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A CONNECTION BETWEEN BLOCK AND CONVOLUTIONAL CODES*

G. SOLOMON" AND H. C. A. VAN TILBORG$

Abstract. Convolutional codes of any rate and any constraint length give rise to a sequence of
quasi-cyclic codes. Conversely, any quasi-cyclic code may be convolutionally encoded. Among the quasi-
cyclic codes are the quadratic residue codes, Reed-Solomon codes and optimal BCH codes. The constraint
length K for the convolutional encoding of many of these codes (Golay, (48, 24) QR, etc.) turns out to be
surprisingly small. Thus using the soft decoding techniques for convolutional decoding we now have a new
maximum likelihood decoding algorithm for many block codes. Conversely an optimal quasi-cyclic code will
yield a convolutional encoding with optimal local properties and therefore with good infinite convolutional
coding properties.

Introduction. This paper is divided into 3 sections. In the first section we establish
a relation between quasi-cyclic codes and convolutional codes. Let io, il," ", in-1 be
the first n information symbols of a rate 21- convolutional code with constraint length K. If
we stipulate that the next (K- 1) information symbols coincide with the first (K- 1)
information symbols (i.e. i0," ", iK-2), then the resulting 2n output symbols form a
quasi-cyclic code. Conversely a quasi-cyclic code is shown to be convolutionally
encodable. Our main thrust here is to minimize the constraint length K. We end the
section by observing that the preceding results apply to any rate kin convolutional
(resp. quasi-cyclic) code.

In {} 2 we extend the notion of quasi-cyclic codes and obtain a modified con-
volutional encoding, allowing us to include a larger class of codes. It also allows us to
obtain a small constraint length K. Among the codes in this category are the quadratic
residue codes, the Reed-Solomon codes, optimal BCH codes and many extended cyclic
codes. One obvious advantage of this is a tew maximum likelihood (soft and hard
decision) decoding of these codes using convolutional decoding techniques. We illus-
trate the above by giving various examples, most notably a 4-stage convolutional
encoding of the binary Golay (24, 12) code.

Finally in {} 3, we present tables of rate , 1/2 and 32- block codes and their convolutional
encoding.

One can use {} 6 in Chap. 16 of [4] as a starting reference to quasi-cyclic codes and
references [3] and [6] to convolutional codes and their decoding.

1. From convolutional to quasi-cyclic codes and back. Let us consider a con-
volutional code (binary or nonbinary) of rate with constraint length K. The taps are
described by the polynomials

K-1 K-1

p(x) pix and q(x)-- , qix i,
=0 =0

where (po, q0) # (0, 0) and (pc-1, qr-1) # (0, 0). (See Fig. 1.) Let n be an integer. We
shall only consider input sequences of the form i-+x, ", i-1, i0, ix," ", in-x, where
i_j in-., for 1 -<_/’ -<K 1, i.e., sequences of length n +K 1, in which the first K 1
symbols are repeated at the end.

* Received by the editors August 2, 1977 and in final revised form October 24, 1978. This paper presents
the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of
Technology, supported by the National Aeronautics and Space Administration under Contract NAS 7-100.
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aj p(x) + x + x

b. q(x)= 1AI-X3-X4
K=5.

FIG. 1. Binary convolutional code with K 5.

The two output sequences depend on the input sequence in the following way:
K-1

ai Y. plii-t, 0 <- j <= n 1,
/=0

K-1

bi Z qtii-,, 0 <- j <- n 1.
/=0

This is a trellis code with the same initial and final encoder states taking on any possible
value (as opposed to the all zero state)! This fact is used to great effect in decoding (see
the end of this section). Turning back to our notations we see that in terms of
polynomials, we have, writing

n--1

i(x)= Z ilXl,
/=0

the relations

(1.1)

n-1 n-1

a(x)= alx and b(x)= blX l,
=0 =0

a(x) =-- i(x)p(x) (mod x" 1),

b(x) =- i(x)q(x) (mod x" 1).

In vector notation, this comes down to

(io, ix,’’ ", i,,-x)(P Q) (ao, ax,’", an-l, bo, bl,’" ", bn-1),

where P and Q are n n circulants with top row (po, pl, , p,-1, 0, , 0), respec-
tively (q0, ql,""", qk-1, 0,""", 0).

From the observations above it follows that the codewords from our convolutional
code are the codewords in the linear code generated by the matrix

G=(PIQ).

Codes of this form are called quasi-cyclic codes. The rank of this matrix is easily
determined by the following theorem, well known from the theory of algebra.

THEOREM 1.1. Letp (x) and q (x) be two polynomials of degree at most n 1 andP
and Q the associated circulants. Then

rank (P[ Q) n degree of g.c.d. (p (x), q (x), x" 1).
n--1

Proof. Let f(x) g.c.d. (p (x), q (x), x 1). Moreover let (x) Y./=o ilx. Then

(1.2) (io,’.’, i-I)(PIQ)=(0,’",010,’",0)

iff i(x)p(x)=-i(x)q(x)=-O(mod xn- 1), i.e., iff i(x) is divisible by (x- 1)/f(x). So the
dimension of the subspace of vectors (i0, , i,-1) satisfying (1.2) equals the degree of
f. Therefore, the rank of (P]Q) is n-degree f.
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Example 1.2. The binary code with n 7, p(x) 1 + x + x 3 q(x) 1 + x 2
-at- x 3

Single g.c.d. (p(x), q(x), x7-1) 1, one has

rank (P[ O) 7.

Of specific interest are quasi-cyclic codes with generator matrix

where I is the n x n identity matrix and F a circulant with top row (f0,"" ", fn-1)
n-1 fixi(associated with the polynomial f(x)= Yi=o ). Obviously such a code is systematic

on the first n positions.
THEOREM 1.3. Letp(x) and q(x) be two polynomials ofdegree at most n 1 and let

P and Q be the associated circulants. Then the code C generated by (PIQ) can also be
generated by (IIF), where F is a circulant, iff (p(x),xn-1) 1. In this case q(x)=
fix)p (x) (mod x 1 ).

Proof. (1If(x)) is in the code iff there is a polynomial i(x) such that
(i(x)p(x), i(x)q(x)) (1, f(x))(mod x 1), i.e., iff p(x) has an inverse (mod x 1), i.e.,
iff g.c.d. (p(x),xn-l)= 1. Clearly in this case i(x)=(p(x))-1 and q(x)--
p(x)f(x) (mod x"- 1).

Remark. From q(x)=-f(x)p(x)(modxn-1) and (1.1) it follows that b(x)=-
f(x)a (x)(mod x 1).

Example 1.4. p(x) 1 + x + x 2, q(x) 1 + x 2 n 7 In this case (p(x), xv- 1) 1
One can find f(x) by the Euclidean algorithm. It turns out that f(x) x + x 3 + x 4 + x 6.

From a convolutional coding point of view one wants the encoding register to have
few stages. In other words, the maximum degree of p(x) and q(x) should be small. So we
now look at the reverse problem. Oiven a code C generated by (I IF) where F is a
circulant associated with a polynomial f(x), find polynomials p(x)= i=o pix, q(x)=
K-1

i=0 qix, (P0, q0) (0, 0), (PK-1, qK-1) (01.0) such that (P[ Q) generates the same
code C (where P and Q are the circulants associated with p(x) and q(x)). For this we
rephrase a theorem that can be found in J. J. Bussgang [2].

-1
fix there existTHEOREM 1.5. For every integer n and polynomial f(x)=i=o

K-1 EK-1polynomials p(x) /=o pix q(x) /=o qix such that q(x)=-f(x)p(x) (mod (x 1)),
K <- [(n + 1)/2], (po, qo) # (0, 0) and (p/_l, qK-1) # (0, 0).

Proof. Look at the coefficients pi as variables. Since we want the coefficient of x in
q(x)=-f(x)p(x)(mod x- 1) to be zero for l>=K, we need a nontrivial solution of the
equations

n--1
X Pofn-X + Plfn-2 +" + PK-1 fn-K 0
n-2x Pof-2 + P f-3 +" + PK-lf-K- 0

(1.2)

K
X POfK+PlfK-I+’" "+PK-lfl =0.

For K [(n + 1)/2] one has more unknowns than relations, which guarantees a
nontrivial solution p(x). One computes q(x) from q(x)=-f(x)p(x)(mod x- 1). The
condition (p0, q0) (0, 0) can be met by repeatedly dividing p(x) and q(x) by x if
necessary. If (PK’+I, qK’-l) (PK, qK) (0, 0) for some K’ <K in this solution and
(PK’, qK’) (0, 0), then we have to replace K by K’. I-1

One should realize however that the polynomials p(x) and q(x) obtained from
Theorem 1.5 do not necessarily have the property g.c.d. (p(x), q(x), x" 1) 1. On the
other hand each solution (p(x), q(x)) with max degree (p(x), q(x))<- (n- 1)/2] is a
solution of (1.2) and can be obtained from Theorem 1.5.
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However if one accepts equivalent codes, one may possibly find small degree
polynomials p(x) and q(x), with g.c.d. (p(x), q(x), x 1) 1, by applying Theorem 1.5
to the codes obtained from the following theorem.

THEOREM 1.6. Let Ca and C2 be two quasi-cyclic codes of length 2n, generated by
(1, fx(X)), respectively (1, f2(x)). Then C1 and C2 have the same weight enumerator ifany
of the following relations holds:

(i) f2(x)=-xlfl(x) (mod (xn-1)), O<-l<-n-1,
(ii) f2(x)fi (x), where (fl(x), x 1)= 1,

(iii) f2(x)=fx(x)(mod x" 1), where (l, n)= 1.
Proof. Let w(a(x),b(x)) denote the sum of the weights of the vectors

(ao,’’’, a-l) and (bo,"’’, b,,-1) associated with a(x) and b(x).
(i) w(i(x), i(x)f2(X))= w(i(x), i(x)xlfa(X))= w(i(x), i(X)fl(X)).
(ii) Since (1, fx)= fl(f2, 1) and (f2, 1)= f2(1, fl) the codes generated by (1, fl) and

(fz, 1) are the same. So (ii) follows from the obvious equivalence of the codes
generated by (1,/2) and (/2, 1).

(iii) Since (l, n)= 1, for each i(x) there exists a polynomial f(x) such that f(x )
i(x)(mod x" 1).

Moreover multiplying by mod n gives a permutation of the integers 0, 1,. , n- 1.
So

w(i(x), i(x)f2(X))= w(i(x), i(X)fl(xl))= W(f(xl), y(xl)fl(XI))

w(j(x), j(x)fx(x)).

By means of Theorems 1.5 and 1.6 one can try in individual cases to find code
generators with small constraint length. In general we cannot say anything about the
minimum value of K, but for certain classes of codes we can and shall do this (in 2).

Table 1 (see 3) gives a list of code generators p(x) and q(x) (and f(x)) for n <-21.
The number d stands for the minimum distance" and K for the constraint length. Of
course there is no reason to restrict ourself to (2n, n) quasi-cyclic codes. A rate kin
convolutional encoder with input sequences (ix, , ik), where i.
(ij,-K+X," ", ij.-x, t’.o, i,," ", i,n-x), l<=j <- k, corresponds to a linear code (nm, km)
code with constraint length K and generator matrix:

Pll P12G--
P, P P,

where Pii is a m m circulant.
In general it remains a problem to go beyond the existing bounds on the minimum

distance of such a code. Tables 2 and 3 list some rate 1/2 and codes, by the polynomials
pii(x) associated with Pii.

Decoding. A quasi-cyclic code may be encoded convolutionally. Consequently it
may be decoded by convolutional decoding techniques. The usual convolutional code is
a trellis code with zeros in the first and last (K- 1) positions of the encoder.

The trellis codes here begin and end with the same binary (K 1) tuple which is not
necessarily zero. Thus any hard or soft decoding algorithm, e.g., Viterbi, Fano sequen-
tial, etc., may be adapted to decode the block codes here. In particular if one knew the
initial (K-1) entries, then the technique would be identical in complexity. For each
possible (K- 1) tuple, one can perform a decoding, and then choose the most likely
candidate under the decoding criterion used.

A Viterbi decoding for constraint length 4 was applied 8 times in the maximum
likelihood decoding of the Golay (24, 12; 8) code by Booth, Herro and Solomon [1].
The Golay code (as seen in the next section) can be made to exhibit a quasi-cyclic
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structure. Now 2K-1 decodings for large K is prohibitive. Possible research areas for
soft decoding would be in the sequential decoding techniques tailored for the finite
lengths considered.

Another technique would be to continuously recycle the received word and decode
it as a long convolutional codeword. When the decoded word exhibits the correct
periodicity (say, over length 3K or 4K) we accept the decoding.

The way is open for simplified maximum likelihood decoding of many block codes.

2. Cyclic codes through convolution. In 1 we related convolutional codes to
quasi-cyclic codes and demonstrated the inherent duality between them. A quasi-cyclic
code may be encoded and consequently decoded convolutionally. In this section, we
treat several families of cyclic codes and look for a quasi-cyclic structure. We first
extend our concept of quasi-cyclic codes.

DEFINITION 2.1. (I) The pure quasi-cyclic codes of the form (PI Q) will be called of
type Ao.

(ii) If one adjoins an overall parity bit on P and/or Q the code will be of type A1.
(iii) If one increases the dimension of a type A1 code by adjoining one row to its

generator matrix we will call it a code of type A2.
We find that many important codes fit neatly into this "messy" characterization.

The results are as follows:
I. All extended quadratic residue codes are of type A2 (as well as A1). The binary

Golay code is encodable by a convolutional encoder with constraint length 4.
II. There exist a class of Reed-Solomon and optimal nonbinary BCH codes of

type A0. The p(x), q(x), and K developed when used for pure convolutional coding
guarantee optimality for K and the field used, K d/2 for rate 21-.

III. Almost all good binary codes of small length, with various rates are seen to be
of one of the types above. See Tables 1, 2 and 3.

2.1. Quadratic residue codes.
THEOREM 2.2. Let U be the extension by an overall parity bit of the (2n + 1, n + 1)

binary quadratic residue code generated by fQR(X)=HiQR (X /Og ), where QR=
{j2(mod 2n + 1) 11 _-<j -<2n} and 2n + 1 is a prime of the form 81 + 1. Then U is of type
A2. Furthermore the (2n + 1, n) code generated by fCR(X)(X + 1) is Of type A1 and the
shortened (2n, n) code obtained by eliminating the first digit is of type A0.

Remark. In fact, by choosing the proper (2n / 1, n) subcode or U, one can
sometimes find a type A0 code with smaller K (e.g., Golay (24, 12), QR(32, 16),
QR(48, 24) code). This technique of construction may be applied to other cyclic codes
to see if they are of any of the types Ai, and thus amenable to maximum likelihood
convolutional decoding techniques.

Note. In the book by F. J. MacWilliams and N. J. A. Sloane [4, Chap. 16, 6] it is
shown that all (2n / 2, n + 1) extended quadratic residue codes are of type A0. So by our
earlier results they have a convolutional encoding. However, the convolution found
with our methods gives rise to a smaller K and uniform degrees of p(x) and q(x),
making these codes suitable for standard convolutional encoding and decoding. Thus
the maximum likelihood decoding properties are predictable by analogy with the
simulated results of convolutional codes with these constraints.

Proof of Theorem 2.2. Consider the (2n + 1, n + 1) extended quadratic residue
code U. We have

2n+1x + 1 (x + 1)fC)R(X)fNC)R(X)

An (n, k, d) code with d n k + 1.
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where

f,(x II (x + ),
iNQR

NQR {1 -_< j -< 2n [/" QR}.

Let a be a primitive (2n + 1)th root of unity. The codeword u U, corresponding to
2nu(x)= Yi=0 UgX where u(x) is divisible by foe(x), can also be described in terms of

Mattson-Solomon polynomials [5]

g,,(z) Co + Y. CiZi,
iQR

where

and for all

Co GF(2), Ci GF(2m) for QR

2
C2i C i, here 2i is taken (mod 2n + 1),

and m is the multiplicative order of 2(mod 2n + 1).
Now u (ug), 0, 1, , 2n, c, is given by

i=0, 1,...,2n,

We can also choose NQR as the index set for and obtain an equivalent code. Let the
integer /’ be a multiplicative generator of the quadratic residues of (2n + 1), i.e.,
/’" l(mod 2n + 1) and {/’g} runs through QR. Clearly, n me for some e. if e 1, then 2
can be chosen for/" and fOR(X) is irreducible. One may also write

gu(z) Co+ Tr ciz ’i.
i=0

m-1 2Here the trace Tr is defined by Try g=o Y This corresponds to the factorization of

e-1

o(x) FI f,.,(x)
i=0

where f., (x) is the irreducible polynomial of degree rn with ceii as a root. By the normal
base theorem (see [4, Chap. 4, 9]) we can choose c GF (2’), such that the set
{c,c2,c4,...,c 2m-1} is a basis for GF(2"). Then Trc=l. Let v=
(Tr cz" z =a i, 0 <= i-<2n). Recall that a is a primitive (2n + 1)th root of unity. For
convenience we choose a such that Tra 1. Let r be in NQR; we may write
NQR {rj(mod 2n + 1)]j QR}. Define the digits (pi) and (q) by

Pi Tr ca i’, O, 1, n 1,

qi Tr ca ri’ O, 1,. n 1

n--1

p Pi Y’. Tr ca ii,
i=0

n-1

q qi Tr ca
i=0

-lce i, 1 thenpo Vo l’q v 0, otherwisep v,qoo Vo.Clearly if Y./=o
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By setting pi-pi-1, qi-qi-1, p -p, q qoo, we generate a new sequence
which is a cyclic shift to the right of the (pi), (qi) sequences. This corresponds to

Pl =Tr c(c")-’, q Tr c(arii)i-

or having taken

v’ (Tr cz ’lz=O,z=x,O<-i<=2n).
The permutation of the coordinates z z j-, with orbits {oe}, {0}, QR and NQR, takes
the vector (Tr cz) into (Tr czJ), which is also a codeword of the QR code as can be seen
from the expression for g,,(z). We label the code automorphism induced by the
coordinate permutation above T.

Similarly T k is the code automorphism corresponding to the kth cyclic shift to the
right of the (pi), (qi) sequences. The corresponding coordinate permutation is z - z -k.

We now show that every codeword of the QR code with co 0 is obtainable by
linear combinations of the cyclic shifts of the (Pi), (qi) sequences. Let c’ GF (2m). Since
both je and 2 have multiplicative order m (mod 2n + 1) it follows that the map T takes
Tr cz into Tr cz2 for some s. Similarly T2e takes Tr cz into Tr cz 2s, etc. Since

{c 2’" 10i _--<m 1}={c 2’ 10i _--<m 1}

m--1 2i-sand the latter forms a basis of GF (2m), we can write c i=o hic hi GF (2).
Define the operator

= 2 hiri’e.
i=o

Then v is a linear combination of shifts of the (pi), (qi) sequences. We see that
7"v {Tr c’z}. Similarly Tiv--Tr c’z for any i. Thus the quasi-cyclic code (Pi, qi) is
of type A0 and (Pi, qi, P, q) is of type A1. Adjoining the all-one vector corresponding
to Co 1 gives the entire QR code.

An alternate choice for the (2n + 1, n) subcode is ettected by choosing a different u
to generate the initial (Pi), (qi) sequences. Choose c 0 such that Tr c 0 and define
u (ui) by the rule

ui 1 + Tr co 0 < < 2n,

Let d, d, d4, d:z- span the (m- 1)-dimensional subspace consiststing of the
trace zero elements of GF (2 ’n) (take for example d c + c e, where {c 2’, 0 < < m 1}
spans GF (2")). With the map T defined as before, one can easily show that the

n=l
operator T Yi=0 eiT, with ei GF (2), yielding a linear combination of the permu-
tated vectors, gives rise to all vectors of the form

e--1

Co+ Tr ciz I’,
i=0

e-1
where Tr i=o ci 0 and Co 6 GF (2).

e-1
Adjoining a vector i=o Tr [x i’ where Tr [i i for each i, will give us any vector of

the QR code. It is this alternate construction we use to obtain a constraint length of
K =4 for the (24, 12; 8) and (32, 18; 8) quadratic residue codes.

We now give a convolutional encoding of these two codes and follow with an
immediate justification.
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(24, 12; 8) Golay code.
Encoding. Information io, i, i2,’" ", a.

Consider io, and i, i2," ", ia separately, where i_ i_i for
1-< j-< 3. (See Fig. 2.)

il

bo, b," blo-+ p(x)= +x3+x

il,"

Co, C,"’,co q(x)= l+x+x

FIG. 2

Then aoo io + il +" + ill ai; b il + i2 +" +ill bi. We obtain ao, bo, al, bl,
a lo, blo, a, b.
(32, 16; 8) quadratic residue code.
Encoding. Information io, il," ", i15.

Consider i15, and io, il," , i14 separately.
Run i12, i13, i14, io, i,.. ", i14 into same encoder (4-stage);

p(x) 1 t- X
2 "+" X 3"

q(x)= 1 +x +x"
as for the Golay code. Encode and decode exactly as in the Golay case. We shall now
justify these assertions.

For the (24, 12; 8) Golay code. The vector (10101110001100000000) (ci) is a
codeword in the (23, 12; 7) Golay code with gengrator polynomial x1 + x + x 6 + x +
4 2x +x +l. Let

Pi C2.16 i, qi C5.16

p Co; q c.

10 10Let p(x) Yi=o pix, q(x) ]i=o qx. This yields the p(x) and q(x) in the encoder. The
vectors obtained by this encoding are of form

(do + Tr cz) where Tr c 0, do GF (2).

A cyclic shift of the pi and q corresponds to the automorphism T" z z 6 of the code.
io 1 gives us the Tr z vector to give the total dimension 12.

For the (32, 16; 8) QR code. Let

f(x) (x + 1) 1-I (x + i)= (X -[- 1)foR(X).
i6QR

Since QR {1, 2, 4, 8, 16, 5, 10, 20, 9, 18, 7, 14, 28, 25, 19},

foa(x (x + 1)(x + x 2 + 1)(x + x 4 -t- x 2 .-1- x -I- 1)(x + x 3 + x 2 + x + 1)

with a a root of x + x 2 + 1. T" z --> z 7 gives rise to a sequence in powers of a

1, 7, 18, 2, 14, 5, 4, 28, 10, 8, 25, 20, 16, 19, 9

and sends codewords

(do + Tr (cz + dz + ez7); z a 0 N =< 30)
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into

Set

(do + Tr (d8z + cz 7 + eZz); z ce 0 --< --< 30).

Pi C2.71, 0, 1, , 14,

qi C-5.7’, 0, 1, , 14,

poO"- Co, qoo "--2 Ci,

where Co cl c2 c18 c21 c26 c27 coo 1 and Ci 0 for all other i. This is a cyclic
shift of x6f(x-1)/(x + 1) which is a word in the code. This leads to the same p(x) and
q(x) as the binary Golay code and requires similarly one additional vector to get
dimension 16. A soft- and hard-decision convolution encoding/decoding of these two
block codes has been designed and simulated by Booth, Herro and Solomon [1].
Another example of this technique gives a convolutional encoding of the:

(48, 24, 12) QR code. A 9 stage convolutional encoder with n 23 and

p(x): 1 + x + X3 + X4 + X 8,
q(x) 1 + X

4 + X + X
7 + X 8,

gives a (46, 23; 10) code of type A0. We adjoin poo and qoo as before to obtain words of
the form Co + Tr cz, Tr c 0. To obtain full dimension we must add the all-one vector to
the a/-output (which corresponds to the Tr z vector). To verify this, take the
identification rules

Pi C21 i, qi C-2.21 i, 0 < < 22

and the codeword (ci) given by

c=l for 0, 7, 8,16, 22, 27, 31, 33, 36, 39, 44,

ci =0 otherwise.

We will now apply these techniques to a rate 1/2 code. The code chosen is the
(30, 10; 11) shortened BCH code. This code will be shown to be of type A2; i.e., it
consists of a direct sum of a quasi-cyclic code plus a (30, 1) code. So far, the best type Ao
(30, 10) code has d 10.

The extended (32, 10; 12) BCH code consists of codewords of form

(Tr (cz + dzS) ,z =a ,i=0, 1,..., 30 and z 0)
2where c, d 6 GF (25), and a is the 31st root of unity defined by c c + 1. Let us

consider the (32, 9; 12) subcode consisting of words of the above form with the added
condition that Tr (c + d) 0. The map T" z --> (z + 1)2, takes z 0 into z 1 and vice
versa and is a permutation of the remaining 30 positions.

As this (32, 9; 12) subcode is always zero on the positions z 0 and z 1, we may
consider the (30, 9; 12) code under this permutation T. T takes

Tr (cz + dz 5) into Tr (c 16 --[-- d4 + d16)z + dl6z + Tr (c + d)

Tr ((c 16 + d4 + dl6)z + d16zS).
Now each orbit of T is of period 10, so we get three distinct orbits. Note T2z z 4, so

Tnz 216 T6 2 8 TlOz=z T8z=z z=z.
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Thus we can find (PI O IR) for the (30, 9; 12) code (see Table 2) and one can encode
convolutionally. To obtain the full (30, 10; 11) code we have to add the vector Tr z.

2.2. Cyclic codes of type Ao. There is a set of cyclic codes which by virtue of their
dimension to length ratio are naturally quasi-cyclic. These include all Reed-Solomon
codes, optimal BCH codes over nonbinary alphabets and other binary cyclic codes.
From these codes, new quasi-cyclic codes result and new possible convolutional
encodings. For example, if a cyclic code of distance d has an information rate kin
between 1/2 and 1 we can find a set of quasi-cyclic codes of rate i/(n k + i) 1 <- <- k,
with the same distance. Here k and n are relatively prime.

THEOREM 2.3. Let C be a cyclic Reed-Solomon code over GF (2’) of length
In (2’n- 1) and dimension Ik. Then C is quasi-cyclic with constraint length K; more
precisely C can be generated by a k n matrix with circulants pij, 1,..., k,
f 1,. ., n, as entries, where Pie- 1 for 1,. ., k and

Pii=O fori j,f<-k.

Pro@ There are n distinct orbits of length under the permutation T, which is
defined as a cyclic shift over n positions. We may write any RS word

In --1

a (x) Y aix
,

ai e GF (2m),
i=0

as a sum

l-1 l--1 l-1

a (x) , aniX
ni _1.. X 2 ani+lX

ni __... _1_ X
n-1 2 ani+n-lX hi,

i=0 =0 =0

i.e., a(x) pl(x n) + xp2(x) +. + xn-lp,_l(X), where pi(x) has degree at most l- 1.
Since the dimension of the RS code is kl we know that any kl coordinates are
independent. So we may stipulate for any 1 =< -< k that pj(x) 0 for all 1 -</’ k,/" i.
This accounts for (k- 1)/zero coordinates. We may still stipulate (l- 1) coordinates to
be zero, and a constant. So there is exactly one codeword

i--1 k k+l n-1
X +X pi,k+l(Xn)+x Pi,k+2(X )+" "+X Pi,n(Xn).

Applying T, T1, , T-1 to this codeword gives rise to the n matrix

(0l... 10[II0l... 101P,,+l[""" [P,,),
1,... ,i-l,i,i+l,. ,k,k+l,. ,n,

where P0 is the x circulant corresponding to pi(x), k + 1 <- ] <-_ n. Letting run from 1
to k, one obtains the generator matrix as stated in the theorem. [3

Instead of stipulating that p,(x)= 1 we may also stipulate that the highest
[(/-1)/(n-k + 1)] powers of x in pi,(x), pi.+(x),’", p,,(x) be zero. This would
lead to a convolutional encoding with constraint length K l- [(/- 1)/(n k + 1)]
[d/(n k + 1)]. For rate (n 1)In codes this givesK [d/2] (l + 1)/2. The question
remains, however, is the dimension of the code generated this way. It is our conjecture
that we do always obtain the full dimension kl. This conjecture is supported by examples
below.

4Example 2.4. Let a be a primitive element in GF (24) satisfying a l+a.
Consider the (15, 10; 6) Reed-Solomon code generated by

2

i) X
5

Of44 11 3 11X2g(x)= l-I (x +of + +of x +Of -]-Of4X "1- 1.
i=-2
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The codeword
8 2 llx3 11 4 6 7(l+ce x+x )g(x)=l+ce x+ce +ce x +ce x +x

11 2 5 11 2can be written as p(x 3) + xq(x 3) where p(x) 1 + a x + a x and q(x) a + a x + x
Since g.c.d. (p(x), q(x), x5- 1) 1, we find that the matrix (P] Q), where P and Q are
the circulants associated with p(x) and g(x), generates a (10, 5; 6) quasi-cyclic code with
constraint length 3.

Note. By a cyclic shift of the original code, xp(x 3) + x2q(x 3) is also in the code, thus
leading to a rate quasi-cyclic code of length 15 and minimum distance 6. The
generator matrix of this code is

0 P O"
Remark 2.5. For optimal BCH codes over GF (2 ’n) of length n (2 + 1) which

have rates (n 1)/n and generators g(x) (x- 1 i;1
v(e-2/2 (x + oi)(x +-), d even, wei

have similar results.
Example 2.6. The (9, 6; 4) BCH code over GF (23) with

-1)7 6 3g(x)=(x+l)(x+c)(x+c a +c +1=0.

Now

p(x) 1 + Ax,

q(x)=A+x,

correspond to the vector (x+l)g(x)=p(x3)+xq(x3), where A=a+a-lGF(23),
A3= A + 1. This encoder resembles the Viterbi dual code of rate 1/2, over GF (23).

TABLE
Quasi-cyclic codes, rate 1/2.

p(x)
n d K PoP1

2
2 2
3 3 2
4 4 3
5 4 3
6 4 3
7 4 3
8 5 4 1011
9 6 5 1011
10 6 5 11001
11 7 6 111
12 8 7 100010
13 7 6 110111
14 8 7 1101011
15 8 7 1100111
16 8 8 1110101
17 8 10
18 8 10
19 8 10
20 9 9 101 101
21 10 11 0 0 0 0

q(x)
qoql

11
111
111
111
111
11
10101
1011
110101
11111
10111
11111
11001
11011001
1110110101
1110110101
1110110101
1100O0011
1101101

11
111
111
111
111
010111
01111001
000111101
00011101101
0110111101
0101011000011
01110000011101
10010101001101
000101101111
1110110101
1110110101
1110110101
0101111010011
1100101111011
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Remark 2.7. Other quasi-cyclic codes may be constructed from the BCH codes
(33, 22; 12) over GF (25), (65, 52; 14) over GF (26), etc.

3. Tables. In the Tables 1, 2 and 3 the reader can find the polynomials pii(X) for
small, rate 1/2, 1/2, and 32- block codes. Surprisingly many good block codes (in the
sense of large minimum distance) turn out to have a quasi-cyclic structure and are hence
encodable by convolutional techniques.

n d

3
2 4 2
3 4 2
4 6 3 11
5 7 4 111
6 8 5 111
7 8 5 101
8 8 6 1101
9 10 6 111O01
10 10 8 11001

TABLE 2
Rate , p(x) 1.

K p2(x) p3(x)

11
11
111
111
11101
11111
110101
101111
10111111

TABLE 3
Rate -}, p(x)=p22(x)= 1, plz(x)=pzl(x)=O.

n d K Pl3(X)

2
2 2
3 2
4 3 3 11
5 4 4 111
6 4 4 111
7 4 4 111
8 4 4 111
9 4 4 111

10 5 10 11011
11 6 10 1011101

P23(X)

111
1101
1101
1101
1101
1101
101101
11110011
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