwaan

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.H.L. Aarts
JH.M. Korst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp
P.D. Moerland

J. Verhoosel

K.M. van Hee

K.M, van Hee

K.M, van Hee

K.M. van Hee

K.M. van Hee

A useful lambda notation, p. 17,

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p. 33.

A Programming Logic for Fo, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,

p. 50.

Deriving the Aho-Corasick algorithms: a case swudy into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner’s Dilemma, p. 17
Quickson for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDQS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II; Frameworks, p. 44,

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part 1V: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22

92/23

92/24

92125

92/26

92127

93/01

93/02

93/03

93/04

93/05

93/06
93/07
93/08

93/09

93/10

93/11

93/12

93/13

93/14

R. Nederpelt
F.Kamareddine

F.Kamareddine
E.Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poll
T.H.W.Beelen
W.J.J Stut
P.A.C.Verkoulen

B. Watson
G. Zwaan

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.HL. Aarts
JHM. Korst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

LP. Veltkamp
P.D. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
LA, Bergstra

A useful lambda notation, p. 17.
Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p.- 33.

A Programming Logic for Fw, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,

p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner’s Dilemma, p. 17
Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78,

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDOQS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 J.C.M. Bacten

93/16

9317

J.A. Bergstra
R.N. Bol

H. Schepers
J. Evoman

D. Alstein
P. van der Stok

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 15

	Abstract
	1. Introduction
	2. Aplications
	3. Term deduction systems
	4. The congruence theorem
	5. Conclusions and future work
	6. References

