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Young infants show unexplained asymmetries in the exclusivity of categories formed on the basis of 

visually presented stimuli. A connectionist model is described that shows similar exclusivity asymmetries 

when categorizing the same stimuli presented to infants. The asymmetries can be explained in terms of 

an associative learning mechanism, distributed internal representations, and the statistics of the feature 

distributions in the stimuli. The model was used to explore the robustness of this asymmetry. The model 

predicts that the asymmetry will persist when a category is acquired in the presence of mixed category 

exemplars. An experiment with 3-4-month-olds showed that asymmetric exclusivity persisted in the 

presence of mixed-exemplar familiarization, thereby confirming the model's prediction. 

Young infants can form perceptual category representations 

when presented with a set of perceptually similar stimuli from the 

same class. These representations allow infants to organize their 

perceptual experiences into groupings that in many instances come 

to have conceptual significance for children and adults. For exam- 

ple, by 3 or 4 months of age infants have been shown to categorize 

a range of real-world images of cats, dogs, horses, chairs, and 

couches (Madole & Oakes, 1999; Quinn, 1998; Quinn & Eimas, 

1996a). However, the perceptual category representations do not 

always have the same characteristics as might be expected from 

the corresponding adult category representations. In particular, the 

extension and exclusivity of the perceptual category representa- 

tions of infants (i.e., the range of exemplars accepted or rejected as 

members of the category) may differ from those of adult category 

representations. 

Quinn, Eimas, and Rosenkrantz (1993) used a familiarization- 

novelty preference technique to determine if the perceptual cate- 
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gory representations of familiar animals (e.g., cats and dogs) 

acquired by young infants would exclude perceptually similar 

exemplars from contrasting basic-level categories. They found that 

when 3-4-month-olds were familiarized with six pairs of cat 

photographs presented sequentially (12 photographs), the infants 

subsequently preferred to look at a novel dog photograph rather 

than a novel cat photograph. Because infants have an inherent 

preference for looking at unfamiliar stimuli (Fagan, 1970; Fantz, 

1964; Slater, 1995), this result was interpreted as showing that the 

infants had developed a category representation of Cat that in- 

cluded novel cats (hence less looking at the cat photograph) but 

excluded novel dogs (hence more looking at the dog photograph). 

However, when the infants were initially familiarized with six 

pairs of dog photographs sequentially (12 photographs), they 

showed no subsequent preference for looking at either a novel dog 

or a novel cat. Furthermore, control conditions revealed that (a) the 

infants preferred to look at a novel test bird after initial familiar- 

ization with either dogs or cats, (b) there was no a priori preference 

for dogs over cats, and (c) the infants were able to discriminate 

within the Cat and Dog categories. Taken together, these findings 

led Quinn et al. to suggest that the 3-4-month-olds had formed a 

perceptual category representation of Dog that included novel dogs 

but also included novel cats. 

There appears to be an asymmetry in the exclusivity of the two 

perceptual category representations formed during familiarization. 

The Cat representation excludes novel dogs, whereas the Dog 

representation does not exclude novel cats. The reason for this 

asymmetry remains unclear, although Quinn et al. (1993) pre- 

sented some evidence that it might be related to greater variability 

among dogs. We believe that a full explanation of this asymmetry 

requires a mechanistic account of how categories are formed by 

infants during a test session. Some researchers have tried to iden- 

tify what information within a set of stimuli might be used by 

infants to delimit a perceptual category representation (Quinn & 
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Eimas, 1996b; Younger, 1985; Younger & Cohen, 1986). Al- 

though this approach can be very revealing about the basis for 

categorization, it leaves unanswered the question of how catego- 

ries are causally derived from the set of exemplars experienced by 

the infant. Given that the role of developmental psychology is to 

establish the causal mechanisms by which behavior emerges, we 

propose in this article to explore how and why young infants 

categorize complex visual images in the way they do. To achieve 

this goal we present a combination of connectionist (computation- 

al) modeling and an experimental study of infant behaviors de- 

signed to test the legitimacy of the modeling. 

Computational modeling provides a tool for exploring the mech- 

anisms that underlie behavior. Connectionist models are computer 

models loosely based on the principles of neural information 

processing (Elman et al., 1996; Mareschal, in press; McLeod, 

Plunkett, & Rolls, 1998; Rumelhart & McClelland, 1986). They 

are not intended to be neural models. Instead, they attempt to strike 

a balance between importing some of the basic concepts from the 

neurosciences and formulating questions about behavior in terms 

of high-level cognitive concepts. 

From a developmental perspective, connectionist networks are 

ideal for modeling because they develop their own internal repre- 

sentations as a result of interacting with a structured environment 

(Mareschal & Shultz, 1996; Plunkett & Sinha, 1992). Although 

connectionist modeling has its roots in associationist learning 

paradigms, it has inherited the Hebbian rather than the Hullian 

tradition. That is, what goes on inside the network (i.e., the internal 

representation of information) is as important in determining the 

overall behavior of the network as are the correlations between the 

inputs (stimuli) and the outputs (responses). 

Building a Model of Infant Categorization 

Many infant visual categorization tasks rely on preferential 

looking techniques that are based on the finding that infants direct 

attention more to unfamiliar or unexpected stimuli (Fagan, 1970; 

Fantz, 1964; Slater, 1995). The standard interpretation of this 

behavior is that the infants are comparing an input stimulus to an 

internal representation of the same stimulus (e.g., Charlesworth, 

1969; Cohen, 1973; Sokolov, 1963). As long as there is a discrep- 

ancy between the information stored in the internal representation 

and the visual input, the infant continues to attend to the stimulus. 

While attending to the stimulus, the infant updates his or her 

internal representation. When the information in the internal rep- 

resentation is no longer discrepant with respect to the visual input, 

attention is switched elsewhere. When a familiar object is pre- 

sented, there is little or no attending because the infant already has 

a reliable internal representation of that object. In contrast, when 

an unfamiliar or unexpected object is presented, there is much 

attending because an internal representation has to be constructed 

or adjusted. The degree to which the novel object differs from the 

information stored in the existing internal representations deter- 

mines the amount of adjusting that has to be done and hence the 

duration of attention. 

We used a connectionist autoencoder to model the relation 

between attention and representation construction (Mareschal & 

French, 1997, 2000; Schafer & Mareschal, in press; see Figure 1). 

An autoencoder is a feedforward connectionist network with a 

single layer of hidden units (Ackley, Hinton, & Sejnowski, 1985; 

Rumelhart & McClelland, 1986). The network learns to reproduce 

on the output units the pattern of activation across the input units. 

The number of hidden units must be smaller than the number of 

input or output units. This architectural constraint produces a 

bottleneck in the flow of information through the network. Learn- 

ing in an autoencoder consists of developing a more compact 

internal representation of the input (at the hidden-unit level) that is 

sufficiently reliable to reproduce all of the information in the 

original input--hence the incentive to develop category-based 

representations. Information is first compressed into an internal 

representation and then expanded to reproduce the original input. 

The successive cycles of training in the autoencoder constitute an 

iterative process by which a reliable internal representation of the 

input is developed. The reliability of the representation is tested by 
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Figure 1. Learning via iterative representation adjustment in (a) infants and (b) connectionist autoencoder 
networks. From "Mechanisms of Categorization in Infancy," by D. Mareschal and R. M. French, 2000, 
Infancy, 1, p. 62. Copyright 2000 by Lawrence Erlbaum Associates, Inc. Reprinted with permission. 



ASYMMETRIC CATEGORY LEARNING 

expanding it and comparing the resulting predictions with the 

actual stimulus being encoded. Similar networks have been used to 

produce compressed representations of video images (Cottrell, 

Munro, & Zipser, 1988). 

We suggest that during the period of captured attention, infants 

are actively involved in an iterative process of encoding visual 

input into an internal representation and then assessing that repre- 

sentation against continuing perceptual input. This assessment is 

accomplished by using the internal representation to predict what 

the properties of the stimulus are. As long as the representation 

fails to predict the stimulus properties, the infant continues to 

fixate the stimulus and to update the internal representation. Sim- 

ilar interpretations have been suggested elsewhere (Mareschal & 

French, 2000; Mareschal, Plunkett, & Harris, 1999; Munakata, 

McClelland, Johnson, & Siegler, 1997; see also Di Lollo, Enns, & 

Rensink, in press, for a comparable account of adult visual object 

recognition). 

This modeling approach has several implications. It suggests 

that infant looking times are positively correlated with network 

error. 1 The greater the error, the longer the looking time. Stimuli 

presented for a very short time will be encoded less well and 

produce more error than stimuli presented for a longer period. 

However, prolonged exposure after error (attention) has fallen off 

will not improve memory of the stimulus. The degree to which 

error (looking time) increases on presentation of a novel object 

depends on the similarity between the novel object and the familiar 

object. Presenting a series of similar objects from the same per- 

ceptual category leads to a progressive error drop on future similar 

objects. A prototype of the set of objects leads to lower error than 

do individual objects. All of this is true both of autoencoders 

(where output error is the measurable quantity) and of infants 

(where looking time is the measurable quantity). 

S imula t ion  1: The  D e v e l o p m e n t  o f  Cat 

and D o g  Categor ies  

The modeling results in this section and the next simulation 

section are based on the performance of a standard 10-8-10 feed- 

forward backpropagation network. 2 Autoencoders are reasonably 

robust in response to variations in the number of hidden units and 

the value of specific parameters. One requirement for efficient 

autoencoding is that there be a sufficient number of hidden units to 

capture the principal components of variation in the data. How- 

ever, too many hidden units may reduce the network's ability to 

generalize to novel exemplars. These and other aspects of autoen- 

coding are discussed in Hertz, Krogh, and Palmer (1991). 

To model the original exclusivity asymmetry effect, we obtained 

data for training the networks from measurements of the original 

cat and dog pictures used by Quinn et al. (1993). These data are 

tabulated in the Appendix. There were 18 dogs and 18 cats 

classified according to the following 10 traits: head length, head 

width, eye separation, ear separation, ear length, nose length, nose 

width, leg length, vertical extent, and horizontal extent. Although 

it is difficult to say for certain which of these features the infants 

used during categorization, it is well known that infants can 

segregate items into categories on the basis of attributes with 

different values (Younger, 1985; see Quinn & Johnson, 1997, for 

a detailed justification of similar input features). The feature values 
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were normalized 3 to be between 0 and 1. The input data are 

discussed in more detail below. 

Twelve items from one category were presented sequentially to 

the network in groups of two (i.e., weights were updated in batches 

of two) to capture the fact that pairs of pictures were presented to 

the infants during the familiarization trials. Networks were trained 

for 250 epochs (weight updates) on one pair of patterns before 

being presented with the next pair. We did this to reflect the fact 

that in the Quinn and Eimas studies (Eimas, Quinn, & Cowan, 

1994; Quinn & Eimas, 1996a; Quinn et al., 1993) infants were 

shown pairs of pictures for a fixed duration of time. The total 

amount of training was therefore 6 x 250 = 1,500 weight updates. 

The results are averaged over 50 network replications, each with 

random initial weights. The remaining six items from each cate- 

gory were used to test whether the networks had formed category 

representations. 

Like infants, these networks form both Cat and Dog categories. 

Figure 2 shows the initial error score (i.e., the sum squared error 

between the actual output produced and the ideal target value, 

measured across all output units), the error score after 12 presen- 

tations of either cats or dogs, and the average error score (after 

training) for the six remaining exemplars in either the Cat or Dog 

category. After learning, error is lower, which suggests that the 

network has developed reliable internal representations of cats or 

dogs. The generalization error rises slightly, showing that the 

networks recognize these exemplars as novel. Infants are also able 

to distinguish individual exemplars within the category (Quinn et 

al., 1993). However, the generalization error remains well below 

the initial error, which suggests that the new exemplars are assim- 

ilated within the category representation formed by the networks 

across the hidden units. 

The Asymmetric Exclusivity of the Cat 

and Dog Categories 

Quinn et al. (1993) found that there was an asymmetry in the 

exclusivity of the Cat and Dog categories developed by infants. 

Figure 3 shows what happens when networks trained on cats are 

presented with a novel cat and a novel dog and when networks 

trained on dogs are tested with a novel dog and a novel cat. In these 

network models (as with infants), the acquisition of categorical 

representations is inferred from their differential sum-squared- 

error responses (preferential looking responses) when presented 

with a novel exemplar of the familiar category and when presented 

with a novel exemplar of the novel category. The differences in 

This is a common way of relating response times to network error 

scores (e.g., Mareschal et al., 1999; Quinn & Johnson, 1997; Seidenberg & 
McClelland, 1989; but see Bullinaria, 1995, for possible counterargu- 

ments). 

2 The parameter values were as follows: learning rate = .2, momen- 

tum = .9, and Fahlman offset = .1. A description of the role of learning- 
rate and momentum can be found in Plunkett and Elman (1997). The 
Fahlman offset is discussed in Fahlman (1988). 

3 This transformation preserves the covariation between cues, which is 

important because both infants (Younger, 1985) and autoencoder networks 
(Mareschal & French, 2000) have been shown to use covariation informa- 

tion in establishing category boundaries. 
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Figure 2. Mean error prior to familiarization, after familiarization, and on 

novel exemplars after familiarization for networks trained with cats or 

dogs. 

these error scores reflect the differences in looking times toward 

each of the stimuli that are observed with infants. 

When the networks are initially trained on cats, the presentation 

of a novel dog exemplar results in a large error score relative to 

that produced by the presentation of a novel cat exemplar; this 

corresponds to a longer looking time in the results observed with 

infants. Dogs are not included within the category representation 

of cats. In contrast, when the networks are initially trained on dogs, 

the presentation of a novel cat results in only a small increase in 

error relative to that produced by the presentation of a novel dog, 

which suggests that the cats have been included in the Dog 

category. Hence, the networks also show an asymmetry in the 

exclusivity of the category representations developed. 

It could be argued that the asymmetry arises from the unequal 

learning of the Cat and Dog categories by the networks. It may 

take longer to learn the Dog category than the Cat category; hence, 

training for a fixed number of epochs would lead to a less estab- 

lished representation of Dog by the networks. To address this 

possibility, we trained 50 new networks as described above but 

with one exception. These networks were trained to a fixed error 

criterion rather than a fixed epoch criterion. Networks were trained 

on each pair of familiarization exemplars until all output units 

were within 0.2 of their target values. 4 This ensured that the 

networks learned to autoencode every input to the same minimum 

criterion. Under these conditions, networks familiarized with cats 

showed average errors of 0.26 (SD = 0.05) and 0.45 (SD = 0.03) 

when presented with a novel cat and a novel dog, respectively, 

whereas networks familiarized with dogs showed average errors 

of 0.35 (SD = 0.15) and 0.4l (SD = 0.12) when presented with a 

novel dog and a novel cat, respectively. Thus, the exclusivity 

asymmetry persisted even when networks were familiarized to a 

fixed error criterion. 

Figure 3. Mean error on a novel cat exemplar and a novel dog exemplar 

for networks trained on cats or dogs. 

Distribution of Features in the Stimuli 

The associative learning mechanisms embodied in connectionist 

networks (and described by the mathematics of these networks), 

when coupled with the nonlinear response of hidden units, provide 

a mechanistic account of how information is processed in such a 

system. However, a full explanation of the asymmetric exclusivity 

requires an account of why the system learns a representation for 

cats that excludes dogs but learns a representation for dogs that 

includes cats. Connectionist networks extract the correlations be- 

tween features present in their learning environment. The distri- 

butional characteristics of the internal representations (developed 

across the hidden units) reflect the distributional characteristics of 

the corresponding categories in the environment, which suggests 

that an explanation for why the networks exhibit an exclusivity 

asymmetry may be found by examining the input data. Figure 4 

shows the probability distributions of the 10 traits, for both cats 

and dogs, when fit to gaussian distributions using means and 

standard deviations derived from the normalized feature values. 5 

Some of the traits are very similar in terms of their means and 

distributions for both cats and dogs (e.g., head length and head 

width). Others, especially nose length and nose width, are very 

different and will provide the crucial explanation for the unex- 

pected looking asymmetries reported by Quinn et al. (1993). 

Consider the single trait of nose width. The (normalized) mean 

nose width for the dog population is 0.53 with a standard deviation 

4 For practical reasons, a maximum criterion of 2,500 epochs (10 times 

the 250-epoch criterion) was used to terminate any simulations that failed 

to reach the 0.2 error criterion. This is analogous to the fact that, in 

practice, any study with infants has a fixed maximum duration. 

5 Although the fitted normal distributions may predict negative feature 

value (e.g., eye separation), the actual values used to train networks were 

always between 0 and 1. The negative predicted values reflect the presence 

of a skew in the underlying distribution of actual values. 
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Figure 4. Gaussian probability distributions generated from the means and standard deviations of normalized 

cat features (thin lines) and dog features (thick lines). The area under each curve sums to 1.0. 

of 0.20, whereas the mean for the cat population is 0.24 with a 

much smaller standard deviation of 0.07. Consequently, the nose 

width of virtually all cats in the population will fall within 2 SD of 

the nose-width mean for dogs. On the other hand, the nose width 

of the majority of dogs does not fall within 2 SD of the nose-width 

mean for cats. The result, in short, is that at least for this trait, all 

cats could be exemplars of dogs, whereas most dogs could not be 

exemplars of cats. 

When we examine all of the members of the two populations, 

we see that the values of all 10 traits for 9 (i.e., 50%) of the 

members of the Cat category fall within a 2-SD cutoff for those 

traits for the Dog category. Fully half of the cats in the population 
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could be reasonably classified as dogs. In contrast, the smaller 

means and lower variances of a number of traits (especially nose 

length and nose width) for cats compared with dogs means that 

only 2 of the 18 dogs (i.e., 11%) could conceivably be classified as 

members of the Cat category. 

A corollary of this finding is that networks will, on average, 

generalize their autoencoding responses better in the dog-to-cat 

direction than in the cat-to-dog direction. When presented with a 

novel cat, a network trained on dogs will recognize this item as a 

member of the category it has learned (i.e., Dog) and for which it 

has  also learned to output an appropriate feature description. In 

contrast, when presented with a novel dog, a network trained on 

cats will fail to recognize this item as a member of the category it 

has learned (i.e., Cat) and will be unable to output an appropriate 

feature description. 

The exclusivity asymmetry of the categories formed on the basis 

of these exemplars reflects the distribution of features character- 

istic of the cat and dog exemplars presented to the networks (and 

infants). The key feature of the data is that the distribution of 

values for the Cat features are (in general) subsumed within the 

distribution of Dog features. There are two components to these 

distributional characteristics: (a) The Dog distributions are some- 

times broader than the Cat distributions, and (b) the Cat values are 

often included within the range of Dog values. The greater range 

of Dog values is a necessary but not sufficient condition for the 

asymmetric exclusivity to appear. If, on the one hand, the Dog and 

Cat distributions had the same range, then there would be no 

exclusion in either direction. If, on the other hand, the Cat and Dog 

feature values had different ranges but no overlap, then there 

would be an exclusivity in both directions. To see this, suppose 

that the cats had feature values ranging on the interval [0, 0.25] and 

that the dogs had feature values ranging on the interval [0.5, 1.0]. 

Networks initially trained with cats would have no experience of 

processing clusters of values in the range [0.5, 1.0]. Thus, when 

presented with a novel dog input, they would mostly likely pro- 

duce a default value of the mean of their experiences (0.125) or the 

maximum of their range (0.25) along each dimension. Either result 

would yield a large error observed in response to a novel dog input. 

Similarly, networks initially trained on dogs would have no expe- 

rience of processing clusters of values in the range [0, 0.25]. When 

presented with a novel cat input, they would most likely produce 

a default value of the mean of their experiences (0.75) or the 

minimum of their range (0.5) along each dimension. Either out- 

come would result in a large error observed in response to a novel 

dog input. With no overlap in feature distributions, behavior con- 

sistent with symmetric exclusivity would be observed. 

The degree to which the inclusion relationship observed in the 

nose-width feature holds across the set of features determines the 

degree to which an asymmetric exclusivity effect is observed. It is 

not just the greater variability of dogs along certain feature dimen- 

sions that causes the exclusivity asymmetry. The inclusion rela- 

tionship with respect to cats also plays a crucial role. 

However, the asymmetry inherent in the data is translated into 

corresponding behavior only because connectionist networks (and 

presumably infants) develop internal representations that reflect 

the distributions of the input features. Thus, the internal represen- 

tation for Cat will be subsumed within the internal representation 

for Dog along several dimensions. It is because the internal rep- 

resentations share this inclusion relationship that an asymmetry in 

error (looking time) is observed. 

Simula t ion  2: Learning F r o m  Mixed  Exemplars  

Categories are rarely acquired in isolation. In contrast to infants 

presented with cats or dogs in a series of laboratory familiarization 

trials, infants engaged in casual observation of their nursery envi- 

ronments presumably do not encounter numerous objects from the 

same natural kind or artifactual category presented in close tem- 

poral proximity. Infants would be more likely to encounter mul- 

tiple objects from various categories in a quick scan of their 

immediate surroundings. The question that arises for researchers 

interested in the early development of categorization is how infant 

categorization performance will be affected when infants are pre- 

sented with instances from two or more categories in the same 

familiarization session. It can be reasoned that experiencing two 

categories during learning will enhance the formation of distinct 

categories because examples of one category will provide a con- 

trasting reference for learning the other category. Alternatively, it 

can be argued that presenting two categories simultaneously will 

create interference between them, thereby making the construction 

of a representation for each more difficult. 

The evidence that is relevant to the contrast and interference 

hypotheses is mixed. For example, in studies of the acquisition of 

dot pattern categories, the category representations formed by both 

adults and young infants were enhanced in experimental sessions 

in which multiple categories were presented (Homa & Chambliss, 

1975; Quinn, 1987; see also Younger, 1985, for consistent findings 

obtained with schematic animal stimuli). In these studies, the 

facilitative effect of multiple category presentation was attributed 

to the fact that it provided participants with the opportunity to 

observe both the similarities among members within a category 

and the differences between members of different categories. 

However, there are also data indicating that when more naturalistic 

exemplars are used as stimuli (i.e., realistic photographs of ani- 

mals), then multiple category presentation results in category rep- 

resentations that are either not different from or less differentiated 

than those formed during single-category presentation (Eimas & 

Quinn, 1994; takes ,  Plumert, Lansink, & Merryman, 1996; 

Younger & Fearing, 1999). 

To explore how connectionist networks would behave under 

conditions of multiple category presentation, we exposed autoen- 

coder networks identical to those in Simulation 1 to an interleaved 

set of cat and dog exemplars. Fifty previously untrained networks 

were exposed to eight cats and four dogs (the mainly cats condi- 

tion), and 50 previously untrained networks were exposed to eight 

dogs and four cats (the mainly dogs condition). The training 

procedure was identical to that in Simulation 1 with one exception. 

As before, the networks were presented with six pairs of exemplars 

over six familiarization trials. Networks were trained for a fixed 

250 epochs with each familiarization pair. However, on four of the 

six familiarization trials, one of the exemplars in the pair was taken 

from the contrasting category. For example, a network in the 

mainly dogs condition might experience the following series of 

familiarization pairs: c a t l - dog l ,  dog2-dog3, dog4-cat2,  cat3- 

dog5, dog6-dog7,  dog8-cat4.  In total, these networks experi- 

enced eight exemplars from the dominant category and four ex- 

emplars from the contrasting category. The trials on which an 
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exemplar from the contrasting category was presented were ran- 

domly selected, Networks were then tested with the remaining 

unfamiliar exemplars from the Cat and Dog categories, and their 

responses were recorded. 

Figure 5 shows the networks' response to a novel cat and a 

novel dog after having been familiarized in either the mainly cats 

or the mainly dogs conditions. In contrast to the proposal that 

experiencing exemplars from both categories during learning 

might enhance the separation of the categories, these networks 

showed the same asymmetric exclusivity effect as those trained 

only with cats or only with dogs. Networks familiarized with eight 

cats and four dogs showed much greater error when presented with 

a novel dog than with a novel cat, which suggests that they formed 

a category of  Cat that excluded dogs. The networks familiarized 

with eight dogs and four cats showed little difference in error when 

presented with novel dogs and with novel cats, which suggests that 

they formed a category representation that included both cats and 

dogs. 

It could be that this asymmetry is due to the fact that the Dog 

category is more difficult to learn than the Cat category. However, 

this is not the case, because networks trained to a fixed error 

criterion rather than a fixed epoch criterion showed the same 

asymmetry. The networks trained to a fixed error criterion in the 

mainly cats condition had mean errors of 0.32 (SD = 0,02) 

and 0.39 (SD = 0.02) when presented with a novel cat and a novel 

dog, respectively. The networks trained to a fixed error criterion in 

the mainly dogs condition had mean errors of 0.39 (SD = 0.02) 

and 0.38 (SD = 0.02) when presented with a novel cat and a novel 

dog, respectively. 

The persistence of the asymmetry (a) constitutes an explicit 

prediction of infant behaviors that derives from the associationist 

mechanisms of connectionist networks coupled with the charac- 

teristics of the stimuli used to familiarize infants and (b) provides 

a direct test of the model. 

Figure 5. Mean error on a novel cat exemplar and a novel dog exemplar 

for networks trained with mainly cats (8 cats and 4 dogs) or mainly dogs 

(8 dogs and 4 cats). 

Expe r imen t :  In fan t  R e s p o n s e s  to 

M i x e d - E x e m p l a r  Fami l i a r i z a t i o n  

The model makes two specific predictions. The first is that 

3-4-month-olds  familiarized according to the procedures of the 

mainly cats condition will show a significant preference for novel 

dogs over novel cats in a subsequent preferential looking test. The 

second prediction is that 3-4-month-olds  familiarized according to 

the procedures of the mainly dogs condition will show no prefer- 

ence for novel dogs over novel cats in a subsequent preferential 

looking test. We tested these predictions using the same cat and 

dog pictures encoded for Simulations 1 and 2. 

M e t h o d  

Participants. Forty-eighi 3-4-month-olds (27 boys and 21 girls) were 

participants (mean age = 103 days; SD = 15 days). Nine additional infants 

were not included in the analyses because of fussiness (n = 7), a position 

bias (>95% looking to one side of the display; n = 1), or a failure to look 

at both test stimuli (n = 1). 

Stimuli. The stimuli were 36 color photographs of cats and dogs (18 

exemplars of each category) previously used by Quinn et al. (1993) and 

Eimas, Quinn, and Cowan (1994). The pictures were cut from Simon & 

Schuster's Guide to Cats (Siegal, 1983) and Simon & Schuster's Guide to 

Dogs (Schuler, 1980) and were chosen to represent a variety of shapes, 

colors, and stances of both categories of animals. Each picture contained a 

single animal that had been cut away from its background and mounted 

onto a white posterboard (17.7 × 17.7 cm) for presentation. 

Apparatus. Infants were tested with a portable visual preference ap- 

paratus, adapted from that used by Fagan (1970). The apparatus consists of 

an enclosed viewing box with a gray display stage (85 cm wide and 29 cm 

high) that contains two compartments to hold the two posterboard stimuli. 

The stimuli were illuminated by a 60-Hz fluorescent lamp that was 

shielded from the infant's view. The center-to-center distance between the 

two compartments was 30.5 cm. A 0.625-cm peephole located midway 

between the stimulus compartments permitted observation and recording of 

the infant's visual fixations. 

Procedure. The infants were tested individually. They were brought to 

Paul C. Quirm's laboratory by a parent and were placed in a reclining 

position on the seated parent's lap. An experimenter wheeled the apparatus 

over the infant, keeping the infant's head centered with respect to the 

middle of the display stage. As soon as the infant was properly aligned and 

apparently at ease, a trial was begun. The experimenter loaded the stimuli 

from a nearby table into the stimulus compartments, elicited the infant's 

attention and closed the stage, thereby exposing the stimuli to the infant. 

The center of the display stage was approximately 30.5 cm in front of the 

infant while the stimuli were being viewed. During a trial, the experimenter 

observed the infant through the peephole and recorded fixations to the left 

and right stimuli using 605 XE Accusplit stopwatches, one held in each 

hand. The criterion for fixation was observing corneal reflection of the 

stimulus over the infant's pupil, lnterobserver reliability--determined by 

comparing the looking times measured by the experimenter using the 

center peephole with those measured by additional observers using peep- 

holes to the left of the left stimulus compartment and to the right of the 

right stimulus compartment--was high (Pearson r = .97). This reliability 

was derived from observations made by independent observers on 48 

novelty-preference test trials from 24 infants. This value is comparable to 

estimates of interobserver reliability obtained in other laboratories that 
measured visual fixation duration with the corneal reflection procedure 

(Haaf, Brewster, de Saint-Victor, & Smith, 1989; O'Neill, Jacobson, & 

Jacobson, 1994). Between trials, the experimenter opened the stage, re- 

corded the looking-time data on a data sheet, changed the stimuli (or their 

position), recentered the infant's gaze, and closed the stage, thereby be- 

ginning the next trial. Two experimenters recorded fixations, one during 
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familiarization and another during test trials. Both were trained research 

assistants who were naive to the hypotheses of the studies. The experi- 

menter recording during test trials was also unaware of the stimulus 

information that the infants were shown during the familiarization trials. 

The 48 infants were randomly assigned to one of two category presen- 

tation orders. Each infant in the mainly cats group was first familiarized 

with eight cats and four dogs, with exemplars of the contrasting category 

interleaved on four separate trials. The cats and dogs were randomly 

selected and different for each infant and were presented during six 15-s 

trials (two different animals per trial). After this first familiarization phase, 

infants were presented with a novel cat and a novel dog for two 10-s test 

trials. Left-right locations were counterbalanced across infants on the first 

test trial and reversed on the second test trial. Infants in the mainly dogs 

group were familiarized and tested in the same way as those in the mainly 

cats group except that they saw eight dog pictures interleaved with four cat 

pictures. 

Results 

Familiarization trials. Table 1 shows the mean fixation times 

averaged across the first three familiarization trials and the second 

three familiarization trials. An analysis of variance with factors of 

condition (mainly cats vs. mainly dogs) and trial block (1-3 vs. 

4 - 6 )  revealed no significant effect of trial block on the familiar- 

ization trials, F(1, 46) = 0.05, p > .20. Neither the effect of 

condition nor the interaction of condition and trial block was 

reliable; in both cases, F(1, 46) < 2.50, p > .12. These findings 

suggest that any differences in the preference test outcomes cannot 

be attributed to category-specific differential habituation rates. 

Preference-test trials. Each infant 's  looking time to the stim- 

ulus from the novel category was divided by the total looking time 

to both stimuli and converted to a percentage score. Mean novel- 

category preference scores are shown in Table 2. 

The model predicts that infants familiarized in the mainly cats 

condition will show a significant preference for a novel dog 

exemplar. The model also predicts that infants familiarized in the 

mainly dogs condition will show no preference for the novel cat or 

the novel dog. Inspection of Table 2 shows that these predictions 

were confirmed with 3-4-month-old  infants. The mean novel- 

category preference for novel dogs in the mainly cats condition 

was significantly higher than chance, whereas the mean novel- 

category preference for cg~s in the mainly dogs condition was not 

different from chance. In i~iddition, the novel-category preferences 

for the mainly cats and mainly dogs conditions were reliably 

different from each other, t(47) = 2.08, p < .05, two-tailed. 

In summary, these results support the model 's  predictions. In- 

terleaved learning was not found to consolidate the formation of 

two distinct categories. The asymmetry in novelty preference for 

cats and dogs, identified in the original Quinn et al. (1993) studies, 

Table 1 

Mean Fixation Times (in Seconds) and Standard Deviations 

During Familiarization Trials 

Trials 1-3 Trials 4-6 

Condition M SD M SD 

Mainly cats 11.02 2.56 10.44 2.99 
Mainly dogs 9.19 3.32 9.68 3.61 

Table 2 

Mean Novel-Category Preference for the Two 

Familiarization Conditions 

Familiarization condition 

Measure Mainly cats Mainly dogs 

Mean novel-category preference 58.32 47.73 
SD 19.40 15.56 
n 24 24 
t(23) (vs. chance) 2.10" -0.71 

*p < .025, one-tailed. 

persists even when infants are exposed to a small number  

of inter leaved exemplars  of a contrast ing category during 

familiarization. 

G e n e r a l  D i s c u s s i o n  

Like young infants, connectionist autoencoder networks formed 

categorical representations of cats and dogs when presented with 

the same stimuli as the infants. The category representations 

showed asymmetric exclusivity. The Cat category included novel 

cat exemplars but excluded novel dog exemplars, whereas the Dog 

category included novel dog exemplars as well as novel cat ex- 

emplars. The category asymmetry was suggested to be related to 

the distribution of features in the stimuli shown to the infants. 

More specifically, the asymmetry arose because the connectionist 

networks developed internal representations reflecting the overlap 

in the distribution of the features in the two sets of stimuli. Most 

of the cat exemplars could be classified as dogs, whereas most 

dogs were not plausible cats. The asymmetric category represen- 

tations reflect an interaction between the statistics of the learning 

environment (the images shown to the infants) and the computa- 

tional properties of an associative learning system with distributed 

representations. Infant performance in these categorization tasks is 

essentially driven by a bottom-up process. 

We also explored the exclusivity asymmetry by investigating 

whether the addition of exemplars from a contrasting category 

would enhance the formation of distinct Cat and Dog categories. 

Connectionist networks trained with eight exemplars from one 

category and four exemplars from a contrasting category continued 

to show asymmetric exclusivity in the categories developed. These 

results constituted a set of predictions about the behavior of 

3-4-month-olds  that enabled an evaluation of the model. Infants 

familiarized with the same mixture of cat and dog exemplars were 

found to show an asymmetry in their responses to novel cat and 

dog exemplars that was consistent with the model. 

The new evidence reported in the experiment strongly supports 

the connectionist account of early infant categorization. The asym- 

metry can be explained by appealing to the associative learning 

mechanisms of connectionist networks and the statistical distribu- 

tion of features in the stimuli used to familiarize infants. The 

connectionist mechanisms account for how the behavior emerges, 

and the input data account for why the behavior emerges in the 

presence of these cat and dog pictures. It could be argued that the 

analysis of the data alone provides the explanation of infant 

behaviors and that the network account contributes little to this 
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explanation. However, this is not the case. One can see this by 

trying to make predictions about how an unknown "black box" 

might respond to these same data. Without any information about 

the mechanisms that translate input into observed behaviors within 

the black box, it is impossible to construct an explanation of the 

box 's  behavior that will support such predictions. A full, causal 

understanding of behavior requires knowledge of both the 

information-processing mechanisms and the input data. 

It is also important to understand the limitations of this model. 

All models are approximations. Building a model is not the same 

as building an infant. We do not wish to suggest that all of infant 

visual cognition can be accounted for with simple autoencoder 

networks. Nor do we wish to suggest that the infant is essentially 

an autoencoder. We have used the autoencoder to model looking- 

time behaviors because autoencoders capture the representation- 

construction hypothesis implicit in verbal descriptions of habitu- 

ation (Charlesworth, 1969; Cohen, 1973; Sokolov, 1963). The 

simulation work in this article suggests that autoencoders are part 

of the same class of learning systems as those used by infants to 

learn perceptual categories (and therefore share their computa- 

tional properties). 

In summary, in this article we have reported on a connectionist 

model of infant visual categorization. Asymmetric category exclu- 

sivity was found to arise from a combination of connectionist 

information processing and the statistical distribution of features in 

the familiarization stimuli. The model predicted that asymmetric 

exclusivity would persist in the face of mixed-exemplar familiar- 

ization category learning. An empirical study with 3-4-month-  

olds confirmed the model prediction. 
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Appendix 

Measurements of Cat and Dog Stimuli 

The following measurements were made from the original Quinn, Eimas, and Rosenkrantz (1993) cat and dog photographs. These data were used to train 

and test the networks described throughout this article. 

Table  A1 

Measurements (in Millimeters) o f  Cat Exemplars 

Head Head Eye Ear Ear Nose Nose Leg Vertical Horizontal 

Exemplar length width separation separation length length width length extent extent 

cat 1 29 32 7 28 12 0 3 0 54 62 

cat2 12 13 4 12 5 3 2 14 25 50 
cat3 20 20 4 17 6 5 3 15 26 67 

cat4 13 17 4 17 5 3 2 28 28 46 
cat5 13 14 4 14 4 4 3 15 23 42 

cat6 18 22 3 17 6 6 3 24 42 70 
cat7 10 12 3 7 3 2 1 24 24 47 

cat8 23 24 5 26 7 4 4 25 50 64 

cat9 16 17 4 15 5 5 4 22 32 54 
catl0 16 15 3 12 8 3 2 15 30 65 

cat 11 19 27 5 20 8 4 3 22 71 57 
catl2 19 21 4 12 5 5 4 20 39 65 

cat 13 25 30 6 30 14 6 5 0 50 81 
catl4 16 20 3 16 13 5 3 26 29 59 

cat 15 17 27 5 22 5 3 3 28 40 43 
catl6 18 21 4 20 6 4 4 35 55 43 
catl7 23 22 5 24 7 6 4 35 52 56 

catl 8 20 22 5 23 7 5 4 28 34 54 
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Table A2 

Measurements (in Millimeters) of Dog Exemplars 

645 

Head Head Eye Ear Ear Nose Nose Leg Vertical Horizontal 

Exemplar length width separation separation length length width length extent extent 

dogl 16 22 0 0 16 6 7 25 21 53 
dog2 23 16 0 2 8 5 8 35 21 42 

dog3 16 16 4 13 5 7 6 25 26 64 
dog4 20 24 4 11 7 10 10 29 22 47 

dog5 15 22 4 0 20 10 6 31 34 55 

dog6 13 15 3 4 8 6 4 25 19 41 
dog7 15 20 3 5 9 8 5 28 26 60 

dog8 13 9 4 12 8 7 5 19 20 49 

dog9 15 21 3 10 19 3 3 32 20 46 
dogl0 33 30 11 37 12 3 4 40 50 66 

dog l l  17 17 5 13 6 7 5 28 22 55 
dogl2 29 21 6 31 15 15 13 31 28 58 
dogl3 19 15 6 20 19 10 9 34 46 44 

dogl4 25 20 6 28 15 10 8 28 30 55 
dogl5 21 24 7 0 15 10 8 20 32 49 

dogl6 23 20 7 23 15 8 6 26 34 36 
dogl7 16 21 6 0 10 7 10 28 21 62 

dogl8 14 22 3 0 15 9 6 24 26 30 
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