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Abstract. We present a proof method for intuitionistic logic based on
Wallen’s matrix characterization. Our approach combines the connection
calculus and the sequent calculus. The search technique is based on noti-
ons of paths and connections and thus avoids redundancies in the search
space. During the proof search the computed first-order and intuitionistic
substitutions are used to simultaneously construct a sequent proof which
is more human oriented than the matrix proof. This allows to use our me-
thod within interactive proof environments. Furthermore we can consider
local substitutions instead of global ones and treat substitutions occurring
in different branches of the sequent proof independently. This reduces the
number of extra copies of formulae to be considered.

1 Introduction

Intuitionistic logic (J ), due to its constructive nature, is often viewed as the logic
of computation. It has an essential significance for the derivation of verifiably cor-
rect programs since theorems proven within J can be considered as specifications
of algorithms which are implicitly contained in the proof. Every formula valid in
intuitionistic logic is valid in classical logic as well. The intuitionistic proof , howe-
ver, contains more information than a classical one and many of the well known
classical normal forms and equivalences are not valid intuitionistically. As a con-
sequence, it is considerably more difficult to prove a theorem in J than finding a
classical proof. Reasoning in classical logic can be automated sufficiently well (see
e.g. [5, 12, 19, 2]) but there is not yet an efficient intuitionistic proof procedure.

Gödel has shown that J can be embedded into the modal logic S4 [10]: there
is a mapping M from J into S4 such that a formula F is valid in J if M(F )
is valid in S4. In his investigations on non-classical logics Wallen has used this
embedding to develop a matrix characterization for the validity of intuitionistic
formulae [18] which extends Bibel’s characterization for classical validity [3, 4].

In propositional classical logic a formula F is valid if there is a spanning set
of connections for F . A connection is a pair of atomic formulae with different
polarities. A set of connections spans a formula F if every path through a matrix
representation of F contains at least one connection. This characterization also
applies to predicate logic if all the terms contained in connected formulae can be
made identical by some global (first-order) (quantifier-) substitution σ.



In sequent calculi (like Gentzen’s LK and LJ [9] or Fitting’s calculi [7]) the
difference between classical and intuitionistic reasoning is expressed by certain
restrictions on the intuitionistic rules. If rules are inverted for the purpose of
proof search then these restrictions cause formulae to be deleted from a sequent.
Applying a rule (i.e. reducing a sub-formula) too early may thus delete a formula
which later will be necessary to complete the proof. Therefore the order of rule
applications must be arranged appropriately. In Wallen’s matrix characterization
this requirement is expressed by an intuitionistic substitution which makes the
prefixes of connected sub-formulae identical where a prefix essentially describes
the position of a sub-formula in the tree representation of the formula to be proved.

Both the first-order and the intuitionistic substitution have to be computed by
unification algorithms. For the latter a specialized string unification is required.
Together with the ordering of the formula tree these substitutions determine the
ordering in which a given formula F has to be reduced by the rules of the sequent
calculus. This ordering must be acyclic since otherwise no proof for F can be given.
During the proof process it may become necessary to create multiple instances of
the same sub-formula. The number of copies generated to complete the proof is
called multiplicity . Again, a multiplicity may be due to a quantifier or specific to
intuitionistic reasoning.

Developing an automated procedure which constructs intuitionistic proofs on
the basis of Wallen’s matrix characterization means extending Bibel’s connection
method [4] accordingly. The advantage of such a method is that the emphasis on
connections drastically reduces the search space compared to calculi analyzing the
outer structure of formulae such as the sequent calculus [9, 7] or tableaux calculi
[1, 16]. Furthermore it avoids the notational redundancy contained in these calculi
by a very compact representation.

The connection method is efficient for finding proofs according to the matrix
characterization of validity. Its result, however, is almost impossible to read. The-
refore attempts have been made to convert matrix proofs back into sequent proofs
which are much closer to ’natural’ mathematical reasoning. This is comparably
easy for classical propositional logic but becomes rather difficult for predicate lo-
gic [11] or intuitionistic logic [15]. In these cases the reduction ordering induced
by the substitutions has to be taken into account.

Although originally we were interested only in finding a matrix proof for a given
formula the above considerations led to the development of a proof search method
which constructs the matrix proof and a sequent proof almost simultaneously. The
partial sequent proof, however, is more than a byproduct since it can also be used
to support the proof search. It allows, for instance, to consider local substitutions
instead of global ones, i.e. substitutions which can be applied independently within
sub-proofs of a sequent proof. Such a local view reduces the number of copies of
sub-formulae which have to be generated to find a (global) substitution and keeps
the search space and the size of the proof smaller. Therefore we have developed a
hybrid method which combines the connection method and the sequent calculus.

After resuming the sequent calculus, the matrix characterization, and a version
of the connection method operating on non-normal forms in section 2 we shall
describe the relation between the sequent calculus and the connection method in
section 3. Section 4 will present our proof method and in section 5 we shall discuss



local substitutions and a modified matrix characterization. We conclude with a
few remarks on implementation issues and future investigations.

2 Preliminaries

2.1 Formula Trees, Types and Polarities

We assume the reader to be familiar with the language for first-order logic. A
formula tree is a representation of a formula as tree whose nodes are marked by
positions denoted by a0, a1, . . .. Each position corresponds to a label consisting of
the major connective or quantifier of a sub-formula or of the sub-formula itself
if it is atomic. Atomic positions are nodes labeled with atomic formulae and are
leafs of the tree. A formula tree for ∀xPx ⇒ Pa ∧ Pb is shown in figure 1. The
tree-ordering < is the (partial) ordering given by the formula tree: ai < aj if the
position ai is below aj in the formula tree.

y :
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∀x a1 ∧ a3
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α

β

Fig. 1. Formula tree without/with labels for principal/secondary types and polarities

Each sub-formula of a given formula F uniquely corresponds to a position in
the formula tree. A position is associated with a polarity, a principal type, and
a secondary type. The polarity (0 or 1) of a position is determined by the label
and polarity of its parent. The root position has polarity 0. The principal type of
a position is determined by its polarity and its label. Atomic positions have no
principal type. The secondary type of a position is determined by the principal
type of its parents. The root position has no secondary type. Polarity, principal
type, and secondary type of a position are defined in table 1 whose first entry, for
instance, means that a position labeled with ∧ and polarity 1 has principal type
α and its successor nodes have polarity 1 and secondary type α0.

principal type α secondary type α0

(A ∧ B)1 A1 B1

(A ∨ B)0 A0 B0

(A ⇒ B)0 A1 B0

(¬A)1 A0

(¬A)0 A1

principal type γ secondary type γ0

(∀xA)1 A1

(∃xA)0 A0

principal type β secondary type β0

(A ∧ B)0 A0 B0

(A ∨ B)1 A1 B1

(A ⇒ B)1 A0 B1

principal type δ secondary type δ0
(∀xA)0 A0

(∃xA)1 A1

Table 1. Polarity, principal type, and secondary type of positions

A formula tree for ∀xPx⇒ Pa ∧ Pb where the nodes additionally are labeled
with their types and polarity is also given in figure 1. For a given formula we shall
use α, α0, β, β0, Γ, Γ0,∆, and ∆0 to denote the sets of positions of type α, α0,
β, β0, γ, γ0, δ, and δ0 respectively.



2.2 The Sequent Calculus

A sequent has the form Γ ` ∆ where Γ (the antecedent) and ∆ (the succedent)
are sets of formulae. A proof of the sequent Γ ` ∆ is a tree rooted with Γ ` ∆
whose nodes are determined by rules and whose leafs are axioms. A formula F is
valid iff there is a proof of the sequent ` F . Table 2 shows the axioms and logical
rules of the intuitionistic sequent calculus.

Γ, A ` A, ∆ axiom

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
∨left

Γ, A, B ` ∆

Γ, A ∧ B ` ∆
∧left

Γ,¬A ` A, ∆

Γ,¬A ` ∆
¬left

Γ, A ⇒ B ` A, ∆ Γ, B ` ∆

Γ, A ⇒ B ` ∆
⇒ left

Γ, ∀xA, A[x\t] ` ∆

Γ, ∀xA ` ∆
∀left

Γ, A[x\a] ` ∆

Γ, ∃xA ` ∆
∃left∗

Γ ` A, B, ∆

Γ ` A ∨ B, ∆
∨right

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧ B, ∆
∧right

Γ, A `
Γ ` ¬A, ∆

¬right

Γ, A ` B

Γ ` A ⇒ B, ∆
⇒ right

Γ ` A[x\a]

Γ ` ∀xA, ∆
∀right∗

Γ ` A[x\t], ∃xA, ∆

Γ ` ∃xA, ∆
∃right

Table 2. A cut-free sequent calculus for intuitionistic logic

The parameter a of the rules ∀right∗ and ∃left∗ must not occur free in the
conclusion of the rule (i.e. not in Γ,A, or ∆). Similarly the term t in ∃right and
∀left must not contain variables which occur free in the conclusion. The calculus
is complete and correct for intuitionistic logic [7]. It differs from the Gentzen’s
calculus LJ [9] in the sense that sets of formulae are used instead of sequences –
which allows to omit structural rules like weakening and contraction – and that
more than one formula may occur in the succedent of a sequent. It is, however,
possible to convert proofs in the above calculus into LJ -proofs (see e.g. [8]).

The sequent calculus for intuitionistic logic differs from the classical one only
in the rules ⇒ right,¬right and ∀right. Whereas in the intuitionistic case the
succedent of the conclusion consists of at most one formula, the corresponding
classical rules may contain multiple formulae. We call these rules special rules. An
application of an inverted rule (read from the conclusion to the premise) is called
a reduction. Figure 2 presents a proof of the formula ∀xPx⇒ Pa ∧ Pb.

Pa ` Pa
∀xPx ` Pa

∀left
Pb ` Pb
∀xPx ` Pb

∀left

` ∀xPx ⇒ Pa ∧ Pb
⇒ right

Fig. 2. Sequent proof for ∀xPx ⇒ Pa ∧ Pb

2.3 A Matrix Characterization for Intuitionistic Logic

The matrix characterization for intuitionistic logic developed by Wallen [17, 18]
is based on the notion of paths and connections pioneered by Bibel for classical
logic [3, 4]. We first resume the characterization for classical first-order logic.



Theorem1. A formula F is classically valid iff there is
– a multiplicity µ encoding the number of distinct instances of sub-formulae to

be considered during the proof,
– an admissible first-order substitution σQ assigning a term to every variable in

the formula,
– a set of connections which are complementary under σQ such that every path

through the formula F contains a connection from this set.

For technical reasons we replace the variables in atomic formulae by their
quantifier positions. Thus positions of type γ and δ appear in atomic formulae
instead of variables. Consequently a first-order substitution σQ is a mapping from
the set Γ of positions of type γ to terms where again variables are replaced by
positions. The substitution1 σQ induces a relation <Q on ∆× Γ in the following
way: if σQ(u) = t then v <Q u for all v∈∆ that are sub-terms of t. A connection is
a pair of atomic positions labeled with atomic formulae having the same predicate
symbol but different polarities. If they are identical under σQ the connection is
said to be complementary under σQ. A path through a formula F is a subset of
the atomic positions of its formula tree; it is a horizontal path through the matrix
representation of F (see example in figure 3 and 4).

Since the quantifier rules ∃left and ∀right are constrained by the eigenvariable
condition the relation v <Q u expresses that the sub-formula labeled by v should
be reduced before reducing the one labeled by u. The transitive closure of the
union of <Q and the tree-ordering < is called the reduction ordering ¢, i.e. ¢:=
(< ∪ <Q)+. A first-order substitution σQ is admissible if the reduction ordering
¢ is irreflexive. In this case a proof in the sequent calculus is constructible. This
technique was first proposed by Bibel [4] as an alternative for skolemization in
classical logic.

The intuitionistic sequent calculus contains special rules which, if used ana-
lytically, cause formulae to be deleted from a sequent. To ensure that formulae
containing two atomic formulae of a connection as sub-formulae are not deleted
by special rules the corresponding atomic positions of this connection have to be
made complementary under an additional intuitionistic substitution.

To explain the necessary modifications of the classical matrix characterization
we extend the definitions of types and positions. A special position in a formula
tree is a position labeled with an atomic formula, negation (¬), implication (⇒), or
a universal quantifier (∀x). If a special position has polarity 1 it has intuitionistic
type φ and otherwise type ψ. To denote the set of positions of intuitionistic type
φ and ψ we use Φ and Ψ respectively. With each atomic position u we associate a
sequence pre(u) of positions called the prefix of u as follows: if u1<u2<. . .<un≤u
(1 ≤ n) are the elements of Φ ∪ Ψ that dominate u in the formula tree then
pre(u)= u1u2 · · ·un. Intuitionistic complementarity of atomic positions requires
that their prefixes can be unified2 by an intuitionistic substitution.

An intuitionistic substitution σJ is a mapping from Φ to (Φ ∪ Ψ)∗. It induces
a relation <J on Pos× (Φ ∪ Ψ) 3 in the following way: if σJ (u) = p then v <J u

1 For technical reasons we consider a substitution σ to be idempotent (i.e. σσ = σ).
2 To unify two prefixes we need an algorithm for special string unification [14].
3 By Pos = α∪β∪Γ∪∆ we denote the set of all the positions in a formula tree.



and pdc(u) <J v for all v ∈ Ψ occuring in the prefix p, where u ∈ Φ and pdc(u)
is the predecessor of u in the formula tree. As in the first-order case v <J u
means that v should be ‘reduced’ before u. A combined substitution consist of a
first-order substitution σQ and an intuitionistic substitution σJ . It is admissible
if the reduction ordering ¢:= (< ∪ <Q ∪ <J)+ is irreflexive.

Theorem2. A formula F is intuitionistically valid iff there is
– a multiplicity µ,
– an admissible combined substitution σ := (σQ, σJ ),
– a set of connections which are complementary under σ and such that every

path through the formula F contains a connection from this set.

Consider the formula ∀xPx ⇒ Pa ∧ Pb. Its formula tree is shown in figure 3;
its matrix representation in figure 4 where we place components of α-type sub-
formulae horizontally and components of β-type sub-formulae vertically.

yi 1 :

6 6 3k

⇒0 a0

∀1x a1
1

P1a1
1 a1

2

∀1x a2
1

P1a2
1 a2

2

∧0 a3

P0a a4 P0b a5

α

β
α

Fig. 3. Formula tree for F

P1a1
1:a0ā

1
1ā

1
2︸ ︷︷ ︸

prefix

P1a2
1:a0ā2

1ā2
2

P0a:a0a4

P0b:a0a5

Fig. 4. Matrix representation for F

The two instances of the formula ∀xPx are to be considered components of
an implicit α-type position (in the matrix they stay side by side). In the prefixes
the positions of type φ are emphasized with an over-bar. There are two paths
through the matrix, namely {Pa1

1, Pa
2
1, Pa} and {Pa1

1, Pa
2
1, P b}. They contain the

connections {Pa1
1, Pa} and {Pa2

1, P b} respectively which are both complementary
under the substitutions σQ = {a1

1\a, a2
1\b} and σJ = {ā1

1\ε, ā2
1\ε, ā1

2\a4, ā
2
2\a5}.

Therefore the formula is intuitionistically valid.

2.4 The Connection Method

A proof method for classical first-order logic based on theorem 1 is the connection
method developed by Bibel [4]. The proof search is driven by connections instead
of connectives as in the sequent calculus. Once a connection has been identified
all paths containing this connection are eliminated. If every paths is deleted the
formula is valid. In the following we present a proof method similar to the original
connection method which deals with formulae in non-normal form because of the
absence of such a form in the intuitionistic logic.

Definition 3. Two atomic formulae P andQ are α-/β-related iff the first common
node in the formula tree - going from the nodes labeled with P and Q down to
the root - is a position of type α/β. No atomic formula P is α-/β-related to itself.

If two atoms (atomic formulae) are α-related they appear side by side in a
matrix representation. They appear on top of each other if they are β-related.



Definition 4. An atom P is α-/β-related to a set of atomic formulae S iff P and
Q are α-/β-related for all formulae Q ∈ S. Every atom P is α-/β-related to the
empty set ∅.

Let A be the set of all atoms4 in a given first-order formula F . Then the
following procedure returns true iff F is intuitionistically valid.

Main-procedure
repeat

σ := (∅, ∅); valid := Proof(∅, ∅);
if valid = false then increase the multiplicity µ of the given formula F

until valid = true

Sub-procedure Proof(P, C) (P ⊆ A is the active path. C ⊆ A are proven subgoals.)

if no atom A ∈ A is α-related to P and β-related to C then return true
E := ∅; σ′ := σ
repeat

select an atom A ∈ A which is α-related to P ∪ E and β-related to C
if there is no such atom A then return false
E := E ∪ {A}; D := ∅; valid := false; noconnect := false
repeat

select an atom Ā ∈ A where Ā 6∈ D and either Ā ∈ P or Ā is α-related
to P ∪ {A} and (A, Ā) is a connection which is complementary under an
admissible combined substitution σ computed using σ′

if there is no such atom Ā
then noconnect := true
else D := D ∪ {Ā}; valid := Proof(P ∪ {A}, {Ā})

if valid = true then valid := Proof(P, C ∪ {A})
until valid = true or noconnect = true

until valid = true
return true

Note that in Proof all variables except for the set A and the substitution σ are
local. An example proof using the connection method is given in the next section.

3 Relating Sequent Calculus and Connection Method

In this section we point out the relationship between a proof with the connec-
tion method and the corresponding sequent proof. Firstly we deal with classical
propositional logic. After that we consider the intuitionistic propositional case.

3.1 Classical (Propositional) Logic

Consider F ≡ (S∧(¬(T ⇒ R) ⇒ P )) ⇒ (¬((P ⇒ Q)∧(T ⇒ R)) ⇒ (S∧¬¬P )).
The formula tree (skeleton) of this formula is shown in figure 5, its matrix re-
presentation in figure 6. In the skeleton only the positions of principal type β,
i.e. β1, β2, β3 and β4, are marked.5 Additionally each branch rooted at such a β-
position is marked with a letter, namely a,b,...,h. Since we deal with formulae in
4 Different atoms having the same predicate symbol are considered distinct.
5 Positions of type β play the essential role during the proof process. In our presentation

of a formula tree we focus our attention on positions of this type and omit the others.



non-normal form the matrix in figure 6 is nested which means that an entry in a
matrix can itself be a matrix. Components of sub-formulae of type β are placed
one upon the other. Atoms are marked with their polarities, whereas polarity 0
indicates that the atom occurs positively within the negational normal form and
polarity 1 means that it occurs negatively. A reduction of a position means the
sub-formula rooted at this position has to be reduced in the sequent calculus.

}> }>

y :

Y *
o 7

Iµ
Y 1

*iy :

P1 Q0 R0 T1

P0 S0
R1

S1

T0

P1

β1 β2 β3

β4
a b c d

g h

e f

Fig. 5. Skeleton of the formula tree for F
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R1

T0

P1

S1

Fig. 6. Matrix of the formula F

We begin by proving the classical validity of the formula F . After each connec-
tion step we show the structure of the corresponding sequent proof. In the first
step – shown in figure 7 – we connect atom P 1 which is in branch ’a’ of the formula
tree with P 0 in branch ’c’. If these atoms shall form an axiom in the sequent proof
we have to reduce positions β1 and β2. Whenever we reduce a position of princi-
pal type β the sequent proof will split into two branches. Thus after reducing β1

there is a split into two branches ’a’ and ’b’. Now we reduce β2 in the ’a’-branch
of the sequent proof which results in the branches ’c’ and ’d’. The ’c’-branch now
contains an axiom of the form Γ, P 1 ` P 0,∆. This branch is said to be closed.6

Note that we do not perform reductions of positions which do not have type β
(i.e. are of type α, γ, or δ) explicitly. Since reducing positions of type α, γ, or δ
do not split the sequent proof they can be reduced straightforwardly.

P1

R0

P0

S0

Q0

T1

R1

T0

P1

S1
c

a

d

b

P1 ` P0
?

?β2

β1

Fig. 7. The first step in the connection/sequent proof of F

In the sequent proof there are two branches ’b’ and ’d’ which do not contain
an axiom. They are said to be open. We first want to close branch ’d’. In the
formula tree this branch only contains the atom S0. Connecting it with atom
S1 (obtained without reducing any β-position) leads to an axiom of the form
Γ, S1 ` S0,∆ which closes this branch as shown in figure 8.

P1

R0

P0

S0

Q0

T1

R1

T0

P1

S1
c

a

d

b

P1 ` P0

?

S1 ` S0

β2

β1

Fig. 8. The second step in the connection/sequent proof of F

6 Open branches (corresponding to open subgoals) are marked with a ’?’ whereas ’•’
(see e.g. figure 13) indicates closed branches.



The only branch not containing an axiom is the open branch ’b’. In the third
step we connect R0 with R1 (see figure 9). Since R1 occurs in the ’e’/’g’-branch of
the formula tree we first have to reduce position β3 and β4 successively. Therefore
the ’b’-branch in the sequent proof is split twice. Whereas β3 is responsible for
splitting into the branches ’e’ and ’f’, β4 splits the ’e’-branch into ’g’ and ’h’. As
the ’g’-branch is closed by an axiom the only open branches are ’h’ and ’f’. In the
next step we connect from T 0 to T 1 closing the ’h’-branch in the sequent calculus
as shown in figure 9. Since the ’b’-branch already contains T 1 we do not have to
reduce a β-position.

P1.

R0

P0

S0

Q0

T1

R1

T0

P1

S1
c

a

d

b

g

e

h

f

P1 ` P0 S1 ` S0

R1 ` R0 T1 ` T0

?

β2

β1

β4

β3

Fig. 9. The third/fourth step in the connection/sequent proof of F

There is only one open branch left, namely the ’f’-branch. Connecting from P 1

to P 0 splits it into the branches ’c’ and ’d’, as the atom P 0 occurs in the ’c’-branch
of the formula tree (see figure 10). Closing this ’c’-branch with an axiom in the
sequent proof, we finally have to close the ’d’-branch. In this last step we connect
from S0 to S1, which does not lead to any open branches, since the atom S1 can
be reached without a reduction of β-positions.

P1.

R0

P0

S0

Q0

T1

R1.

T0.

P1

S1
c

a

d

b

g

e

h c

f

dP1 ` P0 S1 ` S0
R1 ` R0 T1 ` T0 P1 ` P0 S1 ` S0

β2

β1

β4

β3

β2

Fig. 10. The fifth/sixth step in the connection/sequent proof of F

We successfully completed the connection proof and every leaf in the sequent
proof is an axiom. Therefore the formula F is classically valid.

3.2 Intuitionistic (Propositional) Logic

In intuitionistic logic we additionally have to unify the prefixes of the atomic
formulae in every connection. This leads to an intuitionistic substitution σJ which
induces a relation <J on the positions of the formula tree as defined in section 2.3.
Together with the tree ordering < it determines the reduction ordering ¢ where
v ¢ u means that position v should be reduced before position u. Performing all
these steps w.r.t. the formula F above eventually leads to the following reduction
ordering on the positions of principal type β (i.e. β1, β2, β3 and β4):

β2 ¢ β3 ¢ β1 ¢ β4 .



For the sequent proof this means that we have to split the position β2 before we
reduce β3 and so on. Therefore the intuitionistic sequent proof shown in figure 11
differs from the classical one in order of rule application.7

(P 1 ` P 0)

(R1 ` R0) (T 1 ` T 0)

(P 1 ` P 0)

(S1 ` S0)

β1

β4

β3

β2

a b

e f

c d

g h

Fig. 11. The structure of an intuitionistic sequent proof of F

The sequent proof in intuitionistic logic cannot be derived as easily as in clas-
sical propositional logic. In the latter case each connection in a matrix proof
corresponds to exactly one axiom in the sequent calculus. For intuitionistic lo-
gic (even in the propositional part) this property does not hold anymore. The
situation is similar for classical predicate logic because the eigenvariable condition
restricts the order in which positions can be reduced (encoded in the relation
<Q defined in section 2.3). To avoid these problems our approach will take the
reduction ordering ¢ into account during the construction of the proof.

4 A Connection Based Proof Method

Before we present our proof procedure we shall investigate the intuitionistic vali-
dity of the previous section’s example a little more detailed.

4.1 An Introductory Example

We have seen that it is more efficient to consider the reduction ordering ¢ (par-
ticularly <J) during the process of constructing a matrix proof and a sequent
proof simultaneously. Due to the importance of β-positions within the reduction
ordering we slightly modify the definition of active paths and define open subgoals.

Definition 5. The β-prefix of an atomic position u, denoted by β-pre(u), is the
set of all elements v1, . . . , vn ∈ β0 (positions of type β0) that dominate u in the
formula tree, i.e. β-pre(u) := {v ∈ β0 | v < u}.

In the previous section as well as in the example below we have marked bran-
ches in the sequent proof with letters (e.g. a, b,. . . ) to keep the notation simple.
For the following definitions we have to point out that each letter corresponds to
exactly one position of type β0. If, for instance, the reduction of a β-position β1

leads to the branches ’a’ and ’b’ in the sequent proof, they will be identified by
the two successor positions of β1 in the formula tree which are both of type β0.

7 Note that an intuitionistic proof does not necessarily differ from the classical one.



Definition 6. The active β-path Pβ ⊆ β0 for a position u of type β0 is the set of
all the labels (positions of type β0) obtained by going from the root of the sequent
proof to the node marked with u while collecting the label of every branch. An
active β-path Pβ induces an active path P for the position u where P = {v | v
atomic position and β-pre(v) ⊆ Pβ}.

The active path P for u is thus the set of all the atoms which can be reached
from the u-branch in the sequent proof (i.e. the branch leading from the root to
the position u) without passing through a β-position. In other words, it is the set
of atoms which can be obtained by reducing the corresponding sequent without
reducing positions of type β.

Definition 7. The set of open subgoals Cβ ⊆ β0 is the set of the positions of type
β0 labeling the open branches in the sequent proof. Each open branch is assigned
its active (β-)path.

Consider again F ≡ (S∧(¬(T⇒R) ⇒P )) ⇒ (¬((P⇒Q)∧(T⇒R)) ⇒ (S∧¬¬P ))

and its formula tree given below
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To prove F we first select an atom8 , say P 1, in branch ’a’ of the formula tree
and connect it with the atom P 0 in the ’c’-branch. For that we have to reduce
two β-positions, namely β1 and β2. Unifying the prefixes of the two atoms leads
to an intuitionistic substitution. Together with the tree ordering it induces the
reduction ordering β2 ¢ β1. Thus we have to split into the branches ’c’ and ’d’
(corresponding to β2) before we split the ’c’-branch into ’a’ and ’b’ (corresponding
to β1). This closes the ’a’-branch in the sequent proof as shown in figure 12. In
the next step we choose the ’d’-branch from the set of open subgoals Cβ = {b,
d}. The active β-path Pβ = {d} for ’d’ induces an active path P = {S1, S0}. The
only atom S0 in the ’d’-branch of the formula tree can therefore be connected to
S1 in the active path which closes this branch.

P1

R0

P0

S0

Q0

T1

R1

T0

P1

S1 (P1 ` P0)

a bβ1

c dβ2

?

(S1 ` S0)

Fig. 12. The first and second proof step

The only open branch is now the ’b’-branch (Cβ = {b}). In the formula tree
this branch contains two atoms R0 and T 1 from which we select R0 and connect
it with R1 which is not included in the active path P = {S1, P 0, R0, T 1} for
’b’ (Pβ = {c,b}). To make R0 form an axiom with R1 we have to reduce β3

8 To keep the notation simple, we speak of atoms meaning the position labeling it.



which splits the proof into ’e’ and ’f’ and (in branch ’e’) β4 which splits the ’e’-
branch into ’g’ and ’h’. The unification of the prefixes of these two atoms yields
an intuitionistic substitution which – together with the tree ordering – induces
the reduction ordering (concerning the β-positions) β2 ¢ β3 ¢ β1 ¢ β4. That
means we have to insert the split into ’e’ and ’f’ between the reduction of β2 and
β1 (leaving the rest of the partial sequent proof remains unchanged) and split into
the branches ’g’ and ’h’ after reducing β1, as shown in figure 13.
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Fig. 13. The third proof step

After closing branch ’g’ we get two additional open branches ’f’ and ’h’ (Cβ =
{f, h}). The active β-paths for ’f’ (Pβ = {c, f}) and for ’h’ (Pβ = {c, e, b, h})
induce P = {S1, P 0, P 1} and P = {S1, P 0, R0, T 1, T 0} respectively. To close
these branches we connect P 1 in the ’f’-branch of the formula tree to P 1 in the
active path for ’f’ and T 0 in the ’h’-branch to T 1 in the active path for ’h’. These
steps conclude the intuitionistic proof for F , since Cβ = ∅ and therefore each
branch in the sequent proof is closed.
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Fig. 14. The fourth and fifth proof step

4.2 The Proof Procedure

The explanations given in the above example should be sufficient to understand
the procedure carrying out our proof method. In principle it is similar to the
version of the connection method introduced in section 2.4. There is, however, a
difference in the handling of subgoals and active paths. The original connection
method focuses on connecting new atoms which are selected according to the
current active path P and the set C of already proven subgoals. P and C are
parameters of the procedure. The method which we shall describe below aims at
closing open subgoals of type β0 (a set which may grow or decrease in the process)
and uses connections related to their active β-paths for this purpose. The active
path depends on the selected subgoal and will be computed within the process.

Let A be the set of all atoms in a given first-order formula F . The following
procedure returns true iff F is intuitionistically valid.

Main-procedure
repeat

σ := (∅, ∅); initialize ¢β ; valid := Proof({∅})
if valid = false then increase the multiplicity µ of the given formula F

until valid = true



Sub-procedure Proof(Cβ) (Cβ ⊆ Bi
0 are subgoals which still have to be proven)

if Cβ = ∅ then return true
E := ∅; σ′ := σ; ¢′β :=¢β ; select an element aβ ∈ Cβ

repeat
select an atom A ∈ A where aβ ⊆ β-pre(A) which is α-related to E
if there is no such atom A then return false
E := E ∪ {A}; D := ∅ ; valid := false ; noconnect := false
compute the active β-path Pβ for aβ and its active path P

using the β-reduction ordering ¢′β
repeat

select an atom Ā ∈ A where Ā 6∈ D and either Ā ∈ P or Ā is α-related
to P ∪ {A} and (A, Ā) is a connection which is complementary under an
admissible combined substitution σ and an admissible β-reduction ordering
¢β computed using σ′ and ¢′β
compute the set Cβ expanded by the new open subgoals
if there is no such atom Ā

then noconnect := true
else D := D ∪ {Ā}; valid := Proof(Cβ \ {aβ})

until valid = true or noconnect = true
until valid = true
return true

Note that all variables in Proof – except for A, σ, and ¢β – are local.

The above algorithm uses a few new concepts which deserve explanation. Since
it is possible to reduce the same formula in different branches of the sequent proof
we have to distinguish these branches (identified with positions of type β0) by an
index. Bi

0 is a set of indexed positions of type β0 included in the sequent proof.
Previously we had required that the reduction ordering defines a definite rela-

tion between all β-positions. This is not strictly necessary. If a substitution does
not lead to an ordering between two branches in the sequent proof we have to
encode the permutability between these branches. This is done by an extended
definition of paths together with a so-called β-reduction ordering ¢β . ¢β consists
of two relations, namely ≈⊆β0×β0 and 6≈⊆ β0×β0. The relation u ≈ v (u, v ∈β0)
means that there is a sequent proof where the branches u and v are in the same
β-path (that is a way from the root to a leaf), whereas u 6≈ v (u, v ∈β0) means
that there is no such a sequent proof. These two relations induce an active path
Pβ := (Pn

β ,Pp
β). The n-path Pn

β for a β0-position u contains all β0-positions which
are necessarily in the active β-path for u in all sequent proofs under considera-
tion. The p-path Pp

β for u denotes the set of β0-positions which are possibly in
the active β-path of u. 9

Our method always attempts to select a reduction ordering which allows to
connect to the active path. This shortens proofs substantially since a connec-
tion to the active path does not lead to any new open subgoal. If we ignore
the reduction ordering during the search for connections we will get a version of
the connection method. Therefore our method is a generalization of the original
connection method.

9 In the above procedure we have omitted such details. For a full description see [14].



5 Local Substitutions

The sequent proof makes it possible to use so-called local substitutions instead of
global ones. We present an approach to treat first-order as well as intuitionistic
substitutions locally.

The connection method and our proof method presented above use global sub-
stitutions. If we substitute a term t for a variable x then every occurence of x in
the corresponding sequent proof has to be replaced by t. This is not very reaso-
nable, since in a sequent proof we are allowed to replace different terms for the
same variable if it occurs in different branches of the proof.

Let us consider the formula ∀xPx ⇒ Pa ∧ Pb from section 2. In the matrix
proof in section 2.3 we needed a copy of the subformula ∀xPx (even in the classical
case) since we had to assign two terms a and b to the variable x. However in the
sequent proof (see figure 15) a duplication does not (explictly) occur. We could
avoid this duplication if we treat the substitutions of the two branches of the
sequent proof independently. Therefore we take two substitutions into account,
namely σ1 = {x\a} and σ2 = {x\b}, which are related to the two different
branches in the sequent proof shown in figure 15.

Pa ` Pa
∀xPx ` Pa

Pb ` Pb
∀xPx ` Pb

` ∀xPx ⇒ Pa ∧ Pb

σ1 = {x\a} σ2 = {x\b}
σ = {}

Pa ` Pa Pb ` Pb

Fig. 15. A sequent proof for ∀xPx ⇒ Pa ∧ Pb and its structure

To perform such a step it is necessary that the β-position aβ (a3 in our example)
responsible for the split is reduced before the γ-position aγ (a1 labeled with ∀x in
our example).10 That is, either the reduction-ordering yields aβ ¢ aγ or we have
to introduce this ordering and look if it is admissible. This technique is similar
to Bibel’s splitting technique [4]. Our approach, however, is simpler and can be
applied more rigorously since we are able to exploit the sequent proof. When
computing the substitution which has to make a connection complementary we
only have to consider substitutions related to branches of the active β-path. After
that we have to divide the computed substitution such that its parts relate to the
corresponding branches.

In the following example we deal with the intuitionistic substitution. Consider
the formula F ≡ ¬¬P ⇒ ¬¬P ∧ ¬¬P . Its matrix representation together with
the prefixes of the atoms is given in figure 16.

P0: a0a1ā2a3
P1: a0ā4a6ā7

P1: a0ā4a8ā9

Fig. 16. Matrix for F

σ1={ā2\a6, ā7\a3} σ2={ā2\a8, ā9\a3}
σ0={ā4\a1}

P1 ` P0 P1 ` P0

Fig. 17. Structure of the sequent proof for F

There are two paths through the matrix each of them containing a connec-
tion. To make the first connection complementary we have to unify the pre-

10 Otherwise we have to replace the variable in the common branch before the split which
makes it necessary to consider an explicit duplication of the formula.



fixes a0a1ā2a3 and a0ā4a6ā7
11 which results in the intuitionistic substitution

σJ = {ā4\a1b̄, ā2\b̄ a6c̄, ā7\c̄ a3}12 where b̄ and c̄ are new variables. Apply-
ing this substitution to the prefixes of the second connection leads to the prefixes
a0a1b̄ a6c̄ a3 and a0a1b̄ a8a9 respectively which do not unify. It would be necessary
to duplicate the subformula ¬P 0 although this copy does not appear (explicitly)
in the sequent proof. To avoid this duplication we again consider local substitu-
tions. Since the position labeled with ∧ is reduced before ¬P 0 (induced by the
substitution) the subformula ¬P 0 with the prefix ā2a3 occurs in both branches of
the sequent proof. Therefore also the variable ā2 can substituted by two different
strings which make the second connection complementary. The local substitutions
σ1 and σ2 and the substitution σ0 which is common to both branches together
with the structure of the sequent proof are shown in figure 17.13 Both connections
are now complementary under the substitution σ0 ∪ σ1 and σ0 ∪ σ2 respectively.

Employing local substitutions reduces the number of copies of formulae to be
considered in a proof and thus the multiplicity. A copy will be required if and only
if this copy also appears explicitly in the sequent proof. Since duplicated formulae
can be very large this reduces the search space for a proof as well as its size.

We conclude this section by presenting a matrix characterisation for intuitio-
nistic logic using local substitutions.

Definition 8. A local connection ((A, a), (Ā, ā)), where a, ā∈Bi
0, a=β`-pre(A)14

and ā = β`-pre(Ā), is locally complementary under ¢β and σ∗ if the connec-
tion (A, Ā) is complementary under the admissible combined substitution σ :=⊕

(σ∗(u) | u ∈ Pβ for a or u ∈ Pβ for ā) where
⊕

is the combination of
substitutions (for details see [14]).

Theorem9. A formula F is intuitionistically valid iff there is
– a multiplicity µ,
– an admissible β-reduction ordering ¢β (encoding the sequent proof structure),
– a local substitution σ∗ which assigns each indexed β0-position u ∈ Bi

0 a com-
bined substitution σ := (σQ, σJ),

– a set of local connections which are locally complementary under ¢β and σ∗

such that every path through F contains a connection from this set.

6 Conclusion

In this paper he have presented a proof method for intuitionistic logic which de-
velops a matrix proof and a sequent proof simultaneously. Our method extends
Bibel’s connection method [4] according Wallen’s matrix characterization of intui-
tionistic validity [18] but it does not require a normal form. Due to an emphasis
on connections instead of the outer structure of formulae the search space can
be kept comparably small. Developing the sequent proof during the proof pro-
cess leads to a natural representation of a formal proof which can be used within
11 We emphasize the positions of type φ which play the part of variables by an overbar.
12 This (and only this !) is in fact the most general unifier.
13 We have omitted the extra variables b̄ and c̄.
14 β`-pre(A) is the last position of type β0 that dominates A in the formula tree.



interactive proof systems. Furthermore, it allows considering local substitutions
instead of global ones which reduces the search space even more than a purely
matrix-oriented proof method would do.

The efficiency of our proof procedure also depends on the unification algorithm
computing the so-called intuitionistic substitutions. In [14] we have developed
a specialized string unification algorithm which is more efficient than the one
presented in [13] since it computes only the most general substitutions which
make the prefixes equal.

The sequent proof generated by our procedure can easily be transformed into
a Gentzen-style sequent proof (see [15] for details). Thus we can realize our pro-
cedure as a tactic of the NuPRL system [6] in order to support the development
of proofs and verified routine programs within a rich constructive theory.
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10. K. Gödel. An interpretation of the intuitionistic sentential logic. In The Philosophy

of Mathematics, p. 128–129. Oxford University Press, 1969.
11. D. S. Korn. KonSequenz – Ein Konnektionsmethoden-gesteuertes Sequen-

zenbeweis-Verfahren. Master’s thesis, TH Darmstadt, FG Intellektik, 1993.
12. R. Letz, J. Schumann, S. Bayerl, W. Bibel. Setheo: A high-performance theo-

rem prover. Journal of Automated Reasoning, 8:183–212, 1992.
13. H. J. Ohlbach. A resolution calculus for modal logics. Ph.D. Thesis (SEKI Report

SR-88-08), FB Informatik, Universität Kaiserslautern, 1988.
14. J. Otten. Ein konnektionenorientiertes Beweisverfahren für intuitionistische Logik.

Master’s thesis, TH Darmstadt, FG Intellektik, 1995.
15. S. Schmitt, C. Kreitz. On transforming intuitionistic matrix proofs into stan-

dard-sequent proofs. In Proceedings Tableaux Workshop 1995 , this volume.
16. R. M. Smullyan. First-Order Logic, Ergebnisse der Mathematik 43. 1968.
17. L. Wallen. Matrix proof methods for modal logics. IJCAI-87 , p. 917–923. 1987.
18. L. Wallen. Automated deduction in nonclassical logic. MIT Press, 1990.
19. L. Wos et. al. Automated reasoning contributes to mathematics and logic. In

Proceedings of the 10th CADE, LNCS 449, p. 485–499. Springer Verlag 1990.

This article was processed using the LaTEX macro package with LLNCS style


