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Abstract

In this paper, we give an affirmative answer to the following question: Is the solvability

of some nonlinear dynamic equations on a time scale T not only sufficient but in a

certain sense also necessary for the validity of some dynamic Hardy-type inequalities

with two different weights? In fact, this answer will give a new characterization of the

weights in a weighted Hardy-type inequality on time scales. The results contain the

results when T =R, T =N, and when T = qN0 as special cases. Some applications are

given for illustrations.
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1 Introduction

In 1920 Hardy [13] proved the discrete inequality

∞
∑

n=1

(

1

n

n
∑

i=1

ai

)p

≤

(

p

p – 1

)p ∞
∑

n=1

apn, p > 1, (1.1)

where an ≥ 0 for n ≥ 1. This inequality has been discovered in his attempt to give an ele-

mentary proof ofHilbert’s inequality for double series that was known at that time. In 1925

Hardy [14] proved the continuous inequality using the calculus of variations, which states

that for f ≥ 0 integrable over any finite interval (0,x) and f p integrable and convergent

over (0,∞) and p > 1, then

∫ ∞

0

(

1

x

∫ x

0

f (t)dt

)p

dx ≤

(

p

p – 1

)p ∫ ∞

0

f p(x)dx. (1.2)

The constant (p/(p– 1))p in (1.1) and (1.2) is the best possible. For generalizations, exten-

sions, and applications of these inequalities, we refer the reader to the papers [10–12, 14,

15] and the books [16, 18, 19, 23]. A systematic investigation of the (generalized) Hardy

inequality with weights that started in the late fifties and early sixties was connected with

the name of Beesack [4, Theorem 3.1.1, p. 47]. In particular, Beesack proved that the in-

equality

∫ b

a

w(x)

(∫ x

a

f (s)ds

)p

dx ≤

∫ b

a

v(x)f p(x)dx (1.3)
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with two weighted functions holds if there exists a positive solution y (with a positive

derivative y′ on (a,b)) of the differential equation

d

dx

[

v(x)

(

dy

dx

)p–1]

+w(x)yp–1(x) = 0.

It should be mentioned that Beesack dealt not only with the case p > 1, but also with p < 0

and even with 0 < p < 1. Beesack’s approach was extended to a class of inequalities con-

taining the Hardy inequality (1.3) as a special case; see, e.g., Beesack [5, Theorem 3.1,

p. 711] or Shum [26]. Some of the restrictions on the solution y and on the weights v,

w were removed by Tomaselli [32]. He followed up the earlier paper of Talenti [28], who

considered a little more special weight functions. As usual several authors have been in-

terested in finding some discrete results analogous to continuous results, and accordingly

this subject has become a topic of ongoing research. For example, Chen [9] and [8], Liao

[20, Proposition 2.2, p. 812] investigated similar results for discrete Hardy’s inequality and

its relation with difference equations.

In recent years the study of dynamic inequalities on time scales has received a lot of

attention and has become a major field in pure and applied mathematics. All of these

disciplines are concerned with the properties of these inequalities of various types; for

more details, we refer to the books [2, 3] and the papers [1, 21, 22, 27]. The general idea

is to prove a result for an inequality where the domain of the unknown function is a so-

called time scale T, which is an arbitrary nonempty closed subset of the real numbers R.

The study of dynamic inequalities on time scales helps avoid proving results twice—once

for a differential inequality and once again for a difference inequality. For more details, we

refer the reader to [3] for recent results of Hardy-type inequalities on time scales.

Motivated by the above results, we naturally raise the question now: Is the solvability of

some nonlinear dynamic equations on time scales not only sufficient but in a certain sense

also necessary for the validity of some Hardy-type inequality?

In this paper, we try to give an affirmative answer to this question and give the new char-

acterizations of the weights in Hardy-type inequalities on time scales and their relevance

with nonlinear dynamic equations. The main results will be proved in the next section

by employing Hölder’s inequality, Minkowski’s inequality, and a chain rule on time scales

for delta-integral inequalities. Since the dynamic inequalities for nabla-integral on a time

scale T have received a lot of attention, it is worth here to mention that the results in The-

orem 3.1 can be reformulated via the nabla-integral (∇-integral) calculus. This also gives

us the possibility to predict the shape of our results for diamond♦α-integral functions (see

[29–31]).

This paper is organized as follows. In Sect. 2, we present some preliminaries about the

theory of time scales and state the basic formulae that will be needed in the sequel. In

Sect. 3, we shall state and prove the main results of this paper. In particular, Theorem 3.1

gives us a clear explanation of the possibility of linking dynamic Hardy-type inequality

containing weights with half-linear dynamic equations. As a special case of Theorem 3.1,

whenT =N, wewill obtain the discrete result obtained by Liao [20, Proposition 2.2, p. 812].

Finally, when T = qN0 , we will obtain the q-difference analogue for our results. For illus-

trations, we will give some applications of our results and get the sharp constants of well-

known inequalities.
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2 Preliminaries on time scales

In this section, we present preliminaries and the basic lemmas used in our subsequent dis-

cussions. For more details, we refer the reader to the paper by Hilger [17] and the mono-

graph by Bohner and Peterson [6]. A time scale T is an arbitrary nonempty closed subset

of the real numbers R. We assume throughout that T has the topology that it inherits

from the standard topology on the real numbers R. The forward jump operator and the

backward jump operator are defined by

σ (t) := inf{s ∈ T : s > t}, and ρ(t) := sup{s ∈ T : s < t}.

A point t ∈ T is said to be left-dense if ρ(t) = t and t > infT, right-dense if σ (t) = t, left-

scattered if ρ(t) < t, and right-scattered if σ (t) > t. A function f : T→R is said to be right-

dense continuous (rd-continuous) provided f is continuous at right-dense points and at

left-dense points inT, left-hand limits exist and are finite. The set of all such rd-continuous

functions is denoted by Crd(T).

The graininess function μ for a time scale T is defined by μ(t) := σ (t) – t, and for any

function f : T → R, the notation f σ (t) denotes f (σ (t)). Without loss of generality, we as-

sume that supT = ∞ and define the time scale interval [a,b]T by [a,b]T := [a,b]∩T.

Recall the following product and quotient rules for the derivative of the product fg and

the quotient f /g (where ggσ 
= 0, here gσ = g ◦ σ ) of two (delta) differentiable functions f

and g

(fg)� = f �g + f σ g� = fg� + f �gσ , and

(

f

g

)�

=
f �g – fg�

ggσ
. (2.1)

The chain rule formula on time scales [6, Theorem 1.90, p. 32] is given by (here x : T →

(0,∞) is assumed to be (delta) differentiable)

(

xγ (t)
)�

= γ

∫ 1

0

[

hxσ + (1 – h)x
]γ–1

dhx�(t), γ ∈R. (2.2)

In this paper we will use the (delta) integral which we can be defined as follows. If G�(t) =

g(t), then the Cauchy (delta) integral of g is defined by

∫ t

a

g(s)�s :=G(t) –G(a).

It was shown (see [6, Theorem 1.70, p. 26]) that if g ∈ Crd(T), then the Cauchy integral

G(t) :=
∫ t

t0
g(s)�s exists, t0 ∈ T, and satisfies G�(t) = g(t), t ∈ T. An infinite integral is de-

fined as follows:

∫ ∞

a

g(t)�t = lim
b→∞

∫ b

a

g(t)�t.

The integration on discrete time scales is defined by

∫ b

a

g(t)�t =
∑

t∈[a,b)

μ(t)g(t).
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Note that if T =R, then

σ (t) = t, μ(t) = 0, f �(t) = f ′(t),

∫ b

a

f (t)�t =

∫ b

a

f (t)dt.

If T =N, then σ (t) = t+1,
∫ b

a
f (t)�t =

∑b–1
t=a f (t). If T = hN, h > 0, then σ (t) = t+h,μ(t) = h,

and

∫ b

a

f (t)�t =

b–a–h
h

∑

k=0

f (a + kh)h.

If T = {t : t = qk ,k ∈N0,q > 1}, then σ (t) = qt, μ(t) = (q – 1)t,

∫ ∞

t0

f (t)�t =

∞
∑

k=n0

f
(

qk
)

μ
(

qk
)

, where t0 = qn0 .

The integration by parts formula on time scales is given by

∫ b

a

u(t)υ�(t)�t =
[

u(t)υ(t)
]b

a
–

∫ b

a

u�(t)υσ (t)�t. (2.3)

Hölder’s inequality on time scales [6, Theorem 6.13, p. 259] is given by

∫ b

a

∣

∣u(t)υ(t)
∣

∣�t ≤

[∫ b

a

∣

∣u(t)
∣

∣

q
�t

]
1
q
[∫ b

a

∣

∣υ(t)
∣

∣

p
�t

]
1
p

, (2.4)

where a,b ∈ T, u,υ ∈ Crd([a,b]T,R), p > 1, and 1/p + 1/q = 1.

3 Main results

Throughout the paper, wewill assume that the functions in the statements of the theorems

are nonnegative and rd-continuous functions and (without mentioning) the integrals in

the statements of the theorems are assumed to exist. Now we state and prove the basic

lemmas that will be used in the proofs of our main results. The first lemma is adapted

from [25, Lemma 2.6, p. 593].

Lemma 3.1 Let T be a time scale with a,b ∈ T and f , g ∈ Crd([a,b]T,R). If m ≥ 1, then

(∫ b

a

f (t)

(∫ σ (t)

a

g(s)�s

)m

�t

)
1
m

≤

∫ b

a

g(s)

(∫ b

s

f (t)�t

)
1
m

�s. (3.1)

From now on, we will deal with the following half-linear dynamic equation:

λ
(

v
q
p (x)

(

y△(x)
)

q
p∗

)△
+w(x)y

q
p∗

(

σ (x)
)

= 0, (3.2)

where p∗ is the conjugate of p, and the weighted dynamic Hardy-type inequality

(∫ b

a

w(x)

(∫ x

a

u(s)ds

)q

�x

)
1
q

≤ CL

(∫ b

a

v(x)up(x)�x

)
1
p

(3.3)

for 1 < p≤ q <∞.
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Actually, the main question that we will give the affirmative answer to states that the

solvability of the dynamic equation (3.2) not only is necessary for the validity of the

weighted dynamic Hardy-type inequality (3.3) but also is sufficient. The next result will

guarantee the first direction, which emphasizes the need to achieve the equation in order

to prove the legitimacy of the inequality. In the rest of the paper, we will assume that the

function v(x) satisfies the condition

∫ ∞

a

v
– 1
p–1 (x)�x = ∞. (3.4)

Lemma 3.2 Let T be a time scale with a,b ∈ T, 1 < p ≤ q < ∞, u ∈ Crd([a,b]T,R) be a

nonnegative function, w, v be positive rd-continuous functions on (a,b)T,

∫ x

a

v1–p
∗

(t)�t < ∞ for x ∈ [a,b]T, (3.5)

and there exists a number λ > 0 such that the dynamic equation (3.2) has a positive solution

y(x). Then the following inequality

(∫ b

a

w(x)

(∫ σ (x)

a

f (t)�t

)q

�x

)
1
q

≤ C

(∫ b

a

v(x)f p(x)�x

)
1
p

(3.6)

holds for every positive function f (x) on [a,b]T, with the constant

C = λ
1
q . (3.7)

Proof Suppose that y(x) is a positive solution of (3.2). By utilizing Lemma 1.2.1 in [24,

Lemma 1.2.1, p. 17] and condition (3.4), we see that y satisfies

y(x), y△(x) > 0 and y△△(x) < 0 for x ∈ [a,b]T. (3.8)

For, x, t ∈ (a,b)T denote

ϕ(x) := –λ
(

v
q
p (x)

(

y△(x)
)

q
p∗

)△
, (3.9)

ψ(t) := f p(t)
(

y△(t)
)

–p
p∗ . (3.10)

Then (3.2) yields that ϕ(x) = w(x)y
q
p∗ (σ (x)) and the time scalesHölder’s inequality together

with (3.8) imply that

(∫ σ (x)

a

f (t)�t

)q

w(x) =

(∫ σ (x)

a

f (t)
(

y△(t)
)
–1
p∗

(

y△(t)
)

1
p∗ �t

)q

w(x)

≤ w(x)

(∫ σ (x)

a

ψ(t)�t

)

q
p
(∫ σ (x)

a

y△(t)�t

)

q
p∗

= w(x)

(∫ σ (x)

a

ψ(t)�t

)

q
p
(

y
(

σ (x)
)

– y(a)
)

q
p∗



Saker and Mahmoud Advances in Difference Equations        ( 2019)  2019:129 Page 6 of 15

≤ w(x)y
q
p∗

(

σ (x)
)

(∫ σ (x)

a

ψ(t)�t

)

q
p

= ϕ(x)

(∫ σ (x)

a

ψ(t)�t

)

q
p

.

Integrating from a to b with respect to x and denoting that r = q/p, we get that

(∫ b

a

(∫ σ (x)

a

f (t)�t

)q

w(x)�x

)
1
r

≤

(∫ b

a

ϕ(x)

(∫ σ (x)

a

ψ(t)�t

)r

�x

)
1
r

.

Applying the time scales Minkowski’s inequality (3.1), we have that

(∫ b

a

(∫ σ (x)

a

f (t)�t

)q

w(x)�x

)
1
r

≤

∫ b

a

ψ(t)

(∫ b

t

ϕ(x)�x

)
1
r

�t. (3.11)

Using (3.9) to estimate the inner integral on the right-hand side yields that

∫ b

t

ϕ(x)�x = –λ

∫ b

t

(

v
q
p (x)

(

y△(x)
)

q
p∗

)△
�x

= λv
q
p (x)

(

y△(x)
)

q
p∗

∣

∣

t

b

= λ
(

v
q
p (t)

(

y△(t)
)

q
p∗ – v

q
p (b)

(

y△(b)
)

q
p∗

)

≤ λv
q
p (t)

(

y△(t)
)

q
p∗ ,

which leads directly to

(∫ b

t

ϕ(x)�x

)
1
r

≤ λ
p
q v(t)

(

y△(t)
)

p
p∗ .

Substituting this estimate in (3.11) and using (3.10), we have that

(∫ b

a

(∫ σ (x)

a

f (t)�t

)q

w(x)�x

)

p
q

≤

∫ b

a

ψ(t)λ
p
q v(t)

(

y△(t)
)

p
p∗ �t

= λ
p
q

∫ b

a

v(t)f p(t)
(

y△(t)
)

–p
p∗

(

y△(t)
)

p
p∗ �t

= λ
p
q

∫ b

a

v(t)f p(t)�t.

Finally, taking 1/p power to both sides, we get the required inequality (3.6) with constant

C as in (3.7). The proof is complete. �

Now the remaining part, which ensures that our answer to the main question is fully

covered, is to prove the other direction, i.e., the sufficient condition, which is the main

job of the next Lemmas 3.4–3.5. To prove these lemmas, we need the following auxiliary

result, inwhichwewillmake use of Riccati-like inequality to get a useful integral inequality

in the sequel.
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Lemma 3.3 Suppose that y(x) is a positive solution of (3.2) and set

z(x) =
y(x)

y△(x)
v1–p

∗

(x) for x ∈ [a,b]T.

Then z(x) > 0 and satisfies the dynamic inequality

z△(x) >
p∗

λq
w(x)z

q
p∗

+1
(x) + v1–p

∗

(x). (3.12)

Proof For convenience, we sometimes skip the argument x in the computations. By using

the quotient rule to differentiate

z(x) =
y(x)

y△(x)
v1–p

∗

(x),

we get that

z△ =
y△[y(σ (x))(v1–p

∗
)� + y△v1–p

∗
] – y△△[yv1–p

∗
]

y△(x)y△(σ (x))

=
y△[y(σ (x))(1 – p∗)v–p

∗
+ y△v1–p

∗
] – y△△[yv1–p

∗
]

y△(x)y△(σ (x))

=
y(σ (x))y△(1 – p∗)v–p

∗
+ y△y△v1–p

∗
– y△△yv1–p

∗

y△(x)y△(σ (x))

=
y△v1–p

∗

y△(σ (x))
+

(

1 – p∗
)y(σ (x))v–p

∗

y△(σ (x))
–

yy△△v1–p
∗

y△y△(σ (x))
.

From (3.8) it follows that y△(x) > y△(σ (x)), and then we get that

z△ >
y△(σ (x))v1–p

∗

y△(σ (x))
+

(

1 – p∗
)y(σ (x))v–p

∗

y△(σ (x))
–
yy△△v1–p

∗

y△y△

= v1–p
∗

+
(

1 – p∗
)y(σ (x))v–p

∗

y△(σ (x))
–
yy△△v1–p

∗

(y△)2

> v1–p
∗

+
(

1 – p∗
)

v–p
∗ y(σ (x))

y△(σ (x))
– v1–p

∗ y(σ (x))y△△

(y△)2
. (3.13)

For the last inequality, we have used the fact that y(x) < y(σ (x)) since y△(x) > 0. But, since

wy
q
p∗

(

σ (x)
)

= –λ
(

v
q
p
(

y△
)

q
p∗

)△
,

it follows by using the chain rule (noting that y△△(x) < 0) that

wy
q
p∗

(

σ (x)
)

= –λ
(

v
q
p
((

y△
)

q
p∗

)△
+

(

v
q
p
)△(

y△
(

σ (x)
))

q
p∗

)

< –λ

(

v
q
p
q

p∗

(

y△
)

q
p∗

–1
y△△(x) +

q

p
v
q
p–1

(

y△
(

σ (x)
))

q
p∗

)

= –λ
q

p∗

(

v
q
p
(

y△
)

q
p∗

–1
y△△ +

p∗

p
v
q
p–1

(

y△
(

σ (x)
))

q
p∗

)

,
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which leads to

w
y

q
p∗

+1
(σ (x))

(y△)
q
p∗

+1

< –λ
q

p∗

(

v
q
p
y(σ (x))

(y△)2
y△△ +

p∗

p
v
q
p–1y

(

σ (x)
) (y△(σ (x)))

q
p∗

(y△)
q
p∗

+1

)

< –λ
q

p∗
v
q
p+p

∗–1

(

v1–p
∗ y(σ (x))

(y△)2
y△△ +

p∗

p
v–p

∗

y
(

σ (x)
) (y△(σ (x)))

q
p∗

(y△)
q
p∗

+1

)

,

and hence,

w

(

y(σ (x))v1–p
∗

y△

)

q
p∗

+1

< λ
q

p∗

(

–v1–p
∗ y(σ (x))

(y△)2
y△△ +

(

1 – p∗
)

v–p
∗

y
(

σ (x)
) (y△(σ (x)))

q
p∗

(y△)
q
p∗

+1

)

,

and then we get that

p∗

λq
w

(

y(σ (x))v1–p
∗

y△

)

q
p∗

+1

<
(

1 – p∗
)

v–p
∗

y
(

σ (x)
) (y△(σ (x)))

q
p∗

(y△)
q
p∗

+1
– v1–p

∗ y(σ (x))

(y△)2
y△△.

Since y△(x) > y△(σ (x)) and (1 – p∗) is always negative, we obtain that

p∗

λq
w

(

y(σ (x))v1–p
∗

y△

)

q
p∗

+1

<
(

1 – p∗
)

v–p
∗

y
(

σ (x)
) (y△(σ (x)))

q
p∗

(y△(σ (x)))
q
p∗

+1
– v1–p

∗ y(σ (x))

(y△)2
y△△

=
(

1 – p∗
)

v–p
∗ y(σ (x))

y△(σ (x))
– v1–p

∗ y(σ (x))

(y△)2
y△△. (3.14)

Since y△(x) > 0, it follows that y(x) < y(σ (x)), and hence

p∗

λq
w

(

y(σ (x))v1–p
∗

y△

)

q
p∗

+1

>
p∗

λq
w

(

y(x)v1–p
∗

y△

)

q
p∗

+1

=
p∗

λq
wz

q
p∗

+1
. (3.15)

Finally, assembling (3.13), (3.14), and (3.15), we get that

z△(x) >
p∗

λq
w(x)z

q
p∗

+1
(x) + v1–p

∗

(x), (3.16)

which is the desired inequality (3.12). The proof is complete. �
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Lemma 3.4 Let T be a time scale with a,b ∈ T, 1 < p ≤ q < ∞, u ∈ Crd([a,b]T,R) is a

nonnegative function, and let w, v be positive rd-continuous functions on [a,b]T. Denote

K =
p∗

q
inf
f

sup
a<x<b

1

f (x)

∫ x

a

w(t)

(

f (t) +

∫ t

a

v1–p
∗

(s)�s

)

q
p∗+1

�t, (3.17)

where the infimum is taken for every positive function f (t) defined on [a,b]T.

(i) If there exists a positive constant λ such that the dynamic equation (3.2) has a

positive solution y(x), then

K ≤ λ < ∞. (3.18)

(ii) If K < ∞, then the dynamic equation (3.2) has a positive solution y(x) satisfying (3.8)

for every λ > K .

Proof (i) Suppose that y(x) is a positive solution of (3.2) which satisfies (3.8) and set

z(x) =
y(x)

y△(x)
v1–p

∗

(x),

which leads directly to that z(x) is a positive solution on [a,b]T for the following dynamic

inequality:

z△(x)≥
p∗

λq
w(x)z

q
p∗

+1
(x) + v1–p

∗

(x). (3.19)

Since

z(x) ≥

∫ x

a

z△(x)�x,

then we have that

z(x) ≥
p∗

λq

∫ x

a

w(t)z
q
p∗

+1
(t)�t +

∫ x

a

v1–p
∗

(t)�t.

Now, assume that

f (x) = z(x) –

∫ x

a

v1–p
∗

(t)�t,

then we get that f (x) > 0 for x ∈ [a,b]T, and

λ ≥
p∗

q

1

f (x)

∫ x

a

w(t)

(

f (t) +

∫ t

a

v1–p
∗

(s)�s

)

q
p∗

+1

�t,

which gives the validity of (3.18) according to the definition of K (3.17).

(ii) Assume that λ > K . In view of definition (3.17), there is a positive function f (x) such

that

f (x)≥
p∗

λq

∫ x

a

w(t)

(

f (t) +

∫ t

a

v1–p
∗

(s)�s

)

q
p∗

+1

�t. (3.20)
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We will formulate a solution for problem (3.2)–(3.8) as follows. First, define for n ∈ N the

following sequence {zn(x)} of functions:

z0(x) = f (x) +

∫ x

a

v1–p
∗

(t)�t,

zn+1(x) =
p∗

λq

∫ x

a

w(t)z
q
p∗

+1

n (t)�t +

∫ x

a

v1–p
∗

(t)�t.

(3.21)

It is obvious that zn(x) > 0 for x ∈ [a,b]T, and using (3.20) we get that

∫ x

a

w(t)z
q
p∗

+1

0 (t)�t <∞ (3.22)

and

z0(x) – z1(x) = f (x) –
p∗

λq

∫ x

a

w(t)z
q
p∗

+1

0 (t)�t > 0,

which leads us to

zn(x) – zn+1(x) =
p∗

λq

∫ x

a

w(t)
(

z
q
p∗

+1

n–1 (t) – z
q
p∗

+1

n (t)
)

�t > 0.

Thus the sequence {zn(x)} is decreasing on [a,b]T and asserts with the positivity of zn(x)

to the existence of a nonnegative function z(x) on [a,b]T such that

z(x) = lim
n→∞

zn(x).

Now, we obtain from (3.21) that

z(x) =
p∗

λq

∫ x

a

w(t)z
q
p∗

+1
(t)�t +

∫ x

a

v1–p
∗

(t)�t.

Actually, this formula asserts that z(x) > 0 belong to Crd([a,b]T,R) and satisfies the dy-

namic inequality (3.19). The proof is complete. �

Remark 3.1 According to Lemma 3.4, we have shown that the number K from (3.17) is fi-

nite if and only if there is λ ∈ (0,∞) such that problem (3.2), (3.8) is solvable. Consequently,

using in addition Lemma 3.2, Theorem 3.1 will be proved if we show that the validity of

Hardy’s inequality implies the finiteness of the number K . This will follow from the next

assertion.

Lemma 3.5 Let T be a time scale with a,b ∈ T, 1 < p ≤ q < ∞, u ∈ Crd([a,b]T,R) is a

nonnegative function, and let w, v be positive on [a,b]T. Suppose that K is defined by (3.17)

BL = sup
a<x<b

(∫ b

x

w(t)�t

)
1
q
(∫ σ (x)

a

v1–p
∗

(t)�t

)
1
p∗

,

and let CL be the best possible constant in (3.3). Then

CL ≤ K
1
q ≤ k(p,q)BL, (3.23)
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where

k(p,q) =

(

1 +
q

p∗

)
1
q
(

1 +
p∗

q

)
1
p∗

. (3.24)

Proof First, we prove the left inequality on (3.23) by contradiction. For this purpose, sup-

pose that K
1
q < CL and assume that there exists a constant λ0 such that

K
1
q < λ0 < CL, (3.25)

which gives that K < λ
q
0 and problem (3.2)–(3.8) is solvable for λ = λ

q
0 (due to Lemma 3.4).

Now, Lemma 3.2 implies that

CL ≤ λ
1
q = λ0,

which contradicts (3.25). Next, we prove the right inequality on (3.23). Suppose that BL <

∞, then we have that

0 <

∫ b

t

w(y)�y < ∞ for t ∈ (a,b)T,

and the function

f (t) = sB
p∗

L

(∫ b

t

w(y)�y

)–
p∗

q

–

∫ t

a

v1–p
∗

(y)�y

is finite for every s ∈ (1,∞). Moreover, we get that

sB
p∗

L > B
p∗

L ≥

(∫ b

t

w(y)�y

)

p∗

q
(∫ t

a

v1–p
∗

(y)�y

)

,

which gives directly that f (t) > 0 for t ∈ (a,b)T. From (3.17), we can write that

K ≤
p∗

q
sup
a<x<b

∫ σ (x)

a
w(t)[sB

p∗

L (
∫ b

t
w(y)�y)

–
p∗

q ]
q
p∗

+1
�t

sB
p∗

L (
∫ b

t
w(y)�y)

–
p∗

q –
∫ t

a
v1–p

∗
(y)�y

=
p∗

q

(

sB
p∗

L

)

q
p∗

+1
sup
a<x<b

h(x)

sB
p∗

L – (
∫ b

x
w(y)�y)

p∗

q (
∫ x

a
v1–p

∗
(y)�y)

≤
p∗

q

(

sB
p∗

L

)

q
p∗

+1
sup
a<x<b

h(x)

sB
p∗

L – (
∫ b

x
w(y)�y)

p∗

q (
∫ σ (x)

a
v1–p

∗
(y)�y)

≤
p∗

q

(sB
p∗

L )
q
p∗

+1

(s – 1)B
p∗

L

sup
a<x<b

h(x), (3.26)
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where

h(x) =

∫ σ (x)

a

w(t)

(∫ b

t

w(y)�y

)–
p∗

q (
q
p∗

+1)(∫ b

x

w(y)�y

)

p∗

q

�t

≤
q

p∗

[

1 –

(∫ b

a

w(y)�y

)–
p∗

q
(∫ b

x

w(y)�y

)

p∗

q
]

≤
q

p∗
. (3.27)

If we set

g(s) =

(

s

s – 1

)
1
q

s
1
p∗ for s ∈ (1,∞),

then, using (3.26) and (3.27), we obtain that

K
1
q ≤ g(s)BL.

But, we know that (see [25, Theorem 3.1, p. 594])

k(p,q) = inf
1<s<∞

g(s),

which claims the second inequality in (3.23). This completes the proof. �

By combining the above results together (necessary and sufficient conditions), we are

ready to state our main result in this paper.

Theorem 3.1 Let T be a time scale with a,b ∈ T, 1 < p ≤ q < ∞, u ∈ Crd([a,b]T,R) is a

nonnegative function, and let w, v be positive rd-continuous functions on (a,b)T. If

∫ x

a

v1–p
∗

(t)�t < ∞ for x ∈ [a,b]T, (3.28)

then inequality (3.3) holds with a finite constant CL if and only if there is a number λ > 0

such that the half-linear dynamic equation (3.2) has a solution y(x) satisfying (3.8).

Remark 3.2 As a special case of Theorem 3.1 (when T = N), we get the following result

which connects the discrete Hardy-type inequality with the half-linear difference equa-

tion. It is worth to mention here that the next result coincides with the one obtained by

Liao [20, Proposition 2.2, p. 812], while there are some parts of Liao’s proof that were es-

sentially based on the idea of the variational principle presented in [7] and [16, p. 181]

which we did not rely on in our proof.

Corollary 3.1 Suppose that 1 < p ≤ q < ∞, w and v are positive sequences on the discrete

interval I = {1, 2, . . . ,N} with N ≤ ∞. If

∞
∑

n=1

v
–1
p–1
n = ∞ and

N
∑

n=1

v1–p
∗

n < ∞ for n ∈ I,
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then the following discrete weighted Hardy-type inequality

(

N
∑

n=1

wn

(

k
∑

n=1

un

)q) 1
q

≤ C1

(

N
∑

n=1

vnu
p
n

)
1
p

holds for an arbitrary non-negative sequence u on I , with a finite constant C1, if and only

if there is a number λ > 0 such that the difference equation

λ�
(

v
q
p
n (�yn)

q
p∗

)

+wny
q
p∗

n+1 = 0

has a positive solution yn for n ∈ I .

Remark 3.3 As a special case of Theorem 3.1 (when T = qN0 ), we get the following result

which connects the discrete Hardy-type inequality with the half-linear difference equa-

tion. It is worth to mention here that the next result is entirely new and has not been dealt

with before to the knowledge of the authors. Assume that

Hx
(

qk
)

=

⎧

⎨

⎩

∑n
k=1 q

kx(qk); n = 1, 2, . . . ,N ,

0; n = 0.

Corollary 3.2 Suppose that 1 < p ≤ q < ∞, w and v are positive sequences defined on T =

qN0 . If

N
∑

k=1

qkv–1/(p–1)
(

qk
)

= ∞ and

N
∑

k=1

qkv1–p
∗(

qk
)

<∞ for n ∈ qN0 ,

then the following discrete weighted Hardy-type inequality

(

N
∑

k=1

qkw
(

qk
)

(

n
∑

k=1

qku
(

qk
)

)q) 1
q

≤ C2

(

N
∑

n=1

qkv
(

qk
)

up
(

qk
)

)
1
p

holds for an arbitrary non-negative sequence u on qN0 ,with a finite constant C1, if and only

if there is a number λ > 0 such that the following second-order q-difference equation

w
(

qk
)

Hy
q
p∗

(

qk
)

+ λ
[

v
q
p
(

qk+1
)

y
q
p∗

(

qk+1
)

– v
q
p
(

qk
)

y
q
p∗

(

qk
)]

= 0

has a positive solution yn for n ∈ I .

Now, let us conclude this section with some applications that illustrate and clarify the

main ideas of the paper. Specifically, we consider the special case T =R.

Example 1 By setting a = 0, b = ∞, p = q, v(x) = xp–k , w(x) = ( |k–1|
p

)px–k with k > 1 and

F(0) = 0, then the general weighted inequality (3.6) reduces to the following inequality:

(∫ ∞

0

x–k
(∫ x

0

f (t)dt

)p

dx

)

<

(

p

|k – 1|

)p ∫ ∞

0

x–k
(

xf (x)
)p
dx
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due to Hardy [16, Theorem 330, p. 245]. In this case, for the corresponding differential

equation of (3.2), we have y(x) = x
k–1
p which satisfies the corresponding conditions (3.8).

Example 2 By setting a = 0, b = ∞, p = q, v(x) = 1,w(x) = ( p–1
p
)px–p with p > 1 and F(0) = 0,

then the general weighted inequality (3.6) reduces to the following inequality:

(∫ ∞

0

(

F(x)

x

)p

dx

)

<

(

p

p – 1

)p ∫ ∞

0

f p(x)dx,

where
∫ x

0
f (t)dt, due to Hardy [16, Theorem 327, p. 240]. In this case, for the correspond-

ing differential equation of (3.2), we have y(x) = x
p–1
p which satisfies the corresponding

conditions (3.8).

As another application for our main results, we could get the following inequality (see

[16, Theorem 256, p. 182]).

Example 3 If p > 1, y′ > 0, and y(x) =
∫ x

0
y′(t)dt, then

(∫ π
2

0

yp dx

)

≤
1

p – 1

(

p

2
sin

p

2

)p ∫ π
2

0

(

y′
)p
dx,

where y(x) is the solution of the equation

x =
p

2
sin

p

2

∫ y

0

(

1 – tp
)
–1
p dt, 0≤ y≤ 1.
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