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Abstract—The paper presents a gradient-based algorithm for 

optimal control of nonlinear multivariable systems with control 
and state vectors constraints. The algorithm has a backward-in-
time recurrent structure similar to the backpropagation-through-
time (BPTT) algorithm, which is mostly used as a learning 
algorithm for dynamic neural networks. Other main features of 
the algorithm include the use of higher order Adams time-
discretization schemes, numerical calculation of Jacobians, and 
advanced conjugate gradient methods for favorable convergence 
properties. The algorithm performance is illustrated on an 
example of off-line vehicle dynamics control optimization based 
on a realistic high-order vehicle model. The optimized control 
variables are active rear differential torque transfer and active 
rear steering road wheel angle, while the optimization tasks are 
trajectory tracking and roll minimization for a dou ble lane 
change maneuver. 
 

Index Terms—Optimal control, conjugate gradient methods, 
automotive applications, road vehicle control.  
 

I. INTRODUCTION 

PTIMAL control has found its applications in many 
different engineering fields, including aerospace [1], 

process control [2], robotics [3] , and automotive control [4,5]. 
Any control system that includes complex dynamics with 
constraints is a good candidate for applying optimal control. 
The main aim is to find control variable trajectories that 
minimize an optimization criterion in the presence of 
inequality and equality constraints on the control and state 
variables. By doing this in an off-line manner [1-5], the 
optimal control results can be used to assess the performance 
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of control systems with different hardware and actuator 
configurations, set realistic targets for achievable system 
performance, cascade targets to subsystems and components, 
and guide control system design and calibration process. For 
example, prior to deciding on the vehicle dynamics actuators 
(e.g. active front/rear steering and active central/rear 
differential) and developing related on-line controls, the 
optimization results can provide valuable information on 
quality of various actuator configurations and establish an 
"idealized" benchmark to compare different control solutions 
and calibration in terms of their closeness to the ideal 
performance. 

The numerical methods of solving optimal control 
problems can be divided into two categories: direct and 
indirect methods. Indirect methods based on Pontrjagin's 
maximum principle lead to numerical solution of the two-point 
boundary value problem using multiple shooting or quasi-
linearization [6], [7]. Direct methods transform the original 
continuous-time optimal control problem into a finite-
dimensional nonlinear programming (NLP) problem, which 
can be solved by various NLP numerical optimization 
algorithms such as sequential quadratic programming (SQP) 
[8-11]. The continuous-time state and/or control variables are 
represented by a finite number of parameters by time-
discretization or by using suitable basis functions such as B-
splines or Lagrange polynomials. 

The main disadvantage of indirect methods is their need for 
a good initial guess of the initial conditions for the adjoint 
variables in order to converge. Also, this approach requires 
symbolic differentiation to obtain adjoint equations. On the 
other hand, the direct methods are characterized by a large and 
sparse structure of Jacobian and Hessian matrices, so that they 
can be computationally expensive for large systems. Direct 
methods are mainly applied in industrial optimization 
problems requiring fast and numerically robust optimization, 
while allowing for less accurate solutions. 

In the NLP approach, the plant equation constraints are 
added into the cost function in extension to the penalty 
functions related to the state and control constraints. The 
control and state variables are treated as independent 
variables, so that the cost function gradient calculation is 
relatively simple. However, the optimization problem 
formulated in such a way may be characterized by a slow 
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convergence due to the additional plant-equations equality 
constraints. Also, the numerical stability may be affected by 
the choice of various optimization parameters such as 
discretization period and weighting factors of penalty 
functions. 

An alternative direct approach of solving the optimal control 
problem is proposed by the authors in [12] and [13]. In 
contrast to the NLP approach, the plant equations constraints 
are not included in the cost function. The control and state 
variables are treated as dependent variables (coupled via plant 
equations), so that the final algorithm has a backward-in-time 
structure similar to the backpropagation-through-time (BPTT) 
algorithm [14], [15], which is mostly used as a learning 
algorithm for recurrent neural networks. Such an exact 
gradient algorithm is more complex than the NLP-based 
algorithm, but it may provide better and numerically more 
stable convergence properties. The algorithm has been applied 
for solving optimal control problems in the fields of robotics 
[12] and vehicle dynamics control [5]. 

In order to further enhance its optimization accuracy and 
convergence properties, the original BPTT algorithm [12,13,5] 
is extended in this paper by: (i) higher-order Adams numerical 
integration schemes instead of the basic Euler discretization 
method, (ii) a straightforward derivation of gradient 
expressions based on introducing a terminal cost function, (iii) 
numerical calculation of Jacobians, and (iv) implementation of 
more advanced, conjugate gradient methods. Exact gradient 
derivation based on the BPTT approach and higher-order 
Adams methods represents a key feature of the proposed 
approach and a novel contribution. It is precisely this 
combination that, through our numerical case studies, has been 
proven to be effective, numerically robust, and capable of 
handling models with complexity realistic for industrial 
applications. In regard to the vehicle dynamics control case 
study, a full 10-DOF vehicle model comprising a full "magic" 
formula tire model is used instead of a simplified vehicle/tire 
model considered in [5]. 

II. OPTIMAL CONTROL PROBLEM FORMULATION 

A. Continuous-Time Problem Formulation 

A continuous-time nonlinear optimal control problem is 
considered. The problem is to find a control vector input u(t), 
0 ≤ t ≤ tf, which minimizes the Bolza-type cost function 

 ( ) ( )0 0 0

0

( ) ( ), ( )
ft

fJ t F t t dt= Φ + ∫x x u
) )

,  (1) 

subject to the nonlinear continuous-time plant equations 

 ( ) ( ) 0( ) ( ), ( ) , 0 ,t t t= =x x u x x
) ) ) )& φφφφ   (2) 

and subject to the final conditions on the state vector 

 ( )( ) 0,ft =b x
)

  (3) 

and subject to the control and state vector inequality 

constraints 

 ( )( ), ( ) 0t t ≥g x u
)

,  (4) 

and equality constraints 

 ( )( ), ( ) 0t t =h x u
)

,  (5) 

where ( )tx
)

 is an n0-dimensional state vector, u(t) is an m-

dimensional control vector, g( ( )tx
)

, u(t)) is a p-dimensional 

vector function of inequality constraints, h( ( )tx
)

, u(t)) is a q-

dimensional vector function of equality constraints, b( ( )ftx
)

) 

is a r-dimensional vector function of final boundary condition 
constraints, and tf is the terminal time. We assume that0( )F ⋅ , 

0( )Φ ⋅ , ( )⋅φφφφ , ( )⋅b , ( )⋅g , and ( )⋅h  are continuously 

differentiable functions. 
In general, additional constraints which ensure robustness 

may be augmented to the optimal control problem formulation 
to avoid regions with large model uncertainties (which the 
optimization may otherwise incorrectly exploit) or to reduce 
parametric sensitivity of optimized control input trajectories 
(see e.g. [26, Chap. 10]). 

B. Transformation of Continuous-Time Optimization 
Problem 

The optimization problem (1)-(5) can be reduced to the 
problem of finding the control vector u(t) that minimizes the 
cost function 

 ( ) ( )
0

( ) ( ), ( )
ft

fJ t F t t dt= Φ + ∫x x u
) )

,  (6) 

subject to the plant equations 

 ( ) 0( ) ( ), ( ) , (0) ,t t t= =x x u x x
) ) ) )& φφφφ   (7) 

where 

( ) ( ) ( )

( ) ( )( )

2
0 ,

1

2
,

1

( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) ( ), ( ) ,

q

h k k
k

p

g k k k
k

F t t F t t K h t t

K g t t H g t t

=

−

=

= + +

+

∑

∑

x u x u x u

x u x u

) ) )

) )

  (8) 

 ( ) ( ) ( )2
0 ,

1

( ) ( ) ( )
r

f f b k k f
k

t t K b t
=

Φ = Φ +∑x x x
) ) )

,  (9) 

and H−(z) is Heaviside step function defined as  

 ( ) 0, if 0,

1, if 0.

z
H z

z
− ≥

=  <
 (10) 

The second and third terms on the right-hand side of 
expression (8) are the penalty functions for the inequality and 
equality constraints (4) and (5), respectively. Similarly, the 
second term on the right-hand side of expression (9) is the 
penalty function for the final boundary condition (3). Note that 

although the Heaviside step function ( )H z−  is not continuous, 

the penalty terms of the form 2 ( )z H z−  in equation (8) are 
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continuously differentiable functions. The penalty function 
coefficients Kh,k, Kg,k and Kb,k should be sufficiently large to 
provide accurate constraints satisfaction. 

In order to simplify application of higher-order numerical 
integration methods for the plant equations (7) and the integral 
term in the cost function (6), the problem (6)-(9) is 
reformulated, so that an additional state variable ( )nx t  is 

introduced such that 

 ( )( ), ( ) , (0) 0n nx F t t x= =x u
)

& , (11) 

where 0 1n n= + . Hence, the final continuous-time 

optimization problem is to find the control vector u(t) that 
minimizes the terminal cost function 

 ( ) ( ) ( )( )f f n fJ t t x t= Φ +x
)

, (12) 

subject to the differential equations 

 ( ) 0( ) ( ), ( ) , (0) ,t t t= =x f x u x x&  (13) 

where ( )tx  is the new n-dimensional state vector 

 
01 2( )

T

n nt x x x x =  x
) ) )

K ,   

and 

 
02

T

n F1 = φ φ φ f K . 
 

C. Time Discretization Based on Adams Method 

The Adams method [17] belongs to the class of multistep 
numerical methods for an approximate solution of the system 
of ordinary differential equations 

 ( ) 0 0( ) ( ), ( ) , ( )t t t t= =x f x u x x& . (14) 

The k-th order Adams method has the following form: 

 ( )

1

( 1) ( ) ( 1)
k

k
j

j

i i a i jτ
=

+ = + − +∑x x f , (15) 

for 1, , 1,...i k k k= − + , and the initial conditions 0(0) =x x , 

1(1) =x x , 2(2) =x x , …, 1( 1) kk −− =x x ; where τ is the time 

step, ( )k
ja  are the coefficients of the Adams method [17], and 

 ( )( ) ( ), ( )i i i≡f f x u . (16) 

The Adams method of the k-th order, as a multistep method, 
requires knowledge of k initial conditions. These initial 
conditions are determined from the basic initial condition 

0(0) =x x  by using the 4th-order (one-step) Runge-Kutta 

method. 
The explicit Adams method (15) is a k-th order vector 

difference equation, which can be conveniently transformed 
into the following discrete-time state-space form 

 

( )
1

( )
( 1)1

( )
( 1)

( 1) ( ) ( ) ( ),

( 1) ( ) ( ),

( 1) ( ),

k
j j j n j

k
rn j j r n jr

k
k n j jk

x i x i a f i x i

x i a f i x i

x i a f i

τ τ +

+ + ++

− +

+ = + +

+ = +

+ =

 (17) 

for r  = 1,2,...,k−2, 1,2,...,j n= , 1, , 1,...i k k k= − + , and the 

initial conditions 

( 1)

( )

1

( 1) ,

( 1) ( 1 ) ,

j j k

k
k

qn j jl
l q

x k x

x k a f k q l

−

+
= +

− =

− = − + −∑
 

for q = 1,2,...,k−1. Finally, using the vector notation (cf. (13)), 
the state-space form of the k-th order Adams method reads 

 ( ) 0( 1) ( ), ( ) , (0)i i i+ = =x f x u x x%% % % % , (18) 

where ( )tx%  is the extended n k⋅ -dimensional state vector 

 1 2 1( )
T

n k n kt x x x x⋅ − ⋅=   x% K ,   

and 

 ( ) ( )
1 1 11( ) ( ) ( ) ( )

Tk k
n nkx i a f i x i a f iτ τ + = + + f% K .  

 

III.  BPTT OPTIMAL CONTROL ALGORITHM 

A. Discrete–Time Optimization Problem 

The discrete-time optimization problem is to find the 
control sequence ( )iu , 0,1,..., 1i N= − , which minimizes the 

discrete-time form of the cost function (12): 

 ( ) ( )( ) nJ N x N= Φ +x
)

, (19) 

subject to the k-th order Adams approximation of the 
continuous-time state equations (13): 

 ( ) 0( 1) ( ), ( ) , (0)i i i+ = =x f x u x x%% % % % , (20) 

for 1, , 1,..., 1i k k k N= − + − .  

The cost function J depends explicitly only on the state 
vector at the terminal time, ( )Nx , but an implicit dependence 

on x(i) follows from the discrete-time state equations (20). 
This fact will be used in derivation of the gradient decent 
algorithm below for exact calculation of the gradient of cost 
function J with respect to control vector ( )iu , 0,1,..., 1i N= − .  

B. Gradient Calculation 

The gradient descent algorithm with respect to control 
vector is as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )
1 ,l l

l

J
i i

i
η+ ∂= −

∂
u u

u
  (21) 

where i = 0, 1, …, N-1,  l= 1, 2, …, M, η is the learning-rate, 
N is the number of time instants, and M is the number of 
gradient algorithm iterations. 

The gradient of the cost function (19) in the l-th iteration of 
the gradient algorithm and i-th sampling interval is given by 

 
( ) ( )

( )
( )1

nk
r

rj r j

x NJ J

u i x N u i=

∂∂ ∂=
∂ ∂ ∂∑

%

%
,  (22) 
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where 1,2,...,j m= . The partial derivatives )(/)(~ iuNx jr ∂∂  

can be calculated backward in time, starting from 1i N= − :

 
( )

( )
( )
( )

1

1 1
r r

j j

x N f N

u N u N

∂ ∂ −
=

∂ − ∂ −

%%
,  

where ( ) ( )( ), ( )r rf i f i i≡ x u% % % , and 1,2,...,r nk= . Further, for 

2i N= − : 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1

1

11

2 1 2

21

1 2

nk
qr r

qj q j

nk
qr

q q j

x Nx N f N

u N x N u N

f Nf N

x N u N

=

=

∂ −∂ ∂ −
= =

∂ − ∂ − ∂ −

∂ −∂ −
=

∂ − ∂ −

∑

∑

% %%

%

%%

%

 

and for 3i N= − : 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1

1

1 1

1 1

11

3 1 3

21

1 3

2 21

1 2 3

2 31
.

1 2 3

nk
qr r

qj q j

nk
qr

q q j

nk nk
q pr

q pq p j

nk nk
q pr

q pq p j

x Nx N f N

u N x N u N

f Nf N

x N u N

f N x Nf N

x N x N u N

f N f Nf N

x N x N u N

=

=

= =

= =

∂ −∂ ∂ −
= =

∂ − ∂ − ∂ −

∂ −∂ −
= =

∂ − ∂ −

∂ − ∂ −∂ −
= =

∂ − ∂ − ∂ −

∂ − ∂ −∂ −
=

∂ − ∂ − ∂ −

∑

∑

∑ ∑

∑ ∑

% %%

%

%%

%

%% %

% %

% %%

% %

 

By introducing matrices ( )iU% , ( )iX% , )(iY  with the elements 

  ( ) ( )
( )
i

i
i

∂
=

∂
f

U
u

%
% ,  ( ) ( )

( )
i

i
i

∂
=

∂
f

X
x

%
%

%
,  ( ) ( )

( )
N

i
i

∂
=

∂
x

Y
u

%
, 

the above derivatives )(/)(~ iuNx jr ∂∂ , i = N−1, N−2, N-3, can 

be expressed in a more compact matrix form as 

 )1(
~

)1( −=− NN UY , (23) 

 ( 2) ( 1) ( 2)N N N− = − −Y X U% % , (24) 

 ( 3) ( 1) ( 2) ( 3)N N N N− = − − −Y X X U% % % . (25) 

This procedure can be further continued as follows 
( 4) ( 1) ( 2) ( 3) ( 4)N N N N N− = − − − −Y X X X U% % % % , (26) 

 M  

( ) ( 1) ( 2) ( 1) ( )i N N i i= − − +Y X X X U% % % %K . (27) 

By introducing matrices )(iuJ  and )(NxJ  such that 

  
( )( )u

J
i

i

∂=
∂

J
u

,    
( )( )x

J
N

N

∂=
∂

J
x%

, 

the final gradient )(iuJ  in (21) can be computed by the 

following backward-in-time recursive matrix relations: 
 ( ) ( ) ( )T

u xi i N=J Y J ,  (28) 

 ( ) ( ) ( )i i i=Y D U% , (29) 

 ( ) ( 1) ( 1)i i i= + +D D X% ,  (30) 

for 2, 3, ...,0i N N= − − , with the initial conditions 

 ( 1) ( 1) ( )T
u xN N N− = −J U J% , (31) 

 ID =− )1(N . (32) 

C. Calculation of Extended Jacobians 

The extended Jacobians ( )iX%  and ( )iU%  can be expressed as 

functions of the basic Jacobians  

  
( )

( )
( )

i
i

i

∂=
∂
f

X
x

, 
( )

( )
( )

i
i

i

∂=
∂
f

U
u

, 

as given by the following equations based on (18): 

 

( )
1

( )
2
( )
3

( )
1

( )

( )

( )

( )
( )

( )

( )

k

k

k

k
k

k
k

a i

a i

a i
i

a i

a i

τ τ

−

 +
 
 
 

=  
 
 
 
  

I X I 0 0 0

X 0 I 0 0

X 0 0 0 0
X

X 0 0 0 I

X 0 0 0 0

L

L

L
%

M M M O M M

L

L

, (33) 

 

( )
1
( )
2
( )
3

( )
1

( )

( )

( )

( )
( )

( )

( )

k

k

k

k
k
k

k

a i

a i

a i
i

a i

a i

τ

−

 
 
 
 

=  
 
 
 
  

U

U

U
U

U

U

%

M
, (34) 

Similarly, based on (19), the extended gradient 

( )( ) / nk
x N J N= ∂ ∂ ∈J x R%  is related to the basic gradient 

( ) ( ) 0( ) / nN N∂Φ ∂ ∈x x R
) )

 as follows 

 ( ) ( )( ) 1 0 0

TT

x
J

N
N N

  ∂ ∂Φ = =    ∂ ∂  

J
x x

L)
%

. (35) 

The basic Jacobians X(i) and U(i) can be calculated 
analytically [5,13] or numerically based on an appropriate 
finite-difference formula for the first derivatives [18]. 

IV.  ALGORITHM CONVERGENCE SPEED-UP 

The main weaknesses of the standard gradient algorithm 
(21), with a constant learning rate η , include a rather slow 

convergence and difficulties in tuning the learning rate 
appropriately. A small learning rate will result in a slow 
algorithm convergence, while a large learning rate can lead to 
numerical instabilities. 

In this work we apply the conjugate gradient (CG) 
algorithm [19]-[21] which has the following form 

 ( 1) ( ) ( )l l l
lη+ = +w w d , (36) 

 ( 1) ( 1) ( )l l l
lβ+ += − +d g d , (37) 

where lη  and lβ  are positive scalars, and  

1 1(0) (1) ( 2) ( 1)
T mN

m mu u u N u N≡ − − ∈  w RK , 

1 1(0) (1) ( 2) ( 1)

T

m m

J J J J

u u u N u N

 ∂ ∂ ∂ ∂≡  ∂ ∂ ∂ − ∂ − 
g K .  
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The standard method for computing lη  is steepest descent 

or line search algorithm which requires one-dimensional 
minimization of the cost function. This is a computationally 
expensive method which may require many evaluations of the 
cost function during one iteration of the gradient algorithm. 
Also, if the cost function is not appropriately scaled, the 
steepest-descent algorithm may exhibit poor convergence 
properties. In order to avoid these issues, we use the 
SuperSAB approach [21], [22] which requires only the 
information on gradient directions in two consecutive 
iterations of the gradient algorithm. The algorithm is modified 
in terms of using a scalar learning rate ηl as oppose to a matrix 
formulation ηl(i,j), i  = 0,...,N-1, j  = 1,...,m, in order to avoid 
discontinuities in the optimized control vector u. The modified 
SuperSAB algorithm is given by 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

( ) ( 1) ( ) ( 1)
1

( ) ( 1) ( ) ( 1)
1 1

( ) ( 1)
2 1

if 0 &

if 0 &

if

l T l l l
l

l T l l l
l l

l l
l

d J J

d J J

d J J

η

η η

η

+ − −
−

− − −
−

− −
−

 ≥ <

= < <

 >


g g w w

g g w w

w w

 (38) 

where 2 10 1d d d− − +< < < < , and 0η  is the initial learning rate. 

If the angle between two consecutive gradients is smaller than 

90°, ( ) ( 1) 0l T l − ≥g g , the learning rate lη  is increased starting 

from some initial value. On the other hand, negative sign of the 

scalar product of the gradients, ( ) ( 1) 0l T l − <g g , indicates that 

the iterative procedure has overshot the minimum of the cost 
function, and the learning rate lη  is decreased by multiplying 

it with the decreasing factor 1d−  smaller than unity. Also, the 

algorithm (38) decreases the learning rate by a decreasing 

factor 2 1d d− −<  if the condition ( ) ( 1)( ) ( )l lJ J −>w w  is 

satisfied, in order to avoid occasional cost function spikes that 
may affect the optimization accuracy [25]. 

The scalar value lβ  in (37) can be determined by using 

different methods [21]. A comparison of these methods on the 
vehicle dynamics control example [25] have pointed out that 
the following Dai-Yuan approach gives the fastest 
convergence: 

 ( )
( 1) ( 1)

max( ) ( 1) ( )
min ,

l T l

l l T l l
β β

+ +

+

 
 =  

−  

g g

d g g
.  (39) 

The parameter lβ  is limited to maxβ , because the algorithm 

(38) for learning-rate tuning can induce ( ) ( 1)l l −≥g g  in 

situations when ( ) ( 1) 0l T l − <g g , thus leading to a possible 

algorithm instability if lβ  is not saturated. The limit value of 

lβ  which guaranties numerical stability is max 1β = . But, 

depending on particular optimization problem this limit can be 
increased (e.g. max 1.2β = ), in order to provide a faster 

convergence of the algorithm. If the parameter lβ  has a 

constant value, 0 1β< < , then the CG algorithm becomes 

equivalent to a standard gradient algorithm with momentum 
[23,24]. 

V. VEHICLE DYNAMICS CONTROL APPLICATION 

The proposed optimal control algorithm has been verified in 
[18] on a chemical reaction model example with a known 
analytical solution. In this section, the algorithm is used for 
more realistic and complex off-line optimization of vehicle 
dynamics control variables. 

A. Vehicle Dynamics Model 

A 10 degree of freedom (DOF) vehicle dynamics model 
[16], provided by the Jaguar Cars, has been used in the bellow 
optimization study. The main 10 state variables are 
longitudinal and lateral velocities U and V; roll, pitch, yaw, 
and heave rates p, q, r, and W; and four wheel angular speeds. 
The auxiliary state variables are roll, pitch and yaw angles, as 
well as the heave, which are used to determine the vehicle 
position (X, Y) in the inertial coordinate frame and determine 
the suspension deflections. The tire forces are obtained from 
the 1994 “Magic formula” tire model (see [16] and references 
therein).  

The rear steering and rear differential actuator dynamics are 
approximately described by first order lag terms with the time 
constant of 25 ms. Two types of active differentials are 
considered [16]: Active Limited Slip Differential (ALSD) and 
Torque Vectoring Differential (TVD). The ALSD always 
transfer the torque to the slower wheel. The TVD can also 
transfer the torque to the faster wheel, provided that the 
faster/slower wheel speed ratio is not larger than a design 
factor kAWSD that has a typical value of 1.25. The torque 
transfer constraints have been implemented in the vehicle 
model, as explained in [5]. The overall nonlinear dynamics 
model has 18 state variables and two control variables. 

 

B. Optimization Problem Formulation 

Several optimization problems and control/state vector 
constraints are considered. 

1) Cost Functions Definition 

Trajectory tracking. The optimal control objective for the 
trajectory tracking task is to find the active rear differential 
and active rear steering control variables rT∆  and rδ , 

respectively, which ensure that the vehicle follows the 
reference trajectory in the X-Y inertial coordinate system with 
a minimum tracking error. In other words, the problem is to 
find the inputs ∆Tr and δr that minimize the cost function: 

 2 2
11 12

0

( ) ( )
ft

R RJ K X X K Y Y dt = − + − ∫  (40) 

where XR and YR are coordinates of the reference trajectory, 
and K11 and K12 are the cost function weighting factors. The 
double lane change reference trajectory of Gaussian type is 
considered 
 0( )RX t U t=  (41) 

 
22

0 /)(
max)( σXX

RR
ReYXY −−=  .  (42) 
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where U0 is the initial longitudinal velocity, Ymax, X0, and σ are 
maximum, center, and bandwidth of the Gaussian curve. 

Roll minimization. The optimal control objective for the roll 
minimization task is to find the control variables that ensure 
minimum chassis roll during the double lane change maneuver: 

 ∫=
ft

dtJ
0

2φ , (43) 

where φ  is the roll angle. 

2) Control and State Vector Constraints Formulation 

The following inequality and equality constraints of the state 
variables are considered and realized through the cost function 
penalty terms. 

Trajectory constraints (applies to roll minimization only). The 
road trajectory is constrained as given by (cf. Fig. 6): 
 ( ( )) ( ) ( ( ))offset R R offset R RY Y X t Y t Y Y X t− + ≤ ≤ +  , (44) 

where the reference trajectory function YR(.) is given by (42). 

Boundary conditions. The following boundary constraints on 
the exit vehicle trajectory are considered (cf. Fig. 1): 

 

( ) (0)

( )
0

f

f

Y t Y

dY t

dt

=

=
 (45) 

 

C. Optimization Results 

The C code optimization program for the vehicle control 
system has been executed on a personal computer with Intel 
Core Duo CPU (2.00GHz). The terminal time is tf = 6s and the 
sampling interval is τ = 0.003s, so that the number of 
optimization time intervals is N=2000. The number of 
iterations of the Dai-Yuan conjugate gradient algorithm is 
M=400, while the standard gradient algorithm (with η = 
const.) required M = 4000 iterations for the same level of 
accuracy [25]. The Jacobians are calculated numerically. The 
simple first-order Adams method is used, because the higher-
order Adams methods have not given notable improvements 
for the particular example (see [18] for another benchmark 
example that demonstrates performance gains reached by using 
the higher-order Adams methods). The algorithm execution 
time is about 13 min, and it can be reduced by four times if the 
simplified 7 DOF vehicle dynamics model [5] is used. 

1) Double Lane Change Example 

Figure 1 shows the results of optimization of the front road 
wheel angle input δf for the trajectory tracking problem (40) 
and a dry asphalt road (µ = 1). That is, the optimization task is 
to find an "ideal" driver steering input referred to the road 
wheel angle. The results in Fig. 1 indicate that the "ideal" 
driver can provide accurate tracking of the sharp reference 
trajectory, where the absolute value of lateral acceleration 
saturates to its maximum value aym≈1g = 9.81 m/s2. 

 
 

 

 
 
Figures 2-5 show the optimization results for reduced tire-road 
friction coefficient µ = 0.6 (e.g. wet asphalt surface) and 
different vehicle dynamics actuators: active rear steering 

 
Fig. 2.  Optimization results for ARS+TVD control (µ = 0.6). 

 
Fig. 1.  Front wheel steering optimization results for asphalt road (µ = 1). 
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(ARS), active torque vectoring differential (TVD, kAWSD=1.25), 
combined ARS and TVD, and active limited slip differential 
(ALSD). The top plot of each figure includes three 
trajectories: (i) reference trajectory that corresponds to the 
optimized (reached) trajectory for µ = 1 (solid line in Fig. 1), 
(ii) trajectory when no control action is used (δr = 0, ∆Tr = 0), 
and (iii) trajectory reached by using the optimal control action. 
The front steering input δf is taken from Fig. 1 (no driver 
model is used). 

The ARS intervention provides quite accurate trajectory 
tracking despite the worsen road condition (Fig. 3), thus 
preserving the driver's feeling of (safe) driving on high-µ road. 
The tracking accuracy is somewhat worse for TVD control 
(Fig. 4), and the peak of side slip angle β = atan(V/U) is 
increased by about 20%. The combined ARS and TVD control 
(Fig. 2) gives comparable tracking accuracy as in the case of 
individual ARS control. However, the control effort is reduced 
when compared to the individual ARD or TVD control. The 
ALSD cannot compensate for the understeer behavior in the 
first part of maneuver, and the corresponding tracking error is 
similar as in the case of passive vehicle (Fig. 5). Namely, since 
the ALSD can transfer the torque to slower (inner) wheel only, 
it can only generate understeer (i.e. compensate for oversteer) 
[16]. Owing to the oversteer compensation, the ALSD 
effectively stabilizes the vehicle in the second part of 
maneuver (Fig. 5). 
 

 

 

 
 
Qualitatively similar results to those in Figs. 2-5 have been 

obtained for lower µ values, as well (cf. [5]). Also, many other 
optimization tests have been carried out, e.g. those related to 
limited side slip angle or limited control input. 

 
Fig. 5.  Optimization results for ALSD control (µ = 0.6). 

 

 
Fig. 4.  Optimization results for TVD control (µ = 0.6). 

 

 
Fig. 3.  Optimization results for ARS control (µ = 0.6). 
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2) Roll Minimization Example 

Figure 6 shows the "ideal" driver optimization results for the 
same operating conditions as in Fig. 1, but the trajectory 
tracking cost function (40) is replaced with the roll 
minimization criterion (43), and the trajectory constraint (44) 
is taken into account. Figure 7 shows the TVD-based 
optimization results for the same roll minimization problem, 
where the steering input δf is taken from Fig. 1. The 
comparative results from Figs. 6 and 7, including the passive 
vehicle response, are shown in Fig. 8. 

In order to minimize the roll angle φ , the TVD generates 

understeer around the instant of maximum lateral acceleration 
(t ≈ 2 s; Fig. 7) and forces the vehicle to touch the inner 
trajectory bound. This results in reduction of the yaw rate r, 
the lateral acceleration ay, and finally the roll angle φ  when 

compared to the passive vehicle (Fig. 8). The roll angle 
reduction is paid by lower trajectory tracking accuracy. 

The "ideal" driver "cuts" the road even more, so that the 
vehicle touches the trajectory bounds in three points (Fig. 6). 
This results in a substantial reduction of lateral acceleration 
and roll angle (Fig. 8). However, the trajectory tracking 
performance is further deteriorated (Fig. 6). 

 

 

 

 

VI.  CONCLUSION 

A BPTT-like gradient-based optimal control algorithm has 
been proposed in the paper. The optimization accuracy can 
generally be improved by using higher-order Adams numerical 
integration schemes instead of the basic Euler method. 
Incorporation of numerical Jacobians enables the algorithm 
application for complex problems, where analytical Jacobians 
are difficult to derive. Finally, implementation of advanced 
conjugate gradient methods, such as Dai-Yuan method, results 
in substantial improvement of convergence properties and 
reduction of execution time. The algorithm can be extended 
for solving minimum-time optimal control problems [12]. 

The proposed optimal control algorithm has been tested on 
a relatively complex vehicle dynamics control problem with 18 
state variables and two control variables. The optimization 
results have illustrated favorable features of the algorithm in 
terms of accuracy (e.g. a few thousands of time grid points can 
be used), consistent numerical stability, and relatively fast 
execution. Also, it has been demonstrated that the algorithm 
can be effectively used to gain insights into the ultimate 
vehicle dynamics control performance for various actuator 
configurations. 

The future work will be directed towards extending the 
algorithm for combined parameter and control variable 
optimization problems, as well as feedback controller 
parameter optimization for either optimal control formulation 
or robust control formulation. Also, comparison of the 
algorithm with other existing methods is a subject of ongoing 
work and future publications. 
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