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Abstract—The paper presents a gradient-based algorithm for
optimal control of nonlinear multivariable systemswith control
and state vectors constraints. The algorithm has hackward-in-
time recurrent structure similar to the backpropagation-through-
time (BPTT) algorithm, which is mostly used as a krning
algorithm for dynamic neural networks. Other main features of
the algorithm include the use of higher order Adamstime-
discretization schemes, numerical calculation of Xmbians, and
advanced conjugate gradient methods for favorableanvergence
properties. The algorithm performance is illustrated on an
example of off-line vehicle dynamics control optinzation based
on a realistic high-order vehicle model. The optinded control
variables are active rear differential torque trander and active
rear steering road wheel angle, while the optimizabn tasks are
trajectory tracking and roll minimization for a dou ble lane
change maneuver.

Index Terms—Optimal control, conjugate gradient methods,
automotive applications, road vehicle control.

. INTRODUCTION

IEEEand Francis Assadian

of control systems with different hardware and atdu
configurations, set realistic targets for achiegalslystem
performance, cascade targets to subsystems andooents,
and guide control system design and calibratiorcess. For
example, prior to deciding on the vehicle dynan@ctuators
(e.g. active front/rear steering and active cefgat
differential) and developing related on-line cofgrothe
optimization results can provide valuable inforrmoation
quality of various actuator configurations and bksa an
"idealized" benchmark to compare different consolutions

and calibration in terms of their closeness to fiteal
performance.
The numerical methods of solving optimal control

problems can be divided into two categories: dirant
indirect methods. Indirect methods based on Paitrg
maximum principle lead to numerical solution of th@-point
boundary value problem using multiple shooting easi-
linearization [6], [7]. Direct methods transformettoriginal
continuous-time optimal control problem into a ft@i
dimensional nonlinear programming (NLP) problem,ickh
can be solved by various NLP numerical optimization

PTIMAL control has found its applications in manyalgorithms such as sequential quadratic programr{8@P)

different engineering fields, including aerospacH, [
process control [2], robotics [3] , and automotieatrol [4,5].
Any control system that includes complex dynamicishw
constraints is a good candidate for applying optiozantrol.
The main aim is to find control variable trajecewithat
minimize an optimization criterion in the presencd
inequality and equality constraints on the contiad state
variables. By doing this in an off-line manner [[l-Bhe
optimal control results can be used to assesséHermance
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[8-11]. The continuous-time state and/or contraialzes are
represented by a finite number of parameters bye-tim
discretization or by using suitable basis functisosh as B-
splines or Lagrange polynomials.

The main disadvantage of indirect methods is theed for
a good initial guess of the initial conditions fthve adjoint
variables in order to converge. Also, this approasfjuires
symbolic differentiation to obtain adjoint equatsorOn the
other hand, the direct methods are characterizexllagge and
sparse structure of Jacobian and Hessian matsodbat they
can be computationally expensive for large systeigect
methods are mainly applied in industrial optimiaati
problems requiring fast and numerically robust mjzation,
while allowing for less accurate solutions.

In the NLP approach, the plant equation constraamts
added into the cost function in extension to thenagity
functions related to the state and control conssai The
control and state variables are treated as indepénd
variables, so that the cost function gradient dat@n is
relatively simple. However, the optimization prable
formulated in such a way may be characterized tsloav
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convergence due to the additional plant-equatiomgalgy constraints
constraints. Also, the numerical stability may bfeeed by -

the choice of various optimization parameters suh g(x(t),u(t))zo, )
discretization period and weighting factors of pBna and equality constraints

functions. _

An alternative direct approach of solving the optirrontrol h(x(t),u(t)) =0, ()
problem is proposed by the authors in [12] and .[18] where X(t) is anny-dimensional state vector(t) is anm-
contrast to the NLP approach, the plant equatiamsteaints  gimensional control vectoig(X(t), u(t)) is a p-dimensional
are not included in the cost function. The contod state
variables are treated as dependent variables @b plant
equations), so that the final algorithm has a backwin-time dimensional vector function of equality constrajriéx(t; ))
structure similar to the backpropagation-througheti(BPTT) s ar-dimensional vector function of final boundary ciimh
a:gor?tfr:m [fl4], [15], which is ImOSﬂy l:(SE'd Sas ha rtéag  constraints, and is the terminal time. We assume thg(),
algorithm for recurrent neural networks. Such aracéx .
gradient algorithm is more complex than the NLPeoas q?o([ﬂ, lcp([ﬂ, b@’ 9, and h(jy are continuously
algorithm, but it may provide better and numericathore differentiable functions. _ _
stable convergence properties. The algorithm has beplied In general, additional constraints which ensureustiess
for solving optimal control problems in the field§ robotics MY be augmented to the optimal control problemmdation

to avoid regions with large model uncertainties i¢lvhthe

[12] and vehicle dynamics control [5]. aviaiy el )
optimization may otherwise incorrectly exploit) tr reduce

In order to further enhance its optimization accyrand ) e o . X .
convergence properties, the original BPTT algorifi@13,5] parametric sensitivity of optimized control inpugjectories
(see e.g. [26, Chap. 10]).

is extended in this paper by: (i) higher-order Adamamerical
integration schemes instead of the basic Eulerretization B. Transformation of Continuous-Time Optimization
method, (i) a straightforward derivation of gratie Problem

expressions based on introducing a terminal cosdtifon, (iii) The optimization problem (1)-(5) can be reducedthe

numerical calculation .Of Jacobian;, and (iv) immemtiop of problem of finding the control vectar(t) that minimizes the
more advanced, conjugate gradient methods. Exactiegt :ost function

derivation based on the BPTT approach and highaeror t
Adams methods represents a key feature_z of the_ pqmpo J :dJ(f((tf ))+IF(>?(t),u(t)) dt, (6)
approach and a novel contribution. It is preciséhs 0
combination that, through our numerical case stydias been . '
proven to be effective, numerically robust, andatdp of Subject to the plant equations
handling models with complexity realistic for indtal S o

LS f . t) = t), u(t)),
applications. In regard to the vehicle dynamicsticncase x(®) (p(x() u( ))
study, a full 10-DOF vehicle model comprising a fmhagic"
formula tire model is used instead of a simplifiezhicle/tire
model considered in [5].

vector function of inequality constraintis(x(t), u(t)) is ag-

X(0)=X,, ()
where

g
F(X(1), u() = Fo (X(), u®) + D Ky ch? (x(©).u () +
k=1
o (8)
[l.  OPTIMAL CONTROL PROBLEM FORMULATION +Z K02 (X(O,u()) H™ (gk(i(t),u(t))) ,
A. Continuous-Time Problem Formulation k=t .
A continuous-time nonlinear optimal control problem ¢(§<(tf)):¢o(§<(tf))+2|<b kbi(?(tf)), 9)
considered. The problem is to find a control vedbgut u(t), P

i< . - i .
0 <t < t, which minimizes the Bolza-type cost function andH™(2) is Heaviside step function defined as

t .
Jg = O (X(ty ))+J.FO(>"<(t),u(t))dt, 1) H'(z):{f’ :: iig’ (10)
) , .

The second and third terms on the right-hand sifle o

subject to the nonlinear continuous-time plant égna expression (8) are the penalty functions for thejirality and

?((t)z(p()”((t),u(t)), 7((0):7(0- (2) equality constraints (4) and (5), respectively. igirty, the

. . B second term on the right-hand side of expressignis(@he
and subject to the final conditions on the stattore penalty function for the final boundary conditid).(Note that

b(f((tf )) =0, ©) although the Heaviside step functi¢h (z) is not continuous,

2 - . .
and subject to the control and state vector indtyual the penalty terms of the forma"H (2 in equation (8) are



continuously differentiable functions. The penaftynction for r =1,2,..k-2, j=1,2,..n, i=k-1,k,k+1,.., and the
coefficientsKp, Kqx and Ky, should be sufficiently large to jnitial conditions

provide accurate constraints satisfaction. X (k=1) = X 41,

In order to simplify application of higher-order marical . v
integration methods for the plant equations (7) taedintegral (le—1) = (K) £ (1o _
term in the cost function (6), the problem (6)-(% Xgne j(K=1) Z a” fi(k=1+ o D,

I=q+1
for g=1,2,...k=1. Finally, using the vector notation (cf. (13)),
the state-space form of tkeh order Adams method reads

X, = F(x(1), u(t)), x,(0)=0, (11) x(i+1)=f (xG)u()), %(0)=%,, (18)
wherex(t) is the extendech [k -dimensional state vector

reformulated, so that an additional state variabjgt) is
introduced such that

wheren=rn,+1. Hence, the final continuous-time

~ T
optimization problem is to find the control vectoft) that X(t)=[X1 X - Xim-1 Xrﬂk] ,
minimizes the terminal cost function and
~ . . A T
3t )= (xt)) + % (). (12) f =) +7al M +7x0) . alf,0)] .
subject to the differential equations
x(t):f(x(t),u(t)), x(0)=X,, (13) lll. BPTTOPTIMAL CONTROLALGORITHM
where x(t) is the newn-dimensional state vector A. Discrete—Time Optimization Problem
x(t) :[7‘1 E )@T, The discrete-time optimization problem is to findet
and control sequencei(i), i =0,1,...N — 1, which minimizes the
- discrete-time form of the cost function (12):
f:[qicg e @y FJ. .
J=®(x(N))+x,(N), (19)
C. Time Discretization Based on Adams Method subject to thek-th order Adams approximation of the
The Adams method [17] belongs to the class of stelbi continuous-time state equations (13):
numerical methods for an approximate solution ef shstem K(i +1)=f(>?6),u( ), %(0)=X,, (20)
of ordinary differential equations °

fori=k-1,k,k+1,...,.N- 1
The cost functionJ depends explicitly only on the state
vector at the terminal timeg(N), but an implicit dependence

x(t) =f (x().u (), X(t) =X, (14)
Thek-th order Adams method has the following form:

k
x(i +1) = x({)+ rZaEk)f@ —-j+1, (15) on x(i) follows from the discrete-time state equation§)(2
=1 This fact will be used in derivation of the gradietecent

algorithm below for exact calculation of the gradi®f cost

for i=k-1,k, k+1,.., and the initial conditions<(0) =x,,
X)) =Xy, X(2)=Xy, ..., X(k=1)=X,_;; wherer is the time

functionJ with respect to control vectar(i), i =0,1,...N - 1.

B. Gradient Calculation

step,al) are the coefficients of the Adams method [17], and ) _ _
The gradient descent algorithm with respect to robnt

f(i) =f (xG),u Q )) ) (16) vector is as follows:
The Adams method of tHeth order, as a multistep method, G (i)= ul) (i)-n 0J , (21)
requires knowledge ok initial conditions. These initial au(') (l)

conditions are determined from the basic initiahdiion \yherei = 0, 1, ...,N-1, I= 1, 2, ...,M, 77is the learning-rate,

X(0)=X, by using the 4th-order (one-step) Runge-Kuttd is the number of time instants, aiMi is the number of
method. gradient algorithm iterations.

The explicit Adams method (15) is kath order vector The gradient of the cost function (19) in thil iteration of
difference equation, which can be conveniently ¢sfammed the gradient algorithm arieth sampling interval is given by

into the following discrete-time state-space form ) & 91 0% (N) 22)
X (i+2)=x; () +7af) f; ()+7%.; (), au, (i) & ax (N) au (i) °
X (i +2) = L) £ (1) + X 1y (D), 7

Xpepyne 1 (i +1) = a9 £, (i),



where j =1,2,...m. The partial derivativesgXx, (N)/0u; (i)
can be calculated backward in time, starting frionN -1:
ox (N) _ of (N-1)
u (N-1) du (N-1)’

where f, (i) = f, (x(),u()), andr =1,2,...nk . Further, for
i=N-2:

ox (N) o of (N-1) 0%, (N-1)

Y

o0, (N-2) ~ 2205, (N-) 2

i (N_Z)
o of, (N -1) of (N -2)
“Zox, (N-1)ou, (N-2)
and fori =N -3:
0%, (N) :“zkci(N—l) 0%, (N-1) _
ou; (N-3) Hox(N-1)ay(N-3
_& 3 (N-1) of, (N-2) _
- 40% (N-1)ou (N-3)
_&of (N-1) & of, (N-2) 0%, (N-2) _
" Ziox, (N-1) 20, (N2 0y (N3
ok of (N-1) & of, (N-2) of (N-3)
'qﬂa&(N—l)p:lakp(N—Z)aq(N—S)

Y (i) with the elements
) ax(N)
T RS U~ R T

the above derivativedx, (N)/du; (i) , i = N-1,N-2,N-3, can

be expressed in a more compact matrix form as

Y(N-12)=U(N-1), (23)

Y(N-2)=X(N-2DU (N-2), (24)

Y(N=-3)=X(N-1)X (N-2J (N- 3). (25)
This proced~ure can ~be furthe~r contintjed as follows
Y(N-4)=X(N-1X (N-2)X (N- 3 (N- 4), (26)
Y(i;:f((N DX (N=-2)..X (+2J ¢). (27)

By introducing matrices) (i) and J,(N) such that

: 0J 0J
J, () =—F, J (N)=—F—,
the final gradient] (i) in (21) can be computed by the
following backward-in-time recursive matrix relats

J. @)=Y I, N), (28)
Y(i)=D@)U(G), (29)
D(i) =D(@ +1)X{ +1), (30)
for i =N -2, N-3, ...,C, with the initial conditions
J,(N-1)=U(N-2J (N), (31)

DIN-1)=1. (32)

C. Calculation of Extended Jacobians

The extended Jacobiané(i) and U(i) can be expressed as
functions of the basic Jacobians
. Of(i) . Of(i)
X({)=——=, U({)=—-=—,
® ox(i) ® ou(i)
as given by the following equations based on (18):
l+7a®X@{) 71 0 -0 O
aX@ o0 I -~ 00
- WX (i
xiy=| BXO 00 00 g
<k>X(|) 0 0 - 01
a®X (i) 0 000
au(i) |
al?u(i)

O(I) _ (k)U(i) ’ (34)

(k)U(I)
| (k)U(I)_
Similarly, based on (19), the extended gradient
J,(N)=0J/0%(N)OR™ is related to the basic gradient

0P (x(N))/0x(N)OR™ as follows

| Y '
3,(N) = x(N)_HaX(N)] 10 o] . (35)

The basic JacobianX(i) and U(i) can be calculated
analytically [5,13] or numerically based on an agrate
finite-difference formula for the first derivatives].

IV. ALGORITHM CONVERGENCESPEED-UP

The main weaknesses of the standard gradient tigori
(21), with a constant learning ratg, include a rather slow

convergence and difficulties in tuning the learningte
appropriately. A small learning rate will result e slow
algorithm convergence, while a large learning cate lead to
numerical instabilities.

In this work we apply the conjugate gradient (CG)
algorithm [19]-[21] which has the following form

gd+n :—g('+1)+ﬁd“, (37)

wheres, and 4 are positive scalars, and

w=[w0) w@ ... Yy,(N-2) y,(N-1] OR™,

g{ 3 3J 3J a1 |
0w du@  du,(N-2) dy,(N-1)



The standard method for computirg is steepest descent equivalent to a standard gradient algorithm withrmaotum

or line search algorithm which requires one-dimemsi [23.24].
minimization of the cost function. This is a corgtignally
expensive method which may require many evaluatigrtee V. VEHICLE DYNAMICS CONTROL APPLICATION

cost function during one iteration of the gradiafgorithm.  The proposed optimal control algorithm has beeifigerin
Also, if the cost function is not appropriately kech the  [18] on a chemical reaction model example with @vin
steepest-descent algorithm may exhibit poor comrerg  analytical solution. In this section, the algoritfisnused for

properties. In order to avoid these issues, we U  more realistic and complex off-line optimization wéhicle
SuperSAB approach [21], [22] which requires onlye th  dynamics control variables.

information on gradient directions in two conseeegiti ) .

iterations of the gradient algorithm. The algorittemodified ~ A Vehicle Dynamics Model

in terms of using a scalar learning rgt@s oppose to a matrix A 10 degree of freedom (DOF) vehicle dynamics model
formulation 73(i,j), i = 0,...N-1, j = 1,...m, in order to avoid [16], provided by the Jaguar Cars, has been ustibellow
discontinuities in the optimized control vectorThe modified Optimization study. The main 10 state variables are

SuperSAB algorithm is given by longitudinal and lateral velocities andV; roll, pitch, yaw,
N . T (1-1) 0 (-1 and heave ratgg g, r, andW, and four wheel angular speeds.
d™7p if (g g 20)& (‘](W )< J(W )) The auxiliary state variables are roll, pitch aravyangles, as
-y it (g0 o0 < &(J O) < 3wt ) (38) well as the heave, which are used to determinevéiecle
d 1! (g g ) (W )< (W ) position , Y) in the inertial coordinate frame and determine
Ay, if J(W(I)) > J(W(I—l)) the suspension deflections. The tire forces araingd from
the 1994 “Magic formula” tire model (see [16] arederences
therein).

where0<d, <d; <1< d’, ands is the initial learning rate. The rear steering and rear differential actuatoragyics are
If the angle between two consecutive gradientsnaller than approximately described by first order lag termthvthe time
90°, g g™ >0, the learning ratey, is increased starting constant of 25 ms. Two types of active differestialre
from some initial value. On the other hand, negasiign of the considered [16]: Active Limited Slip Differentiah(.SD) and
scalar product of the gradientg" ¢! ™ <0, indicates that |0rdué Vectoring Differential (TVD). The ALSD alway

) P ) 9 $° 9 T transfer the torque to the slower wheel. The TV adso
the iterative procedure has overshot the minimurthefcost i ansfer the torque to the faster wheel, provideet tthe
function, and the learning ratg is decreased by multiplying faster/slower wheel speed ratio is not larger thadesign
it with the decreasing factod, smaller than unity. Also, the factor kawsp that has a typical value of 1.25. The torque

algorithm (38) decreases the learning rate by aedsing transfer constramts h'ave been |mplementeq n teleu_:le
- - L 0 (-1, .. model, as explained in [5]. The overall nonlinegnaics
factor d, <d; if the condition J(w"’)>J(w" ") is

model has 18 state variables and two control vigab
satisfied, in order to avoid occasional cost funtpikes that
may affect the optimization accuracy [25].
The scalar valuef in (37) can be determined by using

different methods [21]. A comparison of these mdthon the  Several optimization problems and control/state torec
vehicle dynamics control example [25] have pointed that constraints are considered.

the followin Dai-Yuan approach ives the fastest
g PP g 1) Cost Functions Definition

B. Optimization Problem Formulation

convergence:
(4T (1+1) Trajectory tracking The optimal control objective for the
B =min L, Broax ¢ - (39) trajectory tracking task is to find the active rehiferential
d®r (g('+l)—g(')) and active rear steering control variablésl, and J ,

S _ respectively, which ensure that the vehicle followse
The parametei is limited to S,,,, because the algorithm reference trajectory in th&-Y inertial coordinate system with

(38) for learning-rate tuning can induqba)uzuga—n" in a} minimym tracking error. In.o.thgr words, the palfblis to
find the inputsAT, and & that minimize the cost function:

3= [ KX = %)+ K(Y=%)? ] d (40)

B which guaranties numerical stability i, =1. But, whereXg andYg are coordinates of the reference trajectory,

increased (€.9.8,, =1.2), in order to provide a faster double lane change reference trajectory of Gausyip@ is
considered

Xg(1) = Ugt (41)
Yr(Xg) = Yoaee X010 (42)

situations wheng" g™ <0, thus leading to a possible
algorithm instability if 4 is not saturated. The limit value of

convergence of the algorithm. If the parameifr has a
constant value,0< <1, then the CG algorithm becomes



whereU is the initial longitudinal velocityYmax Xo, @ande are

4 Py
maximum, center, and bandwidth of the Gaussianecurv e optized irjectory

2l 4
Roll minimization The optimal control objective for the roll

0 - 4

2

Y [m]

minimization task is to find the control variablégt ensure
minimum chassis roll during the double lane chamgeeuver:

~“o 20 40 60 80 100 120 140

t
J= j;azdt , (43) :
0 = 0:
where @ is the roll angle. »5\/\/\’~

X[
2) Control and State Vector Constraints Formulation 105 3 i 5 % 3 i
t[s] t[s]

m]

4

Y [m]
‘F

8 ldeg]

o

The following inequality and equality constrainfgtee state
variables are considered and realized throughdkefanction
penalty terms.

Trajectory constraintg¢applies to roll minimization only). The
road trajectory is constrained as given by (cf. Big

a, [m/ sz]

_Yoffset+YR( XR‘( DERRG B Yoffsef" Yﬁ Xﬁ)) , o (44) ° ’ t[s] ) ° ° ’ t[s] ) °
22 0.4
where the reference trajectory functigg.) is given by (42). . _ 02
Boundary conditionsThe following boundary constraints on ;5 ” EOZ
the exit vehicle trajectory are considered (cf. Big 04
Y(t) = Y(0) 2% 2 4 6 0 2 4 6
dv(t) (45) tls] tls]
=0 Fig. 1. Front wheel steering optimization resédtsasphalt roady= 1).
dt

== sreference
===no control
== optimal control

C. Optimization Results

The C code optimization program for the vehicle tomn E
. >
system has been executed on a personal computer niet
Core Duo CPU (2.00GHz). Therminal time ig; = 6s and the %
sampling interval is7 = 0.003s, so that the number of ° ® ® s
optimization time intervals isN=2000. The number of

iterations of the Dai-Yuan conjugate gradient alhon is ) |
M=400, while the standard gradient algorithm (with= L z
const.) requiredM = 4000 iterations for the same level of 0 e
accuracy [25]. The Jacobians are calculated nualbricThe 4l |-

simple first-order Adams method is used, becauséhither-
order Adams methods have not given notable imprewesn
for the particular example (see [18] for anothendbenark
example that demonstrates performance gains redghesing

the higher-order Adams methods). The algorithm etiec

time is about 13 min, and it can be reduced by fooes if the
simplified 7 DOF vehicle dynamics model [5] is used

5. [deg]

a_[m/: 52]

1) Double Lane Change Example

22

Figure 1 shows the results of optimization of trenf road ik
wheel angle inpud; for the trajectory tracking problem (40) 21
and a dry asphalt roagl € 1). That is, the optimization task is =~ 205

to find an "ideal" driver steering input referreal the road 20 5 S !

wheel angle. The results in Fig. 1 indicate tha tideal” ] ot tls]

driver can provide accurate tracking of the shaference 79 2. Optimization results for ARS+TVD contriu = 0.6)

trajectory, where the absolute value of lateraletaration

saturates to its maximum valag~1g=9.81 m/é. Figures 2-5 show the optimization results for rextltre-road
friction coefficient 4 = 0.6 (e.g. wet asphalt surface) and
different vehicle dynamics actuators: active re#eesng

U [m/s]

r [rad/s]




(ARS), active torque vectoring differential (TVEByws=1.25),
combined ARS and TVD, and active limited slip diéfstial
(ALSD). The top plot of each figure includes three
trajectories: (i) reference trajectory that cormugs to the
optimized (reached) trajectory far= 1 (solid line in Fig. 1),
(i) trajectory when no control action is usedl € 0, AT, = 0),
and (iii) trajectory reached by using the optimahizol action.
The front steering input} is taken from Fig. 1 (no driver

Y [m]

= sreference
== 2no control
=== optimal control

100 120 140

. = £
model is used). £ o Z ZOZ
The ARS intervention provides quite accurate trajsc = S -
tracking despite the worsen road condition (Fig, Bus o 5 . s 5 . |

preserving the driver's feeling of (safe) driving ligh road.
The tracking accuracy is somewhat worse for TVDt@n
(Fig. 4), and the peak of side slip angk= atan{//U) is
increased by about 20%. The combined ARS and TM{irab
(Fig. 2) gives comparable tracking accuracy ash@ndase of
individual ARS control. However, the control efféstreduced
when compared to the individual ARD or TVD contrdhe
ALSD cannot compensate for the understeer behanitine
first part of maneuver, and the corresponding iragkrror is
similar as in the case of passive vehicle (FigN&mely, since
the ALSD can transfer the torque to slower (innergel only,
it can only generate understeer (i.e. compensateviersteer)

[16]. Owing to the oversteer compensation, the ALSD

effectively stabilizes the vehicle in the secondrtpaf
maneuver (Fig. 5).

= sreference
===no control
=== optimal control

120 140

20.5o

Y [m]

t[s]

r [rad/s]

t[s]

Fig. 4. Optimization results for TVD contrql € 0.6).

= =reference
===no control
=== optimal control

140

& _[deg]

o
N
a~
)

B [deg]

a [m/sz]

&) 0 2 4 6
E tls]
< 22
_ 215 .
E 21 E )
5 o =02
20.5 04
7215 - 20 ! 08 .
E 2 - K] t[s] t[s]
> 208 = Fig. 5. Optimization results for ALSD contrgl € 0.6).
2 2 4 6
t[s] t[s]
Fig. 3. Optimization results for ARS contrgl £ 0.6).

Qualitatively similar results to those in Figs. Zx&ve been

obtained for loweg values, as well (cf. [5]). Also, many other
optimization tests have been carried out, e.g.ethefated to
limited side slip angle or limited control input.



2) Roll Minimization Example

Figure 6 shows the "ideal" driver optimization résdor the
same operating conditions as in Fig. 1, but thgedtary
tracking cost function (40) is
minimization criterion (43), and the trajectory stmaint (44)
is taken into account.
optimization results for the same roll minimizatiproblem,

where the steering inputy is taken from Fig. 1. The

comparative results from Figs. 6 and 7, including passive
vehicle response, are shown in Fig. 8.

In order to minimize the roll angley, the TVD generates

understeer around the instant of maximum latereg¢lacation

(t=2s; Fig. 7) and forces the vehicle to touch the iinne

trajectory bound. This results in reduction of ffzv rater,
the lateral acceleratioa,, and finally the roll anglepp when

compared to the passive vehicle (Fig. 8). The eoible
reduction is paid by lower trajectory tracking aay.

The "ideal" driver "cuts" the road even more, sattthe
vehicle touches the trajectory bounds in three tgaiRig. 6).
This results in a substantial reduction of latexateleration
and roll angle (Fig. 8). However, the trajectoracking
performance is further deteriorated (Fig. 6).

== =boundary trajectory
bt ===houndary trajectory
= sreference
== optimal control

Y [m]

.,
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Fig. 6. Front wheel steering optimization restds roll minimization
case f(=1).
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Fig. 7. TVD optimization results for roll minimitian case 4 = 1).
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Figure 7 shows the TVD-based *
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Fig. 8. Additional comparative plots for roll optizations from Figs. 6
and 7.

VI. CONCLUSION

A BPTT-like gradient-based optimal control algonithhas
been proposed in the paper. The optimization acgucan
generally be improved by using higher-order Adamserical
integration schemes instead of the basic Euler odeth
Incorporation of numerical Jacobians enables tlyorahm
application for complex problems, where analytigatobians
are difficult to derive. Finally, implementation @fdvanced
conjugate gradient methods, such as Dai-Yuan metiesdlts
in substantial improvement of convergence propertad
reduction of execution time. The algorithm can béeded
for solving minimum-time optimal control problens?].

The proposed optimal control algorithm has beetetesn
a relatively complex vehicle dynamics control peblwith 18
state variables and two control variables. The noigttion
results have illustrated favorable features of dlgorithm in
terms of accuracy (e.g. a few thousands of time gints can
be used), consistent numerical stability, and inedht fast
execution. Also, it has been demonstrated thatatberithm
can be effectively used to gain insights into tHémate
vehicle dynamics control performance for variouguator
configurations.

The future work will be directed towards extenditige
algorithm for combined parameter and control vdeab
optimization problems, as well as feedback corgroll
parameter optimization for either optimal controfrhulation
or robust control formulation. Also, comparison tfe
algorithm with other existing methods is a subjefcbngoing
work and future publications.
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