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ABSTRACT. We proposed a syntactical format, the path format, for structured opera­
tional semantics in which predicates may occur. We proved that strong bisimulation is 
a congruence for all the operators tha.t can be defined within the path format. To show 
that this format is useful we provided many examples that we took from the literature 
about CCS, esp, and ACPj they do satisfy the path format but no formats proposed 
by others. The examples include concepts like termina.tion, convergence, divergence, 
weak bisimulation, a zero object, side conditions, functions, real time, discrete time, 
sequencing, negative premises, negative conclusions, and priorities (or a combination of 
these notions). 
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A congruence theorem . .. : 1. Introduction 

1. Introduction 

Since the paper of Plotkin [23] about structured operational semantics it has become quite popular 
to provide a semantics for process calculi, programming, and specification languages by using a 
labelled transition system. Since then a number of papers about the subject of structured operational 
semantics appeared and it gradually became a subject of research of its own. Various so-called 
formats were proposed for labelled transition systems in Plotkin's style. Such a format is a syntactical 
constraint on the form of the rules such that some ~ice property holds, for instance, that bisimulation 
equivalence is a congruence for all the operators that can be defined within the format. 

panth 

" ~ , , , , , , , , 
ntyft/ntyxt path 

/~// 
GSOS tyft/tyrt 

~/ 
positive GSOS 

1 
De Simone format 

Figure 1. The la~tice of formats 

In figure 1 we depict the various formats together with two new ones; the dashed arrows point 
to them. An arrow from one format to another indicates that all operators that can be defined 
in the first format can also be defined in the second one. The most elementary format originates 
from De Simone [25]. Yet it is already powerful enough to define all the usual operators of, for 
instance, CCS or ACP. The GSOS format of Bloom, Istrail and Meyer [11] allows negative premises 
but no lookahead and the tyft/tyxt format of Groote and Vaandrager [16] allows lookahead but no 
negative premises. They both generalize the format of De Simone. The positive GSOS format in the 
figure is the greatest common divisor of the GSOS and the tyft/tyxt format. The ntyft/ntyxt format 
of Groote [15] is, in fact, the least common multiple of the tyft/tyxt format and the GSOS format. 
In this paper we will extend the tyft/tyxt format with predicates. We propose the path format, 
which stands for predicates and tyft/tyrt hybrid format. The highest format that occurs in figure 1 
is the least common multiple of the ntyft/ntyxt format and the path format, the panth format, which 
means predicates and ntyft/ntyrt hybrid format. We will not give the exact definitions of all these 
formats except the definitions of the path format, the tyft/tyxt format, the panth format, and the 
ntyft/ntyxt format. Moreover, in this paper we will focus on the path format and not on its negative 
counterpart. 

The main result of this paper is a congruence theorem stating that if a so-called term deduction 
system satisfies the path format (and is well-founded) then strong bisimulation is a congruence. We 
prove this using the congruence theorem of Groote and Vaandrager [16] (which is the case without 
predicates) by coding each predicate as a binary relation. So all the operators that can be defined 
in the path format can also be defined in the tyft/tyxt format. Now the question arises why we need 
the path format anyway. Next, we will motivate the need for this new format. 
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A congruence theorem . .. : 1. Introduction 

A format is, in general, a pure syntactical constraint on the form of the deduction rules, so the 
path format syntactically generalizes the tYfi/tyrt format since we may mix predicates and ordinary 
transitions (in fact, our format uses relations instead of transitions), whereas we cannot use predicates 
in the tYfi/tyxt format. 

Another argument that advocates for the path format is that usually an operational semantics 
in Plotkin's style that contains predicates can be easily understood, but if we have to code each 
predicate as a binary relation to obtain an operational semantics in tyfi/tyxt format we immediately 
lose the simplicity of the operational semantics. 

Even if we do not care about syntactical freedom or simplicity at all we still have to be careful 
with coding of predicates by relations since thiS can lead to very non-intuitive situatons. We will give 
some examples of operational semantics that are better understood with than without predicates. 

Two examples can be found in a paper of Baeten and Vaandrager [7] in which several operational 
semantics are given for the simple language Basic Process Algebra (BPA); this consists of the first 
five laws of the theory PA of Bergstra and Klop [10]. The language BPA has only atomic actions 
and alternative and sequential composition. 

First, Baeten and Vaandrager extend the signature with a constant o. Then they give an 
operational semantics with negative premises. For completeness they need that ox = x, which is 
non-intuitive since in the ACP framework we have ox = 0; the constant 0 stands for inaction or 
deadlock. In section 2 we will return to this operational semantics. A more intuitive operational 
semantics using predicates is given by Van Glabbeek [14]. Further on in this section we will use his 
semantics to explain our format. 

When discussing another operational semantics of BPA Baeten and Vaandrager moreover add 
the constant c (see Koymans and Vrancken [19]) to the algebraic description language featuring the 
rule 

here .,j is just an extra label. The intuition of the empty process is that it is only capable of 
immediately successfully terminating, but this rule suggests that it can, in fact, perform an action .,j 
and then terminate unsuccessfully. Baeten and Van Glabbeek [6] give an operational semantics 
with a termination predicate that is in accordance with our intuition about the empty process. We 
will return to this issue in another context where we treat an operational semantics of Aceto and 
Hennessy [1] in which a termination predicate occurs; see section 2. 

As a last example of semantics that are better understood with than without predicates we 
will mention the clear operational semantics using predicates that Klusener [IS] gives for various 
real time process algebras. He also gives non-intuitive semantics with negative premises for the same 
languages. Klusener introduces these negative premises to eliminate the predicates (in order to obtain 
a congruence result). We claim that this is not necessary; see section 2 for more details. 

Next we will informally introduce the path format by giving the operational semantics of Van 
Glabbeek [14] of the language BPA to demonstrate the congruence theorem. In fact, we take a 
fragment of the structured operational semantics of Van Glabbeek [14]. In BPA we have alternative 
and sequential composition (denoted by + and· resp.) and a set A of atomic actions. Often we 
will write xy instead of x . y. In table 1 we have that x, x', y, and y' are distinct variables and a 
ranges over the set A. We have ordinary transitions in this table and predicates. For each a E A 
there is a postfix predicate .--'!....,j. The intnition of x--'!....,j is that x can perform an a action and 
then terminate successfully. The intended meaning of x--'!...x' is as expected: x evolves into x, by 
performing an a action. We have to check two properties of the transition system in order to be able 
to use our congruence theorem. We will informally introduce them and show that they hold for the 
system in table 1. 

The first demand is that every rule must be well-founded. Well-foundedness roughly says that 
there are no transitions in the premises with cyclic occurrences of variables; for instance, the rules 

c 
y~z,z~y 

C 
(1) 
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A congruence theorem . .. : 1. Introduction 

a...!!...,j 
z~z' 

Z+y~z' 
. • I 
"--+y 

,,+ y...!!...,j 

y...!!...y' 
,,+ y...!!...y' 

y...!!...,j 
,,+ y...!!...,j 

Table 1. A Transition system for BPA. 

are not well-founded. In table 1 there are no such rules so there is nothing to check. 
The last demand is a little bit more involved: the rules have to be in path format. We list the 

conditions. 
Check for each rule the following. All the transitions in the premises must end in distinct 

variables; denote this set by Y. If the conclusion is a transition then it must begin with either a 
variable" rt Y or a term /("1, ... , "n) with "" ... , "n distinct variables that are not in Y. If the 
conclusion contains a predicate we treat the term that occurs in it as if it were the beginning of an 
ordinary transition. 

Now it is easy to verify that the rules of table 1 are in path format but it will be even more easy 
if we also list the things that we do not have to worry about. 

There is no restriction on the number of premises. There is also no restriction whatsoever on 
the predicates in the premises. There is no restriction on a term that occurs in the left-hand side of 
a transition in a premise or in the right-hand side of a transition in a conclusion. 

As an example we treat the last rule of table 1. For the premise of this rule there is nothing 
to check. The beginning of the transition in the conclusion is of the form 1(", V). So this rule is in 
path format and bisimulation is a congruence. 

In the remainder of this section we will discuss the organization of this paper. We did not 
choose for a chronological ordering of our paper. In section 2 we start with the end: namely the 
applications. At first sight this may seem a bit unlogical but there are several reasons that advocate 
for this ordering, in fact, we already discussed an application in the introduction. The first reason 
for this choice is that the area of application is operational semantics and they are often easy to read. 
The second reason is that the informal definitions that we just gave for the well-foundedness and the 
path format will be enough to understand what is going on. The third and maybe most important 
reason for this choice is that the reader immediately can see if her or his operational semantics has 
a good chance to fit in our format. If this is the case then the time has come to read on and enter 
section 3. In this section we introduce the basics and the notion of a term deduction system, which 
is a generalization of a transition system specification. In the next section we define a structured 
state system, which generalizes the concept of a labelled transition system and we define the notion 
of bisimulation equivalence in the presence of predicates. The connection between these two sections 
is that a term deduction system induces in a natural way a structured state system. Now we have 
all the prerequisites to continue with section 5. In this section we will give the exact definitions of 
well-foundedness, the path, tyjt/tyn, panth, and ntyjt/ntyxt formats. Thereafter, we will state and 
prove the congruence theorem. The last section contains concluding remarks and discusses future 
work. 

2. Applications 

In this section we will discuss a number of known operational semantics in which predicates occur 
so none of the examples satify the tyjt/tyn or the ntyjt/ntyn format. It will turn out that they are 
well-founded and satisfy the path format or that they can be easily modified such that they satisfy 
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A congruence theorem . .. : 2. Applications 

the two requirements. With the aid of our congruence theorem we then find that bisimulation is a 
congruence for all the operators that are defined within the operational semantics. 

The examples are taken from CCS, CSP, and ACP. They touch upon concepts like termina­
tion, convergence, divergence, weak bisimulation, a zero object, side conditions, functions, real time, 
discrete time, sequencing, negative premises, negative conclusions, and priorities (or a combination 
of these notions). 

The first example concerns an operational semantics that originates from Aceto and Hennessy [IJ. 
It is an operational semantics of a CCS like process algebra extended with a successful termination 
predicate and a convergence predicate. Their approach is to first inductively define the termination 
predicate V, which is a postfix denoted predicate. In table 2 we enumerate the rules as they essentially 
appear in [IJ. In fact, Baeten and Van Glabbeek [6J have the same approach to successful termination . 

nilV 

.,V, YV 
(., I ylJ 

.,V, YV 
(., + y)J 

"V 
{)H(" )J 

.,V, YV 
(.,; y)J 

t[recx.tf.,Jv 
recx.tJ 

Table 2. The rules for V. 

Then they define the unsuccessful termination predicate by simply taking the complement of 
the successful termination predicate; we will denote this predicate by ~V. In our approach we will 
have to explicitly define this predicate with deduction rules since we define the transition system in 
one step. In table 3 we give our rules for ~V. It might be argued that this is a disadvantage but the 
rules for ~V are quite straightforward. 

Oi~V' Oi E {c, O} U Act, 
.,~V .,~V 

(., + y)~J (y + .,)~V 
z~V .,~V .,~V 

{)H(Z)~J (.,; y)~J (y; .,)~V 

.,~V .,~V t[recx. tf"J~v 
(., I y)~J (y I.,)~J rec.,.hV 

Table 3. The rules for ~V. 

With the aid of both predicates Aceto and Hennessy inductively define their convergence predi­
cate 1; we list their rules in table 4. 

()H(") ! 
.,Ly! 
(.,Iy)! 

nil 1 
t[recx.tf.,J 1 

recx. t ! 
.,v, y ! 
(.,; y) ! 

Jl 1, Jl E ActT 

.,Ly! 
(z + y) ! 
"~v,,, ! 
(.,;y)! 

Table 4. The rules for 1. 

Finally, Aceto and Hennessy give the rules for the non-deterministic choice +, the sequential 
composition ;, the parallel composition I, the binding constructor recx. _, and the encapsulation 
operator ()H(')' Aceto and Hennessy also have a divergence predicate, which is the complement 
of the convergence predicate. We omitted this predicate since they do not need it to define their 
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A congruence theorem . .. : 2. Application, 

z~z' Z~'IJ' z~z' 
z+yLz' y+z~z' ziyL..z'iY 

z';, y"'!!"'y' zLz' zLz' 

z; y"'!!"'y' '" I y"'!!"'"" I y y I z"'!!"'y I z' 

z~z',y~V zLz' t [reex. t / '" )"'!!"'z' 
'" I y~",' I y' 8H(",)...!!..,8H(",')' I-' ~ H recx.tLz' 

Table 5. The action relations for each I-' E Act,. 

operational semantics. However it is easy to define this predicate; we refer to [17) for an explicit 
operational semantics of the divergence predicate in path format. 

For more details on the process algebra of Aceto and Hennesy we refer to [1). 
The matter that we are interested in at the moment is that the rules in tables 2-5 are well­

founded and in path format so with theorem (5.7) we immediately find that strong bisimulation is a 
congruence. 

At this point one may find that we are not entirely fair since Aceto and Hennessy are, in fact, 
interested in weak bisimulation and they have a lot of work to do to obtain that weak bisimulation is 
a congruence for their system. Therefore, we will prove in the next example that weak bisimulation 
is a congruence with our congruence theorem for strong bisimulation. We conjecture that a similar 
trick can also be applied for the CCS like process algebra of Aceto and Hennessy. 

This next example is an operational semantics of Van Glabbeek [14) for BPA" which is a 
fragment of the theory ACP, that originates from Bergstra and Klop [9). The subscript T stands 
for the silent move of Milner [20). The operational semantics is given by the rules of tables 1 and 6. 
Van Glabbeek [14) observes that his model is isomorphic to the graph model of Baeten, Bergstra 
and Klop [4). This means that two terms are strongly bisimilar in his model if and only if they are 
weakly bisimilar in the graph model, so since all the rules of tables 1 and 6 are well-founded and in 
path format we know that strong bisimulation is a congruence and thus, weak bisimulation on the 
graph model is also a congruence. We can also apply this result to the entire operational semantics 
that Van Glabbeek gives for ACP,. 

• a--+T , ., 
z---+y, y---+z 

x~x' . " z---+y, Y---+Z 
Z~Z' 

Table 6. Operational rules for the silent step. 

The next example is an operational semantics of the language BPAo of Baeten and Bergstra (3). 
The theory BPAo is the language BPA (that we already saw above) with a zero object denoted by O. 
They have for this constant the following laws 

z+O="" ",0=0, 0",=0. 

Baeten and Bergstra explicitly state in their paper that the operational semantics cannot be written 
in the ty/t/ty",t or the nty/t/ntyxt format, since they need the predicate· # 0 (see [3), loc. cit. p. 87). 
The problems arise with the rules for the sequential composition: if z....!!......x' then we will only 
have zy...i!...z'y if y # O. In table 7 we give the rules that define the (postfix) predicate . # 0 
and we give the rules for the sequential composition. Together with the first five rules of table 1 they 

6 



A congruence theorem . .. : 2. Applications 

,,;60 

"+v;60 
"~"',v;6 0 

zy....!!....z'y 

,,;60 
v+,,;60 

,,~.J,v;6 0 
• "Y--+Y 

Table 7. The ;6 0 predicate and rules for sequential composition. 

form an operational semantics for BPAo. It is not hard to check that all the rules are well-founded 
and in path format, so we obtain that bisimulation is a congruence. 

Often we see that the rules of an operational semantics have so-called side conditions. For 
instance, the following rule from Groote and Vaandrager [16] has a side condition: 

a~e, a;6.J. 

This side condition is an abbreviation for the list containing for all a E A a rule a...!!..;e. Thus, it is 
in fact a harmless side condition, since the rules can be replaced by an enumaration. Often, though, 
side conditions are not so harmless. This is the case if a side condition contains a process term. An 
example of such a rule can be found in a paper of Moller and Tofts [21] on temporal CCS: 

p.-!....p' 
--'---'-. ---:-, IQlr < t. 
P Ell Q--+P' 

(1) 

Here I . Ir is called the maximal delay, which is a function and not a predicate. In the operational 
semantics of Moller and Tofts there are no "free" occurrences of the maximal delay function, but 
only side conditions as in display (1). Since this is the case, we can see the side condition IQlr < t 
as a mixfix (or distfix) predicate: 1·lr < t (see [13] for the fix terminology). The only problem left 
is to define the maximal delay function in these terms. Moller and Tofts define their maximal delay 
function in terms of = instead of <, so we will also define the corresponding predicates in terms of = 
(we will do this in a minute). But now we have to rephrase display (1), since we no longer have a 
predicate in terms of <. This is easy: 

P.-!....P', IQlr = s 
t t S < t. 

P Ell Q--+P' 

Note that the new side condition does not contain Q anymore. It has become an ordinary enumera­
tion: for all s, t with s < t we have such a rule. 

IOlr = 0 IXlr = 0 la.Plr = 0 

IPlr = t IPlr = t IPlr = t 
l(s)Plr - s + t lP\alr - t IP[SJlr - t 

IPlr = t, IQlr = s IPlr = t, IQlr = s 
IP Ell Qlr - max(s, t) IP + Qlr - mines, t) 

la.Plr =w 

IPi{!,Z.Pjz}lr = t 
l!'iZ.Plr = t 

IPlr = t, IQlr = s 
IP I Qlr - mines, t) 

Tahle 8. The maximal delay function as a mixfix predicate. 

In table 8 we listed the maximal delay function as a mixfix predicate. Note that we are a bit 
sloppy with the notation: in fact, we cannot speak about l(s)Plr = s + t. The ultra correct way to 
state this rule is to put the sum in a side condition: 

IPlr = t . 
I() I 

' 'tIr, s, t : r = s + t. 
sPr=r 
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A congruence theorem . .. : 2. Application. 

The same holds for the rules that use max and min. 
The rephrased operational semantics of Moller and Tofts is well-founded and in path format, so 

strong bisimulation is a congruence. 

We will briefly mention some related examples in the area of real time process algebra. 
Klusener [18] gives on the one hand some clear operational semantics for several real time process 

algebras but on the other hand he introduces non-intuitive operational semantics for the same real 
time process algebras using negative premises. This is a lot of work and is merely done to obtain 
that the transition system specifications are in ntyft format such that he gets the congruenceness for 
''free'' with a theorem of Groote [15]. We claim that it is not necessary: the operational semantics 
that Klusener actually wants to discuss are well-founded and in path format. This result can be 
obtained in the same way as we sketched this for the above example of Moller and Tofts. 

The last temporal example is an operational semantics for timed CSP of Schneider [24]. His 
operational semantics also consists of a function and ordinary transitions. We claim that this function 
is, in fact, a mixfix predicate and that the resulting operational semantics is well-founded and in 
path format. 

We promised in the introduction to return to the operational semantics with negative premises 
that Baeten and Vaandrager [7] give for BPA. We recall that they extend the signature of BPA with 
an auxiliary constant 6 and that they have 6x = x. They have this property because they model the 
sequential composition as a sequencing operator. If x is sequenced with y, notation xy, the process xy 
starts with the execution of x, and if it cannot do more actions, then the execution of y starts. In 
table 9 we list their semantics with extra rules (from us) containing negative conclusions (note that 
we compressed eight rules to six). The intended interpretation of x-+ is that x has no outgoing 
transitions. Baeten and Vaandrager define this in terms of the transition relation, whereas we define 
this in terms of itself, namely inductively as a predicate. 

Z +Y~Z/'''!!''''y+ X 

Z-+,y~y' 

xy~y' 

6-+ 
X~X' 

zy~x'y 

x-+,y-+ 
xy-+,x+y-+ 

Table 9. BPA with sequencing instead of sequential composition. 

It is easy to see that this transition system is well-founded and in path format, so bisimulation 
is a congruence (note that their rules are not yet in ntyft/ntyxt format). 

This example deviates from the previous ones in the sense that we introduce a predicate -+, 
whereas in the other examples a predicate already existed. So we additionally have to show that x-+ 
if and only if there is no a and x' such that x~x' in order to show that strong bisimulation is the 
same as our bisimulation with the extra predicate -+. 

The next example is also an operational semantics with negative premises. It is a semantics of 
BPA with discrete time from Baeten and Bergstra [2]. In table 10 ,~, is just an extra relation: 
iT is not in their language. The extra rules are the ones with negative conclusions. Again it is easy 
to see that the rules are well-founded and in path format, so bisimulation is a congruence. As in the 
previous example we additionally have to show that x--74 if and only if there is no x' with x~x'. 

Finally, we give an operational semantics of BPA with the priority operator of Baeten, Bergstra, 
and Klop [5]. Groote and Vaandrager [16] gave an operational definition of the priority operator using 
negative premises (in the presence of deadlock and the empty process). Our operational semantics 
of BPA with the priority operator is built up from the rules in tables 1 and 11. As in the above 
examples we inductively define the negative premises; but now with two postfix predicates --74 
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A congruence theorem . .. : 3. Term deduction 6ultem6 

g~v' 
x....!.....x' 

xy....!.....x'y 

z~z' 

x+y~x'~y+x 

x-!!....z', y-!!....y' 
",+y~",'+y' 

gf 
"'~v' 

G 

"'Y---->Y 
X~Z' 

"'+Y~v'~Y+'" 
X-!!....Z',yf 

Table 10. BPA with discrete time. 

"d("')~'" 
x....!!.....z' 

xy-!!....x'y 

"'f 
"'Yf 

"'f,Yf 
'" + Yf 

and 4v'. The meaning of ",4 is that there is no ",' with ",~",' and ",4v' means that '" is 
not capable of terminating successfully by performing an a action. The operational definitions of 
the two predicates are almost the same: they only differ in the basic case. Therefore, we combined 
corresponding rules with a parenthesized v'. It is easy to see that the rules are well-founded and in 
path format, so bisimulation is a congruence. Also here we have to show that ",4 if and only if 
there is no a and ",' with ",~",' and ",4v' if and only if there is no a such that "'~v'. 

64v', a f. b 

",...!'f.( 0, y...!'f. ( 0 
'" + y...!'f.( 0 

",~",', 36 > a : (",....!..,v' V",....!..,,,,") 
O(",)...!'f. 

",~",',Vb> a : ",4,,,,4v' 
O(",)~O(",') 

",4(0 
0("')4(0 

"'~v', 3b > a : (",....!..,v' V",....!..,,,,") 
o ( '" ) ...!'f. v' 

Table 11. The additional rules for BPA with priority operator. 

As a final remark we want to mention that all the positive transition systems appearing in the 
book of Baeten and Weijland [8] are in path format. There is only one negative transition system 
in their book, which is not in path format but it can easily be made into path format since this 
system treats the priority operator (cf. the above example). We also want to stress that none of the 
transition systems in their book satisfy the tyft/tyxt or the ntyft/ntyxt format. 

3. Term deduction systems 

All the examples that we treated in section 2 are, in fact, term deduction systems. In this section 
we formalize this notion, which generalizes the notion of a transition system specification. In a 
transition system specification we have a transition relation .~. for each label a, whereas in a term 
deduction system we have just a set of relations and a set of predicates. Having general relations is an 
advantage. For instance, the operational semantics for temporal CCS of Moller and Tofts (from which 
we treated the tricky part in section 2) provides two transition relations; this can be easily modelled 
with a term deduction system but not with a transition system specification. But we can also think 
of the combination of a transition relation with a totally different relation, such as Wang's syntactical 
inequality relation P f. Q that he uses in an operational semantics for probabilistic CCS (q.v. [26]). 

Before we give the definition of a term deduction system we will list some preliminaries for 
completeness sake. 

We assume that we have an infinite set V of variables and that "', y, Z, ••• range over this set. 
A signature E is a set of function symbols together with their arity. If the arity of a function 
symbol fEE is zero we say that f is a constant symbol. The notion of a term (over E) is defined as 
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expected: '" E V is a term; ift" ... ,tn are terms and if lEE is n-arythen I(t" ... ,tn ) is a term. 
A term is also called an open term; if it contains no variables we call it closed. We denote the set of 
closed terms by G(E) and the set of open terms by O(E) (note that a closed term is also open). We 
also want to speak about the variables occurring in terms: let t E O(E) then var(t) <;; V is the set 
of variables occurring in t. 

A substitution 17 is a map from the set of variables into the set of terms over a given signature. 
This map can easily be extended to the set of all terms by substituting for each variable occurring 
in an open term its u-image. 

Definition (3.1) 

A term deduction system is a structure (E, D) with E a signature and D a set of deduction 
rules. The set D = D(T., Tr) is parameterized with two sets, which are called respectively the set 
of term predicates and the set of term relations. The set of term predicates is a subset of the power 
set of O(E) and the set of term relations is a subset of the power set of O(E) x O(E). We write P8 
if 8 E P and tRu if (t, u) E R with PET., RET .. and 8, t, u E O(E). We call expressions like P8 
and tRu formulas. A deduction rule dE D has the form 

H 
G 

with H a set of formulas and G a formula. We call the elements of H the hypotheses of d and we 
call the formula G the conclusion of d. If the set of hypotheses of a deduction rule is empty we call 
such a rule an axiom. We denote an axiom simply by its conclusion provided that no confusion can 
arise. The notions "substitution", "var", and "closed" extend to formulas and deduction rules as 
expected. 

Definition (3.2) 

Let T = (E, D) be a term deduction system. A proof of a formula ,p from T is a well-founded 
upwardly branching tree of which the nodes are labelled by formulas such that the root is labelled 
with ,p and if X is the label of a node q and {Xi : i E I} is the set of nodes directly above q then 
there is a deduction rule 

{4>i:iEI} 

4> 

and a substitution 17 : V --+ O(E) such that 17(4)) = X and 17(4)i) = Xi for i E I. The length of X 
is Ixi = sup{lxil + 1 : i E I}. The length of a proof is the length of its root. 

If a proof of,p exists, we say that ,p is provable from T, notation T I- ,po A proof is closed if it 
contains only closed formulas. 

Example (3.3) 

As an example we calculate the length of a proof that we depict in figure 2 is w. The last rule 
that was used in this proof has an infinite number of premises ao, h" C2, •••• The first premise ao is 
proved in zero steps, the second 61 in one step bo , the third C2 in two steps Cl and Co, and so on. It 
is easy to see that the length of "'i equals its index i, for instance Icol = 0, so Icd = 1 and IC21 = 2. 
In particular we find 1",;1 = i for all "'i = ao, h" C2, •.• so 1'1'1 = w. This means that we have to use 
transfinite induction if we want to prove something with induction on the length of a proof. 

Lemma (3.4) 

If a closed formula is provable from a term deduction system then it is provable by a closed 
proof. 

Proof. Easy. Confer lemma 3.3 of Groote and Vaandrager [16]. 
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aD bo Co do 

'f' 

Figure 2. A proof of 'f' with length w. 

4. Structured state systems and bisimulation 

In this section we define the notions of a structured state system and bisimulation. A structured 
state system is a generalizaton of the notion of a labelled transition system. In a labelled transition 
system we have for each label a transition relation, whereas in a structured state system we have 
just relations and predicates. At first sight J this gives rise to a stronger notion of bisimulation on 
a structured state system since we have a transfer property for each relation and predicate. But 
our definition of bisimulation mostly coincides with the ones in the literature. For instance, in the 
example of Moller and Tofts there are two transition relations so they need to extend the notion of 
bisimulation to the two relations. In our setting we moreover demand that bisimilar processes must 
have the same maximal delay. So we have "maximal delay" bisimulation. Moller and Tofts state in 
their proposition 3.3 that our maximal delay bisimulation coincides with their notion of bisimulation. 
The same phenomenon occurs in Klusener [18J with our UL-bisimulation, Klusener's U-bisimulation, 
and ordinary bisimulation (U means ultimate delay and L means latest possible action). Also for the 
examples with negative premises that we gave in section 2 we have to prove that bisimulation is the 
same as our "negative" bisimulation. For small term deduction systems this will not be a problem 
but for bigger ones it can become a problem. Therefore, it is better to allow for negative premises in 
our rules. However, this is out of the scope of this paper (but we are currently studying this). 

Definition (4.1) 
A structured state system is a triple (S, Sp, Sr) where S is a set of states, Sp is a subset of the 

power set of Sand Sr is a subset of the power set of S x S. The sets Sp and Sr are called respectively 
the set of state predicates and the set of state relations. 

Remark (4.2) 

A structured state system is a generalization of a labelled transition system. To see this take an 
empty set of state predicates and take for the set of state relations the labelled transition relation. 

Next, we will define the notion of strong bisimulation on a structured state system, which is 
based on Park [22J. 

Definition (4.3) 
Let G = (S, Sp, Sr) be a structured state system. A relation B ~ S x S is called a (strong) 

bisimulation if for all s, t E S with sBt the following conditions hold. For all R E Sr 

'Is' E S(sR.' ~ 3t' E S : tRt' 1\.' Bt'), 

'It' E S(tRt' ~ 3.' E S : sRs' 1\ s' Bt'), 

and for all P E Tp 

P. ¢> Pt. 

The first two conditions are known as the transfer property. Two states 8, t E S are bisimilar 
in the structured state system G if there exists a bisimulation relation containing the pair (8, t). 
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Notation s ~G t or s ~ t provided that no confusion can arise. Note that bisimilarity is an equivalence 
relation. 

A term deduction system induces in a natural way a structured state system. 

Definition (4.4) 

Let T = (E, D) be a term deduction system and let D = D(Tp, Tr). The structured state 
system G induced by T has as its set of states S = C(E); the state predicates and state relations are 
the following. 

Sp = { { t E C(E) I T I- pt} I p E Tp }, 

Sr = { ((s,t) E C(E) x C(E) I TI- sRt} IRE Tr }. 

We will call s, t E C(E) bisimilar, notation 8 ~T t if s ~G t. Note that ~T is also an equivalence 
relation. Again we omit the subscript when it is clear what Tis. 

Definition (4.5) 

We say that two term deduction systems are equivalent if they induce the same structured state 
system. 

5. The congruence theorem 

This section is devoted to the congruence theorem. We expect that our congruence theorem can 
be proved by simply adapting the proof of the congruence theorem of Groote and Vaandrager [16] 
to the present situation. However, we prove a stronger result than just a congruence theorem since 
we moreover show that every term deduction system in path format can be reduced to a transition 
system specification in tyjt/tyzt format and then apply the theorem of Groote and Vaandrager. 

We strongly conjecture that we can prove a similar reduction/congruence theorem for the sit­
uation with negative premises by applying the congruence theorem of Groote [15] (that treats the 
situation with negative premises). 

First, we will define the notions necessary to state the main result and then we will prove it. 

Definition (5.1) 

Let T = (E, D) be a term deduction system with D = D(Tp, Tr). Let in the following f and J 
be index sets of arbitrary cardinality, let ti, s;, t E O(E) for all i E f and j E J, let P;, p E Tp be 
term predicates for all j E J, and let R;, R E Tr be term relations for all i E f. 

A deduction rule d E D is in ptyjt format if it has the form 

{Pis; : j E J} U {tiR;Yi : i E I} 
I(xl," .,xn)Rt 

with lEE an n-ary function symbol and XU Y = {Xl, ... , Xn} U {Yi : i E f} ~ V a set of distinct 
variables. If var(d) = XU Y we call d pure. A variable in var(d) that does not occur in XU Y is 
called free. 

A deduction rule d E D is in ptyzt format if it has the form 

{Pis; : j E J} U {tiR;Yi : i E I} 
xRt 

with X U Y = {x} U {Yi : i E I} ~ V a set of distinct variables. If var( d) = X U Y we call d pure. A 
variable in var(d) that does not occur in X U Y is called free. 
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A deduction rule is in pty/format if it has the form 

{PiBi : j E J} U {tiR;Yi : i E I} 

PI("I, .. . '''n) 
with lEE an n-ary function symbol and {"'I, ... , "'n} U {Yi : i E I} ~ Va set of distinct variables. 
The notions pure and free are defined as expected. 

A deduction rule is in pty" format if it has the form 

{PiBi:j E J}U{tiR;Yi: iE I} 
p", 

with {"'} U {Yi : i E I} ~ V a set of distinct variables. The notions pure and free are defined as 
expected. 

We give some explanation of the names of the deduction rules. The p in the phrases ptyft, ptyxt, 
pty/, and ptyx refers to the predicates occurring in the rules, the ty refers to the relation part in the 
set of hypotheses, and the ft, xt, I, and x refer to the conclusion. The names tyft and tyxt are taken 
from Groote and Vaandrager [16]. 

If a deduction rule d E D has one of the above forms we say that this rule is in path format, 
which stands for "predicates and tyft/tyxt hybrid format". A term deduction system is in path format 
if all its rules are. A term deduction system is called pure if all its rules are pure. 

A term deduction system is in tyft/tyxt format if it is in path format and its set of term predicates 
is empty. 

Definition (5.2) 

We will define the panth format, which stands for "predicates and ntyft/ntyxt hybrid format." 
In fact, we have negated predicates as well as negated relations; we call them negative formulas. 
Let P E 1p and R E Tr; with ~PS we mean that S 1/0 P and with s~R that there is no t such that sRt. 
The notion of a term deduction system remains the same: we just have more formulas. So let 
T = (E, D) be a term deduction system and let D = D(Tp, Tr). We adapt the notational conventions 
of definition (5.1) and moreover let K and L be index sets of arbitrary cardinality, Uk, VI E O(E) for 
all k E K and I E L, Pk E 1p for all k E K, and RI E Tr for alii E L. 

A rule d E D is in pntyft format if it has the form 

{~PkUk : k E K} U{PjSj :j E J} U {tiR;Yi : i E I} U {vl~Rl: I E L} 

1("" ... , "'n)Rt 
The definition of rules in pntYI, pntyxt, and pntyx format is obtained in the same way. A deduction 
rule is in panth format if it is in one of the four negative formats. A term deduction system is in 
panth format if the rules are in panth format. 

A term deduction system is in ntyft/ntyxt format if is in panth format and its set of term 
predicates is empty. 

Remark (5.3) 

In fact, the panth format could also be called the panpanth format: predicates and negated 
predicates and ntyft/ntyxt hybrid format. The panth format then only allows for predicates and 
negated relations. The panpath format is a format that has predicates and negated predicates but no 
negated relations. The operational semantics from Aceto and Hennessy that we discussed in section 2 
is actually in panpath format: there are no negated relations but they have a rule with a negated 
predicate. The reason for using the name panth format is that we think that these formats are, so to 
speak, the same. 

We need the technical notion of well-foundedness of a term deduction system, which will be used 
in the proof of the congruence theorem. We will use a property in the proof that in general does 
not hold for a non well-founded term deduction system; we will return to this in the proof of the 
theorem. It is an open question if the requirement of well-foundedness is really necessary. However, 
we heard from Fokkink [12] that the requirement is probably not necessary for the tyft/tyxt format 
and that his results easily generalize to our setting. 
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Definition (5.4) 

Let T = (E, V) be a term deduction system and let F be a set of formulas. The dependency 
graph of F is a directed graph with variables occurring in F as its nodes. The edge '" ---> y is an 
edge of the dependency graph if and only if there is a tRs E F with", E var(t) and y E var(s). 

The set F is called well-founded if any backward chain of edges in its dependency graph is finite. 
A deduction rule is called well-founded if its set of hypotheses is so. A term deduction system is 
called well-founded if all its deduction rules are well-founded. 

Example (5.5) 

We give the dependency graphs of the non well-founded rules in display (1) of section 1. 

o 
Figure 3. Two dependency graphs. 

Lemma (5.6) 

For every well-founded term deduction system in path format there is an equivalent pure well­
founded term deduction system in path format. 

Proof. Let T = (E, V) be a well-founded term deduction system in path format. Let T' = (E, D') 
be defined as follows. The deduction rules of D' are the rules of V without free variables plus for 
each rule with free variables a set of new rules. Let d E V be a deduction rule with free variables 
then such a set of new rules is the set containing a new deduction rule for every possible substitution 
of closed terms for the free variables in d. Clearly, T' is pure, well-founded and in path format. Every 
closed proof of a formula in T is also a proof for this formula in T' and vice versa. 

Theorem (5.7) 

Let T = (E, V) be a well-founded term deduction system in path format then strong bisimulation 
is a congruence for all function symbols occurring in E. 

Proof. Groote and Vaandrager [16) proved this theorem in the case that the set of term predicates 
is empty, that is, if the term deduction system is in tyfi/tyxt format. Our strategy to prove the 
non-empty case is to construct from a term deduction system a new one without predicates with 
the property that two terms are bisimilar in the old term deduction system if and only if they are 
bisimilar in the new one. We make the new term deduction system from the old one by coding each 
predicate in the old system as a special relation in the modified one. 

To begin with, we contruct from a term deduction system a new one by extending the original 
signature with a xenoconstant and moving the predicates of the original system to xenorelations. 

Let T = (E, V) be a term deduction system and suppose that V = V(Tp, Tr) with Tp "I 0. 
In accordance with lemma (5.6) we may assume that T is pure. We define a new term deduction 
system T' = (E', V'). Let e be a constant function symbol that is strange to E and define E' = EU{ O. 
Let V' = D'(0, Tn with T: = Tr U {Rp I P E Tp} (disjoint union). A term relation Rp for P E Tp 
is defined as follows. For two terms sand t over E' we have sRpt if and only if P sand t = {. 
The set of deduction rules is V' = {d' IdE V} and a deduction rule d' is constructed from an old 
rule d E V as follows. Let d = ~. The set of hypotheses of d' is the set H but with the "predicate 
part" {Pj8j I j E J} replaced by {sjRp;zj I j E J} with {Zj I j E J} a set of distinct variables 
disjoint with var(d). If the conclusion of the old rule is of the form Pt then the conclusion of the 
new rule is tRpe. In the other case C remains the same. Note that T' is pure, well-founded and 
in tyfi/tyrt format. 

Now we will prove that two closed E-terms " and v are bisimilar in the original system T if and 
only if they are bisimilar in the system T'. In order to do this we use a number of properties that 
are listed below. 

14 



A congruence theorem . .. : 5. The congruence theorem 

tet P E Tp , RET .. and u, v E O(E') 2 O(E) (unless otherwise specified) then the following 
properties hold. (We denote the bisimulation relation in T by ~ and in T' by ~'.) 

(i) T' I- uRpv ~ v = e 
(ii) u E G(E), T' I- uRv ~ v E G(E) 
(iii) u, v E G(E), T' I- uRv ~ T I- uRv 

(iv) u E G(E),T'I- uRpe ~ TI- Pu 
(v) u E G(E), T I- Pu ~ T' I- uRpe 
(vi) u, v E G(E), T I- uRv ~ T' I- uRv 
( vii) u, v E G(E) ~ (u ~ v ~ u~, v) 

Before we continue, we discuss properties (ii)-(vi). Property (ii) says that if we can prove in the 
xenosystem that an old term u is related with a term v by means of an old relation R that v cannot be 
a xenoterm. A simple example due to Fokkink [12] shows that for this property the well-foundedness 
cannot be missed. Suppose that we have a signature that consists of a single constant a. We have 
two rules: 

Clearly, this system is not well-founded. The xenosystem has the same rules; only the signature is 
extended with the xenoconstant e. It is easy to see that we can derive in this new system that aSe. 

The properties (iii)-( vi) actually form two bi-implications saying that every provable formula 
in the old system is provable in the xenosystem and vice versa. We split these bi-implications into 
four statements for (proof) technical reasons. 

Now we prove the properties. 
The proof of (i) follows directly from the definition of the deduction rules in D'. 
We prove (ii) with transfinite induction on the length of the proof (see section 3 for the definition 

of this length). Without loss of generality we may assume that the proof is closed; see lemma (3.4). 
Suppose that (ii) holds for all lengths a < {3 and that we have a proof of uRv of length {3. The last 
rule d' used in this proof must be of the following form 

{sjRpjzj : j E J} U {tiR;vi : i E I} 
sRt 

(1) 

There is a substitution IT with IT(s) = u and IT(t) = v. Note that var(t) ~ var(s) U {Vi: i E I} 
so it suffices to show that IT(Vi) E G(E) for all i E I since IT( s) E G(E). We denote the set of 
all Vi by Y. Suppose that there is an Vi, E Y with IT(Vi,) E G(E') \ G(E). This contradicts the 
well-foundedness of the rule d', for T' I- IT(ti,)R;,C1(Vi,) so with the induction hypothesis we find 
that IT(ti,) E C(E') \ G(E). Since ti, is a E-term, this must be the result of a substitution. This can 
only be due to a variable Vi, E Y. With induction on the subsubscript we find an infinite backward 
chain of edges Vi, +-- Vi, +-- ... in the dependency graph of d'. 

We simultaneously verify (iii)-( vi) with transfinite induction on the maximum a of the lengths 
of the proofs. Suppose that (iii)-( vi) hold for all maxima a < {3 and that we have proofs of (iii)-( vi) 
with maximum {3. We begin with (iii). The last rule in the proof is again of the form that we 
displayed in (1) together with a substitution IT with IT(s) = u and IT(t) = v. With (ii) we find for 
all i E I that IT(Vi) E G(E) just like in the proof of (ii). So we find using (i) and the induction 
hypothesis for (iii) and (iv) that T I- IT(t,)R;C1(Vi) and T I- PjlT(Sj). The original rule in the old 
system T from which d' is constructed has the form 

{PjSj : j E J} U {t,R;Vi : i E I} 
sRt 

so we find that T I- IT(s)&(t). The case (iv) is treated analogously. Now we treat the case (v). The 
last rule d in the proof has the form . 

{PjSj : j E J} U {tiR;vi : i E I} 
Ps 
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and there is a substitution" with "(0) = u. With induction we find that T' I- ,,(t,)R;,,(y,) and 
T' I- ''(OJ )Rp;e. Let d' be rule that corresponds with d: 

{OjRp;Zj : j E J} u {t,R;y, : i E I} 
sRpe 

Let Z be the set of all Zj. Define a substitution ,,' with ,,'(z) = e for all Z E Z and ,,'(z) = ,,(z) for 
all z E V \ Z. With d' and ,,' we find that T' I- uRpe. The case (vi) is treated analogously. This 
concludes the induction step. 

Now we verify (vii). Firstly, let u - v. Then there is a bisimulation relation B with uBv. 
Define B' = B U A', with A' = Hz, z) : z E G(E')} the diagonal. We show that B' is a bisimulation 
with uB'v in the new system T. Clearly, uB'v. Now let sB't. We distinguish two cases: 8 = t 
and 8 of. t. We verify that the conditions in definition (4.3) hold for the second case since the first 
case is trivial. Since 0 of. t we have 0, t E G(E) and oBt. Since there are no predicates in T' we only 
have to verify both transfer properties of definition (4.3). For each transfer property we have two 
cases: R and Rp. Now let R E Tr and suppose T' I- sRs' for some 0' E G(E'). We find with (ii) 
that s' E G(E). Since sBt there is a t' E G(E) with T I- tRt' and 0' Bt'. So we obtain s' B't' and 
with (vi) that T I- tRt'. The second condition in definition (4.3) is verified analogously. We check 
the first condition for Rp. Let P E Tp and suppose that T' I- sRps' for some 0' E G(E'). We 
find with (i) that s' = e. So with (iv) we get T I- Ps. Since sBt we find T I- Pt and with (v) 
that T' I- tRpe. ClearlyeB'e. The second condition in (4.3) is checked analogously. 

Secondly, let u -' v. Then there is a bisimulation relation B' containing the pair (u,v). Let 
B = B' n (G(E) X G(E»). We show that B is a bisimulation with uBv in the original system T. 
Since u, v E C(E) we clearly have uBv. Let oBt. We check the conditions of definition (4.3). 
Let R E Tr and suppose that T I- sRo' for some 0' E G(E). With (vi) we find T' I- oRs'. Since sB't 
there is a t' E G(E') with T' I- tRt' and 0' B't'. With (ii) we find t' E C(E) so 0' Bt'. With (iii) we 
have T I- tRt'. The second condition in definition (4.3) is verified analogously. Next, we show that 
the last condition of (4.3) from left to right holds. The other direction can be shown analogously. 
Let P E Tp and suppose that T I- Ps. With (v) we find T'I- oRpe so since sB't there is at' E G(E') 
with T' I- tRpt'. With (i) we find t' = e so with (iv) we find T I- Pt. This concludes the proof 
of (vii). 

Now we are in a position to prove the congruence theorem. Let lEE be an n-ary function 
symbol. Let u" v, E G(E) and u, - v, for 1 :5 i :5 n. With (vii) we find u, -' v, for all 1 :5 i :5 n. 
Since the term deduction system T' is well-founded and in tyfi/tyxt format we can apply the congru­
ence theorem of Groote and Vaandrager [16] so l(uI, ... ,un) -' l(vI, ... ,vn ). Since l(uI, ... ,un) 
and I( VI, ... , vn) are E-terms we find with (vii) that I( UI, ... , un) - I( VI, ... , vn). This concludes 
the proof of (5.7). 

Corollary (5.8) 

Every term deduction system in path format can be reduced to a transition system specification in 
tyfi/tyxt format. If the term deduction system is moreover well-founded then bisimulation equivalence 
is preserved: two terms are bisimilar in the path system iff they are bisimilar in the tyfi/tyxt system. 

6. Conclusions and future work 

In this paper we have proposed a syntactical format (called the path format) for structured operational 
semantics with predicates such that strong bisimulation is a congruence for all the operators that 
can be defined within this format. For a number of operational semantics that we took from the 
literature we showed that our format is rather practical: many operational semantics satify our 
format, whereas they do not satisfy formats proposed by others, as for instance the tyfi/tyxt format 
proposed by Groote and Vaandrager [16] or the ntyfi/ntyxt format of Groote [15]. The examples that 
we discussed treat concepts like termination, convergence, divergence, a zero object, side conditions, 
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functions, real time, discrete time, sequencing, negative premises, negative conclusions, and priorities 
(or a combination of these notions). 

Future work is mainly concerned with negative rules. For instance, we want to generalize the 
ntyjt/ntyxt format with predicates to the so-called panth format (see defintion (5.2)). We believe 
that the proof that we give in this paper for the congruence theorem can be easily adapted to that 
situation. Since we are already able to treat several operational semantics that use negative rules, 
the question arises how expressive all these formats are. For instance, which negative premises can 
be written as predicates? 

Finally, we conclude that the path format is a very practical format that can be used with a lot 
of ease in a wide range of applications. 
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