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Abstract. The values of the elliptic modularj-invariant at imaginary quadratic arguments are algebraic
integers, known as singular moduli of level one. If $d_{1}$ and $d_{2}$ are imaginary quadratic discriminants, then
we may consider a generalized resultant of the class polynomials of the orders of discriminant $d_{1}$ and $d_{2}$ ;
this is the norm of the differences of singular moduli of the corresponding orders, denoted here by $J(d_{1}, d_{2})$ .
These resultants are highly factorizable; Gross-Zagier established a closed formula for $J(d_{1}, d_{2})^{2}$ when $d_{1}$

and $d_{2}$ are fundamental discriminants, with $(d_{1}, d_{2})=1$ . In this paper we present a conjectural extension
of the Gross-Zagier formula to the case when $d_{1}$ and $d_{2}$ are not necessarily fundamental, and $(d_{1}, d_{2})=l^{e}$ ,

where 1 is a prime not dividing the product of the conductors of $d_{1}$ and $d_{2}$ .

1. Introduction.

The values of the elliptic modular j-invariant at imaginary quadratic arguments
are algebraic integers, known as singular moduli of level one. The main applications
of singular moduli include the explicit construction of class fields [3] and elliptic curve
primality proving [1], which is required for RSA public-key cryptography. The minimal
polynomial of singular moduli corresponding to imaginary quadratic arguments of
discriminant $d$ is known as the class polynomial of $\mathcal{O}_{d}$ (the imaginary quadratic order
of discriminant $d$). Let $d_{1}$ and $d_{2}$ be imaginary quadratic discriminants. Then we may
consider the resultant of the class polynomials of $\mathcal{O}_{d_{1}}$ and $\mathcal{O}_{d_{2}}$ ; it is defined to be the
norm of the differences of two singular moduli of the corresponding orders.

More generally, for i $=1,2,$ $wewriteh_{i}$ for the class numbers of $\mathcal{O}_{d_{i}},$ $andw_{i}$ for the
number of units in $\mathscr{O}_{d_{i}}$ . Then we define

$J(d_{1}, d_{2})=[\prod_{s=1}^{h_{1}}\prod_{t=1}^{h_{2}}(j(\tau_{s})-j(v_{t}))]^{4/w_{1}w_{2}}$ ,

where $\tau_{s}$ (respectively, $v_{t}$) runs over imaginary quadratic arguments corresponding to
the form class group of $\mathcal{O}_{d_{1}}$ (respectively, $\mathcal{O}_{d_{2}}$). (Recall that a set of representatives for the
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form class group of an imaginary quadratic $0$rder of discriminant $d$ consists of the

primitive, positive definite, reduced quadratic forms of discriminant $d$, and that the

form class group is isomorphic to the ideal class group. Also, note that when $d$ is a

fundamental discriminant, $\mathcal{O}_{d}$ is the ring of integers of $Q(\sqrt{d}).)$

Since $w_{i}=2$ when $d_{i}<-4$ , note that when $d_{1}<-4$ and $d_{2}<-4,$ $J(d_{1}, d_{2})$ is the

resultant discussed above. M. Deuring [6] noticed that these resultants are highly

factorizable integers, and Gross-Zagier [10] established a closed formula for $J(d_{1}, d_{2})^{2}$

when $d_{1}$ and $d_{2}$ are fundamental discriminants, with $(d_{1}, d_{2})=1$ .

2. The Gross-Zagier formula.

In order to state the Gross-Zagier formula, we first need to define a componenl

function.

Assume that $(d_{1}, d_{2})=1$ . For primes 1 with $(\frac{d_{1}d_{2}}{l})\neq-1$ , we define

$\epsilon(l)=\left\{\begin{array}{ll}(\frac{d_{1}}{l}) & if (l, d_{1})=1,\\(\frac{d_{2}}{l}) & if (l, d_{2})=1.\end{array}\right.$

If $n=\prod_{i=1}^{r}l_{i}^{a_{i}}$ with $(\frac{d_{1}d_{2}}{l_{i}})\neq-1$ for all $i$, then we define $\epsilon(n)=\prod_{i=1}^{r}\epsilon(l_{i})^{a_{i}}$ . (The restric.

tion on $l_{i}$ is necessary to ensure that the $\epsilon(l_{i})$ are well-defined; this will be referred to

in Definitions 3.1, 3.4, and 3.7, below, without stating the restriction explicitly.)

We may then define

$F(m)=$
$\prod_{nn’=m,n,n^{\prime}>0}n^{\epsilon(n^{\prime})}$

,

where any prime divisor $l$ of $m$ satisfies $(\frac{d_{1}d_{2}}{l})\neq-1$ .

There is a closed formula for $F(m)$ , which not only makes computations easier bu

is also needed in the proof of the Gross-Zagier formula.

PROPOSITION 2.1 [10]. Let $m$ be a positive integer of the form $m=(d_{1}d_{2}-x^{2})/4$

Then

$F(m)=\left\{\begin{array}{l}p^{(a+1)(b_{1}+1)\cdots(b_{s}+1)}m=p^{2a+1}p_{1}^{2a_{1}}\cdots p_{r}^{2a_{r}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}\\\epsilon(p)=\epsilon(p_{i})=-1\epsilon(q_{i})=1i\\\end{array}\right.$

PROOF. A proof is outlined by D. A. Cox in Exercises 13.15 and 13.16 of
$[4].\subset$
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We are now is a position to state the Gross-Zagier formula.

THEOREM 2.2 [10]. Let $d_{1}$ and $d_{2}$ be imaginary quadratic, relatively prime, fun-
damental discriminants. Then

$ J(d_{1}, d_{2})^{2}=\pm$
$\prod_{x^{2}<d_{1}d_{2},x^{2}\equiv d_{1}d_{2}\langle mod 4)}F(\frac{d_{1}d_{2}-x^{2}}{4})$ .

Two proofs are given in [10], one algebraic and one analytic in approach. In the
algebraic proof, it is assumed that $d_{1}=-p$ for a prime $p$ ; D. Dorman [7] has extended
the algebraic proof to the case stated in the theorem. The algebraic proof uses the
theory of elliptic curves with complex multiplication (counting the number of
isomorphisms of supersingular elliptic curves), and depends on the existence and
properties of the Hilbert class field of $Q(\sqrt{d_{1}})$ .

An easy corollary of the Gross-Zagier formula gives a precise bound on the primes
dividing $J(d_{1}, d_{2})^{2}$ .

COROLLARY 2.3 [10]. If $l$ is a prime dividing $J(d_{1}, d_{2})^{2}$ , then

(a) $(\frac{d_{1}}{l})\neq 1$ and $(\frac{d_{2}}{l})\neq 1$ ,

(b) $l$ divides a positive integer of the form $(d_{1}d_{2}-x^{2})/4$ ,

(c) $l\leq d_{1}d_{2}/4$ , and further,
(i) if $d_{1}d_{2}\equiv 1$ (mod8), then $l<d_{1}d_{2}/8$ , and
(ii) if $d_{1}\equiv d_{2}\equiv 5$ (mod8), then $l<d_{1}d_{2}/16$ .

There are also corollaries, formulated by Kaltofen-Yui [11], which give an ex-
pression for a class polynomial evaluated at zero (with some additional restrictions,
it is a perfect cube), and an expression for the discriminant of a class polynomial. These
corollaries, which we will not state here, are useful for verifying the accuracy of
computations of class polynomials; it is the computation of class polynomials which is
needed for the construction ofHilbert class fields and for elliptic curve primality proving.

3. Extending the Gross-Zagier formula.

One would certainly like to establish a formula for $J(d_{1}, d_{2})^{2}$ which holds for any
two imaginary quadratic discriminants. In the case of non-fundamental discriminants,
we need to consider imaginary quadratic orders, rather than just the maximal order
(the ring of integers) of imaginary quadratic fields. Results of computations (carried

out using $GP/PARI[2]$) of $J(d_{1}, d_{2})^{2}$ for non-fundamental discriminants and dis-
criminants with a non-trivial common divisor suggest an approach to this problem. In
particular, Corollary 2.3, which specifies a bound on the divisors of $J(d_{1}, d_{2})^{2}$ , appears
to hold for a larger class of discriminants; see Table 1. In fact, as we learned later from
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M. Kaneko, this corollary has been established for arbitrary imaginary quadratic
discriminants; we will discuss the details of the later. Since the corollary follows directly
from the formula, this suggests that the Gross-Zagier formula should hold for a larger

class of discriminants, given an appropriate extension of the definition of $F(m)$ .
In the original case $F(m)$ is defined in terms of the function $\epsilon(p)$ . A more usable

formula for $F(m)$ (and, indeed, one which is required in the proof of the Gross-
Zagier formula) is given in Proposition 2.1. It does not appear possible to extend

the definition of $\epsilon(l)$ to the case $l|(d_{1}, d_{2})$ or to the case ofnon-fundamental discriminants;

instead, the definition of $F(m)$ will take the form of Proposition 2.1.

We shall present a conjectural formula for $J(d_{1}, d_{2})^{2}$ for the case when $(d_{1}, d_{2})=l^{e}$ ,

where $l$ is a prime not dividing the product of the conductors of $d_{1}$ and $d_{2}$ . It turns

out that these conditions account for about 75 percent of all possible discriminants in
the range, for instance, of-500 to-3, while the conditions in the original Gross-Zagier
formula account for about 30 percent. Rather than presenting the full conjecture im-
mediately, we first present two simpler cases.

Note that when $p$ does not divide $(d_{1}, d_{2}),$ $\epsilon(p)$ is well-defined, so in those cases we
will continue to use the notation of $\epsilon(p)$ (see Section 2).

3.1. A conjectural formula: $(d_{1}, d_{2})>1$ . We first relax the restriction that $d_{1}$ and
$d_{2}$ must be relatively prime. Here we still assume that $d_{1}$ and $d_{2}$ are fundamental
discriminants, but allow their greatest common divisor to be a prime power. (Examples

of this are represented by the first eleven entries of Table 1.)

DEFINITION 3.1. Suppose that $d_{1}$ and $d_{2}$ are fundamental discriminants. If $l|(d_{1}, d_{2})$

where 1 is a prime, and given $m$ , we define $\chi=\chi(l, m)=1$ if $(l, m)>1$ ; otherwise let $\chi=0$ .
Suppose further that $\epsilon(p)=\epsilon(p_{i})=-1$ for all $i;\epsilon(q_{i})=1$ for all $i$ . (Note that the primes
1, $p,$ $p_{i}$ , and $q_{i}$ are all distinct, and that $p,$ $p_{i}$ , and $q_{i}$ need to be restricted so that $\epsilon(p)$ ,

$\epsilon(p_{i})$ , and $\epsilon(q_{i})$ are well-defined, as above). Then (for $a,$ $a_{i},$
$b_{i}\geq 0$) we define

$F(m)=\left\{\begin{array}{ll}p^{2^{\chi}\langle+1)(b_{1}+1)\cdot(b_{s}+1)}l^{e\langle b_{1:}1)\cdot\cdot\langle b_{s}+1)}.. & ifif m=l^{e}p^{2a1}p_{1}^{2a_{1}}\cdots p_{r}^{2a_{r}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}m=l^{e}p_{1}^{2a_{!}}\cdot\cdot p_{r}^{2a_{r}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}(e\geq 0),\\1 & otherwise.\end{array}\right.$

CONJECTURE 3.2. With the definition of $F(m)$ as above, the Gross-Zagier formula

holds for any two imaginary quadratic, fundamental discriminants $d_{1}$ and $d_{2}$ such that
$(d_{1}, d_{2})$ is a prime power.

EXAMPLE 3.3. We shall give two computations of $|J(d_{1}, d_{2})^{2}|$ , based on the first

case of the conjecture. (The conjecture has been checked (using $GP/PARI$) for
$-200\leq d_{1},$ $d_{2}\leq-3.$ ) The factors which illustrate the conjecture (that is, those not

covered by Gross-Zagier’s definition of $F(m))$ are set in boldface.
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TABLE 1. Values of $|J(d_{1}, d_{2})^{2}|$

$d_{1}$ $d_{2}$ $|J(d_{1}, d_{2})^{2}|$

$-3$ $-15$ $3^{4}5^{2}11^{2}$

$-3$ $-24$ $2^{8}3^{4}17^{2}$

$-3$ $-120$ 23 $5^{4}41^{2}89^{2}$

$-4$ $-8$ $2^{7}7^{2}$

$-4$ $-52$ $2^{16}3^{14}43^{2}$

$-4$ $-136$ $2^{28}3^{28}11^{4}127^{2}$

$-20$ $-24$ $2^{56}13^{8}17^{4}19^{4}37^{4}71^{2}$

$-35$ $-155$ $2^{248}5^{24}7^{16}31^{6}61^{2}67^{4}107^{4}113^{4}271^{2}$

$-40$ $-52$ $2^{56}3^{52}5^{12}73^{4}79^{2}439^{2}$

$-51$ $-195$ $2^{248}3^{64}31^{8}47^{4}101^{2}109^{4}191^{2}251^{2}389^{2}569^{2}599^{2}$

$-115$ $-195$ $2^{260}3^{48}5^{24}13^{8}19^{8}47^{8}167^{4}191^{2}197^{4}659^{2}971^{2}1031^{2}$

$-3$ $-16$ $2^{2}3^{2}11^{2}$

$-3$ $-64$ $2^{2}3^{4}23^{2}47^{2}$

$-4$ $-99$ $2^{12}7^{4}19^{4}83^{2}$

$-4$ $-175$ $3^{40}7^{6}19^{2}31^{2}47^{4}83^{4}139^{2}$

$-7$ $-32$ 5 $7^{4}13^{4}31^{2}47^{2}$

$-7$ $-108$ $3^{6}5^{20}17^{4}41^{4}47^{4}89^{2}173^{2}$

$-7$ $-144$ 37 $19^{4}31^{4}47^{4}59^{4}83^{2}131^{2}227^{2}251^{2}$

$-16$ $-27$ $2^{6}3^{2}59^{2}83^{2}107^{2}$

$-16$ $-99$ $2^{12}7^{8}11^{6}79^{4}107^{2}227^{2}347^{2}$

$-3$ $-60$ $3^{4}5^{2}29^{2}41^{2}$

$-3$ $-96$ $2^{8}3^{8}23^{2}47^{2}71^{2}$

$-3$ $-156$ 3 $17^{2}53^{2}101^{2}113^{2}$

$-4$ $-36$ 2 $3^{3}7^{4}11^{2}$

$-8$ $-180$ $2^{56}5^{12}13^{8}31^{4}37^{4}71^{2}191^{2}239^{2}311^{2}359^{2}$

$-8$ $-200$ 2 $5^{6}7^{24}13^{12}23^{4}29^{4}31^{6}37^{4}$

$-12$ $-75$ $2^{16}3^{20}5^{2}11^{4}17^{4}23^{4}29^{2}$

$-12$ $-123$ $2^{16}3^{12}5^{12}41^{2}113^{2}173^{2}269^{2}353^{2}$

$-12$ $-147$ $2^{16}3^{12}5^{12}11^{8}17^{2}23^{4}29^{4}41^{2}$

$-15$ $-96$ $3^{64}13^{16}37^{4}41^{4}43^{4}67^{4}71^{2}89^{4}191^{2}239^{2}311^{2}359^{2}$

$-15$ $-160$ $3^{48}5^{28}29^{8}43^{4}67^{4}71^{2}73^{4}101^{4}149^{4}239^{2}311^{2}431^{2}479^{2}599^{2}$

(a) $|J(-20, -24)^{2}|=F(2^{3}3^{1}5^{1})[F(7^{1}17^{1})F(2^{2}29^{1})F(3^{1}37^{1})F(2^{3}13^{1})\cdot$

$F(5^{1}19^{1})F(2^{2}3^{1}7^{1})F(71^{1})F(2^{3}7^{1})$ .
$F(3^{1}13^{1})F(2^{2}5^{1})]^{2}$

$=2^{12}[17^{2}2^{4}37^{2}13^{2}19^{2}2^{8}71^{1}2^{6}13^{2}2^{4}]^{2}$

$=2^{56}13^{8}17^{4}19^{4}37^{4}71^{2}$

$(l=2;p_{i}=13;q_{i}=3,5,7,29)$

(b) $|J(-40, -52)^{2}|=F(2^{3}5^{1}13^{1})[F(3^{1}173^{1})F(2^{2}3^{1}43^{1})F(7^{1}73^{1})\cdot$

$F(2^{3}3^{2}7^{1})F(3^{2}5^{1}11^{1})F(2^{2}11^{2})F(3^{1}157^{1})$ .
$F(2^{3}3^{1}19^{1})F(439^{1})F(2^{2}3^{1}5^{1}7^{1})F(3^{1}7^{1}19^{1})$ .
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$F(2^{3}47^{1})F(3^{3}13^{1})F(2^{2}3^{4})F(5^{1}59^{1})$ .
$F(2^{3}3‘ 11^{1})F(3^{1}7^{1}11^{1})F(2^{2}7^{2})F(3^{1}53^{1})$ .
$F(2^{3}3^{1}5^{1})F(79^{1})F(2^{2}3^{2})]^{2}$

$=5^{4}[3^{2}1^{1}73^{2}2^{6}5^{2}2^{6}3^{2}3^{4}439^{1}1^{1}3^{4}2^{6}3^{4}2^{2}\cdot$

$5^{2}3^{4}3^{4}2^{6}3^{2}1^{1}79^{1}2^{2}]^{2}$

$=2^{56}3^{52}5^{12}73^{4}79^{2}439^{2}$

$(l=2;p_{i}=3,5,43;q_{i}=7,11,13,47)$

3.2. A conjectural formula: non-fundamental discriminants. We next reintroduce
the restriction that $(d_{1}, d_{2})=1$ , but allow the possibility that $d_{1}$ or $d_{2}$ is non-fundamental.
(Examples of this are represented by the middle nine entries of Table 1.) For ouI

purposes, a discriminant $D$ is said to be fundamental if it is the discriminant of an
imaginary quadratic field. That is, given a discriminant $D$ , we may write

$D=f^{2}d_{K}$ ,

where $f$ is the conductor of $D$ and $d_{K}$ is the discriminant of an imaginary quadratic
field, $Q(\sqrt{D})$ . Then $D$ is non-fundamental if and only if $f>1$ . In our case, we will write
$f_{i}$ for the conductor of $d_{i}$ . As before, $F(m)$ will depend on the values of $\epsilon(p)$ , where $p$

is a prime divisor of $m$ . In the present case, we must also distinguish between primes
$p$ which divide $f_{1}f_{2}$ and such that $\epsilon(p)=-1$ ; primes $q$ which divide $f_{1}f_{2}$ and such thal
$\epsilon(q)=1$ ; and primes which do not divide $f_{1}f_{2}$ . Notation for this is introduced below.

DEFINITION 3.4. Let $f_{i}$ be the conductor of $d_{i}$ . Suppose $\epsilon(p)=\epsilon(p_{i})=-1$ for all
$i,$ $\epsilon(q_{i})=1$ for all $i$, where $p,p_{i}$ , and $q_{i}$ do not divide $f_{1}f_{2}$ . We write $f_{p}$ for a prime dividing
$f_{1}f_{2}$ with $\epsilon(f_{p})=-1$ , and $f_{q}$ for a prime dividing $f_{1}f_{2}$ with $\epsilon(f_{q})=1$ . (Note that the primes
1, $p,$ $p_{i},$ $q_{i},$ $f_{p}$ and $f_{q}$ are all distinct, and that $p,$ $p_{i},$ $q_{i},$ $\mathfrak{f}_{p}$ and $f_{q}$ need to be restricted sc
that $\epsilon(p),$ $\epsilon(p_{i}),$ $\epsilon(q_{i}),$ $\epsilon(f_{p})$ , and $\epsilon(f_{q})$ are well-defined, as above). Then (for $n,$ $r_{i}\geq 1$ ,

$a,$ $a_{i},$
$b_{i}\geq 0$) we define

$F(m)=\left\{\begin{array}{ll}p^{2^{t}(a+1)\langle b_{1}+1)\cdots\langle b_{s}+1)} & if m=p^{2a+1}f_{q}^{r}| . . . f_{q_{t}^{t}}^{r}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{k}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}},\\\mathfrak{f}_{p}^{2^{t}\{b_{1}+1)\cdots\{b_{s}+1)} & if m=f_{p}^{n}f_{q}^{1}|\cdots f_{q_{C}^{t}}^{r}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{lc}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}},\\1 & otherwise.\end{array}\right.$

CONJECTURE 3.5. With the definition of $F(m)$ as above, the Gross-Zagier formula

holds for any two imaginary quadratic discriminants $d_{1}$ and $d_{2}$ such that $(d_{1}, d_{2})=1$ .

EXAMPLE 3.6. As above, we give two computations of $|J(d_{1}, d_{2})^{2}|$ , based on the
conjecture in this case. Again, the conjecture has been checked for $-200\leq d_{1},$ $d_{2}\leq-3$

and the relevant factors (those which illustrate the conjecture) have been set in boldface

(a) $|J(-7, -108)^{2}|=F(3^{3}7^{1})[F(2^{2}47^{1})F(5^{1}37^{1})F(2^{2}3^{2}5^{1})F(173^{1})\cdot$

$F(2^{2}42^{1})F(3^{2}17^{1})F(2^{5}5^{1}7^{1})F(5^{3})F(2^{2}3^{3})$ .
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$F(89^{1})F(2^{2}17^{1})F(3^{2}5^{1})F(2^{2}5^{1})]^{2}$

$=3^{2}[47^{2}5^{2}1^{1}173^{1}41^{2}1^{1}5^{4}5^{2}3^{2}89^{1}17^{2}1^{1}5^{2}]^{2}$

$=3^{6}5^{20}17^{4}41^{4}47^{4}89^{2}173^{2}$

$(f_{p}=3;f_{q}=2;p_{i}=5,17,41,47;q_{i}=7)$

(b) $|J(-16, -27)^{2}|=F(2^{2}3^{3})[F(107^{1})F(2^{3}13^{1})F(3^{2}11^{1})F(2^{2}23^{1})\cdot$

$F(83^{1})F(2^{3}3^{2})F(59^{1})F(2^{2}11^{1})F(3^{3})F(2^{3})]^{2}$

$=1^{1}[107^{1}2^{2}1^{1}1^{1}83^{1}1^{1}59^{1}1^{1}3^{1}2^{1}]^{2}$

$=2^{6}3^{2}59^{2}83^{2}107^{2}$

$(f_{p}=2,3;p_{i}=11,23;q_{i}=13)$

3.3. Full conjecture. We now combine the above two cases; that is, we allow $d_{1}$

and $d_{2}$ to be non-fundamental and have a non-trivial common divisor. We continue to

assume that if $d_{1}$ and $d_{2}$ have a common divisor, then it is a prime power, $l^{e}$ . If $f_{i}$ is

the conductor of $d_{i}$ , then we also assume that $(f_{1}f_{2}[)=1$ . (Examples of this are

represented by the last eleven entries of Table 1.)

In certain special cases, to be specified below, it turns out that extending the

definition of $F(m)$ is not enough. In these cases an extra factor occurs in $J(d_{1}, d_{2})^{2}$ .

Fortunately, this factor has a (conjectural) closed formula, suggested by considering

the definition of $J(d_{1}, d_{2})$ .

DEFINITION 3.7. Let $f_{i}$ be the conductor of $d_{i}$ . We assume that $(d_{1}, d_{2})$ is a power

of a prime 1, where $(f_{1}f_{2}l)=1$ .
Given $m$ , we define $\chi=\chi(l, m)=1$ if $(l, m)>1$ ; otherwise let $\chi=0$ . Suppose

$\epsilon(p)=\epsilon(p_{i})=-1$ for all $j$ and $\epsilon(q_{i})=1$ for all $i$ , where $p,p_{i}$ and $q_{i}$ do not divide $f_{1}f_{2}$ .

We write $f_{p}$ for a prime dividing $f_{1}f_{2}$ with $\epsilon(f_{p})=-1$ , and $\mathfrak{f}_{q}$ for a prime dividing $f_{1}f_{2}$

with $\epsilon(f_{q})=1$ . (Note that the primes $l,$ $p,$ $p_{i},$ $q_{i},$ $f_{p}$ and $f_{q}$ are all distinct, and that $p,$ $p_{i}$ ,

$q_{i},$ $f_{p}$ and $f_{q}$ need to be restricted so that $\epsilon(p),$ $\epsilon(p_{i}),$ $\epsilon(q_{i}),$ $\epsilon(f_{p})$ , and $\epsilon(f_{q})$ are well-defined,

as above). Then (for $n,$ $r_{i}\geq 1;a,$ $a_{i},$
$b_{i}\geq 0$) we define

$F(m)=\left\{\begin{array}{ll}l^{e\langle 2^{t})(b_{1}+1)\cdots\langle b_{s}+1)} & if m=l^{e}f_{q_{1}}^{r_{1}}\cdots f_{q_{t}^{t}}^{r}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{k}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}(e\geq 1),\\p^{2^{\chi+t}\langle a+1)\langle b_{1}+1)\cdots\langle b_{s}+1)} & if m=I^{e}p^{2a+1}\mathfrak{f}_{q_{1}}^{r_{1}}\cdots \mathfrak{f}_{q_{t}^{t}}^{r}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{k}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}(e\geq 0),\\f_{p}^{2^{t}\langle b_{1}+1)\cdots(b_{s}+1)} & if m=\mathfrak{f}_{p}^{n}\mathfrak{f}_{q1}^{r_{1}}\cdots \mathfrak{f}_{q_{t}^{t}}^{r}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{k}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}},\\f_{p}^{2^{\chi+}{}^{t}tb_{1}+1)\cdots\langle b_{s}+1)} & if m=l^{e}f_{p}^{2n+1}f_{q_{1}^{1}}^{r}\cdots f_{q_{t}}^{r_{t}}p_{1}^{2a_{1}}\cdots p_{k}^{2a_{k}}q_{1}^{b_{1}}\cdots q_{s}^{b_{s}}(e\geq 0),\\1 & otherwise.\end{array}\right.$

Further, if $d_{2}=f_{2}^{2}d_{1}$ , where $d_{1}$ is a fundamental discriminant and $f_{2}$ is the power of

a prime $p_{f}$ , then we define

$\delta=p_{\mathfrak{f}}^{8h_{1}/w_{1}w_{2}}$

(Otherwise, let $\delta=1.$ )
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CONJECTURE 3.8. With the definition of $F(m)$ and $\delta$ as above, the $followin_{t}$

modified $Gross-Zagier$ formula holds for any imaginary quadratic discriminants $d_{1}an($

$d_{2}$ such that $(d_{1}, d_{2})$ isapower ofa prime l, where $(l, f_{1}f_{2})=1$ :

$ J(d_{1}, d_{2})^{2}=\pm\delta$
$\prod_{x^{2}<d_{1}d_{2},x^{2}\equiv d_{1}d_{2}\langle mod 4)}F(\frac{d_{1}d_{2}-x^{2}}{4})$ .

EXAMPLE 3.9. The full conjecture has been checked with $GP/PARI$ fo
$-200\leq d_{1},$ $d_{2}\leq-3$ . We now give two computations of $|J(d_{1}, d_{2})^{2}|$ , based on the ful
conjecture. The factors not covered by Gross-Zagier’s definition of$F(m)$ or the definition
in the last two cases are set in boldface. Note that example (a) illustrates the factor $0$

$\delta$ . In this particular example, $\delta$ is a quadratic non-residue (that is, $\epsilon(\delta)=-1$ ), but thi
is not always the case; in fact, if $d_{1}=-3$ , then $\delta$ is not necessarily an integer. (Note

however, that the need for $\delta$ is relatively rare.)

(a) $|J(-4, -36)^{2}|=\delta F(2^{2}3^{2})[F(5^{1}7^{1})F(2^{5})F(3^{3})F(2^{2}5^{1})F(11^{1})]^{2}$

$=3\cdot 1^{1}[7^{2}2^{5}3^{3}2^{4}11^{1}]^{2}$

$=2^{18}3^{3}7^{4}11^{2}$

$(l=2;f_{p}=3;h_{1}=1;w_{1}=4;w_{2}=2)$

(b) $|J(-12, -147)^{2}|=F(3^{2}7^{2})[F(2^{3}5^{1}11^{1})F(19^{1}23^{1})F(2^{4}3^{3})\cdot$

$F(5^{2}17^{1})F(2^{5}13^{1})F(3^{4}5^{1})F(2^{3}7^{2})$ .
$F(13^{1}29^{1})F(2^{3}3^{2}5^{1})F(11^{1}31^{1})F(2^{6}5^{1})$ .
$F(3^{3}11^{1})F(2^{4}17^{1})F(5^{1}7^{2})F(2^{3}3^{3})$ .
$F(5^{1}37^{1})F(2^{3}19^{1})F(3^{2}13^{1})F(2^{4}5^{1})F(41^{1})]^{2}$

$=3^{4}[1^{1}23^{2}1^{1}17^{1}2^{2}5^{2}2^{2}29^{2}1^{1}11^{2}1^{1}11^{2}1^{1}5^{2}2^{2}\cdot$

$5^{2}2^{2}3^{4}1^{1}41^{1}]^{2}$

$=2^{16}3^{12}5^{12}11^{8}17^{2}23^{4}29^{4}41^{2}$

$(l=3;f_{p}=2;f_{q}=7;p_{i}=5)$

4. Corollaries and applications of the conjectural formula.

The motivation for our approach to this extension of the Gross-Zagier formula
was Corollary 2.3; one then might ask if this corollary holds under the new hypotheses
Experimentally, the answer appears to be yes; for example, see Table 1. In fact, as $M$

Kaneko has pointed out, it has been established as a theorem (independently of an3
Gross-Zagier type formula), for any two imaginary quadratic discriminants.

THEOREM 4.1. Let $d_{1}$ and $d_{2}$ be imaginary quadratic discriminants. If $l$ is a prim‘

dividing $J(d_{1}, d_{2})^{2}$ , then
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(a) $(\frac{d_{1}}{l})\neq 1$ and $(\frac{d_{2}}{l})\neq 1$ ,

(b) $l$ divides a positive integer of the form $(d_{1}d_{2}-x^{2})/4$ ,

(c) $l\leq d_{1}d_{2}/4$ , and further,
(i) $lfd_{1}d_{2}\equiv 1$ (mod8), then $l<d_{1}d_{2}/8$ , and
(ii) if $d_{1}\equiv d_{2}\equiv 5$ (mod8), then $I<d_{1}d_{2}/16$ .

PROOF. Part (a) is due to M. Deuring [5]; this fact was made explicit by N. Elkies
[9]. Part (b) was proved by M. Kaneko [12, Theorem 2], and part (c) follows from

part (b). $\square $

The theorem would also be a fairly easy corollary of the conjectural formula; the
proof of Corollary 2.3, following hints given in [4, Exercise 13.17], is independent of

the assumptions about $d_{1}$ and $d_{2}$ . Thus the theorem provides further justification for

our approach of using the original Gross-Zagier formula; indeed, it also suggests that

a similar approach should yield a formula for $J(d_{1}, d_{2})^{2}$ when $d_{1}$ and $d_{2}$ are any two

imaginary quadratic discriminants. (Recall that the conditions on $d_{1}$ and $d_{2}$ under
discussion here account for about 75 percent of possible discriminants.)

Perhaps more significant, it is worth noting that at least one of the corollaries
which have applications for the computation of class polynomials (formulated by

Kaltofen-Yui [11] and mentioned at the end of Section 2) also follows from our
conjectural formula. (Again, however, we need to omit the few cases involving a
non-trivial $\delta.$ )

CONJECTURE 4.2. Let $\tau_{1},$ $\tau_{2}$ be imaginary quadratic integers belonging to two

distinct imaginary quadratic fields with discriminants $d_{1}\equiv d_{2}\equiv 1$ (mod4), where
$(d_{1}, d_{2})=l^{e}$ and 1 does not divide the product of the conductors of $d_{1}$ and $d_{2}$ . Assume
further that $d_{1}$ and $d_{2}$ are not of the form $d_{2}=f_{2}^{2}d_{1}$ , where $d_{1}$ is a fundamental
discriminant and $f_{2}$ (the conductor of $d_{2}$) is a power of a prime. Then
(a)

$|J(d_{1}, d_{2})|=[\prod_{xodd}F(\frac{d_{1}d_{2}-x^{2}}{4})]^{w_{1}w_{2}/4}$

(b) If $H_{d}(x)$ is the class polynomial of $\mathcal{O}_{d}$ , an imaginary quadratic order such that
$d\equiv 1$ (mod4), then

$H_{d}(0)=\pm[\prod_{xodd}F(\frac{-3d-x^{2}}{4})]^{3}$

In particular, $|H_{d}(0)|$ is a perfect cube.

As mentioned at the end of Section 2, this conjecture is useful in verifying the
accuracy of computations of class polynomials. It also seems likely that a version
of the corollary giving an expression for the discriminant of a class polyonimial (see
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[11]) holds in the generalized case, but we have not investigated this.
Thus if the conjectural formula is correct, this would provide a method of veri

fying computations of class polynomials for a larger class of discriminants than th $($

one provided for by the original Gross-Zagier formula (and these computations, $il$

turn, have applications in the construction of class fields and in elliptic curve primalit1.
proving, as mentioned above).

Perhaps more interesting is the fact that the formula may be helpful in th $($

consideration of “higher level” cases. The Gross-Zagier formula arises from a $stud\rceil$

of singular moduli of level one; the elliptic modular j-function is invariant under $th|$

action of $\Gamma=\Gamma_{0}(1)=PSL_{2}(Z)$ . Yui-Zagier [13] have considered class polynomials $ari\sin\{$

from the Weber function $f(\tau)$ , rather than thej-invariant; $f^{24}(\tau)$ is an invariant for $\Gamma_{0}(2)$

These polynomials are considerably simpler than the class polynomials $correspondin\{$

to level one. Yui-Zagier have considered the singular moduli of the 24th roots of thi
invariant, and have obtained a conjectural Gross-Zagier type formula, which tums ou
to be considerably more complicated than the Gross-Zagier formula for level one
Yui-Zagier’s conjectural formula for level two, however, uses the Gross-Zagier formul‘
for level one, so it may be possible to extend the Yui-Zagier formula to a larger $claS_{\tau}|$

of discriminants by using the conjectural formula presented here.

5. Possible approaches to a proof.

Ideally, to prove the conjectural formula, we would like to be able to follow th $($

proof of the original Gross-Zagier formula, changing details as necessary. While it $ma\backslash $.
be possible to use the overall structure of the original proof, there appear to be $som($

obstacles to simply mimicking it, which we outline below.
The fact that the expression for $F(m)$ is divided into five cases, involving five types

of primes $(l, f_{p}, f_{q}p, q)$ , rather than the original three and two $(p, q)$ , respectively, cause}

immediate difficulties. At best, in a proof of this conjecture, each type of prime $wou$] $($

need to be treated separately; additional theory would certainly be needed. It may als $($

be problematic that $F(m)$ is not well-defined in terms of order, with respect to $f_{p}$ or $f$

(for example, $F(f_{p}^{5})=F(f_{p}^{3})=f_{p}$).

It is not clear how to treat the case of non-trivial common divisors of $d_{1}$ and $d_{2}$

since several arguments in the original proof require that assumption; the methods $0$

Dorman [7] in extending the original proofto composite $d_{1}$ may shed some light on this.
To prove the formula for non-fundamental discriminants, it seems clear that on$($

would need to consider non-maximal orders. In the original proof, Gross-Zagier us $($

the Hilbert class field of $K=Q(\sqrt{d_{1}})$ . It may be possible to use the theory of ring $clas_{;}($

fields; recall that the ring class field of a quadratic order of discriminant $d$ is $mere]_{1}$.
the Hilbert class field of $Q(\sqrt{d})$ when $d$ is fundamental. We have not investigated $thi(|$

approach in any detail, but one would lose the convenient property, used in the origina
proof, that the Hilbert class field of $K$ is the maximal, unramified extension of $R$
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However, if one were to try to follow the original algebraic proof in proving the

conjecture, using the ring class field would appear to be the correct approach. A poten-

tial tool for such an approach has been suggested by R. Murty; in a paper by D. Zagier

[14], an analogue of the Legendre symbol for non-fundamental discriminants is

described.
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