
 

A congruence theorem for structured operational semantics
with predicates and negative premises
Citation for published version (APA):
Verhoef, C. (1993). A congruence theorem for structured operational semantics with predicates and negative
premises. (Computing science notes; Vol. 9318). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/47eda78e-d9e8-4e8b-9458-795b8be20eea


Eindhoven University of Technology 

Department of Mathematics and Computing Science 

A congruence theorem for structured operational 
semantics with predicates and negative premises 

by 

C. Verhoef 

Computing Science Note 93/18 
Eindhoven, June 1993 

93/18 



COMPUTING SCIENCE NOTES 

This is a series of notes of the Computing 
Science Section of the Department of 
Mathematics and Computing Science 
Eindhoven University of Technology. 
Since many of these notes are preliminary 
versions or may be published elsewhere, they 
have a limited distribution only and are not 
for review. 
Copies of these notes are available from the 
author. 

Copies can be ordered from: 
Mrs. M. Philips 
Eindhoven University of Technology 
Department of Mathematics and Computing Science 
P.O. Box 513 
5600 MB EINDHOVEN 
The Netherlands 
ISSN 0926-4515 

All rights reserved 
editors: prof.dr.M.Rem 

prof.dr.K.M.van Hee. 



A congruence theorem for structured operational 
semantics with predicates and negative premises 

C. VERHOEF 

Department 0/ Mathematics and Computing Science 

Eindhoven University 0/ Technology 

P.O. Box 513,5600 MB Eindhoven, The Netherlands 

e-mail: chrisv@win.tue.nl 

ABSTRACT. We proposed a syntactic format, the panth format, for structured oper

ational semantics in which besides ordinary transitions also predicates, negated predi

cates, and negat.ed transitions may occur such that if the rules are stratifiable strong 

bisimulation equivalence is a cOllgruence for all the operators that can be defined within 

the panik format.. To show that this format is useful we took soltle examples from the 

literature satisfying the panih format but no formats proposed by others. The examples 

touch upon issnes such as priorities, termina.tion, convergence, discrete time, recursion, 

(infinitary) Hennessy-Milner logic, and universal quantification. 

Collation: pp. 22, ill. 2, tab. 7, ref. 24. 

Key Words &. Phrases: structured operational semantics. term deduction system. transition sys

tem specification. strong bisimulation. congruence theorem. predicate. negative premise. negated 
predicate. stratifiable. stratification. 

1980 Mathematics Subject Classification (1985 Revision): 68Q05.68Q55. 
CR Categories: 0.3.1. F.1.1. F.3.2. FA. 3. 

Note: Full support received from the European Communities under CONCUR 2. BRA 7166. 

1 



A congruence theorem . .. : 1. Introduction 

1. Introduction 

In recent years, it has become a standard method to provide process algebras, process calculi, and 

proj\ramming and specifieal,ion l"nguRges with .n operational semantics in t.he sl,yle of Plotkin [22], 

As" colisequence, the Plot.kill style rules themselves oeca.lle all object ur "".card .. A 11111111"" of 00-

called formats were proposed; a format is a syntactical constraint on the form of the rules. A central 

issue in the area of structured operational semantics is to define formats ensuring that some important 

property holds, for instance, that strong bisimulation equivalence is a congruence relation. Of course, 

we want such a format to be as general as possible. 

/ 

/ 
/ 

/ 

7ltyft/ntyxt 

panth 

" " , , , , 
path 

/~/ 
GSOS tyft/tyxt 

~/ 
positive GSOS 

1 
De Simone format 

Figure 1, The lattice of formats 

In this way a whole latt,ice of formats Came into being, We depict this lattice in figure L An 

arrow from one format to anot,her indicates that all operators definable in the first format can also 

be defined in the second one, If there are no arrows connecting two formats they are (syntactically) 
incomparable. The most. bflsic format originat.es from De Simone [23]. Yet it is already powerful 

enough to define all the usual operators of, for instance, CCS or ACP, The GSOS format of Bloom, 

Istrail and Meyer [8] allows negative premises but no lookahead and the tyft/tyxt format of Groote 

and Vaandrager [IS] allows lookahead but no negative premises, They both generalize the format of 

De Simone, The positive GSOS format is, so the speak, the greatest common divisor of the GSOS 

and the tyft/tyxt format. The ntyft/71tyxt format of Groote [14] is, in fact, the least common multiple 

of the tyfi/tyxt format and the GSOS format: it allows both lookahead and negative premises, The 

path format of Daetell alld Verhoef [S] generalizes I,he ty/l/tyxt format wil,h predicates; path format, 

stands for "pre~icat.cs and ly/I/lyxl hylH'id forllla!,". III t.his paper we discuss the pauth fOrillat, which 

stands for "predicates and ntyfl/ntyxt hybrid format,", The dashed arrows in figure 1 point to it, We 

will not give the definit.ions of all the formats in the lattice except the defll1itions of the four formats 

in the upper diamond. 

The main result of this paper is a congruence theorem stating that if a so-called term deduction 

system satisfies the l1anth format and is stratifiable then strong bisimulation is a congruence for all 

the operators that can be defined within the format. First, we will briefly explain the italics. A 

term deduction system is a generalization of a transition system specification [IS]: it allows not 

only transitions but also (unary) predicates on stat.es. The panth format is a syntactical constraint 

on a term deduction system; still we may simultaneously use transitions and predicates and their 

negations in the premises and, the conclusion may be either a transition or a predicate. A term 

2 



A congruence theorem . .. : 1. Introduction 

deduction system is stratifiable if the complexity of the conclusion of each rule is greater than the 

complexity of its premises. This notion is based on Groote [14]. Strong bisimulation is based on 

Park [21] but we require also that bisimilar processes satisfy the same predicates; cf. [S]. Now that 

we have an idea of the significant notions occurring in the main result we briefly discuss its proof. 

Baeten and Verhoef [S] already conjectured that this result could be proved in the same way as 

their congruence theorem for the path format. Indeed, this turns out to be the case: we code each 

predicate as a binary relation and we apply the congruence theorem of Groote [14] to the coded 

system. Consequently, all the operators that can be defined in the panth format can also be defined 

in Groote's ntyfi/ntyxt format. This observation might give rise to the question if there is need for 

the panth format at all. In the following, we will motivate the need for this new format. 

An advantage of the panth format is that it provides more syntactic freedom than other formats 

for defining rules since we can use transitions and predicates and negations of both) whereas in 

other formats we either have predicates but no negative antecedents or negative antecedents but no 

predicates. This is not just a theoretical advantage since there are examples of such operational 

semantics in the literature in which the combination of transitions and predicates with negative 

transitions and/or negat.ed predicates occurs. We will sketch this in the next paragraph. 

In the literature we see more and more that operational rules in the style of Plotkin are deco

rated with ext.ra predicat,es 011 states t.o express matters like (un)successful termination) convergence) 

divergence [1], enabled ness [7], maximal delay, side condit.ions [20], etc. Baeten and Verhoef give 

many examples of this kind of decorat.ed transition rules in their paper on the path format [S] 

thereby showing that. there is a need for a general format describing such decorated rules. Another 

phenomenon that we see in the literature is the use of negative antecedents in rules defining the 

operational semantics. We mention negative antecedents to operationally describe deadlock detec

tion [18], sequencing [8], priorit.ies [4] probabilist.ic behaviour [19], urgency [10], and various real [17] 

and discrete time [2] set.t.ings. Now it will not. be very surprising that t.here are also hybrid rules using 

both decorations and negative antecedeuts (we will treat some of them in the applications). This 

is where the panth format comes into play) since these hybrid rules quite often turn out to satisfy 

the panth format and are st.ratifiable. Now the advantage is that. we immediately have that strong 

bisimulation is a congrnence for all the operators defined in this way) which is very practical in niany 

cases. 

The above advant,age is not only of practical value but also of intuitive value since encoding rules 

to fit one of the known formats in order to get, congruenceness in return often contraindicates the 

intuitive character of the original rules. Another disadvant.age of such a coding trick is that there now 

are two transition syst.ems that have to be shown equivalent. A fast solution to the latter problem 

is to throwaway t.he original transition system, which is inadvisable in our opinion. In fact, many 

people prefer to use their own rules rat.her t.han encoded rules (that. t.he reader has to decode) and 

choose to verify t.he congruence propert,y without a general congruence t.heorem. We think that our 

panth format is very user-friendly in the sense t.hat people immediately can apply ollr congruence 

result. to their own rules inst.ead of first. having to become coding experts. 

There are also t.heoret.ical advantages to adding predicates to known formats. For instance, 

Baeten and Verhoef observe t.hat some negat.ive antecedents can be expressed positively using pred

icates and pose the question which negat.ive premises can be written positively with predicates. 

Vaandrager gives a partial answer: for any GSOS system there exists an equivalent positive GSOS 

system over the same language) extended wit.h positive predicates. Vaandrager and Verhoef proved 

on a scratch paper that this result. extends t.o the infinite case. However) in this paper we do not 

dive into these theoretical issues. 

Now that. we have given some mot.ivat.ion for t.his paper we discuss t,he organization of it ill the 

remainder of t.his sectioll. The paper consists of two parts: a practical and a t.heoret.ical part. This 

is due to the fact t.hat we pursue two communicative targets. The first. target is that we want to 

give rules of thumb accompanied wit.h instructive examples for readers merely interested in applying 

our congruence theorem. The second target is to formally treat our theory and prove the congruence 

theorem; this part. is for readers more interested in the theoretical side of this paper. We did not 

3 



A congruence theorem . .. : 1. Intmduction 

choose for a chronological ordering of our paper. In section 2 we start with the end: namely the 

applications. At first sight this may seem a bit unlogical but there are good reasons for this ordering. 

An important reason advocat,ing this ordering is that (uninitiated) readers can see that it is not 

at all necessary to go through all the theory to be able to apply the congruence theorem and that 

mostly a few simple rules of thumb will do. Another reason justifying this ordering is that the area 

of application is operational semantics. Operational rules often are easy to read and, moreover, they 

can be understood without the theoretical part. The last and maybe most important reason for 

this ordering is that the reader immediately can see if his or her operational semantics has a good 

change to fit our format. If t.his is the case t.he t.ime has come to read on and enter the theoretical 

part of this paper. An addit.ional advantage is that those readers already have a good impression 

of the notions that will be made precise in the second part. This part starts in section 3 where 

the notions stratifiable and term deduction system are made precise. Also in this section we do our 

very best not to loose the reader by interspersing a running example among the abstract definitions. 

Following Groote [14] we show that stratifiability is a sufficient condition on a term deduction system 

to guarantee that there exist.s a transition relation that agrees with it. In section 4, we define the 

pantk forma.t and t.he HOt.iOH of st.rong bisimulation in the presence of predicates on states. Then 

we state and prove our main result.: the congruence theorem. The last section contains concluding 

remarks and discusses future work. 

2. Applica' ions 

In this section we give some examples that we (most.ly) took from the literature. These examples turn 

out to satisfy the panth format. and are stratifiable but do not satisfy formats earlier proposed. With 

the aid of our congruence t.heorem we then find t.hat, strong bisimulatioll is a congruence. The exam

ples include issues such as priorities, t.erminatioll, c.onvergence, discrete t.ime, recursion, (infinitary) 

Hennessy-Milner logic, and universal quantification (in particular, so-called weak predicates). 

We use the first example to informally define the significant notions: the pantk format and 

stratifiability. 

Pl'ior'ities 

The first example is an operational semantics of a basic process algebra with priorities BPAe that 

originates from Baeten and Bergstra [4]; it can also be found in Baeten and Weijland [6]. In this 

language we have alternative and sequential composition and a priority operator (denoted +, " and (J 

resp.) and a set A of atomic actions. There is also a partial ordering < on the set of atomic actions 

to express priorities. For instance, if a < band band c are not related we have 8(a + b) = b 

and 8(b + c) = b + c. We list. the operational semantics of BPA, in table 1. This operational 

semantics is a small one; st.ill it, contains besides transitions also (post.fix) predicates ·~V and both 

their negations. So this example is particularly suit.able to informally introduce our panih format. 

",...!!....J 

",+y...!!....J 

x...!!....J 
a 

xy-y 

X~J:I 

J: + lI...!!....J:' 

y...!!....J 

x+y...!!....J 

x...!!....x', {x4,x4JIb>a) 
O(x)...!!....O(x') 

a , 
!/-y 

J:+y~yl 

X~XI 

a , 
xy~xy 

x...!!....J, {x4,x4JI b> a) 
O(x)...!!....J 

Table 1. A Transit.ion system for BPA,. 

There are two condit.ions that must hold for a transition system before we can apply our con

gruence theorem. They are t.hat. t.he rules have t.o be in pa7l.ih format and that the system has to be 

stratifiable. We first list the conditions for the panth format. 

4 



A congruence theorem . .. ,' 2. Application, 

Check for each rule the following. All the transitions in the premises must end in distinct 

variables; denote this set. by Y. If the conclusion is a transition t~t' then either t = :c for a 

variable z rt Y or t = !(Xl, ... ,Xn ) with Xl, .•. ,:tn distinct variables not occurring in Y. If the 

conclusion is of the form Pt then we treat t as above. Of course, f is an n-ary function symbol. 

Now it is easy to verify that the rules of table 1 are in panlh format but it will be even more 

easy if we also list the things that we do not have to worry about. 

There is no restriction on the number of premises. There is also no restriction on terms occurring 

in predicates, negat.ed predicates, and negated transitions in the premises. There is no restriction 

on a term occurring in the left-hand side of a transition in a premise or in the right-hand side of a 

conclusion. 

As an example we treat the last but one rule of table 1. There is just one positive transition 

ending in a variable :I:', for the negated predicates and negative transitions there is nothing to check, 

since there are no restrict.ions on their terms. The conclusion begins with a term of the form f(x) 
and x 1= x'. SO this rule is in panth format. The other rules are treated likewise. 

Now we give the rules of thumb for the stratifiability. This condition is a bit more involved: 

we have to define a map, called a stratification, for which two condit.ions must. hold for each rule 

instantiated with closed terms. If a st.ratification exist.s for a set, of mil'S we call this set st.rat.ifiable. 

Roughly, a rule is strat.ifiable if the complexity of the conclusion is greater than the complexity of 

its premises. This complexity is measured with a stratification. The arguments that a stratification 

takes are positive transit.ions and predicat.es; we call them positive formulas. A stratification measures 

the complexit.y of it.s argument.s in terms of numbers, so it. ranges over numbers. To express that 

the complexit.y of t.he conclusion may not exceed the complexity of the premises we also have the 

following two condit.ions on a st.rat.ificat.ion 5 for every rule inst.antiated with closed terms. Let c 

be the conclusion of a dosed inst.antiat.ion of a rule and let h be a positive premise of it,. Then 

we want. that. S(h) ~ S(c). Now we t.reat. the negat.ive antecedent.s. Since 5 is only defined on 

positive formulas we have t.o t,urn t.he negat.ive formulas into posit.ive ones. There are two cases: first 

let 1--74 be a closed illst.allt.iat.ion of a negat.ive transition. Then we want that 5(t-'!....s) < 5(c) for 

all closed terms s. Secondly, let. ,Pt be a closed inst.ant.iat.ion of a negat.ed predicate P then we want 

that 5(PI) < 5(c). 

Next, we will give a recipe for finding a stratification. In most cases we can find a stratification 

(for which the t.wo condit.ions hold) by measuring t.he complexity of a positive formula in terms of 

counting a particular symbol occurring in the conclusion of a rule with negative antecedents. 

As an example we give a st.ratification for the rules in t.able 1. The rules containing negative 

antecedents have in t.heir conclusion a B. We define a map that counts the number of O's as follows: 

let I be a closed terlll wit.h n occurrences of O's then 5(I-'!....s) = 5(1-'!....";) = 11. Now we cherk the 

two conditions rol' j,iw I<-\.'"t, but. one rule. Replace each x and ;1:' by closed t.erllls t and t'. Sin(,l' the 

number of B's occurring ill O(t) is one great.er t.han the number of B's occurring in t we are done. The 

other rules are equally sirnple. 

Te1'mination (lnd convergence 

The next example is an operational semant.ics originating from Acet.o and Hennessy [1]. It is an 

operational semantics of a CCS like pro(',ess algebra extended with a sllccessful termination predicate 

and a convergence predicate. Their approach is t.o first. induct.ively define both predicates and then· 

define the t.ransit.ion relat.ion using one of t.he predicates. In this semantics they use a negative 

premise to express unsuccessful termination. Baeten and Verhoef [51 showed that this operational 

semantics can be writ,t.en posit.ively by explicitly defining a third unsuccessful termination predicat.e. 

This approach is somet,imes* less work t.han our approach, which is finding a stratification. In table 2 

we list the rules for t.ht' (post.fix denot.ed) t.ermination predicaj,e v. 
With the aid of t.his predicat.e Acet.o and Hennessy inductively define t.heir convergence predi

cate !; we list their rules in table 3. Note t.he negative premise in the last rule. 

Finally, Acet.o and Hennessy give the rules for the non-deterministic choice +, the sequential 

composit.ion ;, t.he parallel composit.ion I. t.he binding construct.or TEcr. _, and the encapsulation 

* Especially when only t.he negated predicat.e is important. See, for inst.ance, [3] or [7]. 

5 



A congruence theorem . . . : 2. Applications 

nilv' 

xv', vv' 

(x I y)v' 

xv', vv' 

(x + y)v' 

xv' 

xv', vv' 

(x; y)v' 

t[recx.tfxJv' 

recx.tJ 

Table 2. The rules of Aceto and Hennessy for the v'. 

6 j 

x! 
o//(x) j 

x I. y j 

(x I y) j 

nil j 

t[recx. tfxJ ! 
recx. t 1 

xv', y ! 
(x; y) ! 

I' 1.1' E Act, 

x I. y j 

(x + y) j 

,(xy') , x ! 
(x; y) ! 

Table 3. The rules for 1. 

operator all (.). We treat recursion in the same way as Groote and Vaandrager [1SJ by adding 

process names recx. t to the signature for each t E O(E) to obtain that the recursion rules fit our 

format (we will do this in more detail in an example later on; see table 6). However, it would be a 

better idea to incorporat.e recursion wit.hin our format as is done for the GSOS format [8J and De 

Simone's format [23J. 

,. , 
x~x xLx' x~x, 

x +yL.x' y+x.....!!......;,x' x;yL.x';y 

xJ,y~y' xLx' xL-x' 

x;Y~lI' x I y..L x' I y y I x..Ly I x' 

x~x',y~y' xLx' t[recx. tfxJ"'!:"'x' 

x I y..2..a:' I y' 011 (x)...!:...o//(x') ,I' rt H recx.tLx' 

Table 4. The act.ion relations for each Jl E Act T . 

It is easy to see that. t.he operat,ional semantics consisting of the rules in tables 2-4 satisfy the 

panth format.. We will give a st.rat.ification. We already explained that t.he first. thing to do is to look 

at the rules with negat.ive antecedents. In this case their is just one such rule. In the conclusion we 

see the symbol j. Define a map S t.hat counts t.he number of j's occurring in a positive formula. It 

is easy to see that this map is a stratification. We check the two conditions for the negative rule. 

Replace each x and 11 by dosed I.erms t and s respectively. Since S(ty') = a < 1 = S((t; s) !) the 

negative condition holds. For 1.1", posil.ive condil.ioll we have S(_ !) = 1 ::; 1 = S((I; s) J). The other 

rules are also very simple. 

Aceto and Hennessy are int.erested in rooted weak bisimulation instead of strong bisimulation, so 

our theorem will not direct.ly apply to t.heir sit.uation. However, Baeten and Verhoef [SJ show for an 

operational semantics of Van Glabbeek [13] for ACP wit.h abstraction that rooted weak bisimulation 

is a congruence with the aid of their congruence theorem for strong bisimulation. We leave as an 

open problem whether a similar trick call also be applied for the CCS like process algebra of Aceto 

and Hennessy. 

Disaei.e time 

The next example is an operat.ional semantics of Baeten and Bergstra [2] describing a basic process 

algebra with relative discret.e time. In table 5 we list. their rules. The!! stands for the action a in the 

current time slice and (T d stands for the discret.e t.ime unit delay. It 18 easy to see that the rules of 

table 5 satisfy the pallt" formal .. Baeten and Bergstra apply a coding trick to obtain that their rules 

6 



A congruence theorem . .. : 2. Application. 

o I q I 
X----.X , y __ y 

x + y.....!!.....x' + y' 

u , 
x~x 

xy.....!!.....x'y 

x~x' 

x+y~x'~y+x 

q I --.!!L x __ x,y~ 

Table 5. BPA with discrete time. 

satisfy the ntyft/ntyxt format of Groote and give a stratification 5 with S(t~t') = n if the number 

of function symbols of t equals n. If we just add S(t~v'l = n with the number of function symbols 

of t equals n (and not encode the rules) we are done. Baeten and Bergstra still have to show that 

their transition system is equivalent to the encoded system. 

(txIE)~y 

(XIE)~y 

(txIE)~y 

(XIE)~y 

(txIE)~V 

(XIE)~V 

(txIE)~V 

(XIE)~V 

Table 6. Recursion rules for BPA with discrete time. 

Di~r;C7'ete time and recursion 

We extend the above operational semantics with rules concerning recursion. The resulting example 

will be particularly interesting, since it deepens our insight in the notion of a stratification. Before 

we continue, we briefly explain some recursion t.erminology. We extend the signature with a set of 

process names with t.ypical elements X, Y, Z, .... A recursive specification E over a set V of process 

names is a set of equations of the form X = t such that t is a closed term that may only contain 

guarded occurrences of process names in V and X E V. An occurrence of a process name in a term is 

guarded if it occurs in a. subt.erm of t.he form a· s or O'd(S), The intention of a recursive specification 

is to (uniquely) specify t.he behaviour of infinit.e processes. The guardedness demand is to exclude 

specifications that specify more than one process like X = X. 
Now (XIE) denot.es the X component of a. solution of the recursive specification E. The ex

pression (tx IE) is s\Jort.-hand for the right-hand side of the equation belonging to X with every 

process name Y replaced by (YIE). SO, for example, if E = {X = aX + O"d(X)) the expres

sion (aX + 17d(X)IE) is short-hand for a(XIE) + O"d«XIE)). It. is easy to see with the rules of 

tables 5 and 6 that. (XIE)~(XIE) and (XIE)~(XIE). 

Our recipe for finding a stratification was t.o count a particular symbol occurring in the conclusion 

of a rule with a negat.ive premise. In this ca .. '·;e it is the + symbol. Since there can be any finite number 

of + symbols in t.he premise of a recursion rule whereas in it.s conclusion there is not a single + symbol 

our approach no longer works; so a fort.iori t.he stratification of Baeten and Bergstra will not work. 

We solve this by assigning to these dangerous conclusions the ordinal number w = woo Define a 

stratification S as follows. Let. n be the number of unguarded occurrences of process names in t and 

let m be the number of + symbols t.hat occllr in t. Let S(t~t') = S(t~v'l = w . n + m with" 

either a or (1. Now it. is not hard to check that the two conditions hold for S. As an example, we 

check a recursion rule: S( (tx IE)~y) = w . a + m, since we have forbidden unguarded occurrences 

in right-hand sides. Now S( (XIE)~y) = w . 1 + O. The other rilles are also simple. 

The reader can easily see that S could be chosen more minimal: it suffices to define S only on 0'

transitions and let. S(t~t') = O. However, t.he above stratification also works for all the extensions 

that Baeten and Rergst.ra discuss in t.heir paper whereas the minimal version only works for this 

example. So for all t.heir ext.ensions we have t.hat. bisimulation equivalence is a congruence. 

The ahove re('.ul'sioll problem also arises if we add recursion t.o our first. example concerning 

priorities. Fortunately, it can be solved in t.he same way; for more information on the combination 

of priorities and recllrsion we refer to Groot.e [14J. In fact, we did not have this problem with the 

example of Aceto a.nd Hennessy since we t.here counted the symbol 1. This illustrates that it is wise 

7 



A congruence theorem, , .: 2. Applications 

not to count too much. For, if we had counted all function symbols w.e immediately ran into the 

above recursion problem. 

Hennessy-Milner logic 

The next example concerning Hennessy-Milner logic (16) is due to Frits Vaandrager (24). This 

example shows the expressive power of the panth format. The set of Hennessy-Milner logic formulas 

over a given alphabet A = {a, b, . .. } is given by the following grammar: 'P ::= TI'P 1\ 'P1(a)'PI~'P' 

Suppose that we have a positive transition syst.em specification, in say tyjt/tyxt format, defining 

transition relations ~ for each a E A. With the four simple rules in table 7 we can define the 

satisfaction relation 1= within the panth format by defining postfix predicates -1= 'P for all formulas 'P. 

With the aid of the fundamental result of Hennessy and Milner saying that two processes are 

bisimilar if and only if they satisfy the same Hennessy-Milner logic formulas we also have that this 

extension does not change the definition of bisimulation in the presence of the satisfaction predicates . 

xl=T 
.x~x', .x' F= 'P 

x 1= (a)'P 

x 1= 'P, x 1= ,p 

xl='Pl\,p 

Table 7. The satisfaction relat,ioll 1= as postfix predicates - 1= 'P' 

Let S be a st.ratificatioll given by S(t~/.') = 0 and S(I 1= 'P) = n (I., I.' E G(E)) with n the 

number of " symbols occurring in 'P. It is easy to see that the rules of table 7 together with our 

positive operational semantics defining .~. satisfy the panth format and that they are stratifiable. 

We can do the same wit.h infinitary Hennessy-Milner logic formulas. Only the third rule of 

table 7 changes to the following rule (I is an index set of arbitrary cardinality) 

{x 1= 'Pi : i E I} 

x 1= 1\ 'Pi 
iE/ 

It is easy to see that this rule satisfies t.he panth. format.. We have to be careful with our choice of a 

st.ratification. The above one will no longer work, since the addition of ordinals is not commutative. 

The stratification t.hat. we now need measures maximal nest.ing of ..., symbols wit.hin a formula. For 

instance S(x 1= ~T 1\ ~~T) = 2. We indllct.ively define S on the postfix predicates -1= 'P: 

S(x 1= '/') = 0, S(" 1= (")'P) = S(x 1= 'P), 

S(x 1= 1\ 'Pi) = Slip S(x 1= 'P;), S(x 1= ~'P) = S(x 1= 'P) + 1. 
iE/ iEI 

Note that this stratification also works for the finite case. 

Universal 'J1tanlifical.ion 

Some predicates that we fiud in the literature arc defined with a universal quantifier in their hypothe

ses. The purpose of t.his last. example is t.o show t.he expressive power of t.he panth format by showing 

that it is often possible t.o define sllch predicat.es wit.hin our format. We illust.rate t.his with the weak 

terminat.ion predicat.e J' of Acet.o and Hennessy [1]. A process p is weakly terminating (p.J) if for 

all q that cannot. perform any silent. moves but. al'e reac.hable from p wit.h only (zero or more) silent 

steps we have t.hat. qJ; sec t.able 2 for t.he t.ermination predicate J. Or in a Plot.kin style rule: 

Vq :p..!...q,q+ ==} qJ 

pJ' 

Clearly, this rule does not. fit. our format.. This is due t.o the fact that our format is of an existentional 

lIature. However I the combinat.ion of an exist.ent.ional quant.ifier and negat.ion leads to a universal 

quantifier. Wit.h t.his we call define t.he weak t.erminat.ion predicate" of Acet.o and Hennessy within 

8 



A congruence theorem . .. : 9. Term deduction 6116tem6 

our format. We mention that p-.!......q means that p evolves into q by performing zero or more silent 

actions, which can be easily defined within our format. We need an auxiliary predicate to define the 

weak termination predicate. The first rule below defines this auxiliary predicate which holds if the 

negation of the hypothesis of the above rule holds. The second rule defines the weak termination 

predicate by simply negating the auxiliary predicate. 

We can find a stratificat.ion with a cumulative application of our recipe: count t.he number of .,/ sym

bols plus two times the number of " symbols in a positive formula. 

In this way we can also define Aceto and Hennessy's weak convergence predicate and its param

eterized version (and the resulting operational semantics is stratifiable). We recall that Aceto and 

Hennessy are interested in rooted weak bisimulation instead of strong bisimulation. Moreover, we 

think it would be a bet.t.er idea to study a format that allows universal quantification. 

3. Term deduction systems 

The examples that. we discussed in section 2 ('I.re term deduction systems. In this section we will 

define this notion, which generalizes the concept of a transit.ion system specification [15]. We will 

also define the notion of stratifiability, which is due to Groote [14J. Following Groote, we prove that 

being stratifiable is a sufficient condition to define a transition relation in the presence of predicates 

and negative ant.ecedents. We intersperse a running example among the abstract definitions so that 

the reader immediat.ely has a concrete idea about them. 

Before we continue with the definitions we will list some preliminaries for completeness sake. 

We assume that. we have an infinite set V of variables with typical element.s x, V, z, .... A (single 

sorted) signat.ure E is a set of function symbols together with t.heir arity. If the arity of a function 

symbol fEE is zero we say t.hat f is a constant. symbol. We restrict ourselves to signatures that 

contain at least. one const.ant. symbol. The notion of a term (over E) is defined as expected: x E V 

is a term; if t 1 , ... , tn are terms and if fEE is n-ary then J(t 1 , . .. 1 tn) is a term. A term is also 

called an open term; if it. contains no variables we call it closed. We denote the set. of closed terms 

by G(E) and the set of open t.erms by OlE) (not.e that a closed term is also open). We also want to 

speak about the variables occurring in t.erms: let t E OlE) t.hen 'mr(t) ~ V is the set of variables 

occurring in t. 
A substitut.ion {T is a map from the set. of variables into the set of terms over a given signature. 

This map can easily be extended to the set of all terms by substit.uting for each variable occurring 

in an open t.erm its a-image. 

Definition (3.1) 

A t.erm deduct.ion ::iyst.em is a st.ructure (1:, D) wit.h E a signat.ure and D a set. of deduction 

rules. The set D = D(T", 1~) is paramet.erized wit.h two set.s, which are called respectively the set of 

predicate symbols and t.he set of relation symbols. Let s, t) and u E O(E), P E Tp, and R E Tr . We 

call expressions Ps, -,Ps, t.Ru, and i.-,R formulas. We call the formulas Ps and tRu positive and -,Pa 

and hR negative. If 5 is a set. of formulas we write PF(S) for the subset of positive formulas of 5 
and NF(S) for the subset of negat.ive formulas of S. 

A deduction rule d E D has t.he form 

H 

G 
with H a set of formulas and C a positive formula; to save space we will also use the notation HIC. 

We call the element.s of IJ the hypot.heses of d and we call the formula G the conclusion of d. If the 

set of hypotheses of a. deduction rule is empt,y we call such a rule an axiom. We denote an axiom 

simply by its conclusion provided t.hat no confusion can arise. The notions "substitution", "var", 

and "closed" ext.end t.o formulas and deduct.ion rules as expected. 

9 



A congruence theorem . .. : 3. Term deduction 81/8tems 

Definition (3.2) 

Let T be a term deduction system. Let F(T) be the set of all closed formulas over T. We 

denote the set of all posit.ive formulas over F(T) by PF(T) and the negative formulas by NF(T). 

Let X 5;; PF(T). We define when a formula 'P E F(T) holds in X; notation X I- 'P. 

X I- sRt if sRt E X, 

X I- Ps if Ps E X, 

X I- s,R if Vt E G(E) : sRi rt X, 

X I- ,Ps if Ps rt x. 

The purpose of a term deduction system is to define a set of positive formulas that can be 

deduced using the deduct.ion rules. For instance) if the term deduction system is a transition system 

specification then a transition relation is such a set. For term deduction systems without negative 

formulas this set comprises all the formulas that can be proved by a well-founded proof tree. If 

we allow negative formulas jll the premises of a deducf,jon rule jt is no longer obvious which set of 

positive formulas can be deduced using t.he deduct.ion rules. Bloom, Istrail, and Meyer [8} formulate 

that a transition relation must. agree with a t.ransition system specification. We will use their notionj 

it is only adapted to the framework of this paper. 

Definition (3.3) 

Let T = (E, D) be a term deduction syst.em and let. X 5;; PF(T) be a set of positive closed 

formulas. We say that X agrees with T if a formula 'P holds in X if and only if there is a deduction 

rule instantiated with a closed substit.ution such that the instantiated conclusion equals <p and all 

the instantiated hypot.heses hold in X. More formally: X agrees wit.h T if 

'P EX<==> 3 fIlG ED and,,: V ~ G(E) such that ,,(G) = 'P and Vii E H : X I- O'(h). 

Not every term deduct.ioll syst.em defines a set, of positive formulas t.hat agrees with it. A term 

deduction system can define more t.han one set. of positive formulas that. agrees with it. We show t.his 

in the following two examples. Groote [14] gives similar examples with relations instead of predicates. 

Example (3.4) 

Let T} be t.he term deduction system that consists of one constant symbol c and one deduction 

rule ,Pel Pc. For all X <;; P F(T1 ) t.hat agree wit.h Tl we have Pc EX<==> Pc rt X. Clearly, such 

an X does not exist. 

Let. T2 be the t.erm deduction syst.em that. consists of one const.ant. symbol c and one deduction 

rule Pel Pc. Then 0 and {Pc} bot.h agree wit.h T,. 

Groot.e [14] formula.tes a sufficient, condition for t.he exist.ence of a t.ransition relation that agrees 

with a given transition syst.em specificat.ion. We essentially follow Groot.e by formulating a similar 

condition: we incorporate predicat.es in his notion. Indeed) this condit.ion is sufficient for the existence 

of a set of positive formulas for a given t.erm deduction system. We obt.ain this result in a similar 

way as Groote by ext.ending his not.ions wit.h'predicat.es and by proving his results for these extended 

notions. 

Definition (3.5) 

Let T = (E, D) be a t.erm deduction syst.em. The formula dependency graph G of T is a labelled 

directed graph with as nodes positive formulas. For all deduction rules H IG E D and for all closed 

substitutions IT we have the following edges in G: for all hE PF(H) there is an edge O'(h)--"--+O'(G); 

for all s,R E NF(H) t.here is for all t E C(E) an edge O'(sHt)"'!:"'O'(G); for all ,Ps E NF(H) there 

is an edge O'(Ps)"'!:"'O'(G). If c is an edge of G we denote this by e E G. An edge labelled with a p 

is called positive and if it is labelled with a.n n it. is called a negat.ive edge. A set of edges is called 

positive if all it.s elements art". posit.ive and negat.ive if all they are all negative. 

10 



A congruence theorem . . . ,' 3. Term deduction ,ultem. 

Example (3.6) 

We depict. in figure 2 the formula dependency graphs of the term deduct.ion systems Ttl T2 of 

example (3.4), and the formula dependency graph of a new one: T3 . The last term deduction system 

consists of a constant symbol c and for all n 2: 0 a deduction rule ~Pncl Pn+2c and for all odd n a 

deduction rule ~Pncl Poc. The term deduction system T3 is based on an example of Groote [141. 

Figure 2. Three formula dependency graphs. 

Definition (3.7) 

A term deduction syst.em is st.rat.ifjable if t.here is no node in it.s forllluia dependency graph that 

is the start of a backward chain of edges containing an infinite negative subset. 

A term deduction system is called strict.ly stratifiable if there is no node in its formula dependency 

graph that is the start. of an infinite backward chain of edges. 

Dcfinit ion (3.8) 

Let T = (E, D) be a strat.ifiable term deduct.ion system and let. G be its formula dependency 

graph. We induct.ively define a mapping I . I from the set of positive formulas of T to an ordinal" 

that calculates the number of negative edges in G that can be reached with a backward chain of edges 

beginning in 'P. Note that if G contains a cycle with a negative edge we cannot define this mapping. 

However I we can dcfille t.his mapping if G only contains positive cycles. Two formulas <p and t/J 

are equivalent if they occur in a cycle of t.he formula dependency graph G or if they are identical; 

notation 'P ~ 1/J. We writ.e ['Pl for the equivalence class containing 'P. Note that since T is stratifiable 

there are only posit.ive cycles. Define 1·1 : PF(T)/~ - n as follows 

H'Pll = sup( {I[v)ll + I : V'...!!....X E G, [xl = ['P]} U (l[1/J11 : 1/J..J:....x E G, [1/Jlof. ['Pl = [x]}). 

We assume that. sup(0) = O. Now define I'PI = II'Pll. 

Example (3.9) 

Wit.h the aid of figure 2 we see that. Tl is not stratifiable and that T2 and T3 are stratifiable. It 

is not hard to see that. for the t.erm deduct.ion system T3 we have !P2n+lcl = nand IP'ncl = w + n 

for all n 2: O. 

Definition (3.10) 

Let. T = (E, D) be a term deduction systt.~m. A mapping S : PF(T) -----+ (} for an ordinal (} 

is called a strat.ification for T if for all deduction rules H IC E D and closed substitutions u the 

following condit.ions hold. For all h E PF(H) we have S(u(h») S; S(u(C»); for all s~R E NF(H) we 

have for all t E C(E) : S(u(sRt» < S(u(C»); for all ~Ps E NF(H) we have S(u(?s») < S(u(C». 

A stratification is called strict if we in addit.ion have that S(u(h») < S(u(C») for all II E PF(H). 

11 



A congruence theorem . .. : :f. 7'.nn deduction systnll.~ 

LeUlIllR (3.11) 

A term deductioll f'YS1.l'lll is (strictly) st.rat.ifiahle if and only if t.here t~xi",t.s a (strict.) stratification 

for it. 

Proof. First, we prove the lemma for the non-strict case. Assume that. T is stratifiable, Then we 

call define the mapping I . I : PF(T) - " for an ordinal a. It is not. hard to see that I . I is a 

st.ratification for T. 
Assume that there exists a stratification S for a term deduction system T. Let G be the formula 

dependency graph of T. We show that for all nodes 'P in G with S('P) = Q there is no backward chain 

of edges with an infinit.e negat.ive subset. Suppose that this holds for all Q < (3. We prove it for (3. 
Let 'P be a node in G wit.h S('P) = (3 and suppose that there is a backward chain of edges containing 

an infinite negative subset.. Then there is a pat.h <pL<Pl LCP2 . , . LCPn....!!-1/J ... and for 1/J there is a 
backward chain with an infinit.e negative subset. It is easy to see that S(,p) < (3 so with induction we 

find that 1/J has no backward chain containing an infinite subset, which contradicts our assumption 

on cp. 

Now we prove the lemma for the st.rict. case. Suppose t.hat T is strictly st,ratifiable. Let G be its 

formula dependency graph. Since t.here is no node wit.h an infinite backward chain of edges we can 

define a map S that count.s the number of incoming edges as follows 

S('P) = sup{S(,p) + 1: ,p no' P ''P E G}. 

]t. is not hard to see that S is a st.rict st.ratificat.ion. 

The other direction is ea.sy. It. can be proved analogously t.o the nOli-strict case. 

We need the next. defillition and lemma t.o const,rlIrt a set of positive forlllulas that, agrees 

with a given term dedudioll system. 'rVe define a mapping, called t.he degree, that assigns t.o a 

term deduction system an ordinal number wit.h a property (called regularity) that is proved in the 

lemma. We assume t.hat. t.he axiom of choice holds for this definit.ion and for the lemma, since we 

we assume t.hat the only cardinal numbers that exist. are the natural numbers or Na for all ordinal 

numbers 0 ~ O. We recall t.hat. an ordinal number is a transitive set. of transitive sets and that for all 

ordinal nllmbers Q 2: 0 t,he cardinality of the (init.ial) ordinal nllmber Wo eqllals No (by definition). 

Definition (3.12) 

Let V be a set,. If 0 .:; IVI < No we define d(V) = woo If IVI = No for an ordinal Q 2: 0 we 

define d(V) = Wo+l, 

Let 7' = (E, D) be a term deduct.ion syst.em. The degree d(H jC) of a dedllction rule H jC E Dis 

the degree of its set, ofposit,ive premises: d(HjC) = d(PF(H»). Let Wa =slIp{d(HjC): HjCE D}. 

The degree d(T) of a t.erm dedllct.ion syst.em T is Wo if Q = 0 and Wo+l ot.herwise. 

Example (3.13) 

Let T3 be as in exa!lIple (3.6). It is easy t.o see that d(T3) = Woo 

The following lemma is inserted for the readers that are not familiar with t.he notion of regularity 

of :). cardinal number and thus with t.he fact, t,hat. No and Na+l are regular for all 0 ~ 0 (if we assume 

the axiom of choice). 

Lemma (3.14) 

Let III < No wit.h " an ordinal in {O} U {r + I : I 2: OJ. Suppose that, for all i E I we have an 

ordinal 0i < W o" Then there is all ordillaillumbcr jJ such t.hat. for all i E I : (}j < {3 < Wa. 

Pl'oof. We assllme t.he axiolll of choice. Let. (3 = sup{ a, : i E I) + 1. Then we clearly have for 

all i E I that OJ < {3- So we only need t.o show t.hat f3 < W o" The case 0' = 0 is triviai, so 

let, " = I + I for an ordinal I 2: 0 and slIppose t,hat, (3 2: Wo. Then 1(31 2: NH1 . It is easy to see 

that 1(31 = I sup{ Q, : i E I) I .:; III· N, .:; N; = N, < N,+l. This contradicts our assumption so (3 < Wo. 

Next, we will define a set. of posit.ive formulas from which we will show that it agrees with a 

given term deduct.ion syst.em. 

12 



A congruence theorem . .. ,' 3. Term deduction "1I8tem8 

Definition (3.15) 

Let T = (E, D) be a term deduction system and let 5 : P F(T) _ <> be a stratification for an 

ordinal number <>. We define a set Ts ~ PF(T) as follows. 

Ts = U Tl, Tl = U Ti~j' 
i<a j <d(T) 

We wil1 frequently use unions over Tl and Ti~j; therefore, we define the following notations 

u.s = U T;1 (i S <», Ul; = U T;~;, Us d(T)). 
i'<i j'<j 

We drop the superscripts 5, provided that no confusion arises. Now we define for all i < <> and for 

all j < d(T) the set T;,; = T;~;: 

To; ={ep I 5(ep) = i, 3H/e E D and u: V - C(E) with ute) = <p, 

II hE PF(H) : Ui,; U Ui I- u(h) and II hE NF(H) : Ui I- u(h)}. 

Example (3.16) 

Let T = T3 be the term deduction system of example (3.6). Let 5 : PF(T) _ wo·2 be the strict 

stratification that. we defined in lemma (3.11). Note that 5 = 1·1 in this example; see definition (3.8). 

We will calculate Ts so it, suffices t.o calculate To,; for all i < " and j < d(T). Since there are no 

positive premises we have that To,D = To,; for all j < d(T). So To = To,D' It is not hard to verify that 

for all n ;::: 0 we ha.ve T'.:.n = T"'o+3n+l = ", T2n+1 = {P4n+3C}, and T"-'o+2n = {P4n c}. So we find 

that Ts = {Poc, P3 c, P4 c, P7c, P8 c, Pl1 c, .. . J. 

Theorem (3.17) 

Let T = (E, D) be a t.erm deduction system and let. 5 : P F(T) - <> be a st.ratification for an 

ordinal number 0'. Then Ts agrees with T. 

Proof. First, assume that. Ts I- <p. Then Ulere are i < <> and j < d(T) with <p E Ti ,;. So there is a 

deduction rule H /e and a closed substit.ution u with u( e) = <p. It follows immediately that Ts I- IT(h) 

for all Iz E PF(JI). Now let h E NF(JI) t.hen Ui I- IT(h). Since 5(u(h)) < 5(u(e)) we also have 

that IT( h) ric To, for all i S i' < ". So Ts I- IT( Iz). 

Now assume t,hat. t.here is a deduct.ion rlile II /e E D and a closed subst.itution with Ts I- IT(h) 

for all h E JI. We show t.hat. Ts I- u( 0). Let. i = 5( u( e)). It sliffices t.o show that there is a j < d(T) 
with To,; I- ute). First., let. h E NF(JI). Since Ts I- u(lz) and Ui ~ Ts we also have Ui I- u(Iz). Second, 

let h E PF(H). Since S(u(h)) S i we have IT(h) E U, U7;. For all hE PF(H) with u(h) E Ti there is 

a jh < d(T) such t.hat IT(h) E To,;,. Since IPF(H)I < Id(H /e)1 S Id(T)1 we find using lemma (3.14) 

t.hat t.here exist.s a j < d(T) wit.h for all h E PF(H) : jh < j < d(T). So for all h E PF(H) we 

have Ui U Ui,; I- IT(h). ny definition of Ti ,; we find t.hat. To,; I- ute). 

Theorem (3.18) 

There exists a t.erm deduction system wit.h an agreeing set of positive formulas that. is not 

stratifiable. 

Proof. See nol and Groot.e [9]. They show that. this is already the case for a term deduction system 

without. predicat.es. 

13 



A congruence theorem . ... S. Term deduction systems 

Theorem (3.19) 

Let T be a term deduction system and let Sand S' be stratifications for T. Then Ts = Ts'· 

Proof. Let T = (E, D) and let Sand S' be stratifications for T and suppose that Ts i- Ts'· Let, 

for instance tp E Ts \ Ts'; the other case is treated analogously. Choose tp minimal in the following 

sense: for all v'> E Ts \ Ts' U Ts' \ Ts we have S(<p) ~ S(v'». Let i = S(<p). Then there is a j < d(T) 

with <p E Tr.;. Choose this j minimal in the following sense: for all v'> E Ts \ Ts' with S(v'» = i 
we have that v'> E T/;, with j' 2: j. Since Ts agrees with T there is a rule HIC E D and a closed 

substitution u with u(C) = <p and Ts r u(h) for all h E H. If also Ts' r u(h) for all h E H we 

would have that <p E Ts', so there is an h E H with Ts' 'r/ u(h). If h E PF(H) then u(h) rt Ts' 

but also u(h) E uf u Ui~;' which contradicts the minimality of <p with respect to i or j. If h = s~R 
there is an s' E C(E) with u(BRs') E Ts'. Since S(u(sRs'») < i and u(sRs') rt Ts this contradicts 

the minimality of <p with respect to i. If h = ~Ps. we immediately find a contradiction with the 

minimality of <p with respect to i since s(u(Ps») < i and Ps rt Ts. 

Theorem (3.20) 

Let T be a st.rictly s{,ratifiable term deduction syst.em t.hen there is at. most. one set of closed 

positive formulas that a.grees wit.h T. 

Proof. Let T = (E, D) be a term deduction system and let S : PF(T) ~ ex be a strict stratification 

for T. Suppose that X and Y agree with T and that X i- Y, say <p E X \ Y; the other case 

is treated analogously. Choose <p minimal in t.he following sense: for all v'> E X \ Y u Y \ X we 

have i = S(<p) ~ S(1/'). Since X agrees wit.h T and X r <p there is a deduction rule HIC ED and 

a closed substitution u with u(C) = <p and X r u(h) for all h E H. Note that S(u(h») < i for 

all hE H since S is strict. If Y r u(lI) for all " E H we would have <p E Y so there is an h E H 

with Y 'r/ u(h). If hE PF(H) we find t.hat u(h) E X \ Y, which contradicts the minimal choice of <po 

If h = s~R E NF(H) then there is a s' E C(E) with u(sRs') E Y \ X, which also contradicts the 

minimalit.y of <po If It = ~Ps E NF(H) we have q(ps) E Y \ X, which is also impossible. 

Corollary (3.21) 

If S is a strict. st,ratificat.ion for a term deduct.ioll system T then Ts is the unique set of positive 

formulas that agrees wit.h T. 

Defiuitioll (3.22) 

Let T and T' be st.ratifiable term deduction syst.ems. Let. S and Sf be stratifications for T 

and T'. If T and T' have t.he same signat.ure and if Ts = Ts' we say that T and T' are equivalent. 

4. The congruence theOl"em 

In this section we will formally define t.he pant./" format and other not.ions necessary to state the 

congruence t.heorem and t.hen we will prove it.. We expect that this result can be proved by adapting 

the congruence theorem of Groote to our sit,nat.ion. However, we prove a stronger result since we 

moreover show that. every t.erm deduct.ion system in llnnth format, can be reduced to a term deduction 

system in ntyft/ntyxt fOfmat.. 

Defiuition (4.1) 

Let T = (E, D) be a term deduction system wit.h D = D(Tp, T,). Let in the following [{, L, M, 

and N be index sets of arbit.rary cardinality, let. s., II, U on , lin, I E OlE) for all k E [{, I E L, m EM, 

and n EN, let Pk , Pm, P E Tp be predicat.e symhols for all k E [{ and m EM, and let RI, Rn, R E Tr 

be relation symbols for alii ELand n EN. 

14 

A deduction rule dE D is in pntyft format if it. has the form 

{p.s. : k E !,.} U {t1R11I1 : IE L} U {~Pmllm : Tn E M} U {vn~Rn : n E N} 

f(Xl • ... , xn)Rt 



A congruence theorem . .. : 4. The congruence theorem 

with / E E an n-ary fuuction symbol and X U Y = {Xl, ... , Xn} U {Yi : i E I} <;; V a set of distinct 

variables. If var(d) = Xu Y we call d pure. A variable in var(d) that does not occur in Xu Y is 

called free. 

A deduction rule dE D is in pnlyxl format if it has the form 

{p ••• : k E K} u {t,R,y, : I E L} U {,Pmum : m E M} U {vn.R, : n E N} 

xRt 

with Xu Y = {x} U {Yi : i E I} <;; V a set of distinct variables. If var(d) = Xu Y we call d pure. A 

variable in var(d) that does not occur in XU Y is called free. 

A deduction rule is in pnly! format if it has the form 

{p ••• : k E K} U {t,R,y, : IE L} U {,Pmum : m E M} U {v".R" : n E N} 

P /(X1,"" xn) 

with / E E an n-ary function symbol and {Xl, ... , Xn} U {Yi : i E I} <;; Va set of distinct variables. 

The notions pure and free are defined as expected. 

A deduction rule is in l'ntyl: format, if it, has the form 

{P ••• : k E K} U {t,R,y, : IE L} U {,Pmum : m EM} U {vn.R, : n E N} 

Px 

with {x} U {Yi : i E I} <;; V a set of distinct. variables. The notions pure and free are defined as 

expected. 

We explain the names of the deduction rules. The p in the phrases pntyft, pntyxt, pnty/, and pn

tyx refers to the predicates occurring in the rules, the n. refers to the presence of negative formulas 

in the premises, the Iy refers to t.he positive relat,ion part in the set of hypotheses, and the ft, xt, I, 
and x refer to the various conclusions. The names ntyft and ntyxt are taken from Groote [14]. 

If a deduction rule d E D has one of the above forms we say that this rule is in panth format, which 

stands for "predica.t.es and n.tyjt/ntyxt hybrid format". A term deduction system is in panth format 

if all its rules are. A term deduction system is called pure if all its rules are pure. 

A term deduction system is in ntyft/n/yxt format if it is in panth format and its set of predicate 

symbols is empty, The ntyfi/ntyxt format originates from Groote [14J. A term deduction system is in 

path format if it is in pan/II format and there are no negative formulas in the rules. The path format 

originates from Baeten and Verhoef [5]. A term deduction system is in Iyft/tyxl format if it is in 

path format and it.s set of predicate symbols is empty. The tyft/tyxt format originates from Groote 

and Vaandrager [15]. 

We need t.he t,echnicai not.ion of well-roundedness of a term deduction system, which will be 

used in the proof of t,he congruence theorem. The notion of well-foundedness is taken from Groote 

and Vaandrager {Ia], where it is also used ill the proof of their congruence theorem. The same phe

nomenon occurs in Groote's paper [14] and in Baet.en and Verhoef [5]. It is an open question whether 

the requirement. of well-founded ness is really necessary. Recent work of Fokkink [12] seems to show 

that the well-foundedness is not necessary for the congruence theorem of Groote and Vaandrager [15] 

and that this seems "0 generalize t.o our format., Therefore, we omitt.ed the well-foundedness demand 

in the examples we discussed in section 2. But all these examples are well-founded. 

Definition (4.2) 

Let T = (E, D) be a t.erm de<luct.ion system and let F be a set of formulas. The variable 

dependency graph of F is a directed gra.ph wit.h variables occurring in F as its nodes. The edge x _ y 

is an edge of t.he variable dependency graph if and only if there is a positive relation tRs E F 

with X E var(l) and 11 E "ar(s). 

The set F is called well-founded if any backward chain of edges in its variable dependency graph 

is finite. A deduct.ion rule is called well-founded if its set of hypotheses is so. A term deduction 

system is called well-founded if all its deduction rules are well-founded. 

The following lemma and its proof are essentially due to Groote [14). 

15 



A congruence theorem . .. : 4. The congruence theorem 

Lemma (4.3) 

For every well-founded stratifiable term deduction system in panth format there is an equivalent 

pure well-founded term deduction system in panth format. 

Proof. Let T = p:;, D) be a well-founded stratifiable term deduction system in panth format. 

Let T' = (l:, D') be defined as follows. The deduction rules of D' are the rules of D without 

free variables plus for each rule with free variables a set of new rules. Let dE D be a deduction rule 

with free variables then such a set of new rules is the set containing a new deduction rule for every 

possible substitution of closed terms for the free variables in d. Clearly, T' is pure, well-founded 

and in panth format. Let 5 : PF(T) ~ Q be a stratification for T, then 5 is also a stratification 

for T', so T' is stratifiable. It remains to check that T and T' are equivalent. So we have to verify 

that Ts = Ts' 
It suffices to prove that. 

Vi<a:Ti=Tf. (1) 

We prove (Il with transfinit.e induct.ion on i. So suppose t.hat (Il holds for all i' < i; we prove it 

for i. Note t.hat d(T) = d(T'). To prove (1) for i it. suffices to show that 

v j < d(T) : Ti .; = TI.;. (2) 

We prove (2) with transfinit.e induction on j. So suppose that (2) is valid for all j' < j; we prove it 

for j. 

First, let. 'f' E To.;. By definit.ion of Ti,i t.here is a rule H IC E D and a closed substitution u 

with u(C) = <po If II E PF(JI) then Ui.; U Ui r u(h). With the induction hypotheses for i or j we 

find that UI.; U UI r IT(h). If hE NF(H) t.hen Ui r IT(h). With the induction hypothesis on i we 

also have that UI r O'(h). Now we only need t.o find an appropriate deduction rule d' ED'. Let p 

be the substitution wit.h p(x) = O'(x) for all free variables in d and let p(x) = x otherwise. It is easy 

to see that 0' 0 p(x) = IT(,,) for all x E V and t.hat. p(HIC) ED'. So by definition of TI.; we find 

that <p E TI.;. 

Second, suppose t.ha.t. ip E T/,}' By definit.ion of T/,} t.here is a deduction rule p(H IC) E D' and 

a closed substitut.ion 0" wit.h IT' 0 p(C) = <po Let. HIC ED be the original rule. With the induction 

hypotheses for i or j we find for all h E PF(H) t.hat Ui,j U Ui r 0" 0 p(h) and using induction on i we 

find for all hE NF(H) t.hat. Iii r IT' 0 p(h). So by definition of 7;.; we find that u' 0 p(C) = <p E Ti.;. 

Next., we will define t.he notion of st.rong bisimulat.ion, which is based on Park [21]. See also 

Baeten and Verhoef [5]. 

Definition (4.4) 

Let. T = (E, D) he a st.rat.ifiable t.erm deduct.ion syst.em wit.h stratification S and let D = 
D(Tp, Tr). A binary relat.ion B <;; C(l:) x C(r:) is called a (st.rong) bisimulat.ion if for all s, t E C(l:) 

with sBt the following collditions hold. For all R E Tr 

and for all P E Sp 

'Is' E C(E) (Ts r sRs' '* ~/' E G(E) : Ts r IRt' 1\ s' Bt'), 

\/1' E C(r:) (Ts r tRt' '* 3s' E C(r:) : Ts r sRs' 1\ s' Bt'), 

Ts r Ps ¢} Ts r Pt. 

The first. t.wo condit.iolls are known as t.he t.ransfer propert.y. Two st.at.es 8, t E C(E) are bisimilar if 

there exists a bisimulntion relation cont.aining t.he pair (8, t.). If sand tare bisimilar we write s '" t. 

Note that bisimilarit.y is an equivalence relat,ioll. 

16 



A congruence theorem . .. : -4. The congruence theorem 

Theorem (4.5) 

Let T = (E, D) be a well-founded stratifiable term deduction system in panth format then strong 

bisimulation is a congruence for aJi function symbols occurring in E. 

Proof. The structure of this proof resembles the proof of the congruence theorem of Baeten and 

Verhoef [5). 

Groote [14) proved this theorem in the case that the set of predicate symbols is empty, that is, 

if the term deduction system is in ntyjtlntyxt format. Our strategy to prove the non-empty case is 
to construct from a term deduction system a new one without predicates with the property that two 

terms are bisimilar in the old term deduction system if and only if they are bisimilar in the new one. 

We make the new term deduction system from the old one by coding each predicate symbol in the 

old system as a special relation symbol in the modified one. 

To begin with, we construct from a term deduction system a new one by extending the original 
signature with a xenoconstant and mqving the predicates of the original system to xenorelations. 

Let T = (E, D) be a well-founded stratifiable term deduction system in panth format and suppose 

that D = D(Tp, Tr) with Tp # 0. In accordance with lemma (4.3) we Illay assume that T is pure. We 

define a new term deduction system T' = (E', D'). Let { be a constant function symbol that is strange 

to E and define E' = E U {€}. Let D' = D'(0, T;) with T; = Tr U {Rp I P E Tp} (disjoint union). A 

relation symbol Rp for P E Tp is defined as follows. For two terms. and lover E' we will have sRpl 
if and only if Ps and I = {. The set of deduction rules is D' = {d' IdE D} and a deduction rule d' is 

constructed from an old rule d E D as follows. Let. d = H IC. The set of hypotheses of d' is the set H 

but with the positive predicates {p ••• : k E K} replaced by {s.Rp,z. : k E K} with {z. : kEf(} a 

set of distinct variables disjoint with var( d) and j he negative predicates {~P mUm : m EM} replaced 

by {um~RPm : m EM}. If the conclusion of the old rule is of the form Pt then the conclusion 

of the new rule is IRp{. Otherwise C remains the same. Note that T' is pure, well-founded and 

in ntyjtlntyxt format. 

Next, we strat.ify the xenosyst.em by assigning t.o each posit.ive xenoformula the ordinal that a 

stratification for the original system assigns 1.0 this positive formula with every { replaced by a fixed 

closed original term. 

We verify that. T' is strat.iflable. Let. S : PF(T) - 0' be a stratification for T and let e he 

a closed term over E. For all • E O(E') we inductively define a term s[{/e) E O(E) as follows. 

Let {[{Ie] = e. If '" E V is variable then x[{/e] = x. Let fEE be n-ary, and let tl," .,tn E OlE') 

then /(11,"" tn)[{/c] = 1(ld€je). ... , In [€je]). Now we can define S : PF(T') - 0' as follows. 
Let 8, t E C(E') and let R E Tr and P E Tp then 

S'(sRt) = S(s[€fc]Rt[{/e]), S'(sRpl) = S(P.[€fe]). 

For all u' : V - C(E') we define a substit.ution u'[{le]: V - C(E) as follows. Define u'[{/c](:z:) = 
u'(:z:)[{/c] for all x E V. Note that the following holds for all. E O(E) and I E O(E') 

s[{/e] = s, O"(t.)[€fc] = O"[€jc](t[{/c]). (3) 

To show that S' is a strat.ification for T' we have to check .the conditions of definition (3.10). Let d' = 
H'IC' E D' be a rule and let d = H IC E D be its corresponding rule in the original system T. The 
deduction rule d' is of the form 

{s.Rp,z. : k E In U {t,R,y,: I E L} U {um~RPm : m EM} U {Vn~Rn : n E N} 

C' 
(4) 

Let 0" : V - C(E') be a closed subst.itution and let u = u'[{/c]. Note that with (3) we have for 

all s, t E O(E) and 11 E O(E') 

S'(O"(sRt» = S(u(.nt» , S'(u'(sRpul) = S(u(Ps». 

So for each type of conclusion we have S'(O"(C'» = S(u(C». We have four cases. First, we treat 

the case sIcRp"Zk. 

S'(O"(s.Rp,z.» = S(u(P.s.) :5 S(O'(C» = S'(u'(C'l) 

17 



A congruence theorem, .. : 4. The congruence theorem 

since S is a stratification. The case t,R'YI is treated analogously. We treat the negative premises. 

Let u;" E G(E') 

S'(IT'(u",flprnu:")) = S(u(P"'''m)) < S(u(G)) = S'(u'(G')) 

since S is a stratification. We treat the last Case. Let v~ E G(E'). 

S'(u'(vnRnv:,)) = S(U(VnRnv~[~/c])) < S(u(G)) = S'(u'(G')). 

Again, we used that S is a strat.ification. So 8' is a stratification and we find that T' is stratifiable. 

Now we will prove that two closed ~>terms u and v are bisimilar in the xenosystem T' if and 

only if they are bisimilar in t.he original system T. In order to do this we use a number of properties 

that are listed below. 

Let P E Tp , R E Tr , and u, v E C(E') 2 C(E) (unless otherwise specified) then the following 

properties hold for all i < " and j < d(T') = d(T). (We denote the bisimulation relation in T by -

and in T' by -'.) 

(i) T/,j I- uRptJ ==> V = ~ 
(ii) u E G(E), T/,j I- "Rv ==> v E G(E) 

(iii) u, v E GiE), Tt I- lI.RV ==> 1] I- uRv 

(iv) u E G(E), Tt I- uRp~ ==> 1] I- Pu 

(v) u E C(E), 1] I- Pu ==> T! I- "Rp~ 

(vi) u, v E G(E), T, I- uRv ==> T: I- "Rv 

(vii) u E G(E), T, I- ,p" ==> T: I- u,Rp 

(viii) u E C(E), T: I- ",Rp ==> T, I- ,Pu 

(ix) u E G(E), T; I- ",II. ==> T/ I- ",II. 

(x) u E G(E), T/ I- ",II. ==> 1] I- ",II. 

(xi) u,vEC(E)==>(u-v = u-'v) 

The proof of (i) follows directly from the definitions of T/,j and the deduction rules in D'. 

We prove (ii) wit.h transfinil,c induction on i. So suppose that (ii) holds for all i' < i. We show 

the induction step for i wit,h t,ransfinit.e induction on j. So suppose that it. is valid for all j' < j; we 

prove it for j, By definition of T:,j there is a rule d' = H'IG' E D' as in (4) with G' = sRt and a closed 

substitution u with IT(s) = u and u(t) = v, In particular, for alii E L we have U/ U U:,j I- u(tIRIYI), 

Since the deduct.ion 'rules are pure we have that var(t) ~ var(s) U {YI : I E L}. So it suffices to show 

that u(YIl E C(E) for alii E L since u(s) E G(E), We denote the set of all YI by y, Suppose that 

there is an Ylo E Y with tr(y,o) E G(E') \ G(E). This contradicts the well-foundedness of the rule d', 

for T:, I- U(tlo )Rlou(Ylo ) for an i' < i or T:,j' I- u(t'lo)RloU(Ylo) for a j' < j so with the induction 

hypotheses for i or j we find that U(l.lo) E G(E')\G(E), Since tlo is a E-term, this must be the result 

of a substitution. This can only be due to a variable YI. E Y. With induction on the subsubscript we 

find an infinite backward chain of edges Ylo _ Yl. - , , . in the variable dependency graph of d', 

This concludes the induction step for j so by definition of T/ we find that (ii) holds for i, which 

concludes t.he induct.ion st.ep for i. 
A simple example due 1,0 Fokkink [11] shows I,hat for t.his property I,he well-foundedness cannot 

be missed. Suppose that. we have a signat.ure that. consists of a single constant a. We have two rules: 

the axiom ",II.", and t.he rule xRxlaSx, Clearly, I.his system is nol. well-founded, The xenosystem 

has the same rules; only t.he signat.ure is ext.ended wit.h the xenoconstant, <. It. is easy to see that we 

can derive in this new system t.hat. as( . 
We simult,aneously verify (iii)-(x) wil,h transfinit.e induction on i. Suppose t.hat they hold for 

all i' < i; we prove them for i by verifying t.he following four properties for all j < d(T) = d(T'). 

u," E G(E), T/,j I- uR" ==> T"j I- uRv (5) 

18 



A congruence theorem . .. : 4- The congruence theorem 

u E G(E), T:,j f- uRp~ = Ti,j f- Pu 

u E C(E), T;,j f- Pu = T:,j f- uRp~ 

u, v E G(E), T;,j f- uRv = T/,j f- uRv 

(6) 

(7) 

(8) 

We prove (5)-(8) with transfinite induction on j, so assume that they are valid for all j' < j then we 

check them for j. 

We begin wit.h equat,ion (5). Let, u, v E G(E) and suppose that T/,j f- uRv. By definition of T/,j 

there is a deduction rule d' = H' /G' E D' of t,he form displayed in (4) with G' = sRI, s, I E G(E) and a 

closed substitution" with O"(s) = U and 0"(1) = v. Moreover, we have U:UU:,j f- ,,(s,Rp,z,), "(II R,y,) 
for all kEf{ and I ELand we have U/ f- ,,(um,Rpm)' ,,(vn,Rn) for all m E M and n E N. In 

order to use induction we have to know that terms like "(s.),,,(I,), ... E G(E). It suffices to show 

that "(YI) E G(E) for alii E L. With (ii) we find for alii E L that "(YI) E G(E) just like in the proof 

of(ii). Now we find using (i) and the induction hypotheses on i or j that UiUUi,j f- "(P,s,),,,(I,R,y,) 

for all kEf{ and I E L. We find using the induction hypothesis on i that Ui f- O"(,Pmum), ,,(vn,R,.) 

for all m E M and n EN. The deduct.ion rule d = H /G E D with G = sRt that corresponds with d' 

takes the form 

{P,., : k E X} U {tlRml : I E L} U {,Pmum : m EM} U {vn,R,. : n E N} 

G 
(9) 

Define p : V ~ G(E) with p(z.) = z. for all k E [( and p(x) = ,,(x) otherwise; in particular, 

we have pIs) = u and p(t) = v. By definition of Ti,j we find that Ti,j f- uRv; use (3) to see 

that S'(uRv) = S(unv). 

Equation (6) is treat.ed analogously. 

Now we treat. equat.ion (7). Let u E G(E) and assume T;,j f- Pu. By definition of T;,j there 

is a deduction rule d = H /G E D of the form (9) with G = Ps for some s E OlE) and there is 

a closed substitution 0" with O"(s) = u and Ui U Ui,j f- "(P,,s,,),O"(f,Rm') for all k E ]{ and I E L 
and Ui t- 0-( -'Pm um ), (1"( 1In -,Hn) for all m E AI and 11. EN. Sincl:' (T : V - C(E) we immediately 

find with the induct.ion hypotheses on i or j t.hat U: U U:,j f- O"(skRp,~), ,,(tIR,y,) for all k E [( 

and I ELand UI f- O"(um,Rpm)' ,,(v,.,R,,) for all m E M and n E N. Let d' = H' /G' E D' 

be the deduct.ion rule t.hat corresponds with d. It takes the form displayed in (4) with G' = sRp~. 
Define ,,' : V ~ G(E') by O"'(z,) = ~ for all k E J{ and ,,'(x) = ,,(x) otherwise; note that "'(s) = u. 

Since S(Pu) = S'(uRpO (use (3» we find by definition of T/,j that TI,j f- uRp~. 

Equation (8) is verified in t.he same way. Now (5)-(8) are valid for all j < d(T), which implies 

that (iii)-(vi) arc valid for i. With this we can show that (vii)-(x) also hold for i. 

We only treat (vii) sillce the cases (viii)-(x) are treated in the sallle way. Suppose t.hat u E G(E) 

and Ti,Pu. Suppose that. T: If u,Rp t.hen there is a u' E G(E') with T/ f- uRpu'. With (i) we find 

that u' = € so wit.h (iv) for i we find that Ti I- Pu, which is a contradiction. 

This concludes the induction step (on i), so (iii)-(x) are valid for all i < a. 

Now we verify (xi). First.iy, let, 11 - v. Then there is a bisill1ulation relation B with uBv. 

Define B' = B U Ll.', with Ll.' = {(t, I) : 1 E C(E')} the diagonal. We show that B' is a bisimulation 

with uB'v in the new syst.em T'. Clearly, uB'v. Now let. sB't. We distinguish two cases: s = t 
and s :f t. We verify t.ha(, t,he condit,ions ill definition (4.4) hold for the second case since the first 

case is t.rivial. Since s =f:. l we have s, t E C(~) and sBt. Since there are no predicat.es in T' we only 

have to verify both t,ransfer propert,ies of definit.ion (4.4). For each transfer property we have two 

cases: Rand Rp. Now let. R E Tr and suppose T~, f- sRs' for some s' E G(E'). We find with (ii) 

that. s' E C(E) and wit.h (iii) that. Ts f- "Rs'. Since sBt there is a t' E G(E) with Ts f- tRt' 

and s' Bt'. So we obtain s' [1'1.' and with (vi) that T~, f- tRt'. The second condition in definition (4.4) 

is verified analogollsly. We check t.he first. cOlldition for Rp. Let PET" a.nd suppose that T~, I- sRps' 

for some s' E C(E'). We find wit.h (i) that. s' =~. So with (iv) we get Ts f- Ps. Since sBt we 

find Ts f- PI. and wit.h (v) t.hat. T,~, f- tRpt,. Clearly t,B't,. The second condit.ion in (4.4) is checked 

analogously. 

Secondly, let. 1/. ,.,.,.' v. Then t.here is a bisill1ulation relation 8' containing the pair (u , v). Let 

H = H' n (G(E) x C(E»). Wp show t.hat. /J is a bisimulat.ion with uBv in the original system T. 

19 



A congruence theorem . .. : 4. The congruence theorem 

Since u, v E G(E) we clearly have uBv. Let sBt. We check the conditions of definition (4.4). 

Let RET, and suppose that Ts f- sR.' for some s' E G(E). With (vi) we find T~, f- sRs'. 
Since sB'I there is a I' E G(E') with T~, f- IRt' and s'B'I'. With (ii) We find t' E G(E) so s'BI'. 

With (iii) we have Ts f- IRt'. The second condition in definition (4.4) is verified analogously. Next, 

we show that the last condition of (4.4) from left to right holds. The other direction can be shown 

analogously. Let P E Tp and suppose that Ts f- Ps. With (v) we find T~, f- sRp{ so since sB'I 
there is at' E G(E') with Ts' f- tRpl'. With (i) we find I' = { so with (iv) we find Ts f- PI. This 

concludes the proof of (xi). 

Now we are in a position to prove the congruence theorem. Let fEE be an n-ary function 

symbol. Let Ui, Vi E G(E) and "i - Vi for 1 :S i :S n. With (xi) we find "i -' Vi for all 1 :S i :S n. 

Since the term deduction system T' is well-founded stratifiable and in ntyjt/ntyxt format we can 

apply the congruence theorem of Groote [14] so f(ul, ... , un) -' f(vl,.··, vn ). Since I(Ul, . .. , un) 

and f(vl, .. . ,vn) are E-terms we find with (xi) that f(ul, ... ,un ) - f(vl, . .. ,vn). This concludes 

the proof of (4.5). 

Corollary (4.6) 

Every term deduction system in panth format. can be reduced to a transition system specification 

in nty/t/ntyxt format. If t.he t.erm deduct.ion system is moreover well-founded and stratifiable then 

bisimulation equivalence IS preserved: t.wo t.erms arc bisimilar in the llnnt.h syst,em iff t.hey arc bisinlilar 

in the ntyjt/nlyxl syst.em. 

5. Conclusions and future work 

In this paper we present.cd a synt.actical format , the pantll format I for structured operational semantics 

with predicates and negat.ive premises such that. if t.he rules are stratifiable we have that strong 

bisimulat.ion is a congruence for all the operat.ors t.hat. can be defined wit.hin this format. With 

operational semantics mostly taken from the lit.erature we showed that our format is useful: the 

examples satisfy our format. but. no format.s proposed by ot.hers. Moreover, with these examples we 

informally explained the not.ions necessary to use our result thereby showing that it can be easily 

applied without scrut.inizing t.he abstract definit.ions. The examples include issues such as priorities, 

termination, convergence I disnctc t.ime, recursion, (infinit.ary) Hennessy-Milner logic, and universal 

quantification (in part,icula.J', so-called weak predieat.es). 

We will briefly discliss fut.ure work. Sillce t.he st.ratificat.ion t.echnique is not always satisfactory 

(cf. (3.18)), Hal and Groot.e [9J proposed the more general reduct.ion technique (for the less general 

ntyfl/n.tyxl format,). A first, possibilit.y for fnt.llre work could be t.o use t.heir met,hods to generalize 

our work. A second pos~ihiljt.y is t.o incorpora.t.e recursion within our framework as is done for the 

GSOS format. [8J and De Simone's format. [23J. A third generalizat.ion could be to allow universal 

quantification in t.he hypot.heses. 

Summarizing, we condude t.hat. t.he panfil. format. is useful, and that. our congruence t.heorem is 

practical. 

AckllowledgClllcuts 

Thanks to Jos Baet.en, Inge Bet.hke, Frank de Doel'l Roland Bol, Jan Friso Groote, Hans Mulder, and 

Frits Vaandrager for valuable comment.s and int.erest.ing discussions. 

6. References 

[lJ L. Acet.o, M. Hennessy, Termination., deadlork and divergence, Journal of the ACM, 39(1):147-

187, Januari 19D2. 

20 



A congruence theorem. .. 6. Reference! 

[2] J. C. M. Baeten, J. A. Bergstra, Discrete Time Process Algebra, Proceedings CONCUR 92, 

Stony Brook, LNSC 630, pp. 401-420, Springer-Verlag, 1992. 

[3] J. C. M. Baeten, J. A. Bergstra, Process algebra with a zero object, in: J. C. M. Baeten and 

J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in 

Computer Science, pp. 83-98, Springer-Verlag, 1990. 

[4] J. C. M. Baeten, J. A. Bergstra, Processen en Procesexpressies (In Dutch), Informatie, 30(3), 

pp. 214-222, 1988. 

[5] J. C. M. Baeten and C. Verhoef, A congruence theorem for structured operational semantics 

with predicates, Technical Report CSN 93/05, Eindhoven University of Technology, Eindhoven 

1993. Note: to appear in the proceedings of CONCUR'93, Springer LNCS 1993. 

[6] J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge Tracts in Theoretical Computer 

Science 18, Cambridge University Press, 1990. 

[7] J, A. Bergstra, A. Ponse, J. J. van Walllel, Process algebra with backtracking, Report P9306, 

Programming Research Group, University of Amsterdam, 1993. Note: to appear in the pro

ceedings of t.he REX workshop 1993, LNCS, Springer-Verlag, 

[8] B. Bloom, S. Istrail, and A. R. Meyer, Bisim.ulation can't be traced: preiim,inary report, In: 

Proceedings 15th ACM Symposium on Principles of Programming Languages, San Diego, Cal

ifornia, Pl'. 229-239, 1988. 

[9] R. N. Bol and J. F. Groote, The meaning oj negative premises in transition system specifications, 

Report CS-R9054, CWI, Amst.erdam, 1990 An extended abstract appeared in J. Leach Albert, 

B. Monien, and M. Rodriguez Artalejo, editors, Proceedings 18th ICALP, Madrid, LNSC 510, 

pp. 481-494, 1991 

[10] T. Bolognesi a.ml F. Lucidi, Timed process algebras with ltrgent interactions and a unique pow

erJul binaf'Y operator, In J. W. de Ba.kker, C. Huizing, W. P. de Roever, and G. Rozenberg, 

editors, Proceeding" of I,he REX Workshop "Real-time: Theory in Practice", LNCS 600, pp. 

124-148,19n. 

(11] W. J. Fokkiuk, personal communication, January 1993. 

[12] W. J. Fokkink, The Iy/l/tyxt format reduces to tree rules, In preparat.ion. 

(13] R. J. van Glabbeek, Bounded nondeterminism and the approximation induction principle In 

process algell1", In: Proceedings STACS 87 (F. J. Brandenburg, G. Vidal-Naquet, M. Wirsing, 

eds.), !'ednre Not.,'s in Comput.er Scicnce 247, Springer Verlag, pp. 33(l-347, 1987. 

[14] J. F. Groot.e, Transition systcm specifications with negative prcmises, Report CS-R8950, CWI, 

Amsterdam, 1989. An extended abst.ract appeared in J. C. M. Baeten and J. W. Klop, editors, 

Proceedings CONCUR 90, Amsl,erdam, LNCS 458, pp. 332-341, Springer-Verlag, 1990. 

[15] J. F. Groot.e awl F. W. Vaandragel', Structured operational semantics and bisimulation as a 

congruence, Informat.ion and Compnt.at.ion 100(2), Pl'. 202-260, 1992. 

[16] M. Hennessy, R. Milner, Algcilraic laws for no.determinism and concurrency, JACM 32(1), 

pp. 137-161. 

[17] A. S. Klusener, Completeness in real lime process algebra, Technical Report CS-R9106, CWI, 

Amst.erdam, 1991. An extended abstract appeared in J. C. M. Baeten and J. F. Groote, editors, 

Proceedings CONCUR 91, Amsterdam, volume 521 of Lecture Notes in Computer Science, pp. 

376-392,1991. 

[18] K. G. Larsen, Modal Specifications, T!'chnical Report. R89-09, Inst.itut.e for Elect.ronic Systems, 

The Universit.y of Aalborg, 1989. 

21 



A congruence theorem. . .. 6. References 

[19] K. G. Larsen, A. Skou, Compositional Verification of Probabilistic Processes, in: W. R. Cleave

land, editor, Proceedings CONCUR 92, Stony Brook, volume 630 of Lecture Notes in Computer 

Science, pp. 456-471 , Springer-Verlag, 1992. 

[20] F. Moller and C. Tofts, A Temporal Calculus of Communicating Systems, in: J. C. M. Baeten 

and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes 

in Computer Science, pp. 401-415 Springer-Verlag, 1990. 

[21] D. M. R. Park, Concurrency and automata on infinite sequences, In P. Duessen (ed.) 5th GI 

Conference volume 104 of Lecture Notes in Computer Science, PI'. 167-183, Springer-Verlag, 

1981. 

[22] G. D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer 

Science Department., Aarhus University, 1981. 

[23] R. de Simone, Higher-level synchronising devices in MEIJE-SCCS, Theoretical Computer Sci

ence 37, pp. 245-267, 1985. 

[24] F. W. Vaandrager, personal communication, Apri11993. 

22 



In this series appeared: 

91/01 D. Alstein 

91/02 R.P. Nederpelt 
H.C.M. de Swart 

91/03 J.P. Katoen 
L.A.M. Schoenmakers 

91/04 E. v.d. Sluis 
A.F. v.d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.Poll 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 R.C.Backhouse 
PJ. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voennans 
J. v.d. Woude 

91/11 R.c. Backhouse 
PJ. de Bruin 
G.Malcolm 
E.Voennans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lemmens 

91/15 A.T.M. Aens . 
K.M. van Hee 

91/16 AJ J .M. Marcelis 

91/17 A.T.M. Aens 
P.M.E. de Bra 
K.M. van Hee 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems. p. 14. 

Implication. A survey of the different logical analyses 
.. if.. .• then ...... p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments. p. 16. 

Perfonnance Analysis of VLSI Programs. p. 31. 

An Implementation Model for GOOD. p. 18. 

SPECIFICATIEMETHODEN. een overzicht, p. 20. 

CPO-models for second order lambda calculus with 
recursive types and sUbtyping. p. 49. 

Tenninology and Paradigms for Fault Tolerance. p. 25. 

Interval Timed Petri Nets and their analysiS. p.53. 

POLYNOMIAL RELATORS. p. 52. 

Relational Catamorphism. p. 31. 

A parallel local search algorithm for the travelling 
salesman problem. p. 12. 

A notc on Extensionality. p. 21. 

The PDB Hypennedia Package. Why and how it was 
built. p. 63. 

Eldorado: Architecture of a Functional Database 
Management System. p. 19. 

An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs. 
p. 25. 

Transfonning Functional Database Schemes to Relational 
Representations. p. 21. 



91/18 Rik van Geldrop 

91/19 Erik Poll 

91/20 A.I: Eiben 
R.'. Schuwer 

91/21 J. Coenen 
W.-P. de Roever 
J.Zwiers 

91/22 G. Wolf 

91/23 K.M. van Hee 

LJ. Somers 

M. Voorhoeve 

91/24 A.T.M. Aerts 
D. de Reus 

91/25 P. 7-hou 
J. Hooman 

R. Kuiper 

91/26 P. de Bra 
G.J. Houben 
J. Paredaens 

91/27 F. de Boer 

C. Palamidessi 

91/28 F. de Boer 

91/29 H. Ten Eikelder 

R. van Geldrop 

91/30 J.C.M. Baeten 
F.W. Vaandrager 

91/31 H. ten Eikelder 

91/32 P. Struik 

91/33 W. v.d. Aalst 

91/34 J. Coenen 

91/35 F.S. de Boer 
J.W. Klop 
C. Palamidessi 

Transformational Query Solving, p. 35. 

Some categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Syste.'ls, a Formal Model, p. ~ 1. 

Assertional Data Reification Proofs: Survey and 

Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Formal semantics for BRM with examples, p. 25. 

A compositional proof system for real-time systems based 
on explicit clock temporal logic: soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarChy, p. 17. 

A compositional proof system for dynamic proces 
creation, p. 24. 

Correctness of Acceptor Schemes for Regular Languages, 

p. 31. 

An Algebra for Process Creation, p. 29. 

Some algorithms to decide the equivalence of recursive 
types, p. 26. 

Techniques for designing efficient parallel programs, p. 
14. 

The modelling and analysis of queueing systems with 
QNM-ExSpect, p. 23. 

Specifying fault tolerant programs in deontic logic, 
p. 15. 

Asynchronous communication in process algebra. p. 20. 



92/01 J. Coenen 
J. Zwiers 
W.-P. de Roever 

92/02 J. Coenen 
J. Hooman 

92/03 J.C.M. Baeten 
J .A. Bergstra 

92/04 J.P.H.W.v.d.Eijnde 

92/05 J .P.H. W. v .d.Eijnde 

92/06 J.C.M. Baeten 
J .A. Bergstra 

92/07 RP. Nederpelt 

92/08 RP. NederpeJt 
F. Kamareddine 

92/09 RC. Backhouse 

92/10 P.M.P. Rambags 

92/11 R.C. Backhouse 
J.S.C.P.v.d.Woude 

92/12 F. Kamareddine 

92/13 F. Kamareddine 

92/14 J.C.M. Baeten 

92/15 F. Kamareddine 

92/16 R.R. Se1jee 

92/17 W.M.P. van der Aalst 

92/18 RNederpeJt 
F. Kamareddine 

92/19 J.C.M.Baeten 
J .A.Bergstra 
S.A.Smolka 

92/20 F.Kamareddine 

92/21 F.Kamareddine 

A note on compositional refinement, p. 27. 

A compositional semantics for fault tolerant real-time 
systems, p. 18. 

Real space process algebra, p. 42. 

Program derivation in acyclic graphs and related 
problems, p. 90. 

Conservative fixpoint functions on a graph, p. 25. 

Discrete time process algebra, p.45. 

The fine-structure of lambda calculus, p. 110. 

On stepwise explicit substitution, p. 30. 

Calculating the Warshal.l/f1oyd path algorithm, p. 14. 

Composition and decomposition in a CPN model, p. 55. 

Demonic operators and monotype factors, p. 29. 

Set theory and nominalisation, Part I, p.26. 

Set theory and nominalisation, Part II, p.22. 

The total order assumption, p. 10. 

A system at the cross-roads of functional and logic 
programming, p.36. 

Integrity checking in deductive databases; an exposition, 
p.32. 

Interval timed coloured Petri nets and their analysis, p. 
20. 

A unified approach to Type Theory through a refined 
lambda-calculus, p. 30. 

Axiomatizing Probabilistic Processes: 
ACP with Generative Probabilities, p. 36. 

Are Types for Natural Language? P. 32. 

Non well-foundedness and type freeness can unify the 
interpretation of functional application, p. 16. 



92/22 R. Nederpelt 
F.Kamareddine 

92(23 F.Kamareddine 

E.Klein 

92/24 M.C0dish 
D.Dams 

Eyal Yardeni 

92/25 E.Poll 

92/26 T.H.W.Beelen 
W.J.J.Stut 
P.A.C. Verkoulen 

92/27 B. Watson 

G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 

P.J. Zwietering 

93/05 J.C.M. Baeten 

C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moerland 

93/08 J. Verhoosel 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

A useful lambda notation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

Bottum-up Abstract Interpretation of Logic Programs, 

p. 33. 

A Programming Logic for Fro, p. IS. 

A modelling method using MOVIE and SimCon/ExSpect, 
p. IS. 

A taxonomy of keyword pattern matching algorithms, 

p.50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Deterministic and randomized local search, p. 78. 

A congruence theorem for structured operational 

semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32. 

Systems Engineering: a Formal Approach 

Part I: System Concepts, p. 72. 

Systems Engineering: a Formal Approach 

Part II: Frameworks, p. 44. 

Systems Engineering: a Formal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Formal Approach 
Part IV: Analysis Methods, p. 63. 

Systems Engineering: a Formal Approach 
Part V: Specification Language, p. 89. 



92/22 R. Nederpelt 
F.Kamareddine 

92(23 F.Kamareddine 
E.Klein 

92/24 M.Codish 
D.Dams 
Eyal Yardeni 

92/25 E.Poll 

92/26 T.H.W.Beelen 
W.J.J.Stut 

P.A.C. Verkoulen 

92/27 B. Watson 

G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 
P.J. Zwietering 

93/05 J.C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moeriand 

93/08 J. Verhoosel 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 KM. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

93/14 J.C.M. Baeten 
J.A. Bergstra 

A useful lambda notation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

Bottum-up Abstract Interpretation of Logic Programs, 
p. 33. 

A Programming Logic for Fro, p. IS. 

A modelling method using MOVIE and SimCon/ExSpect, 
p. IS. 

A taxonomy of keyword pattern matching algorithms, 

p.50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Deterministic and randomized local search, p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32. 

Systems Engineering: a Formal Approach 

Part I: System Concepts, p. 72. 

Systems Engineering: a Formal Approach 
Pan II: Frameworks, p. 44. 

Systems Engineering: a Formal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Formal Approach 

Part IV: Analysis Methods, p. 63. 

Systems Engineering: a Formal Approach 

Part V: Specification Language, p. 89. 

On Sequential Composition, Action Prefixes and 
Process Prefix, p. 21. 



93/15 J.C.M. Baeten 
J.A. Bergstra 
R.N. Bol 

93/16 H. Schepers 
J. Evoman 

93/17 D. Alstein 
P. van der Stok 

A Real-Time Process Logic. p. 31. 

A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems. p. 27 

Hard Real-Time Reliable Multicast in the DEDOS system. 
p. 19. 


	Abstract
	1. Introduction
	2. Aplications
	3. Term deduction systems
	4. The congruence theorem
	5. Conclusions and future work
	6. References

