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Abstract

We study the convex hull of the intersection of a convex set E and a disjunctive set. This
intersection is at the core of solution techniques for Mixed Integer Convex Optimization. We
prove that if there exists a cone K (resp., a cylinder C) that has the same intersection with the
boundary of the disjunction as E , then the convex hull is the intersection of E with K (resp., C).

The existence of such a cone (resp., a cylinder) is difficult to prove for general conic opti-
mization. We prove existence and unicity of a second order cone (resp., a cylinder), when E is
the intersection of an affine space and a second order cone (resp., a cylinder). We also provide
a method for finding that cone, and hence the convex hull, for the continuous relaxation of the
feasible set of a Mixed Integer Second Order Cone Optimization (MISOCO) problem, assumed
to be the intersection of an ellipsoid with a general linear disjunction. This cone provides a new
conic cut for MISOCO that can be used in branch-and-cut algorithms for MISOCO problems.

1 Introduction

We consider the very general class of Mixed Integer Convex Optimization problems, which can be
formulated as min{c⊤x : x ∈ E , x ∈ Zp × Rn−p}, where E is a closed convex set. Solving such a
problem often requires finding the convex hull of the intersection of E with a disjunction A ∪ B,
where A and B are two half-spaces. In the first part of this paper, we prove that conv(E ∩ (A∪B))
is the intersection of E with an appropriate cone K.
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In the second part of this paper, we apply our result to a specific subclass of optimization
problems where the set E is the intersection of an affine space and a second order cone. In order
to establish a mindset that encompasses both mixed integer convex problems and mixed integer
conic problems, we explicitly describe E as the intersection of a cone and an affine subspace. Note
that any mixed integer convex problem can be described as a Mixed Integer Conic Optimization
(MICO) problem and vice versa, since the former is a superset of the latter and any convex problem
can be turned into a conic one by adding an auxiliary variable. Therefore, we consider problems of
the form:

minimize: c⊤x

subject to: Ax = r (MICO) (1)

x ∈ K
x ∈ Zl × Rn−l,

where A ∈ Rm×n, c ∈ Rn, r ∈ Rm, K is a convex cone, and the rows of A are linearly independent.
MICO problems comprise a wide range of discrete optimization problems. A very important

class of MICO is the class of Mixed Integer Second Order Cone Optimization (MISOCO) problems,
which find applications in engineering, finance and inventory problems [1, 10, 16, 20]. Theoreti-
cally, the integrality constraint can be tackled by means of a generic branch-and-bound algorithm.
However, experience with Mixed Integer Linear Optimization (MILO) has shown that the devel-
opment of methods for generating valid inequalities for the problem can improve the efficiency of
the algorithm significantly [12]. The aim of this paper is the development of conic cuts for MICO
problems.1

MICO problems are a class of non-convex optimization problems in which the non-convexity
comes from the integrality of a subset of variables. Such non-convexity can be dealt with by means
of disjunctive methods, which partition the set of feasible solutions into two or more feasible subsets.
Disjunctive methods in mixed integer linear optimization have been studied extensively during the
past decades [4, 5, 13, 17]. The contribution of this paper is twofold. First, we introduce conditions
for the existence of a conic inequality arising as a disjunctive inequality for the general case of
MICO that yields the convex hull of the intersection between a convex set and a disjunctive set
(defined below). Second, we describe a procedure to find such a cut in the MISOCO case. The
latter result allows us to generate second order cones for tightening the continuous relaxation of
the MISOCO problem.

This paper is organized as follows. In §2 we present a brief review of the previous work done
in MICO. Then, in §3 we derive conditions for the existence and unicity of the convex hull of the
intersection between a disjunctive set and a closed convex set. In §4 we consider the special case of
MISOCO: we introduce the disjunctive conic cut and a procedure to find it. We then compare our
disjunctive cut with the conic cut introduced in [2] in §5. We provide some concluding remarks in
§6.

Notation. Sets are denoted by script capital letters, matrices by capital letters, vectors by lower-
case letters, and scalars by Greek letters. For a matrix M , Mij is the (i, j) element, while Mj is
the jth column. For vector v, its ith component is denoted as vi.

1A cone is called a conic cut if it cuts off some non-integer solutions but none of the feasible integer solutions.
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2 Literature review

There have been several attempts to extend some of the techniques developed for MILO to the case
of MICO. For the MISOCO case, one approaches uses outer linear approximations of second order
cones. Vielma et al. [25] used the polynomial-size polyhedral relaxation introduced by Ben-Tal
and Nemirovski [9] in their “lifted linear programming” branch-and-bound algorithm for MISOCO
problems. Krokhmal and Soberanis [19] generalized this approach for integer p-order conic op-
timization. Drewes [15] presented subgradient-based linear outer approximations for the second
order cone constraints. This allows one to approximate the MISOCO problem by a mixed integer
linear problem in a hybrid outer approximation branch-and-bound algorithm.

Stubbs and Mehrotra [24] generalized the lift-and-project algorithm of Balas et al. [6] for 0-
1 MILO to 0-1 mixed integer convex problems. Later, Çezik and Iyengar [11] investigated the
generation of valid convex cuts for 0-1 MICO problems and discussed how to extend the Chvátal-
Gomory procedure for generating linear cuts for MICO problems and the extension of lift-and-
project techniques for MICO problems. In particular, they showed how to generate linear and
convex quadratic valid inequalities using the relaxation obtained by a project procedure. Later,
Drewes [15] reviews the ideas proposed in [11] and [24] and applies them to MISOCO.

Atamtürk and Narayanan [2, 3] proposed two procedures for MISOCO problems that generate
valid second order conic cuts. They first studied a generic lifting procedure for MICO [3], and then
[2] extended the mixed integer rounding [22] procedure to the MISOCO case. The main idea in [2]
is to reformulate a second order conic constraint using a set of two-dimensional second order cones.
In this new reformulation the set of inequalities are called polyhedral second-order conic constraint.
The authors used polyhedral analysis for studying these inequalities separately. This allowed the
derivation of a mixed integer rounding procedure, which yields a nonlinear conic mixed integer
rounding. A generalization of the use of polyhedral second-order conic constraints is presented by
Masihabadi et al. [21].

Dadush et al. [14] studied the split closure of a strictly convex body and present a conic quadratic
inequality. The conic quadratic inequality is introduced to present an example of a non-polyhedral
split closure. In particular, the authors showed that it is necessary to consider conic quadratic
inequalities in order to be able to describe the split closure of an ellipsoid. This independently
obtained conic quadratic inequality coincides with the conic cut for MISOCO problems presented
in §4.1.

3 The convex hull of a disjunctive convex set

We focus on the convex hull of the intersection of a full-dimensional closed convex set E ⊆ Rn,
n > 1 with a disjunctive set. Consider a disjunctive set of the form

A ∪ B, (2)

where A = {x ∈ Rn | a⊤x ≥ α} and B = {x ∈ Rn | b⊤x ≤ β}, are two half-spaces with a, b ∈ Rn,
and (a, α), (b, β) are not proportional, i.e., ∄η ∈ R such that a = ηb, α = ηβ. This section presents
a characterization of the convex hull of the set E ∩ (A ∪ B).

Let A= = {x ∈ Rn | a⊤x = α} and B= = {x ∈ Rn | b⊤x = β} denote the boundary hyperplanes
of the half-spaces A and B respectively. Throughout this paper, we assume the following about the
sets E , A, and B:
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Assumption 1. A ∩ B ∩ E is empty.

Assumption 2. E ∩ A= and E ∩ B= are nonempty and bounded.

3.1 Disjunctive conic cut

Let us recall the definition of a convex cone, as given by Barvinok [7, page 65].

Definition 1 (Convex Cone). A set K ⊆ Rn is a convex cone if 0 ∈ K and if for any two points
x, y ∈ K and for any θ, ϑ ≥ 0, we have z = θx+ ϑy ∈ K.

Remark 1. Observe that we can define a set K̂ as a translated cone if there exists a vector x∗ ∈ K̂,
called the vertex of K̂, such that for any θ, ϑ ≥ 0 and x, y ∈ K̂, x∗ + (θ(x− x∗) + ϑ(y − x∗)) ∈ K̂.
One can use the translation K = {y ∈ Rn | y = x − x∗, x ∈ K̂} to get a cone K in the sense of
Definition 1. Although translated cones arise naturally in this setting, we assume w.l.o.g. that all
cones have a vertex at the origin unless otherwise specified.

Definition 2. A closed convex cone K ⊂ Rn with dim(K) > 1 is called a disjunctive conic cut
(DCC) for the set E and the disjunctive set A ∪ B if

conv (E ∩ (A ∪ B)) = E ∩ K.

The following proposition gives a sufficient condition for a convex cone K to be a disjunctive
conic cut for the set E ∩ (A ∪ B).

Proposition 1. A convex cone K ⊂ Rn with dim(K) > 1 is a DCC for E and the disjunctive set
A ∪ B if

K ∩A= = E ∩ A= and K ∩ B= = E ∩ B=. (3)

Figure 1 illustrates Proposition 1, where the set E ⊂ R3 is the epigraph of a paraboloid. Before
proving Proposition 1, we first provide a set of lemmas that will make the proof more compact. To
begin, let us recall the definition of a base of a cone presented by Barvinok [7, page 66].

Definition 3 (Base of a cone). Let K ⊂ Rn be a convex cone. A set L ⊂ K is called a base of K
if 0 /∈ L and for every point u ∈ K, u 6= 0, there is a unique v ∈ L and λ > 0 such that u = λv.

We can use Definition 3 to state Lemma 1, which shows a key relationship between the cone K
and the hyperplanes A= and B=.

Lemma 1. Consider a half space G = {x ∈ Rn | g⊤x ≤ ̺}. Assume that E ∩ G= is nonempty,
bounded, and does not contain the origin 0. If there exists a convex cone K ⊆ Rn, with dim(K) > 1
and K ∩ G= = E ∩ G=, then E ∩ G= is a base of K.

Proof. From the assumptions in the lemma, we have that 0 /∈ K ∩ G= = E ∩ G=. We may assume
w.l.o.g. that 0 ∈ G. First, since K ∩ G= = E ∩ G= is bounded we know that there exists no ray of
K parallel to G=. Now, let us suppose that E ∩ G= is not a base for K. From Definition 3 we know
that there must exist a point x such that x ∈ K but there exists no point x̂ ∈ E ∩ G= for uniquely
representing x as λx̂ for some λ > 0. Then, there is a ray in K parallel to the hyperplane G=.
This implies that the set K ∩ G= is unbounded, which contradicts the boundedness assumption of
E ∩ G=. Therefore, E ∩ G= is a base for K.
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(a) A
=, B=, and E (b) The cone yielding conv(E ∩ (A ∪ B))

(c) E ∩ K (d) conv(E ∩ (A ∪ B))

Figure 1: Illustration of a disjunctive conic cut as specified in Proposition 1

The result of Lemma 1 allows us to show that K is a pointed cone, which is an important result
for our further development.

Lemma 2. Any convex cone K satisfying Lemma 1 must be pointed.

Proof. Assume that K is not pointed. This means that K contains a line. Hence, there exist two
vectors r̂, r̄ ∈ K \ {0} such that r̂ = −r̄. Additionally, we have that µr̂ + νr̄ ∈ K, for any µ, ν > 0.
Now, since E ∩ G= is a base of K, there exists a point x̂ ∈ E ∩ G= in the ray defined by r̂ such that
x̂ = µr̂, for some µ > 0. Similarly, there exists a point x̄ ∈ E ∩ G= in the ray defined by r̄ and
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ν > 0 ∈ R such that x̄ = νr̄. Given that G= is an affine set, we have

γx̂+ (1− γ)x̄ ∈ G=, ∀γ ∈ R.

Expressing x̂ and x̄ in term of r̂ and r̄ gives

γx̂+ (1− γ)x̄ = γ(µr̂) + (1− γ)(νr̄)

= −γ(µr̄) + (1− γ)(νr̄)

= νr̄ − γ(µ+ ν)r̄.

Hence, if γ = 0 then νr̄ ∈ K. On the other hand, if γ < 0 we get that νr̄ − γ(µ + ν)r̄ ∈ K, since
it is a point on the ray defined by r̄. Finally, if γ > 0 then νr̄ − γ(µ + ν)r̄ = νr̄ + γ(µ + ν)r̂ ∈ K,
since it is a positive combination of two points in the cone K. Hence, K∩G= contains a whole line,
which contradicts the assumption that K ∩ G= is bounded.

We can now prove that the vertex of the cone K belongs exclusively to either A or B. Observe
that this does not mean that the set A ∩ B is empty, but that the vertex of K is not contained in
it even when A ∩ B is nonempty.

Lemma 3. Let K ⊆ Rn be a convex cone, with dim(K) > 1, such that E ∩ A= = K ∩ A= and
E ∩ B= = K ∩ B=. Then the origin x∗ = 0 is either in A or in B, but not in A ∩ B.

Proof. First, consider the case when x∗ ∈ A=. Then, we have that x∗ ∈ E ∩ A=, since E ∩ A= =
K∩A=. Hence, from Assumption 1, we have that x∗ /∈ B. Similarly, we have that if x∗ ∈ B=, then
x∗ /∈ A.

Second, assume that neither A= nor B= contain x∗. By Lemma 1 we have that E ∩ A= and
E ∩ B= are bases of the cone K. Additionally, by Lemma 2 we know that the cone K is pointed.
Let x be a unit length vector defining a ray of K. Then, there are two points x̂ ∈ E ∩ A= and
x̄ ∈ E ∩ B= such that x̂ = µx and x̄ = νx for some µ, ν > 0.

We prove first that x∗ ∈ A ∪ B. Let us assume to the contrary that x∗ ∈ Ā ∩ B̄, where the bar
denotes the complement set. Let y = γx for γ ≥ 0 be a point in the ray defined by x. Then, for
any γ < min{ν, µ} we have that y ∈ Ā ∩ B̄, and w.l.o.g. we may assume that ν < µ. Note that
we cannot have ν = µ as, by Assumption 1, A ∩ B ∩ E = ∅. Additionally, for any γ ≥ ν we have
that y ∈ B, so the point x̂ is contained in the half-space B, and A ∩ B ∩ E 6= ∅, which contradicts
Assumption 1.

Now, we prove that x∗ /∈ A ∩ B. Let us assume to the contrary that x∗ ∈ A ∩ B, and let
y = γx̄+ (1− γ)x̂ for some 0 ≤ γ ≤ 1. Then, we have that y ∈ A or y ∈ B. When ν < µ and γ = 1
implies that y = x̄ and we have y ∈ A ∩ B= ∩ E . Similarly, when µ < ν and γ = 0 implies that
y = x̂ and we have y ∈ A= ∩ B ∩ E . Hence, x∗ ∈ A ∩ B implies A ∩ B ∩ E 6= ∅, which contradicts
Assumption 1.

We are able now to show that E ∩ (A ∪ B) ⊂ K. This will facilitate the proof of the relation
conv (E ∩ (A ∪ B)) ⊆ E ∩ K.

Lemma 4. Let K ⊆ Rn be a convex cone, with dim(K) > 1, for which (3) holds. Then:

(E ∩ A) ⊂ K and (E ∩ B) ⊂ K.
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Proof. We start showing that if E ∩A= is a single point, then E ∩A ⊆ K. First, if E ∩A= is a single
point, then 0 ∈ E ∩ A=, otherwise dim(K) = 1. The last statement follows from the assumption
E ∩ A= = K ∩ A=. Henceforth, we obtain in this case that E ∩ A= = {0}. Now, it is clear that
E∩A= ⊆ E∩A, hence we need to show that E∩A ⊆ E∩A=. Assume to the contrary that there exists
a point x ∈ E ∩ A such that x /∈ E ∩ A=. Additionally, consider a point y ∈ E ∩ B=, which implies
that y /∈ E ∩ A. Then, from convexity of K we have that for any θ, γ ≥ 0 the point θx + γy ∈ K,
which contradicts that E ∩ A= is a single point. Henceforth, we obtain that E ∩ A = E ∩ A= ⊆ K.
Similarly, if E ∩ B= is a single point, then one can show that E ∩ B = E ∩ B= ⊆ K. Note that
E ∩ A= and E ∩ B= cannot be single points simultaneously, which follows from Assumption 1 and
dim(K) > 1.

Now, we prove that if E ∩ A= is not a single point then (E ∩ A) ⊆ K. Let us assume to the
contrary that there exists a vector x such that x ∈ (E ∩ A) but x /∈ K. First, by the separation
theorem2, there exists a hyperplane H separating x and K that contains a ray of K, denoted by
Kr, and does not contain x. Here the assumption of dim(K) > 1 is needed, since the hyperplane H
does not exist when dim(K) = 1.

From Lemma 3 we know that 0 ∈ A or 0 ∈ B. On one hand, if 0 /∈ E ∩B=, then it follows from
(3), Assumption 2, Lemma 1, that the sets E ∩ A= and E ∩ B= are bases for the cone K. Hence,
there exists a vector w ∈ E ∩B= that defines the ray Kr. On the other hand, if 0 ∈ E ∩B= then we
know that E ∩ B= = {0}. In this case, one can take w = 0, since 0 ∈ Kr.

Given that the set E is convex, λx + (1 − λ)w ∈ E for all 0 ≤ λ ≤ 1. On the other hand,
since w is a point on a face of K, we have that λx + (1 − λ)w /∈ K for 0 < λ ≤ 1. Furthermore,
since x ∈ (E ∩ A) and A ∩ B ∩ E = ∅, we have a⊤x ≥ α and a⊤w < α. Hence, from the equation
a⊤(λx+(1−λ)w) = λa⊤x+(1−λ)a⊤w, there exists a λ ∈ (0, 1] such that a⊤(λx+(1−λ)w) = α.
Therefore, there is a vector x̂ = λx+(1−λ)w for some λ ∈ (0, 1], such that x̂ ∈ E ∩A=, but x̂ /∈ K,
which contradicts condition (3). Hence, (E ∩A) ⊆ K. Analogously, one can prove that (E ∩B) ⊆ K
when (E ∩ B) is not a single point.

Recall that the sets E ∩ A= and E ∩ B= are disjoint and nonempty. Then, by condition (3) we
have that E ∩ A 6= K and E ∩ B 6= K, and the result of the lemma follows.

Now we present the proof of Proposition 1.

Proof of Proposition 1. First, we prove that if E ∩ A= = K ∩ A= and E ∩ B= = K ∩ B= then K is
a DCC. Consider a point x ∈ (E ∩ A) ∪ (E ∩ B). Then, from Lemma 4 we have that x ∈ E ∩ K.
Now, consider any two points x, y ∈ (E ∩ A) ∪ (E ∩ B). Then, since both K and E are convex, for
any 0 ≤ λ ≤ 1 we have λx+ (1− λ)y ∈ E ∩ K. Hence, conv(E ∩ (A ∪ B)) ⊆ E ∩ K.

Consider a point x ∈ E ∩K. First, if x ∈ E ∩A or x ∈ E ∩B, we have that x ∈ conv(E ∩ (A∪B)).
Assume then that x /∈ (E ∩A)∪ (E ∩B), which implies x ∈ (Ā ∩ B̄ ∩K). Furthermore, by Lemma 1
there are two vectors x̂ ∈ E ∩A= and x̄ ∈ E ∩B= such that, for some µ, ν ≥ 0, x̂ = µx and x̄ = νx.
From Lemma 3, the vertex of the cone is either in A or B but not in both. Assume w.l.o.g. that the
vertex of the cone is in B. Then, ν < 1 < µ and there exists a γ ∈ (0, 1) such that γν+(1−γ)µ = 1.
Hence, we can write

γx̄+ (1− γ)x̂ = γνx+ (1− γ)µx

= (γν + (1− γ)µ)x

= x.

2Lemma 8.2 in Barvinok [7, page 65] and Theorems 11.3 and 11.7 in Rockafeller [23, pages 97 and 100].
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Therefore, x can be expressed as a linear convex combination of two points in (E ∩A=)∪ (E ∩B=).
Hence, any point x ∈ (E ∩ K) can be written as a linear convex combination of two points in
(E ∩A) ∪ (E ∩ B). Thus, (E ∩ K) ⊆ conv(E ∩ (A∪ B)). Finally, since the subset relation is valid in
both directions, this proves that (E ∩K) = conv (E ∩ (A ∪ B)). Finally, since (E ∩A=) and (E ∩B=)
are compact sets, then it follows from Lemma 1 and Lemma 8.6 in Barvinok [7, page 67] that K is
closed.

We close the analysis by showing that if a disjunctive conic cut exist, then it is unique.

Lemma 5. If a closed convex cone K exists, with dim(K) > 1, satisfying property (3), then K is
unique.

Proof. Assume to the contrary that there are two different cones K1 and K2 that satisfy property
(3). Let v1 ∈ K1 be the vertex of K1 and v2 ∈ K2 be the vertex of K2. Now, we may assume w.l.o.g.
that v1 = 0.

First, we prove that if either E∩A= or E∩B= is a single point, then K1 = K2. Since dim(K1) > 1
and dim(K2) > 1, we have that E ∩A= and E ∩B= cannot be both single point sets. Let u ∈ E , and
assume that E ∩A= = {u}, then K1 ∩A= = {u} and K2 ∩A= = {u}. Now, if u 6= v1, then we have
that K1 = {θv1 | θ ≥ 0}, which implies that the set E ∩ B= is a single point. Thus, we have that
u = v1. On the other hand, if u 6= v2, then we have that K2 = {y ∈ Rn | y = v2+ θ(u− v2), θ ≥ 0},
which also implies that the set E ∩B= is a single point. Hence, we have that u = v2. Therefore, we
have that v1 = v2, and since E ∩ B= = K1 ∩ B= = K2 ∩ B=, we obtain that K1 = K2. A symmetric
argument would show that K1 = K2 if E ∩ B= = {z}.

Second, we show that if {v1, v2} ∩ (A= ∪ B=) = ∅, then v1 ∈ K2 and v2 ∈ K1. Assume to the
contrary that v1 /∈ K2. Here use a similar argument to the one in the proof of Lemma 4. By the
separation theorem, there exists a hyperplane H separating v1 and K2 properly such that v1 /∈ H.
From Lemma 1, we know that the sets E ∩ A= and E ∩ B= are bases for K2. Hence, there exists
a vector w ∈ E ∩ B= such that the extreme ray Rw = {v2 + γ(w − v2) | γ ≥ 0} of K2 is in H.
Additionally, by Lemma 3 we have that v1 is either in A or B but not in A ∩ B. We may assume
w.l.o.g. that v1 ∈ A. Given that K1 is convex, λv1+(1−λ)w ∈ K1 for all 0 ≤ λ ≤ 1. On the other
hand, since w is a vector on an exposed face of K2, for 0 < λ ≤ 1 we have λv1 + (1 − λ)w /∈ K2.
Furthermore, since v1 ∈ A, by Assumption 1 we have a⊤v1 ≥ α and a⊤w < α. Hence, from
the equation a⊤(λv1 + (1 − λ)w) = λa⊤v1 + (1 − λ)a⊤w, we may obtain 0 < λ ≤ 1 such that
a⊤(λv1 + (1− λ)w) = α. Therefore, there exists a vector u = λv1 + (1− λ)w for some 0 < λ ≤ 1,
such that u ∈ K1 ∩A=, but u /∈ K2, which contradicts K1 ∩A= = K2 ∩A=. Hence, we obtain that
v1 ∈ K2. Using a similar argument one can prove that v2 ∈ K1.

Third, we show that if v1 6= v2, then they cannot be both in A or in B. Assume to the contrary
that v1 ∈ A and v2 ∈ A. Note that if α > 0, then we have v1 /∈ A, thus we assume that α ≤ 0. On
one hand, since v1 ∈ K2 we have that Rv1 = {(1 − θ)v2 | θ ≥ 0} ⊆ K2. Hence, if a⊤v2 ≤ 0, then
Rv1 ⊆ A which implies that Rv1 is parallel to A=, and we obtain that A= ∩K2 is unbounded. On
the other hand, since v2 ∈ K1 we have that Rv2 = {θv2 | θ ≥ 0} ⊆ K1. Hence, if a⊤v2 ≥ 0, then
Rv2 ⊆ A, which implies that Rv2 is parallel to A=, and we obtain that A= ∩ K1 is unbounded.
Hence, if v1 ∈ A and v2 ∈ A, then we obtain a contradiction to Assumption 2. Similarly, we can
prove that v1 and v2 cannot be simultaneously in B.

Finally, we show that if v1 and v2 are in different halfspaces and {v1, v2} ∩ (A= ∪ B=) = ∅,
then this contradicts the assumption that K1 ∩ A= = K2 ∩ A= and K1 ∩ B= = K2 ∩ B=. Assume
that v1 ∈ A and v2 ∈ B. Recall that in this case v1 ∈ K2 and v2 ∈ K1, thus the set Rv1 =
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{(1 − θ)v2 | θ ≥ 0} ⊆ K2 and Rv2 = {θv2 | θ ≥ 0} ⊆ K1. Now, since dim(K1) > 1 and B= ∩ K1 is
a base of K1, there is at least one extreme ray Rw = {γw | γ ≥ 0} of K1 such that v2 /∈ Rw and
w ∈ K1 ∩B= = K2 ∩B= is a vector in the boundary of K1. Now, if w ∈ ri(K2), then, since K2 ∩B=

is bounded and is a base of K2, we have that w ∈ ri(K2 ∩ B=). Thus, in this case there exists a
vector u ∈ K2 ∩ B= such that u /∈ K1 ∩ B=, which contradicts K1 ∩ B= = K2 ∩ B=.

Assume now that w is a vector on the boundary of K2. Since w ∈ K2, we have that {v2 +
γ(w − v2) | γ ≥ 0} ⊆ K2. Moreover, since v2 ∈ B and w ∈ B=, there exists a γ̂ > 1 such that
a⊤(v2 + γ̂(w − v2)) = α. However, since w is on the extreme ray Rw of K1 and v2 /∈ Rw, then the
vector (v2 + γ̂(w − v2)) /∈ K1. This contradicts the assumption K1 ∩A= = K2 ∩A=. A symmetric
argument is valid if we assume that v1 ∈ B and v2 ∈ A. Hence, since v1 and v2 cannot be in
different halfspaces, then v1 = v2. In conclusion, we have that K1 = K2, since E ∩ A= and E ∩ B=

are bases for K1 and K2, which proves that the disjunctive conic cut is unique.

Figure 2 illustrates how Lemma 5 fails when the intersections E ∩A= or E ∩B= are unbounded.
In this case, one can see that the K∩E is the convex hull of E ∩(A∪B). The other two cones K1 and
K2 have the same intersections with A= and B= as the convex set E . However, the intersections
K1 ∩ E and K2 ∩ E fail to give conv(E ∩ (A ∪ B)).

Figure 2: Example of unbounded intersections

Another important case to consider here is when the set E ∩ (A ∪ B) is of dimension n = 1.
Figure 3(a) illustrates this case. In particular, we can see that the uniqueness in Lemma 5 fails
in this case too. Observe the cone K1 in Figure 3(b) and the cone K2 in Figure 3(c), which are
given by two half-lines. These two cones have the same intersections with A= and B= as the set E .
However, the intersections E ∩ K1 and E ∩ K2 differ from conv(E ∩ (A∪ B)). In this case, the cone
K in Figure 3(c), given by a line, is such that E ∩ K = conv(E ∩ (A ∪ B)).

3.2 Disjunctive cylindrical cut

Let us now present the definition of a convex cylinder.
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(a) A
=, B=, and E

(b) Cone K1 does not give conv(E ∩ (A ∪ B))

(c) Cone K2 does not give conv(E ∩ (A ∪ B))

(d) K ∩ E = conv(E ∩ (A ∪ B))

Figure 3: Example when the set E ∩ (A ∪ B) has dimension n = 1

Definition 4 (Convex Cylinder). Let D ⊆ Rn be a convex set and d0 ∈ Rn a vector. Then, the set
C = {x ∈ Rn|x = d+ σd0, d ∈ D, σ ∈ R} is a convex cylinder in Rn.

Definition 5. A closed convex cylinder C is a disjunctive cylindrical cut for the set E and the
disjunctive set A ∪ B if

conv (E ∩ (A ∪ B)) = C ∩ E .

The following proposition gives a sufficient condition for a convex cylinder C to be a disjunctive
cylindrical cut. The result and proofs for the cylinder case are similar to the cone case, still we
provide them for completeness.

Proposition 2. A convex cylinder C is a disjunctive cylindrical cut for E and the disjunctive set
A ∪ B if

C ∩ A= = E ∩ A= and C ∩ B= = E ∩ B=. (4)

Figure 4 illustrates Proposition 2, where the set E is the epigraph of a paraboloid. Before
proving Proposition 2 we first provide a set of lemmas that will ease to understand the proof. First,
let us define the base of a cylinder in a similar way as the base of a cone is defined in [7].

Definition 6 (Base of a cylinder). Let C ⊂ Rn be a convex cylinder. A set D ⊂ C is called a base
of C if, for every point x ∈ C, there is a unique d ∈ D and σ ∈ R such that x = d+ σd0.

Lemma 6. Consider a half space G = {x ∈ Rn | g⊤x ≤ ̺}. Assume that E ∩ G= is nonempty and
bounded. If C ∩ G= = E ∩ G=, then E ∩ G= is a base for C.

Proof. Let C be a cylinder such that C ∩ G= = E ∩ G=. Observe that if g⊤d0 = 0 then for any
x̂ ∈ C ∩ G= we have that {y ∈ Rn | y = x̂ + σd0, σ ∈ R} ⊆ C ∩ G=, which is an unbounded set.
Hence, g⊤d0 6= 0 because C ∩ G= = E ∩ G= is bounded. Now, let us assume that E ∩ G= is not a
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base for C. Then, from Definition 6 we know that there exists a point x ∈ C such that there exists
no point x̄ ∈ E ∩G= that represents x as x̄+σd0 for some σ ∈ R. Thus, {y ∈ Rn | y = x+σd0, σ ∈
R} ∩ E ∩ G= = ∅. However, with σ̂ = (̺ − g⊤x)/g⊤d0 we obtain that x + σ̂d0 ∈ C ∩ G= = E ∩ G=

whenever g⊤d0 6= 0. Therefore, the relation {y ∈ Rn | y = x+σd0, σ ∈ R}∩E ∩G= = ∅ is true only
if g⊤d0 = 0. Hence, if E ∩ G= is not a base for C, then we have that E ∩ G= is unbounded, which
contradicts the boundedness assumption of E ∩ G=. Therefore, E ∩ G= is a base for C.

The next lemma states the relationship between cylinder C and the intersections of E with the
half spaces A and B.

Lemma 7. Let C ⊂ Rn be a convex cylinder C, for which (4) holds. Then

(E ∩ A) ⊂ C and (E ∩ B) ⊂ C.

Proof. We prove first that (E∩A) ⊆ C. Let us assume to the contrary that there exists a x ∈ (E∩A)
such that x /∈ C. First, by the separation theorem, there exists a hyperplane H = {y ∈ Rn | h⊤y =
η} separating x from C. From the definition of C we have that h⊤d0 = 0. Now, letH be a supporting
hyperplane of C, which implies that H∩C is an exposed face of C. Note that for any ŷ ∈ H∩C the
inclusion {y ∈ Rn | y = ŷ + σd0, σ ∈ R} ⊆ H ∩ C must hold. Additionally, according to Definition
6, by Assumption 2, and Lemma 6, the sets E ∩A= and E ∩B= are bases for C. Hence, there exists
a point w ∈ E ∩ B= such that w ∈ H, and w is in an exposed face of C.

Convexity of E implies λx+(1−λ)w ∈ E for any λ ∈ [0, 1]. On the other hand, the point w is in
an exposed face of C, so λx+ (1− λ)w /∈ C for 0 < λ ≤ 1. Since x ∈ (E ∩A) and A∩B ∩ E = ∅, we
have that a⊤x ≥ α and a⊤w < α. Hence, from the equation a⊤(λx+(1−λ)w) = λa⊤x+(1−λ)a⊤w,
there must exists a value 0 < λ ≤ 1 such that a⊤(λx+(1−λ)w) = α. Therefore, for some 0 < λ ≤ 1
there is a point x̂ = λx+ (1− λ)w, such that x̂ ∈ E ∩ A=, but x̂ /∈ C, which contradicts condition
4. Hence, (E ∩ A) ⊆ C. One can prove (E ∩ B) ⊆ C analogously.

Recall that the sets E ∩ A= and E ∩ B= are disjoint and nonempty. Then, condition 4 implies
that E ∩ A 6= C and E ∩ B 6= C, and the result of the lemma follows.

Now we can present the proof of Proposition 2.

Proof of Proposition 2. First, consider a vector x ∈ (E ∩A)∪ (E ∩B). Then, Lemma 7 implies that
x ∈ E ∩ C. Consider any two points x, y ∈ (E ∩A)∪ (E ∩ B). Then, since both C and E are convex,
for all 0 ≤ λ ≤ 1 the convex combination λx+(1−λ)y ∈ E ∩C. Hence, conv(E ∩ (A∪B)) ⊆ (E ∩C).

Consider now a point x ∈ (E ∩ C). First, if x ∈ (E ∩ A) or x ∈ (E ∩ B), we have that
x ∈ conv(E ∩ (A ∪ B)). Suppose then that x /∈ (E ∩ A) ∪ (E ∩ B). Then, x ∈ (Ā ∩ B̄ ∩ C).
Furthermore, by Lemma 6 there are two vectors x̂ ∈ E ∩A= and x̄ ∈ E ∩B= such that x = x̂+µd0
and x = x̄+ νd0, for some µ, ν ∈ R. Thus, given that x /∈ (E ∩A)∪ (E ∩ B) we can assume w.l.o.g.
that ν > 0 and µ < 0. Then, we have that x = λx̂+ (1− λ)x̄, where λ = ν/(ν − µ) and 0 < λ < 1.
In other words, x is a convex combination of x̂ and x̄. Since x is an arbitrary point we have that
any point x ∈ (E ∩ C) can be written as a convex combination of two points in (E ∩ A) ∪ (E ∩ B).
As a conclusion, we have that (E ∩ C) ⊆ conv(E ∩ (A ∪ B)). Finally, since (E ∩ A=) and (E ∩ B=)
are compact sets, then it follows from Lemma 6 and Lemma 11 that C is closed.

Lemma 8. If a convex cylinder C with property (4) exists, then C is unique.
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Proof. Assume that there exist two different cylinders C1 = {x ∈ Rn | x = d1+γd10, d
1 ∈ D1, γ ∈ R}

and C2 = {x ∈ Rn | x = d2 + σd20, d
2 ∈ D2, σ ∈ R} that satisfy Definition 5. Then, we have that

C1 ∩ A= = C2 ∩ A= and C1 ∩ B= = C2 ∩ B=.
Given that C1 6= C2 there must exist a point x̂ that belongs only to one cylinder, and w.l.o.g.

we assume that x̂ ∈ C1 and x̂ /∈ C2. Observe that if x̂ ∈ A∩B, then there exists a point x̄ ∈ C1 such
that either x̄ ∈ A= ∩B or x̄ ∈ A∩B=, which implies that x̄ ∈ E ∩A∩B, contradicting Assumption
1.

Let us begin assuming that x̂ ∈ Ā ∩ B̄. Then, given that E ∩ A= is a base for both cylinders
there exists a γ̂ ∈ R such that x̂ = d̂1 + γ̂d10 for some d̂1 ∈ E ∩ A= = C1 ∩ A= = C2 ∩ A=. On
the other hand, since E ∩ B= is a base for C1, there exists γ̄ ∈ R such that x̂ = d̄1 + γ̄d10 for some
d̄1 ∈ E ∩ B= = C1 ∩ B=. Hence, x̂ = λd̄1 + (1− λ)d̂1 where λ = γ̂/(γ̂ − γ̄) ≤ 1, since γ̂ and γ̄ must
have opposite signs. Additionally, given that the two cylinders are convex we get that d̄1 /∈ C2.
Then, C1 ∩ B= 6= C2 ∩ B=, which is a contradiction.

Let us assume now that x̂ ∈ A and x̂ /∈ B. By the separation theorem, there exists a hyperplane
H = {x ∈ Rn | h⊤x = η} separating x̂ from C2. By the definition of a cylinder, we have h⊤d20 = 0.
Now, let H be a supporting hyperplane of C2, which implies that H ∩ C2 is an exposed face of C2.
Note that for any ŷ ∈ H ∩ C2 we have that {y ∈ Rn | y = ŷ + σd20, σ ∈ R} ⊆ H ∩ C2. Additionally,
we know that the sets E ∩A= and E ∩ B= are bases for C2. Hence, there exists a point w ∈ E ∩B=

such that w ∈ H, and w is in an exposed face of C2.
Convexity of C1 implies that for any λ ∈ [0, 1], λx̂ + (1 − λ)w ∈ C1. On the other hand, since

w ∈ H is a point in an exposed face of C2, λx̂+ (1− λ)w /∈ C2 for 0 < λ ≤ 1. Since x̂ ∈ A∩ C1 and
A∩B∩C1 = ∅, we have that a⊤x̂ ≥ α and a⊤w < α. Hence, from the equation a⊤(λx̂+(1−λ)w) =
λa⊤x̂ + (1 − λ)a⊤w, there exists a value 0 < λ ≤ 1 such that a⊤(λx̂ + (1 − λ)w) = α. Therefore,
there exists a point x̄ = λx̂ + (1 − λ)w for some 0 < λ ≤ 1, such that x̄ ∈ C1 ∩ A=, but x̄ /∈ C2,
which is a contradiction. An analogous argument can be used when x̂ ∈ B and x̂ /∈ A.

As mentioned at the beginning of Section 1, Propositions 1 and 2 are rather general in that
they apply to any convex set E . However, their hypotheses, (3) and (4), are hard to satisfy and
hence limit their applicability. To explore the full potential of this result remains the subject of
future research. In this paper we demonstrate the power of this tool by exploring a class of MICO,
the class of MISOCO problems, for which the assumptions are satisfied under mild conditions.

In the general setting, cone K or cylinder C of Propositions 1 and 2 can be used as a conic
cut in MICO problems. For example, in Branch-and-Cut algorithms if either K or C exists for a
disjunctive set, then K or C can be used to help tightening the description of a MICO problem.
For practical use of this methodology, one needs to prove that a cone K or cylinder C exists that
satisfies Definitions 2 or 5 respectively, and one needs to provide an easy to compute algebraic
representation of the cone or cylinder. In the following section we analyze MISOCO problems,
where the feasible set E comes from the intersection of a second order cone and an affine space.
Given that for this case we can prove the existence of the cone and we can give a method to compute
its algebraic representation, the resulting conic cut can be embedded in Branch-and-Cut algorithms
to solve MISOCO problems.
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4 The convex hull of the intersection of an ellipsoid and a disjunc-

tive set

In the remainder of the paper, we turn our attention to the convex hull conv(E∩(A∪B)) in a special

case of (1) where K is the Cartesian product of Lorentz cones, i.e., x =
(

(x1)⊤, (x2)⊤, . . . , (xk)⊤
)⊤

,
Lni = {xi|xi1 ≥ ‖xi2:ni

‖}, i = 1, . . . , k are Lorentz cones, and K = Ln1

1 × · · · × Lnk

k . In this setting,
we consider K = Ln, therefore E is an ellipsoid resulting from the intersection of a second order
cone and an affine space. Consider, for example, the problem

minimize: 3x1 +2x2 +2x3 +x4
subject to: 9x1 +x2 +x3 +x4 = 10

(x1, x2, x3, x4) ∈ L4

x4 ∈ Z.

(5)

The feasible set of Problem (5) can be represented as an ellipsoid in R3 in terms of the variables
x2, x3, x4, as shown in Figure 5. In general, we consider the n-dimensional ellipsoid

E = {x ∈ Rn|x⊤Qx+ 2q⊤x+ ρ ≤ 0}, (6)

where Q ∈ Rn×n is a symmetric positive definite matrix, x, q ∈ Rn, and ρ ∈ R.
The main goal of this section is to show the existence of the cone K or cylinder C, as defined

in Definitions 2 or 5, in order to use Proposition 1 or 2 for finding conv(E ∩ (A ∪ B)). We are
interested in two cases. In the first case, the hyperplanes A= and B= are parallel (§4.1), while the
two hyperplanes are in a general position in the second case (§4.2). In both cases, we are able to
show that conv(E ∩ (A ∪ B)) is obtained by intersecting E with a scaled second order cone K or a
cylinder C and we show how to construct them.

4.1 Parallel disjunctions

In this section, we consider a disjunctive set A ∪ B such that A = {x ∈ Rn|a⊤x ≥ α} and
B = {x ∈ Rn|a⊤x ≤ β}, i.e., the hyperplanes A= and B= are parallel. We may assume w.l.o.g.
that ‖a‖ = 1. We illustrate this case by using Problem (5), where one can use A = {x ∈ R4|x4 ≥ 0}
and B = {x ∈ R4|x4 ≤ −1} to define a disjunctive set A ∪ B. Figure 6(a) shows the hyperplanes
defining this disjunctive set A ∪ B along with the feasible set of Problem (5).

4.1.1 Geometry of E and the hyperplanes A=, and B=

We begin this analysis by recalling some results from [8], where the authors study several properties
of quadrics. A quadric is defined as

Q =
{

x|x⊤Qx+ 2q⊤x+ ρ ≤ 0
}

, (7)

where Q ∈ Rn×n is symmetric, q, x ∈ Rn and ρ ∈ R, and is denoted by the triplet Q = (Q, q, ρ).
Note that under this definition, E is a quadric with a positive definite matrix Q. We first recall
Theorem 3.2 of [8], which defines a uniparametric family of quadrics Q(τ) parametrized by τ ∈ R
having the same intersection with two fixed parallel hyperplanes. This result is stated here as
Theorem 1.
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Theorem 1 ([8]). Consider an ellipsoid E = (Q, q, ρ) and two parallel hyperplanes A= = (a, α)
and B= = (a, β). The uniparametric family of quadrics Q(τ) parametrized by τ ∈ R and having the
same intersection with A= and B= as ellipsoid E is given by

Q(τ) = Q+ τaa⊤

q(τ) = q − τ
α+ β

2
a

ρ(τ) = ρ+ ταβ.

From Theorem 1, for any τ ∈ R the quadric Q(τ) is such that Q(τ) ∩ A= = E ∩ A= and
Q(τ) ∩ B= = E ∩ B=. Hence, from Lemma 3 we need to investigate if there exists a value τ̄ such
that Q(τ̄) is a two-sided cone one side of which, denoted K, satisfies Definition 2 with a vertex
x∗ /∈ Ā ∩ B̄ or a convex cylinder C. As a result, from Proposition 1 or 2 the intersections K ∩ E or
C ∩ E would be the convex hull for E ∩ (A ∪ B), respectively. Figures 6(b) and 6(c) illustrate the
convex hull of E ∩ (A ∪ B) and the four sets E ,A=,B=,K for Problem (5).

Now, let us assume first that we are given a τ such that Q(τ) is nonsingular. Under this
assumption one can rewrite the quadric set Q(τ) in (7) as

{

x
∣

∣

∣
(x+Q(τ)−1q(τ))⊤Q(τ)(x+Q(τ)−1q(τ)) ≤ q(τ)⊤Q(τ)−1q(τ)− ρ(τ)

}

. (8)

From (8), one can easily verify that the quadric Q(τ) is empty if the matrix Q(τ) is positive definite
and q(τ)⊤Q(τ)−1q(τ)−ρ(τ) < 0. Belotti et al. [8] prove that the quadric Q(τ) defines a cone if Q(τ)
is a non-singular symmetric matrix with exactly one negative eigenvalue and q(τ)⊤Q(τ)−1q(τ) −
ρ(τ) = 0. They also prove that for any τ ∈ R, the matrix Q(τ) has at most one negative eigenvalue
and at least n − 1 positive eigenvalues. Therefore, we need to focus on Q(τ) to explore those τ
values for which q(τ)⊤Q(τ)−1q(τ)− ρ(τ) = 0.

Let us define the vectors ua = Q−1/2a and uq = Q−1/2q, where Q−1/2 is the unique symmetric
square root of Q−1. Then, from Theorem 1 we can get the following expression, which is derived
in Section 3.2.1 in [8]:

q(τ)⊤Q(τ)−1q(τ)− ρ(τ)

=
(α− β)2 ‖ua‖2

4(1 + τ ‖ua‖2)
τ2 +

(

4 ‖ua‖2 (‖uq‖2 − ρ)− (α+ β + 2u⊤a uq)
2 + (α− β)2

)

4(1 + τ ‖ua‖2)
τ

+
4(‖uq‖2 − ρ)

4(1 + τ ‖ua‖2)
. (9)

Hence q(τ)⊤Q(τ)−1q(τ)− ρ(τ) is the ratio of two polynomials in τ . Two remarks are in order:
first, note that at value τ̂ = −1/ ‖ua‖2, the denominator of (9) becomes zero. Additionally, at τ̂ ,
the matrix Q(τ) is positive semidefinite with one zero eigenvalue. Lemma 3.3 in [8] characterizes
the behavior of Q(τ) at τ̂ . There are two main ranges in this characterization. On one hand, for
τ > τ̂ , the matrix Q(τ) is positive definite. On the other hand, for τ < τ̂ , the matrix Q(τ) is
indefinite with one negative eigenvalue.

Second, for any τ 6= τ̂ , q(τ)⊤Q(τ)−1q(τ) − ρ(τ) becomes zero only at the roots τ̄1, τ̄2 of the
numerator of (9). Let f be a function of τ that denotes the quadratic function in the numerator
of (9). Hence, both roots τ̄1, τ̄2 of f are less than or equal to τ̂ [8]. Then, from Lemma 3.3 in
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[8] the two roots τ̄1, τ̄2 correspond to the cones or the cylinders in the family of Theorem 1. A
characterization of the family Q(τ) for τ ∈ R depending on the geometry of E and the hyperplanes
A=, and B= is presented in Theorem 3.4 of [8], which we recall here.

Theorem 2 ([8]). Depending on the geometry of E, A, and B, Q(τ) can have the following shapes
for τ ∈ R:

• f(τ) has two distinct roots τ̄1 < τ̄2 and τ̄2 < τ̂ : this is the general case, Q(τ̂) is a paraboloid,
and Q(τ̄1),Q(τ̄2) are two cones.

• f(τ) has two distinct roots τ̄1 < τ̄2, and τ̄2 = τ̂ : the two hyperplanes are symmetric about the
center of E. Q(τ̄1) is cone and Q(τ̄2) is a cylinder.

• The two roots τ̄1, τ̄2 of f(τ) are equal, and τ̄2 < τ̂ : the discriminant of f(τ) is zero, which
means that one of the hyperplanes intersect E in only one point. Q(τ̂) is a paraboloid and
Q(τ̄2) is a cone.

• The two roots τ̄1, τ̄2 of f(τ) coincide with τ̂ : this is the most degenerate case as both hyper-
planes intersect E in only one point, and as such they are symmetric about the center of E.
In this case Q(τ̂) is a line.

4.1.2 Building a disjunctive conic cut

We can use the geometrical analysis of §4.1.1 to build a conic cut to convexify the intersection of
a MISOCO problem with a parallel disjunction. To simplify the analysis, we separate the cylinder
and conic cases.

Cylinders: First, we study the families Q(τ), τ ∈ R described in the second and fourth cases
in Theorem 2, where there is a cylinder C at Q(τ̂). In particular, C is given by Q(τ̄2) in these cases.
From equation (7), we have that

Q(τ̄2) =
{

x ∈ Rn
∣

∣

∣
x⊤Q(τ̄2)x+ 2q(τ̄2)

⊤x+ ρ(τ̄2) ≤ 0
}

, (10)

where Q(τ̄2) is a positive semidefinite matrix. Hence, it follows from (10) that the quadric Q(τ̄2) is
a convex set and Proposition 2 proves that C ∩ E is the convex hull of E ∩ (A ∪ B). Finally, notice
that the cylinder C described by (10) can be represented in terms of a second order cone, for that
reason we classify C as a conic cut in this section.

Cones: Now we focus on the cones described in the first and third cases of Theorem 2. Our
strategy is to show that the quadrics Q(τ̄1) and Q(τ̄2) can be written as the union of two convex
cones. Then, we derive a criterion to identify which cone gives the convex hull of E ∩ (A ∪ B).

Consider the roots τ̄i 6= τ̂ , i = 1, 2, and let x(τ̄i) = −Q(τ̄i)
−1q(τ̄i). Recall from §4.1.1 that Q(τ̄i)

is a symmetric and non-singular matrix that has exactly one negative eigenvalue. Then, Q(τ̄i) can
be diagonalized as U(τ̄i)D(τ̄i)U(τ̄i)

⊤, where U(τ̄i) is an orthogonal matrix and D(τ̄i) is a diagonal
matrix having the eigenvalues of Q(τ̄i) in its diagonal. Let the index ji be such that D(τ̄i)ji,ji < 0,
and let W (τ̄i) = U(τ̄i)D̄(τ̄i)

1/2, where D̄(τ̄i)l,k = |D(τ̄i)l,k|. Thus, we may write Q(τ̄i) in terms of
W (τ̄i) as follows

{

x ∈ Rn

∣

∣

∣

∣

(x− x(τ̄i))
⊤W (τ̄i)i 6=jiW (τ̄i)

⊤
i 6=ji

(x− x(τ̄i)) ≤
(

W (τ̄i)
⊤
ji(x− x(τ̄i))

)2
}

,
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where W (τ̄i)i 6=ji has the columns of W (τ̄i) that are different from ji. Now, let us define the sets
Q(τ̄i)

+, Q(τ̄i)
− as follows

Q(τ̄i)
+ ≡

{

x ∈ Rn
∣

∣

∣

∥

∥

∥
W (τ̄i)

⊤
i 6=ji

(x− x(τ̄i))
∥

∥

∥
≤ W (τ̄i)

⊤
ji(x− x(τ̄i))

}

, (11)

Q(τ̄i)
− ≡

{

x ∈ Rn
∣

∣

∣

∥

∥

∥
W (τ̄i)

⊤
i 6=ji

(x− x(τ̄i))
∥

∥

∥
≤ −W (τ̄i)

⊤
ji(x− x(τ̄i))

}

, (12)

which are two second order cones. These two cones satisfy the general definition of a cone with the
vertex at x(τ̄i) presented in Remark 1. It is easy to verify that Q(τ̄i) = Q(τ̄i)

+ ∪Q(τ̄i)
−. Also, it is

clear from (11) and (12) that Q(τ̄i)
+ and Q(τ̄i)

− are two convex sets. This shows that the quadrics
Q(τ̄1) and Q(τ̄2) can be written as the union of two convex cones.

Given the convex cones, we need a criterion to identify which cone gives the convex hull of
E ∩ (A ∪ B). First, we choose one of the two quadrics Q(τ̄i), i = 1, 2. For this purpose we can use
Lemma 3, thus we need to verify if at least one of Q(τ̄i), i = 1, 2 contains a cone with a vertex
x(τ̄i) /∈ A∩ B. This criterion is presented in Lemma 9. The interested reader can review the proof
in Appendix A.1.

Lemma 9. The quadric Q(τ̄2) found at the larger root τ̄2 of f(τ) in the family Q(τ) of the first
and third case of Theorem 2 contains a cone that satisfies Definition 2.

From Lemma 9, we reduce the choices to the cones Q(τ̄2)
+ and Q(τ̄2)

−. We now decide
between the two cones using the sign of W (τ̄2)

⊤
1 (−Q−1q − x(τ̄2)). Thus, we choose Q(τ̄2)

+ if
W (τ̄2)

⊤
1 (−Q−1q − x(τ̄2)) > 0, and we choose Q(τ̄2)

− when W (τ̄2)
⊤
1 (−Q−1q − x(τ̄2)) < 0. Finally,

it follows from Proposition 1 that the selected cone gives the convex hull for E ∩ (A ∪ B). Note
that if W (τ̄2)

⊤
1 (−Q−1q − x(τ̄2)) = 0 the center of the ellipsoid E coincides with the vertex of the

selected cone. In this case the feasible set is a single point, so by identifying this unique solution
the problem is solved. This completes the procedure.

We have shown that for all the cases in Theorem 2, we can find a cone K or a cylinder C that
satisfies Definitions 2 or 5 respectively. Hence, by combining Theorem 2 with Propositions 1 and
2 we can provide a procedure to find the convex hull of E ∩ (A ∪ B), where the disjunctive set
A∪ B is such that the hyperplanes A= and B= are parallel. Thus, we have given easy to compute
procedures to identify disjunctive conic cuts, and disjunctive cylindrical cuts in the respective cases
of Theorem 2.

4.2 General disjunctions

Some of the results in §4.1 can be extended to general disjunctive sets A ∪ B, where A = {x ∈
Rn|a⊤x ≥ α} and B = {x ∈ Rn|b⊤x ≤ β} are defined such that there exists no κ ∈ R such that
b = κa.

An important example of general disjunction is given by complementarity constraints, usually
described in the form xixj = 0 and hence equivalent to the disjunction xi = 0∨xj = 0. An example
of disjunctive cuts separated for problems with complementarity constraints is given by Júdice et
al. [18], who study a problem where complementarity constraints are the only nonlinear ones,
and whose relaxation yields an LP. Disjunctive cuts are separated using violated complementarity
constraints by observing that both variables are basic and then applying a disjunctive procedure
to the corresponding tableau rows.
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We may assume w.l.o.g. that ‖a‖ = ‖b‖ = 1. These disjunctive sets are illustrated in Figure
7(a) for Problem (5) using A = {x ∈ R4 | 0.45x3 + 0.89x4 ≥ 0} and B = {x ∈ R4 | x4 ≤ −1} to
define the disjunctive set A ∪ B.

4.2.1 Geometry of E and the hyperplanes A= and B=

We begin this analysis recalling Theorem 4.1 in [8]. This theorem defines a family of quadrics Q(τ)
for τ ∈ R such that Q(τ) ∩ A= = Q ∩A= and Q(τ) ∩ B= = Q ∩ B=.

Theorem 3 ([8]). Consider an ellipsoid E = (Q, q, q0) and two nonparallel hyperplanes A= and B=.
The uniparametric family of quadrics Q(τ) parametrized by τ ∈ R and having the same intersection
with A= and B= as the ellipsoid E is given by

Q(τ) = Q+ τ
ab⊤ + ba⊤

2

q(τ) = q − τ
βa+ αb

2
ρ(τ) = ρ+ ταβ.

We need to investigate if there is a value τ̄ in the family of Theorem 3 for which Q(τ̄) is a cone
K or a cylinder C. Thus, either K∩E or C ∩E will give the convex hull for E ∩ (A∪B). Figure 7(b)
and 7(c) illustrate this for the example in Problem (5).

Note that in Theorem 3, Q(τ) has a rank-2 update. This opens the possibility of having a matrix
with two negative eigenvalues. However, it can be verified that under the assumption of Q being
positive definite, Q(τ) can have at most one non-positive eigenvalue [8, § 4]. This property reduces
the case of general disjunctive sets to the same set of geometrical objects that were considered in
§4.1.1.

For any vector d, define ud = Q−1/2d. Using this notation, we get from Theorem 3 the following
[8, § 4]:

q(τ)⊤Q(τ)−1q(τ)− ρ(τ) =
f(τ)

g(τ)
, (14)

where

g(τ) = τ2
(

(

u⊤a ub
)2

− ‖ua‖2 ‖ub‖2
)

+ 4u⊤a ubτ + 4

and

f(τ) =τ2
[

‖ua‖2 (β + u⊤b uq)
2 ‖ub‖2 (α+ u⊤a uq)

2

+((u⊤a ub)
2 − ‖ua‖2 ‖ub‖2)(‖uq‖2 − ρ)− 2u⊤a ub(u

⊤
a uq + α)(u⊤b uq + β)

]

+ 4τ
[

u⊤a ub(‖uq‖2 − ρ)− (α+ u⊤a uq)(β + u⊤b uq)
]

+ 4
[

‖uq‖2 − ρ
]

, (15)

which are two quadratic functions in τ . Let the two roots of g(τ) be denoted as τ̂1 and τ̂2, and
we may assume w.l.o.g. that τ̂1 ≤ τ̂2. It is proven in [8, §4] that at these two values Q(τ) is a
positive semidefinite matrix with one zero eigenvalue. Now, let the roots of f(τ) be denoted as
τ̄1 and τ̄2, and we may also assume w.l.o.g. that τ̄1 ≤ τ̄2. It is easy to verify that (14) becomes
zero for these two values when Q(τ̄i) is non-singular, i = 1, 2. Additionally, in [8, §4] it is shown
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that the situations τ̂1 < τ̄1 < τ̂2, or τ̂1 < τ̄2 < τ̂2, are only possible when the quadric Q is a single
point, which is a trivial case. We use these observations in Theorem 4 to summarize the behavior
of the family Q(τ) when the quadric Q is not a single point, based on the values τ̂1, τ̂2, τ̄1, τ̄2. The
interested reader can review the details of this theorem in [8, §4.2].
Theorem 4 ([8]). Depending on the geometry of E, A, and B, Q(τ) can have the following shapes
for τ ∈ R:

• f(τ) has two distinct roots τ̄1 < τ̄2 such that τ̂2 < τ̄1, or τ̄2 < τ̂1, or τ̄1 < τ̂1 ≤ τ̂2 < τ̄2: this
is the general case, Q(τ̂1) and Q(τ̂2) are paraboloids, and Q(τ̄1) and Q(τ̄2) are cones.

• f(τ) has two distinct roots τ̄1 < τ̄2, and exactly one of them coincides with either τ̂1 or τ̂2:
this case has two possibilities. First, Q(τ̂1) is a cylinder and Q(τ̂2) is a paraboloid. Second,
Q(τ̂2) is a cylinder and Q(τ̂1) is a paraboloid. In both situations we have that either Q(τ̄1) is
a cylinder and Q(τ̄2) is a cone or that Q(τ̄2) is a cylinder and Q(τ̄1) is a cone.

• f(τ) has two distinct roots τ̄1 < τ̄2 such that τ̄1 = τ̂1 and τ̄2 = τ̂2: in this case both hyperplanes
contain the center −Q−1q of the ellipsoid E. Both quadrics Q(τ̂1) and Q(τ̂2) are cylinders.

• The two roots of f(τ) coincide, and either τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2: in this case the
discriminant of f(τ) is zero, which implies that one of the hyperplanes intersects E in only
one point. We have that Q(τ̄1) is a cone and the quadrics Q(τ̂1), Q(τ̂2) are two paraboloids.

• The two roots of f(τ) coincide and either τ̄1 = τ̄2 = τ̂1 or τ̂2 = τ̄1 = τ̄2: in this case
both hyperplanes intersect E in only one point. Then, either Q(τ̂1) is a line and Q(τ̂2) is a
paraboloid or Q(τ̂2) is a line and Q(τ̂1) is a paraboloid.

4.2.2 Building a disjunctive conic cut

Using the results of the geometrical analysis of §4.2.1 we give now the guidelines to build a conic
cut to convexify the intersection of a MISOCO feasible set with a general disjunction.

First of all, observe that from Assumption 1 the third case in Theorem 4 cannot occur. Hence,
this case is not considered for building a cut for general disjunctions. We classify the remaining
cases as cylinders and cones.

Cylinders: We look at the cylinders C in the families Q(τ) described in the second and fifth
cases of Theorem 4 of [8]. Observe that in general, C can be found at either τ̂2 or τ̂1. This can be
decided by comparing τ̂2 or τ̂1 with the roots τ̄1 and τ̄2 using the criteria described in Theorem 4.
Let τ̂ be a value such that Q(τ̂) is a cylinder. From equation (7) it is easy to verify that Q(τ̂) is a
convex set. Consequently, from Proposition 2 we get that C ∩ E is the convex hull of E ∩ (A ∪ B).
Finally, note that the cylinder C can be represented in terms of a second order cone. For that
reason, we classify C as a conic cut in this section too.

Cones: We need to focus now on the cones described in the first and fourth cases of Theorem
4. Let τ̄i 6= τ̂1, τ̂2, i = 1, 2. In this two cases Q(τ̄i) is symmetric and non-singular matrix with
exactly one negative eigenvalue. This is a similar situation as the first and third cases of Theorem
2. From the analysis in §4.1.2 it follows that Q(τ̄i) = Q(τ̄i)

+ ∪ Q(τ̄i)
−, where Q(τ̄i)

+,Q(τ̄i)
− are

the second order cones (11) and (12). Observe that x(τ̄i) = −q(τ̄i)
⊤Q(τ̄i) is the vertex of Q(τ̄i)

+

and Q(τ̄i)
−. Then, using Lemma 3 we can verify if there is a cone in Q(τ̄i)

+,Q(τ̄i)
−, i = 1, 2, that

satisfies Definition 2. In particular, we need to prove that there is one x(τ̄i), i = 1, 2, that is either
in A or B. This criteria is stated in Lemma 10.
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Lemma 10. Let the two roots τ̄i, i = 1, 2 of f(τ̄) be different from τ̂1, and τ̂2. Then, in the first
and fourth cases of Theorem 4, the cone Q(τ̄2) contains a convex cone that satisfies Definition 2.

The proof of Lemma 10 is presented in Appendix A.2. Now we can define a procedure to identify
a conic cut. We need to identify which of the cones Q(τ̄2)

+,Q(τ̄2)
− gives the conic cut. For this

purpose we use the sign of W (τ̄2)
⊤
1 (−Q−1q−x(τ̄2)). Hence, we choose Q(τ̄2)

+ if W (τ̄2)
⊤
1 (−Q−1q−

x(τ̄2)) > 0, and we chooseQ(τ̄2)
− whenW (τ̄2)

⊤
1 (−Q−1q−x(τ̄2)) < 0. This completes the procedure.

In summary, excluding the third case in Theorem 4, we have shown that it is possible to find a
cone K or cylinder C satisfying Definitions 2 or 5 for all the relevant cases in Theorem 4. Hence,
combining Theorem 4 with Propositions 1 and 2 we provided a procedure to find a disjunctive conic
cut for E ∩ (A ∪ B) for a general disjunctive set A ∪ B.

5 Disjunctive conic cut vs nonlinear conic mixed integer rounding

inequality

Atamtürk and Narayanan [2] present a procedure for generating a nonlinear conic mixed integer
rounding cut. Since this is a conic cut, we examine how it compares to the disjunctive conic cut
introduced here. For this purpose, let us consider the following example

minimize: −x −y

subject to:

∥

∥

∥

∥

x− 4
3

y − 1

∥

∥

∥

∥

≤ 4
3 − x

2 − y
2

x ∈ Z, y ∈ R.

(16)

First, notice that the example in (16) is in the format used in [2], which is different from the one
in (1). The main difference is the way we write the conic constraint. Despite this difference we can
still construct a disjunctive conic cut, because the feasible region of this problem is an ellipsoid in
the (x, y) space.

Relaxing the integrality constraint, the resulting relaxation from problem (16) can be solved
easily (the KKT conditions give a 2×2 linear system). First, notice that this relaxation is just a
problem of minimizing a linear function over an ellipsoid. Particularly, we can rewrite the relaxation
of problem (16) as follows,

minimize: −x− y
subject to: 3

4x
2 + 3

4y
2 − 1

2xy − 4
3x− 2

3y + 1 ≤ 0
x, y ∈ R.

(17)

The feasible set of this problem is presented in Figure 8, which is an ellipsoid. The optimal
objective function value is −2.471, and the relaxed optimal solution for the example in problem
(16) is (x∗, y∗) = (1.402, 1.069).

We can rewrite problem (16) in the following form:

minimize: −x −y
subject to: x +y +2t = 8

3
√

(x− 4
3)

2 + (y − 1)2 ≤ t

x ∈ Z, y ∈ R, t ∈ R.

(18)
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Figure 9 presents the feasible region of this equivalent problem. Using a branch-and-bound proce-
dure one can easily solve the mixed integer problem in (18), and get that the optimal solution is
(t∗, x∗, y∗) = (1/3, 1, 1) with the optimal cost of −2.

The problem reformulation (18) presents a case similar to the one studied in Example 1 in [2],
which shows how to obtain a nonlinear conic mixed integer rounding inequality for the set

T0 =

{

(x, y, t) ∈ Z× R× R :

√

(x− 4

3
)2 + (y − 1)2 ≤ t

}

, (19)

which is the set of solutions satisfying the last constraint in (18). In general, the procedure discussed
by Atamtürk and Narayanan [2] focuses on generating the convex hull for each polyhedral second-
order conic constraint in the problem. Then, by adding those new cuts they tighten the original
formulation. In particular, applying that procedure to the set in (19) they obtain the cut

√

(x

3

)2
+ (y − 1)2 ≤ t, (20)

which is a valid cut for the problem in (18).
Analyzing the relaxed solution showed in Figure 8, we can see that the solution is not feasible

for the integer problem. First, observe that if we use the disjunction x ≤ 1∨x ≥ 2 it is not possible
to apply the disjunctive conic cut here, because the line x = 2 does not intersect the set of feasible
solutions that is an ellipsoid, violating one of the assumptions in §3. However, we can still use
the nonlinear conic mixed integer rounding inequality procedure. Figure 10 shows the result of
applying the nonlinear conic cut (19) to the problem in (18). The point (t∗, x∗, y∗) = (1/3, 1, 1) is
the new optimal solution for the continuous relaxation of the resulting problem with the cut added,
which turns out to be optimal for the mixed integer problem. The optimal objective value is −2.

Now, let us modify the first constraint in (18) as follows

x+ y + 2t =
14

3
.

Figure 11 shows the new feasible region. With this modification, the relaxed optimal solution is
(t∗, x∗, y∗) = (0.68, 1.81, 1.48), which is not feasible for the integer problem. Now, for this example
we can use the disjunction x ≤ 1∨x ≥ 2 and obtain a disjunctive conic cut that can be represented
in the (x, y) space as follows:

√

(y − 0.33x+ 0.22)2 ≤ 2.67− 0.93x. (21)

Observe that the nonlinear conic mixed integer rounding inequality (20) stays the same, since we
have not modified the conic constraint. Figure 11 shows these two cuts and highlights the difference
between applying the nonlinear conic mixed integer rounding inequality and the disjunctive conic
cut to the modified problem. More specifically, the disjunctive conic cut gives the convex hull of
the intersection between the disjunction x ≤ 1 ∨ x ≥ 2 and the feasible set of problem (18). This
is not the case for the nonlinear conic mixed integer rounding inequality (20). The new optimal
solution for the relaxed problem when either of the cuts is applied is (t∗, x∗, y∗) = (0.71, 2.0, 1.25).
In particular, we can see that any of the cuts is enough to find the optimal solution. The optimal
value for the objective function is −3.25.
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Finally, we perform an additional test modifying the first constraint in (18) as follows:

x+ y + 2t = 8.

In this case we use the disjunction x ≤ 2∨ x ≥ 3. Then, we can obtain a disjunctive conic cut that
can be represented in the (x, y) space as follows:

√

(y − 0.33x+ 1.33)2 ≤ 6.04− 1.21x.

For this example the nonlinear conic mixed integer rounding inequality (20) fails to eliminate the
continuous optimal solution found for the relaxed problem, as illustrated in Figure 12. Thus, there
is no gain in adding this cut to the problem. However, the disjunctive conic cut is violated by
the current fractional solution, and the addition of the disjunctive conic cut is enough to find the
integer solution for the problem.

6 Concluding remarks

In this paper, we analyzed the convex hull of the intersection of a convex set E and a linear
disjunctive set A ∪ B. This analysis is done for general convex sets. We assume the existence of a
convex cone K (resp. a convex cylinder C) that has the same intersection with the boundary A=,
B= of the disjunction as E . Given the cone K (resp. cylinder C), we proved that the convex hull
conv(E ∩ (A ∪ B)) is E ∩ K (resp. E ∩ C). Additionally, we were able to prove that if K (resp. a
cylinder C) exists, then it is unique.

We then showed the existence of such a cone K (resp. a cylinder C) for MISOCO problems.
We consider the feasible set of the continuous relaxation of a MISOCO problem, assumed to be
an ellipsoid, intersected with a general linear disjunction. We showed that in this case K is a
second order cone, and provided a closed formula to describe K (resp. a cylinder C) for MISOCO
problems. This cone provides a novel conic cut for MISOCO and because it gives the convex hull of
the disjunction, it is the strongest possible cut for MISOCO problems. Having a closed form for this
disjunctive conic cut makes them ready to use. The development of an efficient Branch-and-Cut
software package for MISOCO problems is the subject of ongoing research.
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[6] Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming 58, 295–324 (1993)

[7] Barvinok, A.: A course in Convexity. American Mathematical Society (2002)
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A The proofs of Lemmas 9 and 10

For the sake of simplifying the algebra of these proofs we use the following observation. If Q ≻ 0 and
the quadric Q is not single point, Q can be transformed to a unit hypersphere {y ∈ Rn | ‖y‖2 ≤ 1}
using the affine transformation

y =
Q1/2(x+Q−1q)
√

‖uq‖2 − ρ
. (22)

Observe that this transformation preserves the inertia of Q, hence the classification of the quadric
is not changed. Additionally, observe that if we apply the same transformation to two parallel
hyperplanes, the resulting hyperplanes are still parallel. Hence, throughout this proof, if Q ≻ 0,
we assume w.l.o.g. that the quadric Q is a unit hypersphere centered at the origin. In this case,
we have that the positive definite matrix Q of Section 4 is the identity matrix, the vector q is the
zero vector, ρ = −1. Additionally, given Assumption 2 and the assumption that ‖a‖ = ‖b‖ = 1, we
have that |α| ≤ 1, and |β| ≤ 1.

A.1 Proof of Lemma 9

From Section 4.1 we have that τ̂ = −1, and the numerator of the right hand side of (9) reduces to

f(τ) = τ2
(α− β)2

4
+ τ(1− αβ) + 1.

Recall from Section 4.1.1 that the quadrics Q(τ̄1) and Q(τ̄1) in the family {Q(τ) | τ ∈ R}, are
computed using the roots τ̄1 and τ̄2 of the function f(τ). Particularly, we have that

τ̄1 = 2

(

αβ − 1−
√

(1− α2)(1− β2)

(α− β)2

)

,

τ̄2 = 2

(

αβ − 1 +
√

(1− α2)(1− β2)

(α− β)2

)

,

where τ̄1 ≤ τ̄2. Note that if α = β, then f(τ) is a linear function. In this case we would have that
A = B and is easy to verify that conv (Q ∩ (A ∪ B)) = Q. However, recall that our assumption is
β 6= α. Hence, for the rest of this proof we assume that α 6= β.
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The vertices of the cones Q(τ̄1) and Q(τ̄2) are x(τ̄i) = −Q(τ̄i)
−1p(τ̄i), i = 1, 2. We can express

x(τ̄i) in terms of a, α, and β as follows

x(τ̄i) = −Q(τ̄i)
−1q(τ̄i) = −

(

I − τ̄i
(1 + τ̄i)

aa⊤
)(

−τ̄i
(α+ β)

2
a

)

= τ̄i
(α+ β)

2

(

1− τ̄i
(1 + τ̄i)

)

a

= τ̄i
(α+ β)

2(1 + τ̄i)
a.

Consider the inner product

a⊤x(τ̄i) = −a⊤Q(τ̄i)
−1q(τ̄i) = τ̄i

(α+ β)

2(1 + τ̄i)
a⊤a = τ̄i

(α+ β)

2(1 + τ̄i)
.

Note that if α = −β then a⊤x(τ̄i) = 0. Recall from Theorem 2 that in that case Q(τ̄1) is a cylinder.
For that reason, we assume that α 6= −β for the rest of this proof.

Next, note that since A= and B= are parallel, then A ∩ B = ∅. Then, we need to show that in
the first and third cases of Theorem 2 the vertex x(τ̄2) cannot be in the set A∩ B. Assume to the
contrary that x(τ̄2) ∈ A ∩ B. Now, since we are analyzing the first and fourth cases of Theorem 4
we know that τ̄2 < −1. Thus, if a⊤x(τ̄2) ≤ α and a⊤x(τ̄2) ≥ β, then

τ̄2(β − α) ≤ 2α and τ̄2(α− β) ≥ 2β. (23)

Substituting τ̄2 in (23) we obtain that
√

(1−α2)
(1−β2)

= 1. The las equality is possible only if either

α = −β or α = β. In the first case we obtain that τ̄2 = −1, which is not in the cases considered.
In the second case we obtain that A∩ B = ∅. Hence, in the first and third cases of Theorem 2 the
vertex x(τ̄2) cannot be in the set A ∩ B.

Thus, since the intersections Q(τ̄2)∩A= and Q(τ̄2)∩B= are bounded, then one of the following
two cases holds:

• Case 1: Q+(τ̄2) ∩ A= = E ∩ A= and Q+(τ̄2) ∩ B= = E ∩ B=;

• Case 2: Q−(τ̄2) ∩ A= = E ∩ A= and Q−(τ̄2) ∩ B= = E ∩ B=.

Consequently, we have that one of the cones Q+(τ̄2) and Q−(τ̄2) found at the root τ̄2 satisfy
Proposition 1.

A.2 Proof of Lemma 10

Recall from Section 4.2.1 that the quadrics Q(τ̄1) and Q(τ̄1) in the family {Q(τ) | τ ∈ R} of
Theorem 4, are computed using the roots of the function (15), which in this case simplifies to

f(τ) =
(

(αβ − a⊤b)2 − (1− α2)(1− β2)
)

τ2 + 4(a⊤b− αβ)τ + 4.
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The roots of f(τ) are

τ̄1 = 2

(

αβ − a⊤b−
√

(1− α2)(1− β2)

(αβ − a⊤b)2 − (1− α2)(1− β2)

)

=
2

αβ − a⊤b+
√

(1− α2)(1− β2)
,

τ̄2 = 2

(

αβ − a⊤b+
√

(1− α2)(1− β2)

(αβ − a⊤b)2 − (1− α2)(1− β2)

)

=
2

αβ − a⊤b−
√

(1− α2)(1− β2)
,

where τ̄1 ≤ τ̄2.
Also, recall that the classification of the the quadrics Q(τ̄1) and Q(τ̄1) is done based on the

ratio f(τ)/g(τ), where g(τ) simplifies in this case to

g(τ) = ((a⊤b)2 − 1)τ2 + 4a⊤bτ + 4.

The roots of g(τ) are

τ̂1 = − 2

a⊤b+ 1
< 0 and τ̂2 = − 2

a⊤b− 1
> 0.

Note that if a⊤b − 1 = 0, then we obtain that τ̂2 is given by a division by zero. However, since
‖a‖ = ‖b‖ = 1, in this case we obtain that a⊤b = cos(0), which implies that a = b. This is the case
when we have parallel hyperplanes, which was already analyzed in A.1. For that reason, for the
rest of this proof we assume that a 6= b.

The vertex of the cone Q(τ̄2) is x(τ̄2) = −Q(τ̄2)
−1q(τ̄2). We can express x(τ̄2) in terms of a, b,

α, and β as follows

x(τ̄2) = −Q(τ̄2)
−1q(τ̄2)

= −
(

I − (aa⊤ + bb⊤)τ̄22 − (a⊤bτ̄22 + 2τ̄2)(ba
⊤ + ab⊤)

(1− (a⊤b)2)τ̄22 − 4a⊤bτ̄2 − 4

)(

−τ̄2
βa+ αb

2

)

=
τ̄2
((

(α− a⊤bβ)τ̄2 − 2β
)

a+
(

(β − a⊤bα)τ̄2 − 2α
)

b
)

(1− (a⊤b)2)τ̄22 − 4a⊤bτ̄2 − 4
.

Consider the inner products

a⊤x(τ̄2) =
τ̄2
(

(1− (a⊤b)2)ατ̄2 − 2(a⊤bα+ β)
)

(1− (a⊤b)2)τ̄22 − 4a⊤bτ̄2 − 4

and

b⊤x(τ̄2) =
τ̄2
(

(1− (a⊤b)2)βτ̄2 − 2(a⊤bβ + α)
)

(1− (a⊤b)2)τ̄22 − 4a⊤bτ̄2 − 4
.

Next, we show that in the first and fourth cases of Theorem 4 the vertex x(τ̄2) cannot be in
the set A ∩ B. Assume to the contrary that x(τ̄2) ∈ A ∩ B. Note that τ̂1 and τ̂2 are the roots of
(1 − (a⊤b)2)τ2 − 4a⊤bτ − 4 = −g(τ). Now, since we are analyzing the first and fourth cases of
Theorem 4 we know that τ̂2 < τ̄1, or τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2. Even more, since 1− (a⊤b)2 ≥ 0
we have that (1− (a⊤b)2)τ̄22 − 4a⊤bτ̄2 − 4 ≥ 0. Thus, if a⊤x(τ̄2) ≤ α and b⊤x(τ̄2) ≥ β, then

(a⊤bα− β)τ̄2 ≤ −2α and (a⊤bβ − α)τ̄2 ≥ −2β. (24)
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Substituting τ̄2 in (24) we obtain that α√
1−α2

= − β√
1−β2

, which implies that α = −β. This is

possible if τ̄2 = τ̂1, which is not in the cases being considered. Hence, in the first and fourth cases
of Theorem 4 x(τ̄2) cannot be in the set A ∩ B.

Similarly, we can show that in the first and fourth cases of Theorem 4 the vertex x(τ̄2) cannot
be in the set A ∩ B. In particular, if a⊤x(τ̄2) ≥ α and b⊤x(τ̄2) ≤ β, then

(a⊤bα− β)τ̄2 ≥ −2α and (a⊤bβ − α)τ̄2 ≤ −2β. (25)

Substituting τ̄2 in (25) we obtain that α√
1−α2

= − β√
1−β2

. This implies that τ̄2 = τ̂1, which is not

in the cases being considered. Hence, the vertex x(τ̄2) cannot be in the set A ∩ B.
Thus, since the intersections Q(τ̄2)∩A= and Q(τ̄2)∩B= are bounded, then one of the following

two cases is true:

• Case 1: Q+(τ̄2) ∩ A= = E ∩ A= and Q+(τ̄2) ∩ B= = E ∩ B=.

• Case 2: Q−(τ̄2) ∩ A= = E ∩ A= and Q−(τ̄2) ∩ B= = E ∩ B=.

Consequently, we have that one of the cones Q+(τ̄2), Q−(τ̄2) found at the root τ̄2 satisfies Propo-
sition 1.

B Additional lemma

Lemma 11. Let C ⊂ Rn be a cylinder with a compact base. Then C is closed.

Proof. Let D be a compact base for C = {x ∈ Rn|x = d + σd0, d ∈ D, σ ∈ R} and let u ∈ Rn

be a vector such that u /∈ C. Our goal is to show that there is a neighborhood U of u such that
U ∩ C = ∅.

Let δ = max{‖u− x‖ | x ∈ D} > 0 be the maximum distance from a point x ∈ D to u. Let
us choose σo = (δ + 1)/ ‖d0‖ and let B be the open ball of radius 1 centered at u. Define the set
C1 = {x ∈ Rn | x = d + σdo, d ∈ D, σ ≤ −σo} ∪ {x ∈ Rn | x = d + σd0, d ∈ D, σ ≥ σo}. Then, we
have that B ∩ C1 = ∅.

Let X = D × [−σo, σo], and consider the map h : X 7→ Rn, defined by h(σ, x) = x+ σdo. Since
D and [−σo, σo] are compact we have that X is compact. Since h is continuous in X we have that
the image h(X ) is a compact set as well, and hence closed in Rn. Furthermore, note that h(X ) ⊂ C,
thus u /∈ h(X ). Hence, there is a neighborhood N of u such that N ∩ h(X ) = ∅. Let U = B ∩ N ,
then for any σ ∈ R we have that U ∩ (σd0+D) = ∅. This proves that the complement of C is open,
thus C is closed.
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(a) A
=, B=, and E (b) The cylinder C yielding conv(E ∩ (A ∪ B))

(c) E ∩ C (d) conv(E ∩ (A ∪ B))

Figure 4: Illustration of a disjunctive cylindrical cut as specified in Proposition 2
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Figure 5: The feasible region of Problem (5)
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(a) A
=, B=, and E (b) conv(E ∩ (A ∪ B))

(c) The cone yielding conv(E ∩ (A ∪ B))

Figure 6: The convex hull of the intersection of a parallel disjunction and an ellipsoid.
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(a) A
=, B=, and E (b) conv(E ∩ (A ∪ B))

(c) The cone yielding conv(E ∩ (A ∪ B))

Figure 7: Convex hull of the intersection between a non-parallel disjunction and an ellipsoid.
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Figure 8: An optimal solution of problem (17).
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Figure 9: The feasible region of the continuous relaxation of problem (18).
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Figure 10: Nonlinear conic mixed integer rounding inequality
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Figure 11: The Disjunctive conic cut and the Nonlinear conic mixed integer rounding inequality
cutting off the relaxed optimal solution.
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Figure 12: The nonlinear conic mixed integer rounding inequality fails to cut off the optimal solution
fo the relaxed problem
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