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ABSTRACT. We proposed a syntactical format, the path format, for structured opera-
tional semantics in which predicates may occur. We proved that strong bisimulation is
a congruence for all the operators that can be defined within the path format, To show
that this format is useful we provided many examples that we took from the literature
about CCS, C5P, and ACP; they do satisfy the path format but no formats proposed
by others. The examples include concepts like termination, convergence, divergence,
weak bisimulation, a zero object, side conditions, functions, real time, discrete time,
sequencing, negative premises, negative conclusions, and pricrities {or a combination of
these notions).
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A congruence theorem ...: 1. Introduction

1. Introduction

Since the paper of Plotkin [23] about structured operational semantics it has become quite popular
to provide a semantics for process calculi, programming, and specification languages by using a
labelled transition system. Since then a number of papers about the subject of structured operational
semantics appeared and it gradually became a subject of research of its own. Various so-called
formats were proposed for labelled transition syste!ils in Plotkin’s style. Such a format is a syntactical
constraint on the form of the rules such that some nice property holds, for instance, that bisimulation
equivalence is a congruence for all the operators that can be defined within the format.
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Figure 1. The lattice of formats

In figure 1 we depict the various formats together with two new ones; the dashed arrows point
to them. An arrow from one format to another indicates that all operators that can be defined
in the first format can also be defined in the second one. The most elementary format originates
from De Simone {25]. Yet it is already powerful enough to define all the usual operators of, for
instance, CCS or ACP. The GSOS format of Bloom, Istrail and Meyer [11] allows negative premises
but no lookahead and the #yft/tyzt format of Groote and Vaandrager [16] allows lookahead but no
negative premises. They both generalize the format of De Simone. The positive GSOS format in the
figure is the greatest common divisor of the GSOS and the tyft/tyzt format. The niyft/niyzt format
of Groote [15] is, in fact, the least common multiple of the ¢yft/tyzt format and the GSOS format.
In this paper we will extend the #yft/tyrt format with predicates. We propose the path format,
which stands for predicales end tyft/tyzi hybrid formai. The highest format that occurs in figure 1
is the least common multiple of the niyfi /niyrt format and the path format, the panth format, which
means predicates and niyft/ntyzrt hybrid format. We will not give the exact definitions of all these
formats except the definitions of the path format, the tyfi/tyxt format, the panth format, and the
niyft/ntyct format. Moreover, in this paper we will focus on the path format and not on its negative
counterpart.

The main result of this paper is a congruence theorem stating that if a so-called term deduction
system satisfies the path format (and is well-founded) then strong bisimulation is a congruence. We
prove this using the congruence theorem of Groote and Vaandrager [16] (which is the case without
predicates) by coding each predicate as a binary relation. So all the operators that can be defined
in the path format can also be defined in the tyfi/tyzt format. Now the question arises why we need
the path format anyway. Next, we will motivate the need for this new format.
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A format is, in general, a pure syntactical constraint on the form of the deduction rules, so the
path format syntactically generalizes the {yft/tyrt format since we may mix predicates and ordinary
transitions (in fact, our format uses relations instead of transitions), whereas we cannot use predicates
in the tyfi/tyzt format.

Another argument that advocates for the path format is that usually an operational semantics
in Plotkin’s style that contains predicates can be easily understood, but if we have to code each
predicate as a binary relation to obtain an operational semantics in fyft/tyzt format we immediately
lose the simplicity of the operational semantics.

Even if we do not care about syntactical freedom or simplicity at all we still have to be careful
with coding of predicates by relations since this can lead to very non-intuitive situatons, We will give
some examples of operational semantics that are better understood with than without predicates.

Two examples can be found in a paper of Baeten and Vaandrager [7] in which several operational
semantics are given for the simple language Basic Process Algebra (BPA); this consists of the first
five laws of the theory PA of Bergstra and Klop [10]. The language BPA has only atomic actions
and alternative and sequential composition.

First, Baeten and Vaandrager extend the signature with a constant §. Then they give an
operational semantics with negative premises. For completeness they need that dz = =z, which is
non-intuitive since in the ACP framework we have 6z = §; the constant & stands for inaction or
deadlock. In section 2 we will return to this operational semantics. A more intuitive operational
semantics using predicates is given by Van Glabbeek [14]. Further on in this section we will use his
semantics to explain our format.

When discussing another operational semantics of BPA Baeten and Vaandrager moreover add
the constant ¢ (see Koymans and Vrancken [18]} to the algebraic description language featuring the
rule

s—-—‘f-v(s
here +/ is just an extra label. The intuition of the empty process is that it is only capable of
immediately successfully terminating, but this rule suggests that it can, in fact, perform an action /
and then terminate unsuccessfully. Baeten and Van Glabbeek [6] give an operational semantics
with a termination predicate that is in accordance with our intuition about the empty process. We
will return to this issue in another context where we treat an operational semantics of Aceto and
Hennessy [1] in which a termination predicate occurs; see section 2.

As a last example of semantics that are better understood with than without predicates we
will mention the clear operational semantics using predicates that Klusener [18)] gives for various
real time process algebras. He also gives non-intuitive semantics with negative premises for the same
languages. Klusener introduces these negative premises to eliminate the predicates (in order to obtain
a congruence result). We claim that this is not necessary; see section 2 for more details.

Next we will informally introduce the path format by giving the operational semantics of Van
Glabbeek [14] of the language BPA to demonstrate the congruence theorem. In fact, we take a
fragment of the structured operational semantics of Van Glabbeek [14]. In BPA we have alternative
and sequential composition (denoted by + and - resp.) and a set A of atomic actions. Often we
will write zy instead of # - y. In table 1 we have that z,z’, y, and i are distinct variables and a
ranges over the set A. We have ordinary transitions in this table and predicates. For each a € A
there is a postfix predicate -—2+,/. The intuition of z—2+,/ is that z can perform an a action and
then terminate successfully. The intended meaning of x——z’ is as expected: « evolves into z' by
performing an a action. We have to check two properties of the transition system in order to be able
to use our congruence theorem. We will informally introduce them and show that they hold for the
system in table 1.

The first demand is that every rule must be well-founded. Well-foundedness roughly says that
there are no transitions in the premises with cyclic occurrences of variables; for instance, the rules

a [
g Y=z, 2y

c '’ C

(1)
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a—/
z-op’ y—y
z+y-—=z z4y-Sy
25y y—=/
s+y—v/  z+y—/
sz z—+y/
zy——z'y zy—y

Table 1. A Transition system for BPA.

are not well-founded. In table 1 there are no such rules so there is nothing to check.

The last demand is a little bit more involved: the rules have to be in path format. We list the
conditions,

Check for each rule the following. All the transitions in the premises must end in distinct
variables; denote this set by Y. If the conclusion is a transition then it must begin with either a
variable 2 € Y or a term f(zi,...,z,) with z;,..., 2, distinct variables that are not in Y. If the
conclusion contains a predicate we treat the term that occurs in it as if it were the beginning of an
ordinary transition.

Now it is easy to verify that the rules of table 1 are in path format but it will be even more easy
if we also list the things that we do not have to worry about.

There is no restriction on the number of premises, There is also no restriction whatsoever on
the predicates in the premises. There is no restriction on a term that occurs in the left-hand side of
a transition in a premise or in the right-hand side of a transition in a conclusion.

As an example we treat the last rule of table 1. For the premise of this rule there is nothing
to check. The beginning of the transition in the conclusion is of the form f(z,y). So this rule is in
path format and bisimulation is a congruence.

In the remainder of this section we will discuss the organization of this paper. We did not
choose for a chronological ordering of our paper. In section 2 we start with the end: namely the
applications. At first sight this may seem a bit unlogical but there are several reasons that advocate
for this ordering, in fact, we already discussed an application in the introduction. The first reason
for this choice is that the area of application is operational semantics and they are often easy to read.
The second reason is that the informal definitions that we just gave for the well-foundedness and the
path format will be enough to understand what is going on. The third and maybe most important
reason for this choice is that the reader immediately can see if her or his operational semantics has
a good chance to fit in our format. If this is the case then the time has come to read on and enter
section 3. In this section we introduce the basics and the notion of a term deduction system, which
is a generalization of a transition system specification. In the next section we define a structured
state system, which generalizes the concept of a labelled transition system and we define the notion
of bisimulation equivalence in the presence of predicates. The connection between these two sections
is that a term deduction system induces in a natural way a structured state system. Now we have
all the prerequisites to continue with section 5. In this section we will give the exact definitions of
well-foundedness, the path, tyft/tyst, panth, and ntyfi/ntyzt formats. Thereafter, we will state and
prove the congruence theorem. The last section contains concluding remarks and discusses future
work.

2. Applications
In this section we will discuss a number of known operational semantics in which predicates occur

so none of the examples satify the tyfl/tyxt or the niyfi/ntyzt format. It will turn out that they are
well-founded and satisfy the path format or that they can be easily modified such that they satisfy
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the two requirements. With the aid of our congruence theorem we then find that bisimulation is a
congruence for all the operators that are defined within the operational semantics.

The examples are taken from CCS, CSP, and ACP. They touch upon concepts like termina-
tion, convergence, divergence, weak bisimulation, a zero object, side conditions, functions, real time,
discrete time, sequencing, negative premises, negative conclusions, and priorities (or a combination
of these notions).

The first example concerns an operational semantics that originates from Aceto and Hennessy [1)].
It is an operational semantics of a CCS like process algebra extended with a successful termination
predicate and a convergence predicate. Their approach is to first inductively define the termination
predicate 1/, which is a postfix denoted predicate. In table 2 we enumerate the rules as they essentially
appear in [1). In fact, Baeten and Van Glabbeek [6] have the same approach to successful termination.

nily/ z/, 3/ z/, 4/
(z+ 9V (z; 9V

zv/, yV/ zv t[recz.t/z]V
Gl TGV vty

Table 2. The rules for /.

Then they define the unsuccessful termination predicate by simply taking the complement of
the successful termination predicate; we will denote this predicate by —/. In our approach we will
have to explicitly define this predicate with deduction rules since we define the transition system in
one step. In table 3 we give our rules for —+/. It might be argued that this is a disadvantage but the
rules for ~/ are quite straightforward.

z~/ z~v/
R A o v A R )
z=/ -/ z/
Or (=) (z )V (v:2)~v
2=/ z-/ trecz.t/z]~/

(2] y)~/ (y{z)/ recr.t—w/

Table 3. The rules for —,/.

With the aid of both predicates Aceto and Hennessy inductively define their convergence predi-
cate |; we list their rules in table 4.

6l ntl | pl,p€E Act,

z] tlrecz.t/z] | zl,yl
Ou(z) | recz.l | (z+y)l
zlyl zv,y | 2,z |
(zly)l (z;9) (z;9) |

Table 4. The rules for |.

Finally, Aceto and Hennessy give the rules for the non-deterministic choice +, the sequential
composition ;, the parallel composition |, the binding constructor recz._, and the encapsulation
operator 8y(-). Aceto and Hennessy also have a divergence predicate, which is the complement
of the convergence predicate. We omitted this predicate since they do not need it to define their



A congruence theorem ., .: 2. Applications

z-ts2 g -
z+/, y-Ltay z-! PELIVY
=y z|ySz' |y y|ztoy |2
Sz y-Sy -z t[recz. t/z] 2
z|y—z |y Bx(z)-t-8g(2' ),,u ¢H rece.t-2oz’

Table 5. The action relations for each u € Act,.

operational semantics. However it is easy to define this predicate; we refer to [17] for an explicit
operational semantics of the divergence predicate in path format.

For more details on the process algebra of Aceto and Hennesy we refer to [1].

The matter that we are interested in at the moment is that the rules in tables 2-5 are well-
founded and in path format so with theorem (5.7) we immediately find that strong bisimulation is a
congruence.

At this point one may find that we are not entirely fair since Aceto and Hennessy are, in fact,
interested in weak bisimulation and they have a lot of work to do to obtain that weak bisimulation is
a congruence for their system. Therefore, we will prove in the next example that weak bisimulation
is a congruence with our congruence theorem for sirong bisimulation. We conjecture that a similar
trick can also be applied for the CCS like process algebra of Aceto and Hennessy.

This next example is an operational semantics of Van Glabbeek [14] for BPA,, which is a
fragment of the theory ACP; that originates from Bergstra and Klop [9]. The subscript = stands
for the silent move of Milner [20]. The operational semantics is given by the rules of tables 1 and 6.
Van Glabbeek {14] observes that his model is isomorphic to the graph model of Baeten, Bergstra
and Klop {4]. This means that two terms are strongly bisimilar in his model if and only if they are
weakly bisimilar in the graph model, so since all the rules of tables 1 and 6 are well-founded and in
path format we know that strong bisimulation is a congruence and thus, weak bisimulation on the
graph model is also a congruence. We can also apply this result to the entire operational semantics
that Van Glabbeek gives for ACP;.

a_a"r
Doy, y-Loz’ oy, g2/
r—z' z——/
Sy y—r 2y g
-z’ 2/

Table 6. Operational rules for the silent step.

The next example is an operational semantics of the language BPAg of Baeten and Bergstra [3].
The theory BPA, is the language BPA (that we already saw above) with a zero object denoted by 0.
They have for this constant the following laws

z+0=2z, z0=0, 0z=0.

Baeten and Bergstra explicitly state in their paper that the operational semantics cannof be written
in the tyft/tyzt or the niyft/niyzt format, since they need the predicate - # 0 (see {3], loc. cit. p. 87).
The problems arise with the rules for the sequential composition: if z——z' then we will only
have zy—s2'y if y # 0. In table 7 we give the rules that define the (postfix) predicate - # 0
and we give the rules for the sequential composition. Together with the first five rules of table 1 they
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z#0 z#0
a#0 z2+y#0 y+z#£0
z#£0y#0 22 y#0 e/, #0
zy#£0 zy—az'y zy——y

Table 7. The # 0 predicate and rules for sequential composition.

form an operational semantics for BPA,, It is not hard to check that all the rules are well-founded
and in path format, so we obtain that bisimulation is a congruence.

Often we see that the rules of an operational semantics have so-called side conditions. For
instance, the following rule from Groote and Vaandrager [16] has a side condition:

a—>¢, a# /.

This side condition is an abbreviation for the list containing for all a € A a rule a—%-+¢. Thus, it is
in fact a harmless side condition, since the rules can be replaced by an enumaration. Often, though,
side conditions are not so harmless. This is the case if a side condition contains a process term. An
example of such a rule can be found in a paper of Moller and Tofts [21] on temporal CCS:

_f_, 1

S ol TR &)
P®Q—P

Here |- |7 is called the maximal delay, which is a function and not a predicate. In the operational
semantics of Moller and Tofts there are no “free” occurrences of the maximal delay function, but
only side conditions as in display (1). Since this is the case, we can see the side condition |@Q|r < ¢
as a mixfix (or distfix) predicate: |- |z < ¢ (see [13] for the fix terminology). The only problem left
is to define the maximal delay function in these terms. Moller and Tofts define their maximal delay
function in terms of = instead of <, so we will also define the corresponding predicates in terms of =
(we will do this in a minute). But now we have to rephrase display (1), since we no longer have a
predicate in terms of <. This is easy:

P_'!""P’: IQlr =5
PaQLP

, 8 < L.

Note that the new side condition does not contain @ anymore. It has become an ordinary enumera-
tion: for all 5,7 with s < ¢ we have such a rule.

Ol =0 X|r=0 la.Plr=10 |6.P|r = w
IPlr =t |P|r =t |Plr =t |P{uz. P[5} |7 =t
(s)Plr =8+t  |P\alr=t [|P[S]lr=t lui&.Plr =t
IP[T =1, IQlT =5 IPIT =1, IQIT =8 IPIT =1, fQ|T =8

|[P®Qlr =max(s,t)  |[P+Qlr =min(s,t)  [P|Qlr = min(s, )

Table 8. The maximal delay function as a mixfix predicate.

In table 8 we listed the maximal delay function as a mixfix predicate. Note that we are a bit
sloppy with the notation: in fact, we cannot speak about |(s)P|z = s +t. The ultra correct way to
state this rule is to put the sum in a side condition:

|Plr =1

W—r, ¥r,s,t:r=s+1.
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The same holds for the rules that use max and min.
The rephrased operational semantics of Moller and Tofts is well-founded and in path format, so
strong bisimulation is a congruence.,

We will briefly mention some related examples in the area of real time process algebra.

Klusener [18] gives on the one hand some clear operational semantics for several real time process
algebras but on the other hand he introduces non-intuitive operational semantics for the same real
time process algebras using negative premises. This is a lot of work and is merely done to obtain
that the transition system specifications are in ntyft format such that he gets the congruenceness for
“free” with a theorem of Groote {15]. We claim that it is not necessary: the operational semantics
that Klusener actually wants to discuss are well-founded and in path format. This result can be
obtained in the same way as we sketched this for the above example of Moller and Tofts.

The last temporal example is an operational semantics for timed CSP of Schneider [24]. His
operational semantics also consists of a function and ordinary transitions. We claim that this function
is, in fact, a mixfix predicate and that the resulting operational semantics is well-founded and in
path format.

We promised in the introduction to return to the operational semantics with negative premises
that Baeten and Vaandrager [7] give for BPA. We recall that they extend the signature of BPA with
an auxiliary constant § and that they have §z = z. They have this property because they model the
sequential composition as a sequencing operator. If z is sequenced with y, notation ry, the process zy
starts with the execution of z, and if it cannot do more actions, then the execution of y starts. In
table 9 we list their semantics with extra rules (from us) containing negative conclusions (note that
we compressed eight rules to six). The intended interpretation of z—# is that z has no outgoing
transitions. Baeten and Vaandrager define this in terms of the transition relation, whereas we define
this in terms of itself, namely inductively as a predicate.

a—248 §—h
r——z' z-2ag
rty—e'ly+z Ty—z'y
z—, y—y Ty
zy—=—y' ey—h, 2+ y—>

Table 9. BPA with sequencing instead of sequential composition.

It is easy to see that this transition system is well-founded and in path format, so bisimulation
is a congruence (note that their rules are not yet in niyft/ntyst format).

This example deviates from the previous ones in the sense that we introduce a predicate —&,
whereas in the other examples a predicate already existed. So we additionally have to show that z—%
if and only if there is no @ and 2’ such that z—=+z’ in order to show that strong bisimulation is the
same as our bisimulation with the extra predicate —f.

The next example is also an operational semantics with negative premises. It is a semantics of
BPA with discrete time from Bacten and Bergstra [2]. In table 10 ‘-~ is just an extra relation:
o ig not in their language. The extra rules are the ones with negative conclusions. Again it is easy
to see that the rules are well-founded and in path format, so bisimulation is a congruence. As in the
previous example we additionally have to show that z—% if and only if there is no &' with z—"+z'.

Finally, we give an operational semantics of BPA with the priority operator of Baeten, Bergstra,
and Klop [5]. Groote and Vaandrager [16] gave an operational definition of the priority operator using
negative premises (in the presence of deadlock and the empty process). Our operational semantics
of BPA with the priority operator is built up from the rules in tables 1 and 11. As in the above
examples we inductively define the negative premises; but now with two postfix predicates —%
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gip\/ a7 ci(z)sz
24z -2/ "z’
zy—z'y Ty——>y zy-Z+z'y
z——z' z-—22! 2%
ety y+z sty ly+sz 2y
z—a', y-"oyf -2z’ y-h Y
z+y—z' +y z+y——2'—y+z z+y-h

Table 10. BPA with discrete time.

and —55./. The meaning of z—% is that there is no z’ with #—2+2’ and z-%+/ means that z is
not capable of terminating successfully by performing an a action. The operational definitions of
the two predicates are almost the same: they only differ in the basic case. Therefore, we combined
corresponding rules with a parenthesized /. It is easy to see that the rules are well-founded and in
path format, so bisimulation is a congruence. Also here we have to show that z—34 if and only if
there is no a and z' with z—"=z’ and 2-54+/ if and only if there is no a such that z—=+./.

222" Vb > a:z—r, 2=/

b_f;L) b#’\/’ a 75 b 9(2)—‘:#0(2:’)
) =AW W) z—7(v})
zy—7+(V) z+y—HV) 8(z)+ (V)
22z 3> a: (zy/Veoz") -5/, 3> a: (g2 vV zoz")
0(x)-# B(z)—F

Table 11. The additional rules for BPA with priority operator.

As a final remark we want to mention that all the positive transition systems appearing in the
book of Baeten and Weijland [8] are in path format. There is only one negative transition system
in their book, which is not in path format but it can easily be made into patk format since this
system treats the priority operator (cf. the above example). We also want to stress that none of the
transition systems in their book satisfy the iyft/tyzt or the niyfi/niyzt format.

3. Term deduction systems

All the examples that we treated in section 2 are, in fact, term deduction systems. In this section
we formalize this notion, which generalizes the notion of a transition system specification. In a
transition system specification we have a transition relation -—%-- for each label a, whereas in a term
deduction system we have just a set of relations and a set of predicates. Having general relations is an
advantage. For instance, the operational semantics for temporal CCS of Moller and Tofts (from which
we treated the tricky part in section 2) provides two transition relations; this can be easily modelled
with a term deduction system but not with a transition system specification. But we can also think
of the combination of a transition relation with a totally different relation, such as Wang’s syntactical
inequality relation P # @ that he uses in an operational semantics for probabilistic CCS (q.v. [26]).

Before we give the definition of a term deduction system we will list some preliminaries for
completeness sake,

We assume that we have an infinite set V of variables and that «,y, z,. .. range over this set.
A signature T is a set of function symbols together with their arity. If the arity of a function
symbol f € ¥ is zero we say that f is a constant symbol. The notion of a term (over L) is defined as
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expected: 2 € V is a term; if ¢y,...,t, are terms and if f € £ is n-ary then f(¢;,...,1,) is a term.
A term is also called an open term; if it contains no variables we call it closed. We denote the set of
closed terms by C(T) and the set of open terms by O(X) (note that a closed term is also open). We
also want to speak about the variables occurring in terms: let £ € O(X) then var(t) C V is the set
of variables occurring in ¢.

A substitution ¢ is a map from the set of variables into the set of terms over a given signature,
This map can easily be extended to the set of all terms by substituting for each variable occurring
in an open term its o-image.

Definition (3.1)

A term deduction system is a structure (X, D) with I a signature and D a set of deduction
rules. The set D = D(T},T;) is parameterized with two sets, which are called respectively the set
of term predicates and the set of term relations. The set of term predicates is a subset of the power
set of O(Z) and the set of term relations is a subset of the power set of O(Z) x O(X). We write Ps
if s € P and tRu if (t,u) € R with P € T, R € T}, and s5,¢,u € O(E). We call expressions like Ps
and tRu formulas. A deduction rule d € D has the form

H

c

with H a set of formulas and C a formula. We call the elements of H the hypotheses of d and we
call the formula C the conclusion of d. If the set of hypotheses of a deduction rule is empty we call
such a rule an axiom. We denote an axiom simply by its conclusion provided that no confusion can
arise. The notions “substitution”, “var”, and “closed” extend to formulas and deduction rules as
expected.

Definition (3.2)

Let T = (X, D) be a term deduction system. A proof of a formula ¢ from T is a well-founded
upwardly branching tree of which the nodes are labelled by formulas such that the root is labelled
with % and if yx is the label of a node ¢ and {x; : { € I} is the set of nodes directly above g then
there is a deduction rule

{¢i:iel}

¢

and a substitution o : V — O(X) such that o(¢) = x and o(¢;) = xi for i € I. The length of x
is |x| = sup{|xi| + 1 : ¢ € I}. The length of a proof is the length of its root.

If a proof of v exists, we say that v is provable from T, notation T'F ¢. A proof is closed if it
contains only closed formulas.

Example (3.3)

As an example we calculate the length of a proof that we depict in figure 2 is w. The last rule
that was used in this proof has an infinite number of premises ay, b1, ¢2,.... The first premise ag is
proved in zero steps, the second b; in one step bo, the third ¢; in two steps ¢; and ¢p, and so on. It
is easy to see that the length of z; equals its index %, for instance [co| = 0, s0 |¢;] = 1 and |es| = 2.
In particular we find |z;} = i for all z; = a@p,b1,¢2,... 80 |p| = w. This means that we have to use
transfinite induction if we want to prove something with induction on the length of a proof.

Lemma (3.4)

If a closed formula is provable from a term deduction system then it is provable by a closed
proof.

Proof. Easy. Confer lemma 3.3 of Groote and Vaandrager [16].

10
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Figure 2. A proof of ¢ with length w.

4. Structured state systems and bisimulation

In this section we define the notions of a structured state system and bisimulation. A structured
state system is a generalizaton of the notion of a labelled transition system. In a labelled transition
system we have for each label a transition relation, whereas in a structured state system we have
just relations and predicates. At first sight, this gives rise to a stronger notion of bisimulation on
a structured state system since we have a transfer property for each relation and predicate. But
our definition of bisimulation mostly coincides with the ones in the literature. For instance, in the
example of Moller and Tofts there are two transition relations so they need to extend the notion of
bisimulation to the two relations. In our setting we moreover demand that bisirnilar processes must
have the same maximal delay. So we have “maximal delay” bisimulation. Moller and Tofts state in
their proposition 3.3 that our maximal delay bisimulation coincides with their notion of bisimulation.
The same phenomenon occurs in Klusener [18] with our UL-bisimulation, Klusener’s U-bisimulation,
and ordinary bisimulation (U means ultimate delay and L. means latest possible action). Also for the
examples with negative premises that we gave in section 2 we have to prove that bisimulation is the
same as our “negative” bisimulation. For small term deduction systems this will not be a problem
but for bigger ones it can become a problem. Therefore, it is better to allow for negative premises in
our rules. However, this is out of the scope of this paper (but we are currently studying this).

Definition (4.1)

A structured state system is a triple (5, Sp, Sr) where S is a set of states, S, is a subset of the
power set of S and S, is a subset of the power set of 5 x S. The sets 5, and S, are called respectively
the set of state predicates and the set of state relations.

Remark (4.2)

A structured state system is a generalization of a labelled transition system. To see this take an
empty set of state predicates and take for the set of state relations the labelled transition relation.

Next, we will define the notion of strong bisimulation on a structured state system, which is
based on Park [22].

Definition (4.3)

Let G = (S,5;,5¢) be a structured state system. A relation B C § x S is called a (strong)
bisimulation if for all 5,¢t € § with sBt the following conditions hold. For all R € &,

¥s' € S(sRs' = 3t' € S LR AS'BY),

Vi’ € S(tRt' = 35’ € S : sRs' A &' Bt'),
and for all P T,

Ps & PL.

The first two conditions are known as the transfer property. Two states s,2 € S are bisimilar
in the structured state system G if there exists a bisimulation relation containing the pair {s,¢).

11
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Notation s ~¢ t or 8 ~ ¢ provided that no confusion can arise. Note that bisimilarity is an equivalence
relation.

A term deduction system induces in a natural way a structured state system.

Definition (4.4)

Let T = (X, D) be a term deduction system and let D = D(T,,T;). The structured state
systemn G induced by T has as its set of states S = C(X); the state predicates and state relations are
the following.

Sp={{t€C(E)|TI-Pt}'P€T,,},
5 ={{(st) € C(R) x C(S) | T+ sRt) |ReT,.}.

We will call 5,¢ € C(T) bisimilar, notation s ~r t if § ~¢ t. Note that ~p is also an equivalence
‘relation. Again we omit the subscript when it is clear what T is.

Definition (4.5)

We say that two term deduction systems are equivalent if they induce the same structured state
system.

5. The congruence theorem

This section is devoted to the congruence theorem. We expect that our congruence theorem can
be proved by simply adapting the proof of the congruence theorem of Groote and Vaandrager [16]
to the present situation. However, we prove a stronger result than just a congruence theorem since
we moreover show that every term deduction system in path format can be reduced to a transition
system specification in tyfi/tyzt format and then apply the theorem of Groote and Vaandrager.

We strongly conjecture that we can prove a similar reduction/congruence theorem for the sit-
uation with negative premises by applying the congruence theorem of Groote [15] (that treats the
situation with negative premises).

First, we will define the notions necessary to state the main result and then we will prove it.

Definition (5.1)

Let T = (X, D) be a term deduction system with D = D(T,,T;). Let in the following I and J
be index sets of arbitrary cardinality, let ¢;,5;,1 € O(X) foralli€ I and j € J, let P;, P € T, be
term predicates for all j € J, and let R;, R € T, be term relations for all i € I.

A deduction rule d € D is in piyfi format if it has the form

{.PJ'SJ' tj € J}U{tiRiyi (i€ I}
f(.’l:l, v .,:l‘.n)Rt

with f € T an n-ary function symbol and X UY = {z1,...,z,} U {5 : 1 € I} C V a set of distinct
variables. If var(d) = X UY we call d pure. A variable in var(d) that does not occur in X UY is
called free.

A deduction rule d € D is in ptyzt format if it has the form

{Pjsj : j € J}VU{tiRiyi :i € I}
Rt

with X UY = {2} U {g: : ¢ € I} C V a set of distinct variables. If var(d) = X UY we call d pure. A
variable in var(d) that does not occur in X UY is called free.

12
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A deduction rule is in ptyfformat if it has the form
{Pjsj :je YU {tiRuyi :i€ I}
Pf(th .a .,z,,)

with f € £ an n-ary function symbol and {z1,...,2,} U {y : 1 € I} C V a set of distinct variables,
The notions pure and free are defined as expected.
A deduction rule is in plys format if it has the form

{Pjs; :j€J}U{t;Riyi :i e I}
Pz
with {z} U {y; : i € I} C V a set of distinct variables. The notions pure and free are defined as
expected.

We give some explanation of the names of the deduction rules. The p in the phrases piyfi, plyst,
piyf, and ptyzr refers to the predicates occurring in the rules, the ty refers to the relation part in the
set of hypotheses, and the fi, #t, f, and z refer to the conclusion. The names fyft and ¢yzt are taken
from Groote and Vaandrager {16)].

If a deduction rule d € D has one of the above forms we say that this rule is in path format,
which stands for “predicates and tyft/tyzt hybrid format”. A term deduction system is in path format
if all its rules are. A term deduction system is called pure if all its rules are pure.

A term deduction system is in tyfi/tyzt format if it is in path format and its set of term predicates
is empty.

Definition (5.2)

We will define the panth format, which stands for “predicates and nfyft/ntyzt hybrid format.”
In fact, we have negated predicates as well as negated relations; we call them negative formulas.
Let P € T, and R € T, ; with ~Ps we mean that s ¢ P and with s—R that there is no ¢ such that sRt.
The notion of a term deduction system remains the same: we just have more formulas. So let
T = (X, D) be a term deduction system and let D = D(T},T;). We adapt the notational conventions
of definition (5.1) and moreover let K and L be index sets of arbitrary cardinality, uk, v; € O(%) for
alk€e KandleL PreT,forallke K,and Ry €T, foralll € L.

A rule d € D is in pntyft format if it has the form

{-FPup : k EK}U{PJ'S_; 1J E J}U{tiR,-yg i € I}U{Ui"lR[ZIE L}
f(tl,.. .,zn)Rt ’

The definition of rules in pniyf, pntyzt, and pniyz format is obtained in the same way. A deduction
rule is in panth format if it is in one of the four negative formats. A term deduction system is in
panth format if the rules are in panih format.

A term deduction system is in niyft/niyzi format if is in penth format and its set of term
predicates is empty.

Remark (5.3)

In fact, the penth format could also be called the panpanth format: predicates and negated
predicates and niyft/ntyrt hybrid format. The panth format then only allows for predicates and
negated relations. The panpath format is a format that has predicates and negated predicates but no
negated relations. The operational semantics from Aceto and Hennessy that we discussed in section 2
is actually in panpath format: there are no negated relations but they have a rule with a negated
predicate. The reason for using the name panth format is that we think that these formats are, so to
speak, the same.

We need the technical notion of well-foundedness of a term deduction system, which will be used
in the proof of the congruence theorem. We will use a property in the proof that in general does
not hold for a non well-founded term deduction system; we will return to this in the proof of the
theorem. It is an open question if the requirement of well-foundedness is really necessary. However,
we heard from Fokkink [12] that the requirement is probably not necessary for the tyft/tyrt format
and that his results easily generalize to our setting.

13
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Definition (5.4)

Let T = (X, D) be a term deduction system and let F be a set of formulas. The dependency
graph of F is a directed graph with variables occurring in F as its nodes. The edge z — y is an
edge of the dependency graph if and only if there is a {Rs € F with = € var(t) and y € var(s).

The set F is called well-founded if any backward chain of edges in its dependency graph is finite.
A deduction rule is called well-founded if its set of hypotheses is so. A term deduction system is
called well-founded if all its deduction rules are well-founded.

Example (5.5)
We give the dependency graphs of the non well-founded rules in display (1) of section 1.

]

N
%

Figure 3, T'wo dependency graphs.

Lemma (5.6)

For every well-founded term deduction system in path format there is an equivalent pure well-
founded term deduction system in path format.

Proof. Let T = (¥, D) be a well-founded term deduction system in path format. Let 7' = (X, D’)
be defined as follows. The deduction rules of D’ are the rules of D without free variables plus for
each rule with free variables a set of new rules. Let d € D be a deduction rule with free variables
then such a set of new rules is the set containing a new deduction rule for every possible substitution
of closed terms for the free variables in d. Clearly, 7" is pure, well-founded and in path format. Every
closed proof of a formula in T is also a proof for this formula in 7" and vice versa.

Theorem (5.7)

Let T = (X, D) be a well-founded term deduction system in path format then strong bisimulation
is a congruence for all function symbols occurring in X.

Proof. Groote and Vaandrager [16] proved this theorem in the case that the set of term predicates
is empty, that is, if the term deduction system is in tyfi/tyzt format. Qur strategy to prove the
non-empty case is to construct from a term deduction system a new one without predicates with
the property that two terms are bisimilar in the old term deduction system if and only if they are
bisimilar in the new one. We make the new term deduction system from the old one by coding each
predicate in the old system as a special relation in the modified one.

To begin with, we contruct from a term deduction system a new one by extending the original
signature with a xenoconstant and moving the predicates of the original system to xenorelations.

Let T = (X, D) be a term deduction system and suppose that D = D(T,,T,) with T, # 0.
In accordance with lemma (5.6) we may assume that T is pure. We define a new term deduction
system T = (£, D'). Let £ be a constant function symbol that is strange to X and define ¥/ = ZU{¢}.
Let I = D/'(0,T}) with T} = T, U{Rp | P € T, } (disjoint union). A term relation Rp for P € T}
i8 defined as follows. For two terms s and ¢ over £ we have sRpt if and only if Ps and ¢ = £.
The set of deduction rules is D' = {d’ | d € D} and a deduction rule &’ is constructed from an old
rule d € D as follows. Let d = ’C—f The set of hypotheses of d' is the set H but with the “predicate
part” {P;s; | j € J} replaced by {s;Rp,z; | j € J} with {2; | j € J} a set of distinct variables
disjoint with var(d). If the conclusion of the old rule is of the form Pt then the conclusion of the
new rule is tRpf. In the other case C remains the same. Note that T” is pure, well-founded and
in tyfi/tyzt format.

Now we will prove that two closed -terms u and v are bisimilar in the original system T if and
only if they are bisimilar in the system T". In order to do this we use a number of properties that
are listed below.

14
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Let P T,, R€ T,, and u,v € O(X') D O(E) (unless otherwise specified) then the following
properties hold. (We denote the bisimulation relation in T by ~ and in T” by ~'.)

(i) T'FuRpr=v=¢
(i) u € C(I), T F uRv = v € C(X)
(i) u,v € C(X), T+ uRv =T+ uRvy
(iv) u € C(X), T+ uRp§ = T | Pu
(v) u€ C(X), T+ Pu= T+ uRp¢
(i) u,v€C(E), T+HuRv="T'F uRv
(vid) wWreCE) = (u~v < u~'v)
Before we continue, we discuss properties (i1)—(vi). Property (i) says that if we can prove in the
xenosystem that an old term u is related with a term v by means of an old relation R that v cannot be
a xenoterm. A simple example due to Fokkink [12] shows that for this property the well-foundedness

cannot be missed. Suppose that we have a signature that consists of a single constant . We have

two rules:
R

aSz’
Clearly, this system is not well-founded. The xenosystem has the same rules; only the signature is
extended with the xenoconstant £. It is easy to see that we can derive in this new system that aS¢.

The properties (#1)-{vi) actually form two bi-implications saying that every provable formula
in the old system is provable in the xenosystem and vice versa. We split these bi-implications into
four statements for (proof) technical reasons.

Now we prove the properties.

The proof of (i) follows directly from the definition of the deduction rules in .

We prove (ii) with transfinite induction on the length of the proof (see section 3 for the definition
of this length). Without loss of generality we may assume that the proof is closed; see lemma (3.4).
Suppose that (ii) holds for all lengths a < # and that we have a proof of uRv of length 8. The last
rule d' used in this proof must be of the following form

{sjRp;2zj :j€ JYU{tiRiys : i € I} (1)
sRt '
There is a substitution ¢ with o(s) = u and ¢(f) = v. Note that ver(t) C var(s) U{y: : i € I}
so it suffices to show that o(y;) € C(Z) for all i € I since o¢(s) € C(E). We denote the set of
all y; by Y. Suppose that there is an y;, € Y with o(y;,) € C(X') \ C(X). This contradicts the
well-foundedness of the rule &', for T F o(t;,)Ri,0(yi,) so with the induction hypothesis we find
that o(t;,) € C(X')\ C(%). Since {;, is a E-term, this must be the result of a substitution. This can
only be due to a variable y;, € Y. With induction on the subsubscript we find an infinite backward
chain of edges ¥, —— ¥i, +— ... in the dependency graph of d’.
We simultaneously verify (i#ii)—(vi) with transfinite induction on the maximum « of the lengths
of the proofs. Suppose that (dii)-(vi) hold for all maxima o < 8 and that we have proofs of (iii)-(vi)
with maximum 8. We begin with (#ii). The last rule in the proof is again of the form that we
displayed in (1) together with a substitution & with o(s) = u and ¢(t) = v. With (it) we find for
all i € I that o(y;) € C(E) just like in the proof of (#). So we find using (¢) and the induction
hypothesis for (iti) and (iv) that T + o(#:)Ric(y) and T F Pjo(s;). The original rule in the old
system T from which d' is constructed has the form

{Pjsi 1j€JYU{tiRiyi s i€ 1}
sRit
so we find that T o(s)Ro(t). The case (iv) is treated analogously. Now we treat the case (v). The
last rule d in the proof has the form '
{Pjs; :jeJ}U{tiRiyi s i € T}
Ps

zRz,
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and there is a substitution & with ¢(s) = u. With induction we find that T  o(t;)Rio(y:) and
T'+ o(s;)Rp;€. Let d be rule that corresponds with d:

{sjRp;z; : j € JYU{tiRiw :i € I}
sRpE ’

Let Z be the set of all z;. Define a substitution ¢/ with ¢/(z) = £ for all 2 € Z and ¢'(2) = o(z) for
all z € V\ Z. With d’ and ¢’ we find that T I uRp€. The case (vi) is treated analogously. This
concludes the induction step.

Now we verify (vii}. Firstly, let ©u ~ v, Then there is a bisimulation relation B with uBv.
Define B’ = BUA', with A’ = {(z,2) : 2 € C(Z')} the diagonal. We show that B’ is a bisimulation
with uB’v in the new system 7”. Clearly, uB'v. Now let sB't. We distinguish two cases: s = ¢
and s # t. We verify that the conditions in definition (4.3) hold for the second case since the first
case is trivial. Since s # ¢ we have s,¢ € C(Z) and sBt. Since there are no predicates in T we only
have to verify both transfer properties of definition (4.3). For each transfer property we have two
cases: R and Rp. Now let R € 7, and suppose T' - sRs’ for some s’ € C(Z’). We find with (i)
that s’ € C(X). Since sBt there is a t’' € C(X) with T F tRt' and s’Bt’. So we obtain s'B’t’ and
with (vi) that 7' + tRt’. The second condition in definition {4.3) is verified analogously. We check
the first condition for Rp. Let P € T, and suppose that TV - sRps’ for some &' € C(X'). We
find with (#) that s’ = £. So with (iv) we get T F Ps. Since sBt we find T + Pt and with (v)
that T' F tRpé. Clearly £B'€. The second condition in (4.3) is checked analogously.

Secondly, let u ~' v. Then there is a bisimulation relation B’ containing the pair (u,v). Let
B = B' N (C(X) x C(X)). We show that B is a bisimulation with uBv in the original system T.
Since u,v € C(X) we clearly have uBv. Let sBt. We check the conditions of definition (4.3).
Let R € T, and suppose that T'+ sRs' for some &' € C(X). With (vi) we find T’ - sRs’. Since sB't
there is a ¢/ € C(Z') with 7' + tRt’ and &'B't'. With (#i) we find ¢’ € C(T) so ' Bt'. With (dii) we
have T+ tRt'. The second condition in definition (4.3) is verified analogously. Next, we show that
the last condition of (4.3) from left to right holds. The other direction can be shown analogously.
Let P € T, and suppose that T Ps. With (v) we find T” - sRp£ so since sB't there isa t’ € C(X')
with 7 F tRpt’. With (i) we find ¢/ = £ so with (iv) we find T + P¢. This concludes the proof
of (vit).

Now we are in a position to prove the congruence theorem. Let f € X be an n-ary function
symbol. Let u;,v; € C(X) and u; ~ v; for 1 < i < n. With (vii) we find u; ~' v; forall 1 <i < n.
Since the term deduction system 77 is well-founded and in #yft/tyzt format we can apply the congru-
ence theorem of Groote and Vaandrager [16] so f(uy,...,un) ~' f(v1,...,v,). Since f(uy,...,%n)
and f(v1,...,vn) are E-terms we find with (vii) that f(us,...,un) ~ f(v1,...,va). This concludes
the proof of (5.7).

Corollary (5.8)

Every term deduction system in path format can be reduced to a transition system specification in
tyft/tyzt format. If the term deduction system is moreover well-founded then bisimulation equivalence
is preserved: two terms are bisimilar in the path system iff they are bisimilar in the {yft /tyxt system.

6. Conclusions and future work

In this paper we have proposed a syntactical format (called the path format) for structured operational
semantics with predicates such that strong bisimulation is a congruence for all the operators that
can be defined within this format. For a number of operational semantics that we tock from the
literature we showed that our format is rather practical: many operational semantics satify our
format, whereas they do not satisfy formats proposed by others, as for instance the tyft/tyzt format
proposed by Groote and Vaandrager [16] or the ntyft/ntyzt format of Groote [15]. The examples that
we discussed treat concepts like termination, convergence, divergence, a zero object, side conditions,
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functions, real time, discrete time, sequencing, negative premises, negative conclusions, and priorities
(or a combination of these notions).

Future work is mainly concerned with negative rules. For instance, we want to generalize the
ntyft/ntyxt format with predicates to the so-called panth format (see defintion (5.2)). We believe
that the proof that we give in this paper for the congruence theorem can be easily adapted to that
situation. Since we are already able to treat several operational semantics that use negative rules,
the question arises how expressive all these formats are. For instance, which negative premises can
be written as predicates?

Finally, we conclude that the path format is a very practical format that can be used with a lot
of ease in a wide range of applications.
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