
 1

Abstract—The paper presents a gradient-based algorithm for

optimal control of nonlinear multivariable systems with control
and state vectors constraints. The algorithm has a backward-in-
time recurrent structure similar to the backpropagation-through-
time (BPTT) algorithm, which is mostly used as a learning
algorithm for dynamic neural networks. Other main features of
the algorithm include the use of higher order Adams time-
discretization schemes, numerical calculation of Jacobians, and
advanced conjugate gradient methods for favorable convergence
properties. The algorithm performance is illustrated on an
example of off-line vehicle dynamics control optimization based
on a realistic high-order vehicle model. The optimized control
variables are active rear differential torque transfer and active
rear steering road wheel angle, while the optimization tasks are
trajectory tracking and roll minimization for a dou ble lane
change maneuver.

Index Terms—Optimal control, conjugate gradient methods,
automotive applications, road vehicle control.

I. INTRODUCTION

PTIMAL control has found its applications in many
different engineering fields, including aerospace [1],

process control [2], robotics [3] , and automotive control [4,5].
Any control system that includes complex dynamics with
constraints is a good candidate for applying optimal control.
The main aim is to find control variable trajectories that
minimize an optimization criterion in the presence of
inequality and equality constraints on the control and state
variables. By doing this in an off-line manner [1-5], the
optimal control results can be used to assess the performance

Manuscript received October 9, 2009. This work has been supported by
Ford Motor Company, and partly by Jaguar Cars Ltd. and the Ministry of
Science, Education and Sports of the Republic of Croatia.

Josip Kasać, Joško Deur, and Branko Novaković are with the Faculty of
Mechanical Engineering and Naval Architecture, University of Zagreb, I.
Lučića 5, HR-10002 Zagreb, Croatia (e-mail: josip.kasac@fsb.hr;
josko.deur@fsb.hr; branko.novakovic@fsb.hr).

Ilya Kolmanovsky was with the Ford Research and Advanced Engineering
at the time of writing this paper; he is now with the Department of Aerospace
Engineering, University of Michigan, 1320 Beal Avenue, Ann Arbor, MI
48109-2140 (e-mail: ilya@umich.edu).

Francis Assadian was with Jaguar Cars Ltd, UK at the time of writing this
paper. Currently, he is with the Cranfield University, Department of
Automotive Engineering, Bedfordshire MK43 0AL, UK, (e-mail:
f.assadian@cranfield.ac.uk).

of control systems with different hardware and actuator
configurations, set realistic targets for achievable system
performance, cascade targets to subsystems and components,
and guide control system design and calibration process. For
example, prior to deciding on the vehicle dynamics actuators
(e.g. active front/rear steering and active central/rear
differential) and developing related on-line controls, the
optimization results can provide valuable information on
quality of various actuator configurations and establish an
"idealized" benchmark to compare different control solutions
and calibration in terms of their closeness to the ideal
performance.

The numerical methods of solving optimal control
problems can be divided into two categories: direct and
indirect methods. Indirect methods based on Pontrjagin's
maximum principle lead to numerical solution of the two-point
boundary value problem using multiple shooting or quasi-
linearization [6], [7]. Direct methods transform the original
continuous-time optimal control problem into a finite-
dimensional nonlinear programming (NLP) problem, which
can be solved by various NLP numerical optimization
algorithms such as sequential quadratic programming (SQP)
[8-11]. The continuous-time state and/or control variables are
represented by a finite number of parameters by time-
discretization or by using suitable basis functions such as B-
splines or Lagrange polynomials.

The main disadvantage of indirect methods is their need for
a good initial guess of the initial conditions for the adjoint
variables in order to converge. Also, this approach requires
symbolic differentiation to obtain adjoint equations. On the
other hand, the direct methods are characterized by a large and
sparse structure of Jacobian and Hessian matrices, so that they
can be computationally expensive for large systems. Direct
methods are mainly applied in industrial optimization
problems requiring fast and numerically robust optimization,
while allowing for less accurate solutions.

In the NLP approach, the plant equation constraints are
added into the cost function in extension to the penalty
functions related to the state and control constraints. The
control and state variables are treated as independent
variables, so that the cost function gradient calculation is
relatively simple. However, the optimization problem
formulated in such a way may be characterized by a slow

A Conjugate Gradient-Based BPTT-like
Optimal Control Algorithm with Vehicle

Dynamics Control Application
Josip Kasać, Joško Deur, Senior Member, IEEE, Branko Novaković, Senior Member, IEEE,

Ilya V. Kolmanovsky, Fellow, IEEE and Francis Assadian

O

e101466
Text Box
IEEE Transactions on Control Systems Technology, Volume: PP Issue:99, Pages 1 - 9, 2010

 2

convergence due to the additional plant-equations equality
constraints. Also, the numerical stability may be affected by
the choice of various optimization parameters such as
discretization period and weighting factors of penalty
functions.

An alternative direct approach of solving the optimal control
problem is proposed by the authors in [12] and [13]. In
contrast to the NLP approach, the plant equations constraints
are not included in the cost function. The control and state
variables are treated as dependent variables (coupled via plant
equations), so that the final algorithm has a backward-in-time
structure similar to the backpropagation-through-time (BPTT)
algorithm [14], [15], which is mostly used as a learning
algorithm for recurrent neural networks. Such an exact
gradient algorithm is more complex than the NLP-based
algorithm, but it may provide better and numerically more
stable convergence properties. The algorithm has been applied
for solving optimal control problems in the fields of robotics
[12] and vehicle dynamics control [5].

In order to further enhance its optimization accuracy and
convergence properties, the original BPTT algorithm [12,13,5]
is extended in this paper by: (i) higher-order Adams numerical
integration schemes instead of the basic Euler discretization
method, (ii) a straightforward derivation of gradient
expressions based on introducing a terminal cost function, (iii)
numerical calculation of Jacobians, and (iv) implementation of
more advanced, conjugate gradient methods. Exact gradient
derivation based on the BPTT approach and higher-order
Adams methods represents a key feature of the proposed
approach and a novel contribution. It is precisely this
combination that, through our numerical case studies, has been
proven to be effective, numerically robust, and capable of
handling models with complexity realistic for industrial
applications. In regard to the vehicle dynamics control case
study, a full 10-DOF vehicle model comprising a full "magic"
formula tire model is used instead of a simplified vehicle/tire
model considered in [5].

II. OPTIMAL CONTROL PROBLEM FORMULATION

A. Continuous-Time Problem Formulation

A continuous-time nonlinear optimal control problem is
considered. The problem is to find a control vector input u(t),
0 ≤ t ≤ tf, which minimizes the Bolza-type cost function

 () ()0 0 0

0

() (), ()
ft

fJ t F t t dt= Φ + ∫x x u
))

, (1)

subject to the nonlinear continuous-time plant equations

 () () 0() (), () , 0 ,t t t= =x x u x x
))))& φφφφ (2)

and subject to the final conditions on the state vector

 ()() 0,ft =b x
)

 (3)

and subject to the control and state vector inequality

constraints

 ()(), () 0t t ≥g x u
)

, (4)

and equality constraints

 ()(), () 0t t =h x u
)

, (5)

where ()tx
)

 is an n0-dimensional state vector, u(t) is an m-

dimensional control vector, g(()tx
)

, u(t)) is a p-dimensional

vector function of inequality constraints, h(()tx
)

, u(t)) is a q-

dimensional vector function of equality constraints, b(()ftx
)

)

is a r-dimensional vector function of final boundary condition
constraints, and tf is the terminal time. We assume that0()F ⋅ ,

0()Φ ⋅ , ()⋅φφφφ , ()⋅b , ()⋅g , and ()⋅h are continuously

differentiable functions.
In general, additional constraints which ensure robustness

may be augmented to the optimal control problem formulation
to avoid regions with large model uncertainties (which the
optimization may otherwise incorrectly exploit) or to reduce
parametric sensitivity of optimized control input trajectories
(see e.g. [26, Chap. 10]).

B. Transformation of Continuous-Time Optimization
Problem

The optimization problem (1)-(5) can be reduced to the
problem of finding the control vector u(t) that minimizes the
cost function

 () ()
0

() (), ()
ft

fJ t F t t dt= Φ + ∫x x u
))

, (6)

subject to the plant equations

 () 0() (), () , (0) ,t t t= =x x u x x
))))& φφφφ (7)

where

() () ()

() ()()

2
0 ,

1

2
,

1

(), () (), () (), ()

(), () (), () ,

q

h k k
k

p

g k k k
k

F t t F t t K h t t

K g t t H g t t

=

−

=

= + +

+

∑

∑

x u x u x u

x u x u

)))

))

 (8)

 () () ()2
0 ,

1

() () ()
r

f f b k k f
k

t t K b t
=

Φ = Φ +∑x x x
)))

, (9)

and H−(z) is Heaviside step function defined as

 () 0, if 0,

1, if 0.

z
H z

z
− ≥

= <
 (10)

The second and third terms on the right-hand side of
expression (8) are the penalty functions for the inequality and
equality constraints (4) and (5), respectively. Similarly, the
second term on the right-hand side of expression (9) is the
penalty function for the final boundary condition (3). Note that

although the Heaviside step function ()H z− is not continuous,

the penalty terms of the form 2 ()z H z− in equation (8) are

 3

continuously differentiable functions. The penalty function
coefficients Kh,k, Kg,k and Kb,k should be sufficiently large to
provide accurate constraints satisfaction.

In order to simplify application of higher-order numerical
integration methods for the plant equations (7) and the integral
term in the cost function (6), the problem (6)-(9) is
reformulated, so that an additional state variable ()nx t is

introduced such that

 ()(), () , (0) 0n nx F t t x= =x u
)

& , (11)

where 0 1n n= + . Hence, the final continuous-time

optimization problem is to find the control vector u(t) that
minimizes the terminal cost function

 () () ()()f f n fJ t t x t= Φ +x
)

, (12)

subject to the differential equations

 () 0() (), () , (0) ,t t t= =x f x u x x& (13)

where ()tx is the new n-dimensional state vector

01 2()

T

n nt x x x x = x
)))

K ,

and

02

T

n F1 = φ φ φ f K .

C. Time Discretization Based on Adams Method

The Adams method [17] belongs to the class of multistep
numerical methods for an approximate solution of the system
of ordinary differential equations

 () 0 0() (), () , ()t t t t= =x f x u x x& . (14)

The k-th order Adams method has the following form:

 ()

1

(1) () (1)
k

k
j

j

i i a i jτ
=

+ = + − +∑x x f , (15)

for 1, , 1,...i k k k= − + , and the initial conditions 0(0) =x x ,

1(1) =x x , 2(2) =x x , …, 1(1) kk −− =x x ; where τ is the time

step, ()k
ja are the coefficients of the Adams method [17], and

 ()() (), ()i i i≡f f x u . (16)

The Adams method of the k-th order, as a multistep method,
requires knowledge of k initial conditions. These initial
conditions are determined from the basic initial condition

0(0) =x x by using the 4th-order (one-step) Runge-Kutta

method.
The explicit Adams method (15) is a k-th order vector

difference equation, which can be conveniently transformed
into the following discrete-time state-space form

()
1

()
(1)1

()
(1)

(1) () () (),

(1) () (),

(1) (),

k
j j j n j

k
rn j j r n jr

k
k n j jk

x i x i a f i x i

x i a f i x i

x i a f i

τ τ +

+ + ++

− +

+ = + +

+ = +

+ =

 (17)

for r = 1,2,...,k−2, 1,2,...,j n= , 1, , 1,...i k k k= − + , and the

initial conditions

(1)

()

1

(1) ,

(1) (1) ,

j j k

k
k

qn j jl
l q

x k x

x k a f k q l

−

+
= +

− =

− = − + −∑

for q = 1,2,...,k−1. Finally, using the vector notation (cf. (13)),
the state-space form of the k-th order Adams method reads

 () 0(1) (), () , (0)i i i+ = =x f x u x x%% % % % , (18)

where ()tx% is the extended n k⋅ -dimensional state vector

 1 2 1()
T

n k n kt x x x x⋅ − ⋅= x% K ,

and

 () ()
1 1 11() () () ()

Tk k
n nkx i a f i x i a f iτ τ + = + + f% K .

III. BPTT OPTIMAL CONTROL ALGORITHM

A. Discrete–Time Optimization Problem

The discrete-time optimization problem is to find the
control sequence ()iu , 0,1,..., 1i N= − , which minimizes the

discrete-time form of the cost function (12):

 () ()() nJ N x N= Φ +x
)

, (19)

subject to the k-th order Adams approximation of the
continuous-time state equations (13):

 () 0(1) (), () , (0)i i i+ = =x f x u x x%% % % % , (20)

for 1, , 1,..., 1i k k k N= − + − .

The cost function J depends explicitly only on the state
vector at the terminal time, ()Nx , but an implicit dependence

on x(i) follows from the discrete-time state equations (20).
This fact will be used in derivation of the gradient decent
algorithm below for exact calculation of the gradient of cost
function J with respect to control vector ()iu , 0,1,..., 1i N= − .

B. Gradient Calculation

The gradient descent algorithm with respect to control
vector is as follows:

 () () () () () ()
1 ,l l

l

J
i i

i
η+ ∂= −

∂
u u

u
 (21)

where i = 0, 1, …, N-1, l= 1, 2, …, M, η is the learning-rate,
N is the number of time instants, and M is the number of
gradient algorithm iterations.

The gradient of the cost function (19) in the l-th iteration of
the gradient algorithm and i-th sampling interval is given by

() ()

()
()1

nk
r

rj r j

x NJ J

u i x N u i=

∂∂ ∂=
∂ ∂ ∂∑

%

%
, (22)

 4

where 1,2,...,j m= . The partial derivatives)(/)(~ iuNx jr ∂∂

can be calculated backward in time, starting from 1i N= − :

()

()
()
()

1

1 1
r r

j j

x N f N

u N u N

∂ ∂ −
=

∂ − ∂ −

%%
,

where () ()(), ()r rf i f i i≡ x u% % % , and 1,2,...,r nk= . Further, for

2i N= − :

()
()

()
()

()
()

()
()

()
()

1

1

11

2 1 2

21

1 2

nk
qr r

qj q j

nk
qr

q q j

x Nx N f N

u N x N u N

f Nf N

x N u N

=

=

∂ −∂ ∂ −
= =

∂ − ∂ − ∂ −

∂ −∂ −
=

∂ − ∂ −

∑

∑

% %%

%

%%

%

and for 3i N= − :

()
()

()
()

()
()

()
()

()
()

()
()

()
()

()
()

()
()

()
()

()
()

1

1

1 1

1 1

11

3 1 3

21

1 3

2 21

1 2 3

2 31
.

1 2 3

nk
qr r

qj q j

nk
qr

q q j

nk nk
q pr

q pq p j

nk nk
q pr

q pq p j

x Nx N f N

u N x N u N

f Nf N

x N u N

f N x Nf N

x N x N u N

f N f Nf N

x N x N u N

=

=

= =

= =

∂ −∂ ∂ −
= =

∂ − ∂ − ∂ −

∂ −∂ −
= =

∂ − ∂ −

∂ − ∂ −∂ −
= =

∂ − ∂ − ∂ −

∂ − ∂ −∂ −
=

∂ − ∂ − ∂ −

∑

∑

∑ ∑

∑ ∑

% %%

%

%%

%

%% %

% %

% %%

% %

By introducing matrices ()iU% , ()iX% ,)(iY with the elements

 () ()
()
i

i
i

∂
=

∂
f

U
u

%
% , () ()

()
i

i
i

∂
=

∂
f

X
x

%
%

%
, () ()

()
N

i
i

∂
=

∂
x

Y
u

%
,

the above derivatives)(/)(~ iuNx jr ∂∂ , i = N−1, N−2, N-3, can

be expressed in a more compact matrix form as

)1(
~

)1(−=− NN UY , (23)

 (2) (1) (2)N N N− = − −Y X U% % , (24)

 (3) (1) (2) (3)N N N N− = − − −Y X X U% % % . (25)

This procedure can be further continued as follows
(4) (1) (2) (3) (4)N N N N N− = − − − −Y X X X U% % % % , (26)

 M

() (1) (2) (1) ()i N N i i= − − +Y X X X U% % % %K . (27)

By introducing matrices)(iuJ and)(NxJ such that

()()u

J
i

i

∂=
∂

J
u

,
()()x

J
N

N

∂=
∂

J
x%

,

the final gradient)(iuJ in (21) can be computed by the

following backward-in-time recursive matrix relations:
 () () ()T

u xi i N=J Y J , (28)

 () () ()i i i=Y D U% , (29)

 () (1) (1)i i i= + +D D X% , (30)

for 2, 3, ...,0i N N= − − , with the initial conditions

 (1) (1) ()T
u xN N N− = −J U J% , (31)

 ID =−)1(N . (32)

C. Calculation of Extended Jacobians

The extended Jacobians ()iX% and ()iU% can be expressed as

functions of the basic Jacobians

()

()
()

i
i

i

∂=
∂
f

X
x

,
()

()
()

i
i

i

∂=
∂
f

U
u

,

as given by the following equations based on (18):

()
1

()
2
()
3

()
1

()

()

()

()
()

()

()

k

k

k

k
k

k
k

a i

a i

a i
i

a i

a i

τ τ

−

 +

=

I X I 0 0 0

X 0 I 0 0

X 0 0 0 0
X

X 0 0 0 I

X 0 0 0 0

L

L

L
%

M M M O M M

L

L

, (33)

()
1
()
2
()
3

()
1

()

()

()

()
()

()

()

k

k

k

k
k
k

k

a i

a i

a i
i

a i

a i

τ

−

=

U

U

U
U

U

U

%

M
, (34)

Similarly, based on (19), the extended gradient

()() / nk
x N J N= ∂ ∂ ∈J x R% is related to the basic gradient

() () 0() / nN N∂Φ ∂ ∈x x R
))

 as follows

 () ()() 1 0 0

TT

x
J

N
N N

 ∂ ∂Φ = = ∂ ∂

J
x x

L)
%

. (35)

The basic Jacobians X(i) and U(i) can be calculated
analytically [5,13] or numerically based on an appropriate
finite-difference formula for the first derivatives [18].

IV. ALGORITHM CONVERGENCE SPEED-UP

The main weaknesses of the standard gradient algorithm
(21), with a constant learning rate η , include a rather slow

convergence and difficulties in tuning the learning rate
appropriately. A small learning rate will result in a slow
algorithm convergence, while a large learning rate can lead to
numerical instabilities.

In this work we apply the conjugate gradient (CG)
algorithm [19]-[21] which has the following form

 (1) () ()l l l
lη+ = +w w d , (36)

 (1) (1) ()l l l
lβ+ += − +d g d , (37)

where lη and lβ are positive scalars, and

1 1(0) (1) (2) (1)
T mN

m mu u u N u N≡ − − ∈ w RK ,

1 1(0) (1) (2) (1)

T

m m

J J J J

u u u N u N

 ∂ ∂ ∂ ∂≡ ∂ ∂ ∂ − ∂ −
g K .

 5

The standard method for computing lη is steepest descent

or line search algorithm which requires one-dimensional
minimization of the cost function. This is a computationally
expensive method which may require many evaluations of the
cost function during one iteration of the gradient algorithm.
Also, if the cost function is not appropriately scaled, the
steepest-descent algorithm may exhibit poor convergence
properties. In order to avoid these issues, we use the
SuperSAB approach [21], [22] which requires only the
information on gradient directions in two consecutive
iterations of the gradient algorithm. The algorithm is modified
in terms of using a scalar learning rate ηl as oppose to a matrix
formulation ηl(i,j), i = 0,...,N-1, j = 1,...,m, in order to avoid
discontinuities in the optimized control vector u. The modified
SuperSAB algorithm is given by

() () ()()
() () ()()

() ()

() (1) () (1)
1

() (1) () (1)
1 1

() (1)
2 1

if 0 &

if 0 &

if

l T l l l
l

l T l l l
l l

l l
l

d J J

d J J

d J J

η

η η

η

+ − −
−

− − −
−

− −
−

 ≥ <

= < <

 >

g g w w

g g w w

w w

 (38)

where 2 10 1d d d− − +< < < < , and 0η is the initial learning rate.

If the angle between two consecutive gradients is smaller than

90°, () (1) 0l T l − ≥g g , the learning rate lη is increased starting

from some initial value. On the other hand, negative sign of the

scalar product of the gradients, () (1) 0l T l − <g g , indicates that

the iterative procedure has overshot the minimum of the cost
function, and the learning rate lη is decreased by multiplying

it with the decreasing factor 1d− smaller than unity. Also, the

algorithm (38) decreases the learning rate by a decreasing

factor 2 1d d− −< if the condition () (1)() ()l lJ J −>w w is

satisfied, in order to avoid occasional cost function spikes that
may affect the optimization accuracy [25].

The scalar value lβ in (37) can be determined by using

different methods [21]. A comparison of these methods on the
vehicle dynamics control example [25] have pointed out that
the following Dai-Yuan approach gives the fastest
convergence:

 ()
(1) (1)

max() (1) ()
min ,

l T l

l l T l l
β β

+ +

+

 =

−

g g

d g g
. (39)

The parameter lβ is limited to maxβ , because the algorithm

(38) for learning-rate tuning can induce () (1)l l −≥g g in

situations when () (1) 0l T l − <g g , thus leading to a possible

algorithm instability if lβ is not saturated. The limit value of

lβ which guaranties numerical stability is max 1β = . But,

depending on particular optimization problem this limit can be
increased (e.g. max 1.2β =), in order to provide a faster

convergence of the algorithm. If the parameter lβ has a

constant value, 0 1β< < , then the CG algorithm becomes

equivalent to a standard gradient algorithm with momentum
[23,24].

V. VEHICLE DYNAMICS CONTROL APPLICATION

The proposed optimal control algorithm has been verified in
[18] on a chemical reaction model example with a known
analytical solution. In this section, the algorithm is used for
more realistic and complex off-line optimization of vehicle
dynamics control variables.

A. Vehicle Dynamics Model

A 10 degree of freedom (DOF) vehicle dynamics model
[16], provided by the Jaguar Cars, has been used in the bellow
optimization study. The main 10 state variables are
longitudinal and lateral velocities U and V; roll, pitch, yaw,
and heave rates p, q, r, and W; and four wheel angular speeds.
The auxiliary state variables are roll, pitch and yaw angles, as
well as the heave, which are used to determine the vehicle
position (X, Y) in the inertial coordinate frame and determine
the suspension deflections. The tire forces are obtained from
the 1994 “Magic formula” tire model (see [16] and references
therein).

The rear steering and rear differential actuator dynamics are
approximately described by first order lag terms with the time
constant of 25 ms. Two types of active differentials are
considered [16]: Active Limited Slip Differential (ALSD) and
Torque Vectoring Differential (TVD). The ALSD always
transfer the torque to the slower wheel. The TVD can also
transfer the torque to the faster wheel, provided that the
faster/slower wheel speed ratio is not larger than a design
factor kAWSD that has a typical value of 1.25. The torque
transfer constraints have been implemented in the vehicle
model, as explained in [5]. The overall nonlinear dynamics
model has 18 state variables and two control variables.

B. Optimization Problem Formulation

Several optimization problems and control/state vector
constraints are considered.

1) Cost Functions Definition

Trajectory tracking. The optimal control objective for the
trajectory tracking task is to find the active rear differential
and active rear steering control variables rT∆ and rδ ,

respectively, which ensure that the vehicle follows the
reference trajectory in the X-Y inertial coordinate system with
a minimum tracking error. In other words, the problem is to
find the inputs ∆Tr and δr that minimize the cost function:

 2 2
11 12

0

() ()
ft

R RJ K X X K Y Y dt = − + − ∫ (40)

where XR and YR are coordinates of the reference trajectory,
and K11 and K12 are the cost function weighting factors. The
double lane change reference trajectory of Gaussian type is
considered
 0()RX t U t= (41)

22

0 /)(
max)(σXX

RR
ReYXY −−= . (42)

 6

where U0 is the initial longitudinal velocity, Ymax, X0, and σ are
maximum, center, and bandwidth of the Gaussian curve.

Roll minimization. The optimal control objective for the roll
minimization task is to find the control variables that ensure
minimum chassis roll during the double lane change maneuver:

 ∫=
ft

dtJ
0

2φ , (43)

where φ is the roll angle.

2) Control and State Vector Constraints Formulation

The following inequality and equality constraints of the state
variables are considered and realized through the cost function
penalty terms.

Trajectory constraints (applies to roll minimization only). The
road trajectory is constrained as given by (cf. Fig. 6):
 (()) () (())offset R R offset R RY Y X t Y t Y Y X t− + ≤ ≤ + , (44)

where the reference trajectory function YR(.) is given by (42).

Boundary conditions. The following boundary constraints on
the exit vehicle trajectory are considered (cf. Fig. 1):

() (0)

()
0

f

f

Y t Y

dY t

dt

=

=
 (45)

C. Optimization Results

The C code optimization program for the vehicle control
system has been executed on a personal computer with Intel
Core Duo CPU (2.00GHz). The terminal time is tf = 6s and the
sampling interval is τ = 0.003s, so that the number of
optimization time intervals is N=2000. The number of
iterations of the Dai-Yuan conjugate gradient algorithm is
M=400, while the standard gradient algorithm (with η =
const.) required M = 4000 iterations for the same level of
accuracy [25]. The Jacobians are calculated numerically. The
simple first-order Adams method is used, because the higher-
order Adams methods have not given notable improvements
for the particular example (see [18] for another benchmark
example that demonstrates performance gains reached by using
the higher-order Adams methods). The algorithm execution
time is about 13 min, and it can be reduced by four times if the
simplified 7 DOF vehicle dynamics model [5] is used.

1) Double Lane Change Example

Figure 1 shows the results of optimization of the front road
wheel angle input δf for the trajectory tracking problem (40)
and a dry asphalt road (µ = 1). That is, the optimization task is
to find an "ideal" driver steering input referred to the road
wheel angle. The results in Fig. 1 indicate that the "ideal"
driver can provide accurate tracking of the sharp reference
trajectory, where the absolute value of lateral acceleration
saturates to its maximum value aym≈1g = 9.81 m/s2.

Figures 2-5 show the optimization results for reduced tire-road
friction coefficient µ = 0.6 (e.g. wet asphalt surface) and
different vehicle dynamics actuators: active rear steering

Fig. 2. Optimization results for ARS+TVD control (µ = 0.6).

Fig. 1. Front wheel steering optimization results for asphalt road (µ = 1).

 7

(ARS), active torque vectoring differential (TVD, kAWSD=1.25),
combined ARS and TVD, and active limited slip differential
(ALSD). The top plot of each figure includes three
trajectories: (i) reference trajectory that corresponds to the
optimized (reached) trajectory for µ = 1 (solid line in Fig. 1),
(ii) trajectory when no control action is used (δr = 0, ∆Tr = 0),
and (iii) trajectory reached by using the optimal control action.
The front steering input δf is taken from Fig. 1 (no driver
model is used).

The ARS intervention provides quite accurate trajectory
tracking despite the worsen road condition (Fig. 3), thus
preserving the driver's feeling of (safe) driving on high-µ road.
The tracking accuracy is somewhat worse for TVD control
(Fig. 4), and the peak of side slip angle β = atan(V/U) is
increased by about 20%. The combined ARS and TVD control
(Fig. 2) gives comparable tracking accuracy as in the case of
individual ARS control. However, the control effort is reduced
when compared to the individual ARD or TVD control. The
ALSD cannot compensate for the understeer behavior in the
first part of maneuver, and the corresponding tracking error is
similar as in the case of passive vehicle (Fig. 5). Namely, since
the ALSD can transfer the torque to slower (inner) wheel only,
it can only generate understeer (i.e. compensate for oversteer)
[16]. Owing to the oversteer compensation, the ALSD
effectively stabilizes the vehicle in the second part of
maneuver (Fig. 5).

Qualitatively similar results to those in Figs. 2-5 have been

obtained for lower µ values, as well (cf. [5]). Also, many other
optimization tests have been carried out, e.g. those related to
limited side slip angle or limited control input.

Fig. 5. Optimization results for ALSD control (µ = 0.6).

Fig. 4. Optimization results for TVD control (µ = 0.6).

Fig. 3. Optimization results for ARS control (µ = 0.6).

 8

2) Roll Minimization Example

Figure 6 shows the "ideal" driver optimization results for the
same operating conditions as in Fig. 1, but the trajectory
tracking cost function (40) is replaced with the roll
minimization criterion (43), and the trajectory constraint (44)
is taken into account. Figure 7 shows the TVD-based
optimization results for the same roll minimization problem,
where the steering input δf is taken from Fig. 1. The
comparative results from Figs. 6 and 7, including the passive
vehicle response, are shown in Fig. 8.

In order to minimize the roll angle φ , the TVD generates

understeer around the instant of maximum lateral acceleration
(t ≈ 2 s; Fig. 7) and forces the vehicle to touch the inner
trajectory bound. This results in reduction of the yaw rate r,
the lateral acceleration ay, and finally the roll angle φ when

compared to the passive vehicle (Fig. 8). The roll angle
reduction is paid by lower trajectory tracking accuracy.

The "ideal" driver "cuts" the road even more, so that the
vehicle touches the trajectory bounds in three points (Fig. 6).
This results in a substantial reduction of lateral acceleration
and roll angle (Fig. 8). However, the trajectory tracking
performance is further deteriorated (Fig. 6).

VI. CONCLUSION

A BPTT-like gradient-based optimal control algorithm has
been proposed in the paper. The optimization accuracy can
generally be improved by using higher-order Adams numerical
integration schemes instead of the basic Euler method.
Incorporation of numerical Jacobians enables the algorithm
application for complex problems, where analytical Jacobians
are difficult to derive. Finally, implementation of advanced
conjugate gradient methods, such as Dai-Yuan method, results
in substantial improvement of convergence properties and
reduction of execution time. The algorithm can be extended
for solving minimum-time optimal control problems [12].

The proposed optimal control algorithm has been tested on
a relatively complex vehicle dynamics control problem with 18
state variables and two control variables. The optimization
results have illustrated favorable features of the algorithm in
terms of accuracy (e.g. a few thousands of time grid points can
be used), consistent numerical stability, and relatively fast
execution. Also, it has been demonstrated that the algorithm
can be effectively used to gain insights into the ultimate
vehicle dynamics control performance for various actuator
configurations.

The future work will be directed towards extending the
algorithm for combined parameter and control variable
optimization problems, as well as feedback controller
parameter optimization for either optimal control formulation
or robust control formulation. Also, comparison of the
algorithm with other existing methods is a subject of ongoing
work and future publications.

ACKNOWLEDGMENT

The authors would like to thank Dr. Davor Hrovat from
Ford Research and Advanced Engineering and Dr. Matt

Fig. 8. Additional comparative plots for roll optimizations from Figs. 6
and 7.

Fig. 7. TVD optimization results for roll minimization case (µ = 1).

Fig. 6. Front wheel steering optimization results for roll minimization
case (µ = 1).

 9

Hancock from Jaguar Research for their helpful suggestions
and/or technical support.

REFERENCES
[1] J. T. Betts and W. P. Huffman, “Application of sparse nonlinear

programming to trajectory optimization,” J. Guidance Control
Dynamics, vol. 15, no. 1, pp. 198-206, 1992.

[2] I. Y. M. Smets, K. J. E. Versyck and J. F. M. Van Impe, “Optimal
control theory - A generic tool for identification and control of (Bio-)
Chemical Reactors,” Annual Reviews in Control, vol. 26, pp. 57-73,
2002.

[3] O. von Stryk and M. Schlemmer, “Optimal control of the industrial
robot Manutec,” in: Bulirsch, R., Kraft D. (eds.), Computational
Optimal Control, International Series of Numerical Mathematics 115,
Basel, Birkhauser, pp. 367-382, 1994.

[4] I. V. Kolmanovsky, and A. G. Stefanopoulou, “Optimal control
techniques for assessing feasibility and defining subsystem level
requirements: An automotive case study,” IEEE Trans. on Control
System Technology, vol. 9, no. 3, pp. 524-534, May 2001.

[5] J. Kasać, J. Deur, B. Novaković, M. Hancock, and F. Assadian,
“Optimization of global chassis control variables,” 17th IFAC World
Congress, July 6-11, 2008, Seoul, Korea.

[6] A. E., Bryson, Dynamic Optimization, Addison-Wesley, 1999.
[7] E. Polak, Computational Methods in Optimization, Academic Press,

New York, 1971.
[8] J. T. Betts, Practical Methods for Optimal Control using Nonlinear

Programming, Society of Industrial and Applied Mathematics,
Philadelphia, PA, 2001.

[9] O. von Stryk, and R. Bulirsch, “Direct and indirect methods for
trajectory optimization,” Annals of Operations Research, vol. 37, pp.
357-373, 1992.

[10] O. von Stryk, “Numerical solution of optimal control problems by direct
collocation,” in: Bulirsch R., Miele A., Stoer J., Well K.H. (eds.),
Optimal Control-Calculus of Variations, Optimal Control Theory and
Numerical Methods, International Series of Numerical Mathematics,
vol. 111, Basel, Birkhauser, pp. 129–143, 1993.

[11] A. L. Schwartz, “Theory and implementation of numerical methods
based on Runge-Kutta integration for solving optimal control
problems,” PhD Thesis, University Of California At Berkeley, 1996.

[12] J. Kasać, “Optimal control of nonlinear systems using neural networks,”
M. Sc. Thesis (in Croatian), University of Zagreb, 1998.

[13] J. Kasać and B. Novaković, “Neural network application to optimal
control of nonlinear systems,” Proceedings of 7-th International
Conference on Computer Aided Optimum Design of Structures, May 28-
30, 2001, Bologna, Italy, pp. 359-368.

[14] A. E. Bryson and Y. Ho, Applied Optimal Control, Hemisphere
Publishing Corp, 1975.

[15] P. J. Werbos, “Backpropagation through time: What it does how to do
it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[16] M. Hancock, “Vehicle handling control using active differentials,”
Ph.D. Thesis, University of Loughborough, UK, 2006.

[17] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential
Equations I - Nonstiff Problems, 2nd ed., Springer, Berlin, 1993.

[18] J. Kasać, J. Deur, B. Novaković, and I. Kolmanovsky, “A BPTT-like
optimal control algorithm with vehicle dynamics control application,”
ASME International Mechanical Engineering Congress & Exposition,
October 31-November 6, 2008, Boston, Massachusetts, USA.

[19] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New
York, 2006.

[20] J. A. Snyman, Practical Mathematical Optimization, Springer, New
York, 2005.

[21] C. A. Floudas and P. M. Pardalos, (edit.), Encyclopedia of Optimization,
Springer, New York, 2008.

[22] T. Tollenaere, “Supersab: Fast adaptive backpropagation with good
scaling properties,” Neural Networks, no. 3, vol. 5, 1990.

[23] M. Riedmiller, “Advanced supervised learning in multi-layer
perceptrons - From backpropagation to adaptive learning algorithms,”
Int. J. Comput. Standards Interfaces, vol. 16, pp. 265, 1994.

[24] C. G. H. Jondarr, “Back propagation family album,” Technical Report
C/TR96-05, Macquarie University, August 1996.

[25] J. Kasać, J. Deur, B. Novaković, and I. Kolmanovsky, “A Conjugate
Gradient-based BPTT-like Optimal Control Algorithm,” IEEE
International Conference on Control Applications, July 8-10, 2009,
Saint Petersburg, Russia.

[26] B. Wie, Space Vehicle Dynamics and Control, AIAA Education Series,
1998.

